& MENDER
® e e

ROBUST
Requirement

Update mechanism
is immune to power
and network loss
mid-update in order
to avoid any
bricked devices.

Rollback to previous
working version

is built-in and
automatic with
sanity checks
post-installation.

&

Integrity check to
avoid corruption.

‘a. Compatibility check.

Ensure another
update can be
deployed.

N Custom sanity checks

R# aftertheupdate.

o] Well maintained
E] code and high
" code quality.

Requirements Checklist for Over-The-Air (OTA)
Software Updates for Connected Devices/loT

Description

Atomic installs (full image over package-
based) where an update is always fully
installed or not at all avoids the possibility
of a device becoming unbootable due

to interruptions of an update.

No software component ever sees

a partially installed update.

Dual A/B partition is one of the most reliable
and simple approaches for built-in rollback
where the update is written to the inactive
root file-system partition and the bootloader
is configured to boot from it and then the
embedded system reboots. Once the updater
comes up it will try to report the success of
the deployment to the management server.
If this fails it will automatically rollback.

Make sure the update artifact is not
corrupted, end-to-end from build
system to device, due to any transfer
or hardware issues.

Verifies that the software update can run
on the target devices. For example, the CPU
architecture of the devices are supported by
the software update.

After an update has been deployed, make
sure that another update can be deployed
by making sure that the deployment server
can be reached after the update. Otherwise
arollback should be performed.

Even though a device boots, it does not
mean that its application works properly.
For example, the UI framework may not
be brought up. Custom sanity checks are
automatically run after the update and
the updater automatically rolls back the
update if they do not all pass.

The updater is a critical component to
an embedded system and needs to be
well tested and widely used across

a wide variety of use cases so the code
maintains a high quality level.

Risks When Not Implemented

Devices may be bricked when an update is interrupted due

to poor network connectivity or power loss and may become
unusable. Non-atomic updates also run the risk of inconsistency
across a fleet of devices and becomes unmanageable when
production does not match test environments.

If an update fails for any reason with no ability to rollback to the
last working version, sending a technician to the field where the
device resides will be costly.

Intermittent application malfunction, application not starting
or device bricking due to random modifications of the update.

Application fails to start or the device gets bricked immediately
because the software is built for the wrong device type. This is
particularly an issue when multiple revisions of devices and
software are introduced, and software updates only support a
subset of the devices.

If an update makes a device malfunction in certain ways such as
losing network connectivity, the device can never be fixed and is
effectively bricked.

The device may be unusable to the end user because important
applications are not brought up after the update or key services
are malfunctioning.

Bugs in the updater itself can not only brick devices but also
expose serious security vulnerabilities to the devices.

i 2 @ W in

——

SECURITY

Requirement

Secure communica-
tions between the
management server
and the client run-
ning on the device.

Authenticity of
update images
with code signing.

=P

Requirement

Existing development
build system

integration.
@ Standalone
deployments.
@ Support for multiple
storage types.

Description

Use of secure and bi-directionally
authenticated communication between
the client/server (e.g. TLS).

End-to-end signature management
to authenticate it is an authorized
and trusted update.

INTEGRATION INTO EXISTING ENVIRONMENTS

Description

The update process should integrate with
existing OSes, development tools and popular
build systems like the Yocto Project.

While OTA is the desired mechanism,
many devices will initially require stand-
alone deployments with an update via

a USB or SD Card.

Embedded systems can use a variety

of storage, including raw NAND flash,
eMMC and SPI-NOR. Besides supporting
all these, the updater must not make
unnecessary writes to the storage because
this will quickly wear out the flash.

FLEET MANAGEMENT

Requirement

Description

Risks When Not Implemented

The update can be modified while in transit from the update server
to the device, enabling an attacker to inject malicious code, steal
data and take over the device. This attack is particularly susceptible
over wireless networks. The attacker could also imitate the update
server, forcing a malicious update to be installed at their choosing.

Lack of digital signatures/code signing allows attackers to
reprogram sensitive components of the embedded system by
modifying a valid update, enabling attackers to inject malicious
code or take over the device.

Risks When Not Implemented

Pushback from the development team if the updater dictates the
tools they need to use, for example a “rip and replace” solution that
dictates the embedded OS, language or how updates are packaged.

If devices without wireless network connectivity cannot

be updated, they have an increased security risk and will
almost certainly be vulnerable to attacks of publicly known
vulnerabilities over time.

If the updater does not support all embedded storage types used,
some devices may never be able to update and thus leave a security
issue as software vulnerabilities become public over time. If the
updater does not take into account the limited wear requirement

of flash-based devices, the devices will get bricked over time.

Deployment
management server.
{'& Rollout management.
—rglj Device Inventory.
Installed software
versions.
@ Deploymentlogs.
E Deployment
status reports.

Ability to automate deployment across
a fleet of devices.

The ability to perform phased rollouts
and deployments specific to certain groups
or locations of the device population.

Ability to list all devices, through an UI
and REST API, together with key inventory
information such as network addresses,
product revision and model and when it
last connected to the server infrastructure.

Ability to see the current software
versions installed on each device
and query this information.

Diagnostics logs from devices that are
captured as a deployment is carried out.

An overall status of the deployment, such as
how many devices succeeded and failed the
deployment, as well as which devices failed.

Risks When Not Implemented

If devices need to be updated one-by-one, deploying updates
will be extremely costly or not carried out at all.

Updating fleets without rollout management and device groupings will
require more man hours to update entire device fleets. When manue, _
tasks are increased, mistakes increase accordingly. If you can only update
to all devices, the risk is high that one mistake can brick the entire fleet.

Lack of device inventory can easily lead to security breaches
as “forgotten” devices are no longer maintained.

In order to plan for software updates, you need to know what is
out there already. This will make it possible to know if the installed
software is compatible with the desired update. It is also critical

to know which software is installed on all the devices in order to
discover which devices are vulnerable to known vulnerabilities
and CVESs so that they can be updated.

If a deployment fails across one or more devices and there
are no logs, issues are very hard to diagnose and fix.

If it is not possible to know if a deployment succeeds or fails and
on which devices, deploying updates is very risky as bricking
devices can go unnoticed for a very long time. The only way to see
failures in this case is when end users report them which leads to
a very bad customer experience and an expensive support burden.

Fo Sl T e e e e e R e s

