TOSHIBA

TOSHIBA Original RISC 32-Bit Microprocessor

ARM Core Family

TMPA910CRAXBG

TENTATIVE Rev 0.72

Since this revision 0.72 is still under working, there may be some mistakes in it.

When you will start to design, please order the latest one.

TOSHIBA CORPORATION

Semiconductor Company

Contents

TMPA910CRAXBG

1.	Ove	erview and Features ·····	···TMPA910CRA-3
2.	Pin	Configuration and Functions ·····	···TMPA910CRA-7
:	2.1	Pin Names and Functions ·····	···TMPA910CRA-11
3.	Des	scription of Operation · · · · · · · · · · · · · · · · · · ·	··TMPA910CRA-26
	3.1	CPU ·····	··TMPA910CRA-26
	3.2	JTAG interface ······	··TMPA910CRA-30
	3.3	Memory Map · · · · · · · · · · · · · · · · · · ·	··TMPA910CRA-45
	3.4	System Controller	··TMPA910CRA-50
	3.5	Clock Controller	··TMPA910CRA-60
	3.6	Boot ROM ·····	··TMPA910CRA-100
	3.7	Interrupts ·····	··TMPA910CRA-150
	3.8	DMAC (DMA controller)	···TMPA910CRA-200
	3.9	Port Function · · · · · · · · · · · · · · · · · · ·	···TMPA910CRA-250
	3.10	МРМС ••••••	··TMPA910CRA-350
	3.11	NAND-Flash controller ·····	··TMPA910CRA-500
	3.12	16-Bit Timer/PWM · · · · · · · · · · · · · · · · · · ·	··TMPA910CRA-550
	3.13	UART ······	··TMPA910CRA-600
	3.14	Serial Bus Interface (SBI) ·····	··TMPA910CRA-650
	3.15	SSP ·····	·TMPA910CRA-700
	3.16	USB Device Controller ·····	··TMPA910CRA-750
	3.17	I2S (Inter-IC Sound) ······	·TMPA910CRA-950
	3.18	SD Host Controller	·TMPA910CRA-1000
	3.19	LCD Controller (LCDC) ······	·TMPA910CRA-1200
	3.20	LCD Data Process Accelerator (LCDDA)	··TMPA910CRA-1300
	3.21	Touch Screen Interface (TSI) ·····	·TMPA910CRA-1350
	3.22	CMOS Image Sensor Interface (CMSI) ······	·TMPA910CRA-1400
	3.23	Real-Time Clock Melody Alarm Generator	•TMPA910CRA-1450
	3.24	Analog/Digital Converter	·TMPA910CRA-1500
	3.25	Watchdog Timer (Runaway Detection Timer) ·····	•TMPA910CRA-1550
:	3.26	PMC (Power Management Circuit) ·····	·TMPA910CRA-1600
4.	Spe	ЭС••••••	·TMPA910CRA-1700

RESTRICTIONS ON PRODUCT USE

20070701-EN

- The information contained herein is subject to change without notice.
- TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property.

In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc.

- The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in his document shall be made at the customer's own risk.
- The products described in this document shall not be used or embedded to any downstream products of which manufacture, use and/or sale are prohibited under any applicable laws and regulations.
- The information contained herein is presented only as a guide for the applications of our products. No
 responsibility is assumed by TOSHIBA for any infringements of patents or other rights of the third parties
 which may result from its use. No license is granted by implication or otherwise under any patents or
 other rights of TOSHIBA or the third parties.
- Product names mentioned herein may be trademarks of their respective companies.
- Please contact your sales representative for product-by-product details in this document regarding RoHS compatibility. Please use these products in this document in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances. Toshiba assumes no liability for damage or losses occurring as a result of noncompliance with applicable laws and regulations.

Proprietary Notice

Words and logos marked with (r) or (tm) are registered trademarks or trademarks of ARM Limited in the EU and other countries, except as otherwise stated below in this proprietary notice. Other brands and names mentioned herein may be the trademarks of their respective owners.

Neither the whole nor any part of the information contained in, or the product described in, this document may be adapted or reproduced in any material form except with the prior written permission of the copyright holder.

The product described in this document is subject to continuous developments and improvements. All particulars of the product and its use contained in this document are given by ARM Limited in good faith.

However, all warranties implied or expressed, including but not limited to implied warranties of merchantability, or fitness for purpose, are excluded.

This document is intended only to assist the reader in the use of the product. ARM Limited shall not be liable for any loss or damage arising from the use of any information in this document, or any error or omission in such information, or any incorrect use of the product.

Where the term ARM is used it means "ARM or any of its subsidiaries as appropriate".

- Introduction - Notes on the registers

This device has SFR (Special Function Register) each IP (Peripheral circuits). SFR is shown as following in this data book.

- a) IP lists
 - IP lists show the register name, address and easy descriptions.
 - 32bit address is assigned to all registers. It shows as [base address + (specific) address].

				base address = 0x0000_0000
Register Name	Address (base)	•	Description	· · · 1
SAMPLE 🕻	0x0001	Sample register		
	<u> </u>			

Note1: Case of this register (SAMPLE) : 00000001 address because 00000000 address (hex)+0001 address (hex) Note2: This register is sample register. There is not this data book.

b) SFR (register) description

- Basically, each register is structured 32 bit register. (There is a part of exception.)
- Each description shows Bit, Bit Symbol, Type, Reset value and Description.

Bit	Bit Symbol	Туре	Reset Value	Description
[31:8]	-	-	Undefined	Read undefined. Write as zero.
[7:6]	SAMPLE76	R/W	0y00	Sample setting 00 : Set to Sample mode 0 01 : Set to Sample mode 1 10 : Set to Sample mode 2 11 : Set to Sample mode 3

 $Address = (0x0000_0000) + 0x0001$

Basically 3types.

R/W (READ/WRITE) :	Enable Read/Write
RO (READ ONLY) :	Enable Read only
WO (WRITE ONLY) :	Enable Write only

There are exception types (USB device controller and SD host controller). Please refer to those sections.

✗ Bit state description:

Hexadecimal:0x00FF = 255 (Decimal)Binary:0y0101 = 5 (Decimal)

32-Bit RISC Microprocessor TMPA910CRAXBG

1. Overview and Features

TMPA910CRA is a 32-bit RISC microprocessor with a built-in ARM9_CPU core. TMPA910CRAXBG is a 361-pin BGA package product. Features of the product are as follows:

- (1) ARM926EJ-S manufactured by ARM is used.
 - Data cache: 16 Kbytes
 - Instruction cache: 16 Kbytes
- (2) Maximum operating frequency: 200 MHz
- (3) A 7-layer multi bus system is used.
 - Bus Master1: CPU data
 - Bus Master2: CPU instruction
 - Bus Master3: LCD controller
 - Bus Master4: LCD data process accelerator
 - Bus Master5: DMA controller 1
 - Bus Master6: DMA controller 2
 - Bus Master7: USB device controller
- (4) Memory access
 - Built-in RAM: 56 Kbytes (can be used as program, data, and display memory)
 - Built-in ROM: 16 Kbytes (boot memory)
 - It can be loaded to the built-in RAM from USB.
 - 4 GB linear access space (effective space: approximately 2.5 GB)
 - Separate bus system:

External address	26 bits: A0-A25
External data bus	32 bits: D0-D31
	(Only a 16-bit bus is available for Mobile DDR SDRAM)

- (5) Memory controller
 - Chip-select output: 4 channels
 - Chip-select exclusive for DRAM: 1 channel
 - Depending on the external pin selection, SDR (Single Data Rate)-type SDRAM and DDR (Double Data Rate) LVCMOS_I/O type SDRAM can be supported (SSTL_IO type DDR SDRAM cannot be supported).
- (6) 16-bit timer
 - 6 channels 16-bit timers including 2 channel timers with PWM function.
- (7) Synchronous serial bus interface: 2 channels
 - Supports SPI mode/MicroWire mode.
- (8) I²C bus interface: 2 channels

- (9) UART: 2 channels
 - Channel 0: supports Full UART / supports IrDA1.0 mode.
 - Channel 1: supports only 3 pins: TXD, RXD, and CTS.

(10)USB controller: 1 channel

- Supports USB (REV2.0).
- Supports high communication speed (480Mbps) (does not support Low Speed).
- Supports 4 endpoints.

End-point 0: Control 64 bytes \times 1- FIFO

End-point 1: Bulk (Device \rightarrow Host: IN transfer) 512 bytes \times 2 -FIFO

End-point 2: Bulk (Host \rightarrow Device: OUT transfer) 512 bytes \times 2- FIFO

End-point 3: Interrupt 64 bytes × 1- FIFO

(11)I²S (Inter-IC Sound) interface: 2 channels

- Channel 0 (for reception: 32-byte FIFO × 2)
- Channel 1 (for transmission: 32-byte FIFO × 2)
- (12)LCD controller
 - Supports 800 × 480 pixel size.
 - Supports TFT/STN panels.
 - For STN panels, 4/15 monochrome tones and 256/3375 color tones are supported.
 - For TFT panels, 16-bit/24-bit color is supported.

(13)LCD data process accelerator

- Scaling function (expansion/reduction)
- Filtering function (bi-cubic convolution)
- Image blending function (supports font blending)

(14)RTC (real-time clock)

(15)Melody/Alarm generator

• Supports output of 8 alarm sound patterns.

(16)Key-on wake up (key-input interrupt)

(17)10-bit AD converter (with a built-in sample-and-hold circuit): 6 channels

(18)Supports touch-screen interfaces

• Since a low-resistance switch is built in to the product, external components for horizontal/vertical switching can be deleted.

(19)Watchdog timer

(20)Interrupt function: 28 types

- External (26 pins): 7 types INTO to INTH (edge: rise and fall, level: High and Low), Key input
- Internal : 21 types

16-bit timer \times 3, RTC \times 1, and A/D converter \times 1

CMOS image sensor \times 1, LCDC \times 1, NANDFC \times 1, UART \times 2,

 $I2C \times 2$, $SSP \times 2$, $USB \times 1$, $I2S \times 1$, SD host controller $\times 1$,

LCDDA \times 1, DMAC \times 2, and WDT \times 1

(21)I/O port: 108 pins

(22)DMA controller: 8 channels

(23)NAND-flash memory interface: 2 channels

- Easy connection to NAND-flash memory.
- Supports both 2LC (2 values) and 4LC (4 values) types.
- Supports 8-bit data bus and 512/2048-byte page size.
- Built-in Reed Solomon operational circuit can correct 4 addresses and detect errors in more than 5 addresses.

(24)SD host controller: 2 channels

- Supports SD card I/F mode (4-bit parallel).
- Supports SDIO.
- Built-in 512-byte FIFO buffer.

(25)CMOS Sensor I/F: 1 channel

- YUV data can be converted into RGB data
- LCD display memory can be specified as a data save location.
- Supports scaling and trimming functions for changing sizes.

(26)Standby function

- Status of each pin in standby mode can be set bit-by-bit.
- Built-in power management circuit (PMC) to prevent leakage current.

(27)Clock control function

- Two blocks of built-in clock multiple circuit (PLL) enables an external 10 to 25 MHz oscillator to supply USB clock frequency of 480 MHz and clock frequency of 200 MHz to the CPU (CPU clock frequency is 192 MHz when USB is in use).
- Clock gear function: A high-frequency clock can be changed within the range of fc to fc/16.
- Clock (CPU) for clock (time) (fs = 32.768 kHz)

(28)Operating voltage

- Internal DVCC1A and DVCC1B = $1.5V\pm0.1V$
- High-frequency oscillator and power supply for PLL, DVCC1C = 1.5V±0.1V
- External I/O DVCCM for memory = 3.0V to 3.6V or 1.8V±0.1V
- General external I/O DVCC3IO = 3.0V to 3.6V
- External I/O DVCC3LCD for LCD = 1.8V to 3.6V
- External I/O DVCC3CMS for CMOS image sensor = 1.8V to 3.6V
- External I/O AVCC3AD for AD converter = 3.0V to 3.6V
- External I/O AVDD3T/C for USB = 3.15V to 3.45V
- External I/O DVCC3I2S for $I^2S = 1.8V$ to 3.6V

(29)DSU (JTAG) function

• JTAG supports of the ARM core.

(30)Package

• 361-pin FBGA: P-FBGA361-1616-0.80AZ

TOSHIBA

Figure 1.1 TMPA910CRA block diagram

2. Pin Configuration and Functions

This section provides a TMPA910CRA pin configuration diagram, names of I/O pins, and brief description of their functions.

Figure 2.1.1 shows the TMPA910CRA pin configuration.

TOP VIEW

(Perspective view from the top)

A1	A2	A3	A4	A5	A6	A7	A8	A9	A10	A11	A12	A13	A14	A15	A16	A17	A18	A19
B1	B2	B3	B4	B5	B6	B7	B8	B9	B10	B11	B12	B13	B14	B15	B16	B17	B18	B19
C1	C2	C3	C4	C5	C6	C7	C8	C9	C10	C11	C12	C13	C14	C15	C16	C17	C18	C19
D1	D2	D3	D4	D5	D6	D7	D8	D9	D10	D11	D12	D13	D14	D15	D16	D17	D18	D19
E1	E2	E3	E4	E5	E6	E7	E8	E9	E10	E11	E12	E13	E14	E15	E16	E17	E18	E19
F1	F2	F3	F4	F5	F6	F7	F8	F9	F10	F11	F12	F13	F14	F15	F16	F17	F18	F19
G1	G2	G3	G4	G5	G6	G7	G8	G9	G19	G11	G12	G13	G14	G15	G16	G17	G18	G19
H1	H2	H3	H4	H5	H6	H7	H8	H9	H10	H11	H12	H13	H14	H15	H16	H17	H18	H19
J1	J2	J3	J4	J5	J6	J7	J8	J9	J10	J11	J12	J13	J14	J15	J16	J17	J18	J19
K1	K2	K3	K4	K5	K6	K7	K8	K9	K10	K11	K12	K13	K14	K15	K16	K17	K18	K19
L1	L2	L3	L4	L5	L6	L7	L8	L9	L10	L11	L12	L13	L14	L15	L16	L17	L18	L19
M1	M2	М3	M4	M5	M6	M7	M8	M9	M10	M11	M12	M13	M14	M15	M16	M17	M18	M19
N1	N2	N3	N4	N5	N6	N7	N8	N9	N10	N11	N12	N13	N14	N15	N16	N17	N18	N19
P1	P2	P3	Ρ4	P5	P6	P7	P8	P9	P10	P11	P12	P13	P14	P15	P16	P17	P18	P19
R1	R2	R3	R4	R5	R6	R7	R8	R9	R10	R11	R12	R13	R14	R15	R16	R17	R18	R19
T1	T2	Т3	T4	T5	T6	T7	T8	Т9	T10	T11	T12	T13	T14	T15	T16	T17	T18	T19
U1	U2	U3	U4	U5	U6	U7	U8	U9	U10	U11	U12	U13	U14	U15	U16	U17	U18	U19
V1	V2	V3	V4	V5	V6	V7	V8	V9	V10	V11	V12	V13	V14	V15	V16	V17	V18	V19
W1	W2	W3	W4	W5	W6	W7	W8	W9	W10	W11	W12	W13	W14	W15	W16	W17	W18	W19

- Note 1: No valid signals have been assigned to Balls A1 and W1. Also, A1 and W1 are electrically connected with each other inside the BGA board.
- Note 2: No valid signals have been assigned to Balls A19 and W19. Also, A19 and W19 are electrically connected with each other inside the BGA board.
- Note 3: Ball G7 is an NC pin.

TENTATIVE

Table 2.1.1 Pin numbers and names

Ball No.	Pin name	Ball No.	Pin name	Ball No	Pin name
C3	SP0/TCK	L6	PC5/MLDALMn/INT8	T6	SW2/NDALE
D4	SP1/TMS	K2	DVCC3IO4	N8	SW1/NDWEn
K8	DVSSCOM1	L5	PC6/I2C0CL	U6	SV3/NDD3
D3	SP2/TDI	L1	PC2/PWE	W3	DVCC3IO9
B1	DVCC3IO1	L4	PT5/U1RXD	N9	SV6/NDD6
E5	SP5/TDO	K3	DVSSCOM7	R7	SV2/NDD2
E4	SP4/RTCK	N7	PT4/U1TXD	N10	SW0/NDREn
F5	SP3/TRSTn	M1	PC7/I2C0DA/INT9	R8	PP2/INT2
G6	DVCC3CMS1	T1	SM4/RESETn	V4	DVCC1A3
G5	PF6/I2C1CL	P7	PG5/SDC0WP	T7	SV5/NDD5
F4	PF7/I2C1DA/INTC	L2	DVCC3IO5	V5	SV1/NDD1
H7	PF1/CMSHSY	N6	PG4/SDC0CMD	P9	PP1/INT1
J7	PE7/CMSD7	L3	PG3/SDC0DAT3	L9	DVSSCOM11
E3	PF2/CMSHBK	M2	PG2/SDC0DAT2	P10	SV4/NDD4
D2	PF3/CMSVSY	M8	DVSSCOM8	U7	SV0/NDD0
K8	DVSSCOM2	P1	PG7/SDC0CLK	R9	PP0/INT0
F3	PF0/CMSPCK	M4	PH5/SDC1WP	W4	DVCC3IO10
L7	PE6/CMSD6	M3	PG6/SDC0CD	M10	DVSSCOM12
C2	PE3/CMSD3	M5	PG1/SDC0DAT1	V6	SN2/SELJTAG
G4	PE4/CMSD4	N2	DVCC3IO6	T8	SM6/AM0
E2	PE5/CMSD5	N5	PG0/SDC0DAT0	U8	SM7/AM1
K6	DVCC3CMS2	R2	DVCC1A2	W5	DVCC3IO11
C1	PE0/CMSD0	P6	PH6/SDC1CD	R10	SN0/SELMEMC
H5	PE1/CMSD1	R1	PH4/SDC1CMD	T10	SN1/SELDVCCM
G3	PE2/CMSD2	R6	PH2/SDC1DAT2	W6	DVCC1C
J8	DVSSCOM3	P2	PH1/SDC1DAT1	W7	SM0/X1
D1	PT2/SP0DO	P4	DVSSCOM9	V7	DVSS1C
H4	PT0/SP0FSS	N3	PH0/SDC1DAT0	W8	SM1/X2
E1	DVCC3IO2	N1	PH7/SDC1CLK	V8	DVCC1C
H6	PN1/U0RXD/SIR0IN	N4	PH3/SDC1DAT3	U9	PT7/X1USB
F2	PN0/U0TXD/SIR0OUT	P3	DVCC3IO7	Т9	DVCC1A4
J5	PT3/SP0DI	T2	VREFH	K9	DVSSCOM13
F1	DVCC1A1	U2	VREFL	V9	AVDD3C
J8	DVSSCOM4	U1	AVSS3AD	W9	SR4/VSENSE
H3	PT1/SP0CLK	V1	AVCC3AD	V10	SR3/REXT
K5	PT6/U1CTSn	P5	PD5/AN5/MY	W10	AVSS3C
G2	PN4/U0DSRn/INTD	R3	PD4/AN4/MX	U10	AVDD3T1
M6	PN7/U0RTSn/INTG	R5	PD3/AN3	V11	AVSS3T3
G1	DVCC3IO3	R4	PD2/AN2	U11	AVSS3T2
J4	PN3/U0DCDn	T5	PD1/AN1	W11	SR1/DM
H2	PN5/U0RIn/INTE	T3	PD0/AN0	W12	SR0/DP
K4	PN2/U0CTSn	U3	PD6/PX/INTA(TSI)	V12	AVSS3T1
H1	PN6/U0DTRn/INTF	T4	PD7/PY/INTB	U12	AVSS3T1
L8	DVSSCOM5	V2	DVCC3IO8	W13	AVSS3T0
J1	SM2/XT1	V3	SW6/NDRB	V13	AVDD3T0
K1	SM3/XT2	U4	SW4/NDCE0n	J10	DVSSCOM14
M9	DVSSCOM6	W2	SW5/NDCE1n	V14	DVCC1A5
J3	PC4/FSOUT/PWM2OUT	U5	SW3/NDCLE	T11	PM0/I2S1WS
M7	DVCC1B1	L9	DVSSCOM10	V15	PM2/I2S1DATO
J2	PC3/MLDALM/PWM0OUT	P8	SV7/NDD7	R11	PL2/I2S0DATI/SP1DO

Note: Power supply signals that are indicated in bold and shaded will not be output to the balls as they are connected to the other power supplies of the same type on the board inside BGA.

TENTATIVE

Table 2.1.2 Pin numbers and names

Ball No.	Pin name	Ball No.	Pin name	Ball No	Pin name	
W14	PL4/I2SSCLK	M14	SD3/D27	E19	DVCC1A9	
T12	DVCC3I2S1	R18	SB1/D9	H14	SD6/D30	
U13	PL1/I2S0CLK/SP1CLK	M15	SD2/D26	F18	SE4/A4	
P11	PM3/I2S1MCLK	T19	DVCCM6	G15	SG4/A20	
W16	PM1/I2S1CLK	M16	SB7/D15	J11	DVSSCOM26	
N11	PL3/I2S0MCLK/SP1DI	P18	SB4/D12	G16	SG2/A18	
L10	DVSSCOM15	L11	DVSSCOM21	G17	SF4/A12	
R12	PL0/I2S0WS/SP1FSS	L12	PP3/INT3	F15	SG5/A21	
U14	DVCC3I2S2	M17	PP4/INT4	D19	DVCCM9	
T13	PR0/RESETOUTn	L13	PP5/INT5	F16	SG3/A19	
W15	PR1/SMCWPn/FCOUT	R19	PP6/INT6	E18	SE5/A5	
W17	DVCC1A6	L14	PP7/INT7	F17	SF5/A13	
U15	DVCCM1	N18	PA0/KI0	G14	DVSSCOM27	
R13	SC3/D19	P19	DVCC3IO12	E15	SG6/A22	
V16	SA0/D0	N19	PA1/KI1	D18	SE6/A6	
P12	SC6/D22	L15	PA2/KI2	C19	SE7/A7	
M11	DVSSCOM16	L17	PA3/KI3	E16	DVCCM10	
P13	SC5/D21	L16	PA4/KI4	C18	SF1/A9	
W18	SL6/DMCCLKIN	M18	PA5/KI5	E17	SF6/A14	
P14	SC4/D20	L11	DVSSCOM22	D17	SF7/A15	
U15	DVCCM2	M19	PA6/KI6	H13	DVSSCOM28	
T14	SC1/D17	K16	PA7/KI7	B19	SF0/A8	
V17	SA1/D1	L19	DVCC1A8	C17	SG0/A16	
V18	SA2/D2	K15	PB0/KO0	D16	DVSSCOM29	
M11	DVSSCOM17	L18	PB1/KO1	B18	SK3/DMCSDQM3	
R14	SC2/D18	K13	PB2/KO2	A18	SK2/DMCSDQM2	
R15	SC0/D16	K17	SM5/ TEST0n	D15	DVCCM11	
U16	SA3/D3	K19	DVCC3IO13	C16	SL2/DMCAP	
T15	DVCCM3	K18	PB3/KO3	E14	SG7/A23	
T16	SA5/D5	K14	PB4/KO4	D14	DVSSCOM30	
U17	SL4/DMCDDQS0	J19	PB5/KO5	015	SJ4/DMCBA0	
V19				015	SJ4/DMCBA0	
NIAO	323/DIVICDDQ31	K11	DVSSCOM23	C15 C14	SJ5/DMCBA1	
N13	DVSSCOM18	K11 J18	DVSSCOM23 PB6/KO6	C15 C14 F14	SJ4/DMCBA0 SJ5/DMCBA1 DVSSCOM31	
N13 T17	DVSSCOM18 SA6/D6	K11 J18 J15	DVSSCOM23 PB6/KO6 PB7/KO7	C15 C14 F14 F13	SJ4/DMCBA0 SJ5/DMCBA1 DVSSCOM31 SH1/A25	
N13 T17 R17	DVSSCOM18 SA6/D6 SB0/D8	K11 J18 J15 H19	DVSSCOM23 PB6/KO6 PB7/KO7 PC0/KO8	C13 C14 F14 F13 E13	SJ4/DMCBA0 SJ5/DMCBA1 DVSSCOM31 SH1/A25 DVCC1A10	
N13 T17 R17 R16	DVSSCOM18 SA6/D6 SB0/D8 SA7/D7	K11 J18 J15 H19 J16	DVSSCOM23 PB6/KO6 PB7/KO7 PC0/KO8 PC1/KO9	C13 C14 F14 F13 E13 B17	SJ4/DMCBA0 SJ5/DMCBA1 DVSSCOM31 SH1/A25 DVCC1A10 SK0/DMCSDQM0/DMCDDM0	
N13 T17 R17 R16 P15	DVSSCOM18 SA6/D6 SB0/D8 SA7/D7 DVCCM4	K11 J18 J15 H19 J16 K11	DVSSCOM23 PB6/KO6 PB7/KO7 PC0/KO8 PC1/KO9 DVSSCOM24	C13 C14 F14 F13 E13 B17 B16	SJ4/DMCBA0 SJ5/DMCBA1 DVSSCOM31 SH1/A25 DVCC1A10 SK0/DMCSDQM0/DMCDDM0 DVCCM12	
N13 T17 R17 R16 P15 N14	DVSSCOM18 SA6/D6 SB0/D8 SA7/D7 DVCCM4 SD0/D24	K11 J18 J15 H19 J16 K11 J14	DVSSCOM23 PB6/KO6 PB7/KO7 PC0/KO8 PC1/KO9 DVSSCOM24 DVCC1B2	C13 C14 F14 F13 E13 B17 B16 G13	SJ4/DMCBA0 SJ5/DMCBA1 DVSSCOM31 SH1/A25 DVCC1A10 SK0/DMCSDQM0/DMCDDM0 DVCCM12 SH0/A24	
N13 T17 R17 R16 P15 N14 U18	DVSSCOM18 SA6/D6 SB0/D8 SA7/D7 DVCCM4 SD0/D24 SA4/D4	K11 J18 J15 H19 J16 K11 J14 J17	DVSSCOM23 PB6/KO6 PB7/KO7 PC0/KO8 PC1/KO9 DVSSCOM24 DVCC1B2 SF2/A10	C13 C14 F14 F13 E13 B17 B16 G13 A17	SJ4/DMCBA0 SJ5/DMCBA1 DVSSCOM31 SH1/A25 DVCC1A10 SK0/DMCSDQM0/DMCDDM0 DVCCM12 SH0/A24 DVSSCOM32	
N13 T17 R17 R16 P15 N14 U18 P16	DVSSCOM18 SA6/D6 SB0/D8 SA7/D7 DVCCM4 SD0/D24 SA4/D4 SB2/D10	K11 J18 J15 H19 J16 K11 J14 J17 J13	DVSSCOM23 PB6/KO6 PB7/KO7 PC0/KO8 PC1/KO9 DVSSCOM24 DVCC1B2 SF2/A10 SD7/D31	C13 C14 F13 E13 B17 B16 G13 A17 D13	SJ4/DMCBA0 SJ5/DMCBA1 DVSSCOM31 SH1/A25 DVCC1A10 SK0/DMCSDQM0/DMCDDM0 DVCCM12 SH0/A24 DVSSCOM32 SK7/SMCBE3n	
N13 T17 R17 R16 P15 N14 U18 P16 M12	DVSSCOM18 SA6/D6 SB0/D8 SA7/D7 DVCCM4 SD0/D24 SA4/D4 SB2/D10 DVSSCOM19	K11 J18 J15 H19 J16 K11 J14 J17 J13 H18	DVSSCOM23 PB6/KO6 PB7/KO7 PC0/KO8 PC1/KO9 DVSSCOM24 DVCC1B2 SF2/A10 SD7/D31 SE2/A2	C13 C14 F14 F13 E13 B17 B16 G13 A17 D13 C13	SJ4/DMCBA0 SJ5/DMCBA1 DVSSCOM31 SH1/A25 DVCC1A10 SK0/DMCSDQM0/DMCDDM0 DVCCM12 SH0/A24 DVSSCOM32 SK7/SMCBE3n SJ2/DMCRASn	
N13 T17 R17 R16 P15 N14 U18 P16 M12 N15	DVSSCOM18 SA6/D6 SB0/D8 SA7/D7 DVCCM4 SD0/D24 SA4/D4 SB2/D10 DVSSCOM19 SC7/D23	K11 J18 J15 H19 J16 K11 J14 J17 J13 H18 K12	DVSSCOM23 PB6/KO6 PB7/KO7 PC0/KO8 PC1/KO9 DVSSCOM24 DVCC1B2 SF2/A10 SD7/D31 SE2/A2 DVCCM7	C13 C14 F14 F13 E13 B17 B16 G13 A17 D13 C13 B13	SJ4/DMCBA0 SJ5/DMCBA1 DVSSCOM31 SH1/A25 DVCC1A10 SK0/DMCSDQM0/DMCDDM0 DVCCM12 SH0/A24 DVSSCOM32 SK7/SMCBE3n SJ2/DMCRASn DVSSCOM33	
N13 T17 R17 R16 P15 N14 U18 P16 M12 N15 P17	DVSSCOM18 SA6/D6 SB0/D8 SA7/D7 DVCCM4 SD0/D24 SA4/D4 SB2/D10 DVSSCOM19 SC7/D23 SB3/D11	K11 J18 J15 H19 J16 K11 J14 J17 J13 H18 K12 G19	DVSSCOM23 PB6/KO6 PB7/KO7 PC0/KO8 PC1/KO9 DVSSCOM24 DVCC1B2 SF2/A10 SD7/D31 SE2/A2 DVCCM7 SE0/A0	C13 C14 F14 F13 E13 B17 B16 G13 A17 D13 C13 B13 D12	SJ4/DMCBA0 SJ5/DMCBA1 DVSSCOM31 SH1/A25 DVCC1A10 SK0/DMCSDQM0/DMCDDM0 DVCCM12 SH0/A24 DVSSCOM32 SK7/SMCBE3n SJ2/DMCRASn DVSSCOM33 SK5/SMCBE1n	
N13 T17 R17 R16 P15 N14 U18 P16 M12 N15 P17 U19	DVSSCOM18 SA6/D6 SB0/D8 SA7/D7 DVCCM4 SD0/D24 SA4/D4 SB2/D10 DVSSCOM19 SC7/D23 SB3/D11 DVCC1A7	K11 J18 J15 H19 J16 K11 J14 J17 J13 H18 K12 G19 H16	DVSSCOM23 PB6/KO6 PB7/KO7 PC0/KO8 PC1/KO9 DVSSCOM24 DVCC1B2 SF2/A10 SD7/D31 SE2/A2 DVCCM7 SE0/A0 SG1/A17	C13 C14 F13 E13 B17 B16 G13 A17 D13 C13 B13 D12 H12	SJ4/DMCBA0 SJ5/DMCBA1 DVSSCOM31 SH1/A25 DVCC1A10 SK0/DMCSDQM0/DMCDDM0 DVCCM12 SH0/A24 DVSSCOM32 SK7/SMCBE3n SJ2/DMCRASn DVSSCOM33 SK5/SMCBE1n PR2/INTH	
N13 T17 R17 R16 P15 N14 U18 P16 M12 N15 P17 U19 N12	DVSSCOM18 SA6/D6 SB0/D8 SA7/D7 DVCCM4 SD0/D24 SA4/D4 SB2/D10 DVSSCOM19 SC7/D23 SB3/D11 DVCC1A7 SD1/D25	K11 J18 J15 H19 J16 K11 J14 J17 J13 H18 K12 G19 H16 G18	DVSSCOM23 PB6/KO6 PB7/KO7 PC0/KO8 PC1/KO9 DVSSCOM24 DVCC1B2 SF2/A10 SD7/D31 SE2/A2 DVCCM7 SE0/A0 SG1/A17 SE3/A3	C13 C14 F14 F13 E13 B17 B16 G13 A17 D13 C13 B13 D12 H12 B15	SJ4/DMCBA0 SJ5/DMCBA1 DVSSCOM31 SH1/A25 DVCC1A10 SK0/DMCSDQM0/DMCDDM0 DVCCM12 SH0/A24 DVSSCOM32 SK7/SMCBE3n SJ2/DMCRASn DVSSCOM33 SK5/SMCBE1n PR2/INTH DVCCM13	
N13 T17 R17 R16 P15 N14 U18 P16 M12 N15 P17 U19 N12 T18	DVSSCOM18 SA6/D6 SB0/D8 SA7/D7 DVCCM4 SD0/D24 SA4/D4 SB2/D10 DVSSCOM19 SC7/D23 SB3/D11 DVCC1A7 SD1/D25 DVCCM5	K11 J18 J15 H19 J16 K11 J14 J17 J13 H18 K12 G19 H16 G18 J12	DVSSCOM23 PB6/KO6 PB7/KO7 PC0/KO8 PC1/KO9 DVSSCOM24 DVCC1B2 SF2/A10 SD7/D31 SE2/A2 DVCCM7 SE0/A0 SG1/A17 SE3/A3 DVSSCOM25	C13 C14 F14 F13 E13 B17 B16 G13 A17 D13 C13 B13 D12 H12 B15 F12	SJ4/DMCBA0 SJ5/DMCBA1 DVSSCOM31 SH1/A25 DVCC1A10 SK0/DMCSDQM0/DMCDDM0 DVCCM12 SH0/A24 DVSSCOM32 SK7/SMCBE3n SJ2/DMCRASn DVSSCOM33 SK5/SMCBE1n PR2/INTH PR2/INTH DVCCM13 SH2/SMCBE0n	
N13 T17 R17 R16 P15 N14 U18 P16 M12 N15 P17 U19 N12 T18 M13	DVSSCOM18 SA6/D6 SB0/D8 SA7/D7 DVCCM4 SD0/D24 SA4/D4 SB2/D10 DVSSCOM19 SC7/D23 SB3/D11 DVCC1A7 SD1/D25 DVCCM5 SD4/D28	K11 J18 J15 H19 J16 K11 J14 J17 J13 H18 K12 G19 H16 G18 J12 H17	DVSSCOM23 PB6/KO6 PB7/KO7 PC0/KO8 PC1/KO9 DVSSCOM24 DVCC1B2 SF2/A10 SD7/D31 SE2/A2 DVCCM7 SE0/A0 SG1/A17 SE3/A3 DVSSCOM25 SF3/A11	C13 C14 F14 F13 E13 B17 B16 G13 A17 D13 C13 B13 D12 H12 B15 F12 C12	SJ4/DMCBA0 SJ5/DMCBA1 DVSSCOM31 SH1/A25 DVCC1A10 SK0/DMCSDQM0/DMCDDM0 DVCCM12 SH0/A24 DVSSCOM32 SK7/SMCBE3n SJ2/DMCRASn DVSSCOM33 SK5/SMCBE1n PR2/INTH PR2/INTH DVCCM13 SH2/SMCBE0n SK6/SMCBE2n	
N13 T17 R17 R16 P15 N14 U18 P16 M12 N15 P17 U19 N12 T18 M13 N17	DVSSCOM18 DVSSCOM18 SA6/D6 SB0/D8 SA7/D7 DVCCM4 SD0/D24 SA4/D4 SB2/D10 DVSSCOM19 SC7/D23 SB3/D11 DVCC1A7 SD1/D25 DVCCM5 SB4/D28 SB6/D14	K11 J18 J15 H19 J16 K11 J14 J17 J13 H18 K12 G19 H16 G18 J12 H17 H15	DVSSCOM23 PB6/KO6 PB7/KO7 PC0/KO8 PC1/KO9 DVSSCOM24 DVCC1B2 SF2/A10 SD7/D31 SE2/A2 DVCCM7 SE0/A0 SG1/A17 SE3/A3 DVSSCOM25 SF3/A11 SD5/D29	C13 C14 F13 E13 B17 B16 G13 A17 D13 C13 B13 D12 H12 B15 F12 C12 E12	SJ4/DMCBA0 SJ5/DMCBA1 DVSSCOM31 SH1/A25 DVCC1A10 SK0/DMCSDQM0/DMCDDM0 DVCCM12 SH0/A24 DVSSCOM32 SK7/SMCBE3n SJ2/DMCRASn DVSSCOM33 SK5/SMCBE1n PR2/INTH PR2/INTH DVCCM13 SH2/SMCBE0n SK4/SMCBE2n SK4/SMCWEn	
N13 T17 R17 R16 P15 N14 U18 P16 M12 N15 P17 U19 N12 T18 M13 N17 N16	DVSSCOM18 DVSSCOM18 SA6/D6 SB0/D8 SA7/D7 DVCCM4 SD0/D24 SA4/D4 SB2/D10 DVSSCOM19 SC7/D23 SB3/D11 DVCC1A7 SD1/D25 DVCCM5 SB6/D14 SB5/D13	K11 J18 J15 H19 J16 K11 J14 J17 J13 H18 K12 G19 H16 G18 J12 H17 H15 F19	DVSSCOM23 PB6/KO6 PB7/KO7 PC0/KO8 PC1/KO9 DVSSCOM24 DVCC1B2 SF2/A10 SD7/D31 SE2/A2 DVCCM7 SE0/A0 SG1/A17 SE3/A3 DVSSCOM25 SF3/A11 SD5/D29 SE1/A1	C13 C14 F14 F13 E13 B17 B16 G13 A17 D13 C13 B13 D12 H12 B15 F12 C12 E12 C12 E12 A14	SJ4/DMCBA0 SJ5/DMCBA1 DVSSCOM31 SH1/A25 DVCC1A10 SK0/DMCSDQM0/DMCDDM0 DVCCM12 SH0/A24 DVSSCOM32 SK7/SMCBE3n SJ2/DMCRASn DVSSCOM33 SK5/SMCBE1n PR2/INTH PR2/INTH DVCCM13 SH2/SMCBE0n SK6/SMCBE2n SK6/SMCBE2n SK6/SMCBE2n SK6/SMCBE2n SK4/SMCWEn DVSSCOM34	

Note: Power supply signals that are indicated in bold and shaded will not be output to the balls as they are connected to the other power supplies of the same type on the board inside BGA.

Ball No.	Pin name	Ball No.	Pin name
A15	SL1/DMCDCLKN	A4	DVCC3LCD4
A14	DVSSCOM35	J6	PJ2/LD10
B14	SK1/DMCSDQM1/DMCDDM1	B3	PJ1/LD9
D11	SJ7/SMCAVDn	E7	SU2/LCLLE
F10	DVCCM14	C6	DVSSCOM43
G12	SJ1/DMCWEn	G8	PJ5/LD13
A13	SL3/SMCCLK	A3	PJ4/LD12
F11	DVCC1A11	D6	PJ3/LD11
B11	DVSSCOM36	A2	DVCC3LCD5
E11	SJ0/SMCOEn	C4	SU1/LCLAC
B12	SJ3/DMCCASn	E6	PJ7/LD15
A12	DVSSCOM37	D5	PJ6/LD14
B10	SH5/SMCCS2n	H9	DVSSCOM44
E10	SH6/SMCCS3n	C5	SU3/LCLFP
A12	DVSSCOM38	F7	SU4/LCLLP
D10	SH3/SMCCS0n	F6	PK7/LD23
A11	SJ6/DMCCKE	B2	DVCC1A14
F10	DVCCM15		
C10	SH4/SMCCS1n		
C11	SH7/DMCCSn		
A10	DVSSCOM39		
G11	SL7/SMCWAITn		
A9	DVCC1A12		
G10	PK1/LD17		
B9	PK0/LD16		
D9	DVCC3LCD1		
C9	ST2/LD2		
E9	ST1/LD1		
A8	ST0/LD0		
H11	DVSSCOM40		
B8	PK4/LD20		
F9	PK3/LD19		
A7	PK2/LD18		
D8	DVCC3LCD2		
B7	ST5/LD5		
G9	ST4/LD4		
C8	ST3/LD3		
H10	DVSSCOM41		
A6	SU0/LCLCP		
E8	PK6/LD22		
B6	PK5/LD21		
D7	DVCC3LCD3		
C7	PJ0/LD8	1	
H8	ST7/LD7		
B5	ST6/LD6	1	
J9	DVSSCOM42	1	
A5	DVCC1A13	Ī	
F8	SU7/LPRG2		
B4	SU6/LPRG1	1	
K7	SU5/LPRG0	Ī	

Table 2.1.3 Pin numbers and names

Note: Power supply signals that are indicated in bold and shaded will not be output to the balls as they are connected to the other power supplies of the same type on the board inside BGA.

2.1 Pin Names and Functions

The names and functions of I/O pins are shown below.

Pins associated with memory are switched to either of two types of MPMC (MPMC0/1) depending on the status of the external pin "SELMEMC".

Pin name	Number of pins	Input/Output	Function	Remarks
SA0 to SA7	0	_	-	_
D0 to D7	8	Input/Output	Data: Data bus D0 to D7	For both MPMC0 and MPMC1
SB0 to SB7	0	-	_	-
D8 to D15	8	Input/Output	Data: Data bus D8 to D15	For both MPMC0 and MPMC1
SC0 to SC7	0	-	—	-
D16 to D23	0	Input/Output	Data: Data bus D16 to D23	For both MPMC0 and MPMC1
SD0 to SD7	8	-	_	-
D24 to D31	0	Input/Output	Data: Data bus D24 to D31	For both MPMC0 and MPMC1
SE0 to SE7	8	-	-	-
A0 to A7	Ŭ	Output	Address: Address bus A0 to A7	For both MPMC0 and MPMC1
SF0 to SF7	8	-	-	-
A8 to A15		Output	Address: Address bus A8 to A15	For both MPMC0 and MPMC1
SG0 to SG7	8	-	-	-
A16 to A23	_	Output	Address: Address bus A16 to A23	For both MPMC0 and MPMC1
SH0 to SH1	2	-	-	-
A24 to A25		Output	Address: Address bus A24 to A25	For both MPMC0 and MPMC1
SH2	4	-		-
SMCBE0n	1	Output	Byte enable signal (D0 to D7) for	For both MPMC0 and MPMC1
SK5				
SMCBE1n	1	Output	Byte enable signal (D8 to D15) for	-
OMOBEIN		Output	NORF/SRAM/MROM	FOI DOLT MENICO AND MENICI
SK6		_	-	_
SMCBE2n	1	Output	Byte enable signal (D16 to D23) for	For both MPMC0 and MPMC1
			NORF/SRAM/MROM	
SK7		-	-	-
SMCBE3n	1	Output	Byte enable signal (D24 to D31) for	For both MPMC0 and MPMC1
0110			NORF/SRAM/MROM	
SH3	1		-	
SINCCSUI		Ouipui	Chip select signal o for NORF/SRAM/MROM	For both MPMC0 and MPMC1
SMCCS1n	1	– Outout	- Chip select signal 1 for NORE/SRAM/MROM	-
SHECOTI		Output		
SMCCS2n	1	Output	Chip select signal 2 for NORF/SRAM/MROM	- For both MPMC0 and MPMC1
SH6		_		
SMCCS3n	1	Output	Chip select signal 3 for NORF/SRAM/MROM	- For both MPMC0 and MPMC1
SH7		_		
DMCCSn	1	Output	Write-enable signal for SDR_SDRAM	When using MPMC0
DMCCSn		Output	Write-enable signal for DDR_SDRAM	When using MPMC1
SJ0		_	-	_
SMCOEn	1	Output	Out-enable signal for NORF/SRAM/MROM	For both MPMC0 and MPMC1
SJ1		_	-	-
DMCWEn	1	Output	Write-enable signal for SDR_SDRAM	When using MPMC0
DMCWEn		Output	Write-enable signal for DDR_SDRAM	When using MPMC1
SJ2		_	-	-
DMCRASn	1	Output	Row address strobe signal for SDR_SDRAM	When using MPMC0
DMCRASn		Output	Row address strobe signal for DDR_SDRAM	When using MPMC1

Table 2.1.1	Pin names	and functions	(1/8)
-------------	-----------	---------------	-------

Pin name	Number of pins	Input/Output	Function	Remarks
SJ3 DMCCASn DMCCASn	1	– Output Output	 Column address strobe signal for SDR_SDRAM Column address strobe signal for DDR_SDRAM 	 When using MPMC0 When using MPMC1
SJ4 DMCBA0 DMCBA0	1	– Output Output	– BANK0 strobe signal for SDR_SDRAM BANK0 strobe signal for DDR_SDRAM	- When using MPMC0 When using MPMC1
SJ5 DMCBA1 DMCBA1	1	– Output Output	– BANK1 strobe signal for SDR_SDRAM BANK1 address strobe signal for DDR_SDRAM	- When using MPMC0 When using MPMC1
SJ6 DMCCKE DMCCKE	1	– Output Output	 Clock-enable signal for SDR_SDRAM Clock-enable signal for DDR_SDRAM 	- When using MPMC0 When using MPMC1
SJ7 SMCAVDn	1	– Output	Address is valid for NORF/SRAM/MROM	For both MPMC0 and MPMC1
SK0 DMCSDQM0 DMCDDM0	1	– Output Output	Byte enable signal (D0 to D7) for SDR_SDRAM Data mask signal (D0 to D7) for DDR_SDRAM	- When using MPMC0 When using MPMC1
SK1 DMCSDQM1 DMCDDM1	1	– Output Output	Byte enable signal (D8 to D15) for SDR_SDRAM Data mask signal (D8 to D15) for DDR_SDRAM	- When using MPMC0 When using MPMC1
SK2 DMCSDQM2 -	1	– Output –	Byte enable signal (D16 to D23) for SDR_SDRAM Not used	- When using MPMC0 When using MPMC1
SK3 DMCSDQM3 -	1	– Output –	Byte enable signal (D24 to D31) for SDR_SDRAM Not used	- When using MPMC0 When using MPMC1
SK4 SMCWEn	1	– Output	 Write-enable signal for NORF/SRAM/MROM 	For both MPMC0 and MPMC1
SL0 DMCSCLK DMCDCLKP	1	– Output Output	 Clock signal for SDR_SDRAM Positive phase clock signal for DDR_SDRAM 	– When using MPMC0 When using MPMC1
SL1 - DMCDCLKN	1	- - Outp <u>ut</u>	Not used Negative phase clock signal for DDR_SDRAM	- When using MPMC0 When using MPMC1
SL2 DMCAP DMCAP	1	– Output Output	Address/Precharge signal for SDR_SDRAM Address/Precharge signal for DDR_SDRAM	- When using MPMC0 When using MPMC1
SL3 SMCCLK	1	– Output	- Clock signal for NORF/SRAM/MROM	For both MPMC0 and MPMC1
SL4 - DMCDDQS0	1	- Input/Output	- Not used Data strobe signal (D0 to D7) for DDR_SDRAM	- When using MPMC0 When using MPMC1
SL5 - DMCDDQS1	1	– – Input/Output	 Not used Data strobe signal (D8 to D15) for DDR_SDRAM 	- When using MPMC0 When using MPMC1
SL6 DMCCLKIN	1	_ Input	FB clock for SDR/DDR_SDRAM	- For both MPMC0 and MPMC1
SL7 SMCWAITn	1	_ Input	– WAIT signal for NORF/SRAM/MROM	- For both MPMC0 and MPMC1

Table 2.2.1	Pin names and functions	(2/8)
-------------	-------------------------	-------

Pin name	Number of pins	Input/Output	Function	Remarks
SM0	1	-	-	
X1	I	Input	High-frequency oscillator connecting input pin	
SM1	4	-	-	
X2	1	Output	High-frequency oscillator connecting output pin	
SM2	4	-	-	
XT1	1	Input	Low-frequency oscillator connecting input pin	
SM3	1	-	-	
XT2	I	Output	Low-frequency oscillator connecting output pin	
SM4 RESETn	1	– Input	 Reset: Initializes TMPA910CRA (with Schmitt input and pull-up resistor) 	
SM5	1	-	-	
TEST0n	1	Input	TEST0n pin: fix to "1" level	
SM6 to SM7	2	-	-	
AM0 to AM1	2	Input	Startup mode input pins	
SN0	1	-	-	
SELMEMC	1	Input	Memory controller selection pin	
SN1	1	-	-	
SELDVCCM	'	Input	Memory-related operating voltage selection pin	
SN2	1	-	-	
SELJTAG		Input	Boundary scan switching pin	
SP0	1	_	-	-
ТСК		Input	Clock pin for JTAG	
SP1	1	_	-	
TMS		Input	Pin for JTAG	
SP2	1	-	-	
TDI		Input	Data input pin for JTAG	<u> </u>
SP3	1	-		
TRSTn		Input	Reset pin for JTAG	
SP4	1	-		
RICK		Output	Clock output pin for JTAG	
SP5	1	-		
1DO		Output	Data output pin for JTAG	
SR0	1	-		
		Input/Output		
SR1	1	-		
DM		Input/Output	USB pin (D-)	
SR3	1	-		
		input		
	1		-	
		input		
510 to 517	8	- Output	-	
		Output	Data bus LDU to LD7 for LCD driver.	1

Pin name	Number of pins	Input/Output	Function	
SU0	4	_	-	
LCLCP	Ĩ	Output	LCD driver output pin	
SU1	4	-	-	
LCLAC	Ţ	Output	LCD driver output pin	
SU2	4	-	-	
LCLLE	Ι	Output	LCD driver output pin	
SU3	1	-	-	
LCLFP	Ι	Output	LCD driver output pin	
SU4	1	-	-	
LCLLP	Ι	Output	LCD driver output pin	
SU5	1	-	-	
LPRG0	Ι	Output	LCD driver output pin	
SU6	1	-	-	
LPRG1	Ι	Output	LCD driver output pin	
SU7	1	-	_	
LPRG2	Ι	Output	LCD driver output pin	
SV0 to SV7	o	-	-	
NDD0 to NDD7	0	Input/ Output	Data buses for NANDF memory	
SW0	1	-	-	
NDREn	I	Output	Read enable for NAND-Flash	
SW1	1	-	-	
NDWEn		Output	Write enable for NAND-Flash	
SW2	1	-	-	
NDALE	I	Output	Address latch enable for NAND-Flash	
SW3	1	-	-	
NDCLE	1	Output	Command latch enable for NAND-Flash	
SW4	1	-	-	
NDCE0n	1	Output	NAND-Flash0 chip select	
SW5	1	-	-	
NDCE1n	1	Output	NAND-Flash1 chip select	
SW6	1	-	-	
NDRB	I	Input	NAND-Flash Ready(1)/Busy(0) input	

Table 2.2.1	Pin names and functions	(4/8)
		(<i>'' \</i>)

Pin name	Number of pins	Input/Output	Function	
PA0 to PA7		Input	Port A0 to A7: Input ports	
KI0 to KI7	8	Input	Key input KI0 to KI7: Pins for key-on wake up 0 to 7 (with Schmitt	
			input and pull-up resistor)	
PB0 to PB7	8	Output	Port B0 to B7: Output ports	
KO0 to KO7		Output	Key output KO0 to KO7: Key out pins (open-drain can be set)	
PC0 to PC1	2	Output	Port C0 to C1: Output ports	
KO8 to KO9	2	Output	Key output KO8 to KO9: Key out pins (open-drain can be set)	
PC2		Output	Port C2: Output port	
PWE		Output	External power source control output:	
	1		This pin controls ON/OFF of the external power source. The	
			"H" level is output during regular operations, and the "L" level	
			is output during standby mode.	
PC3		Output	Port C3: Output port	
MLDALM	1	Output	Melody alarm output pin	
PWM0OUT		Output	Timer PWM out port	
PC4		Output	Port C4: Output port	
FSOUT	1	Output	Low-frequency output clock pin	
PWM2OUT		Output	Timer PWM out port	
PC5		Input/Output	Port C5: I/O port	
MLDALMn	1	Output	Melody alarm reversed output pin	
INT8	I I	Input	Interrupt request pin8: an interrupt request pin that can program	
			the rising/falling edge	
PC6	1	Input/Output	Port C6: I/O port	
I2C0CL	I	Input/Output	I2C clock I/O	
PC7		Input/Output	Port C7: I/O port	
I2C0DA	1	Input/Output	I2C data I/O	
INT9		Input	Interrupt request pin9: an interrupt request pin that can program the rising/falling edge	
PD0 to PD3		Input	Port D0 to D3: Input ports	
AN0 to AN3	4	Input	Analog input 0 to 3: AD converter input pins	
PD4		Input	Port D4: Input port	
AN4	1	Input	Analog input 4: AD converter input pin	
MX		Output	X-minus: X-connecting pin for touch panel	
PD5		Input	Port D5: Input port	
AN5	1	Input	Analog input 4: AD converter input pin	
MY		Output	Y-minus: Y-connecting pin for touch panel	
PD6		Input	Port D6: Input port	
PX	4	Output	X-plus: X-connecting pin for touch panel	
INTA(TSI)	1	Input	Interrupt request pin A: an interrupt request pin that can program	
		-	the rising/falling edge	
PD7		Input	Port D7: Input port	
PY	1	Output	Y-plus: Y-connecting pin for touch panel	
INTB		Input	Interrupt request pin B: an interrupt request pin that can program	
		-	the rising/falling edge	
PE0 to PE7		Input	Port E0 to E7: Input ports	
CMSD0 to CMSD7	8	Input	Data buses for CMOS sensor	
PF0		Input	Port F0: Input port	
CMSPCK	1	Input	Clock input pin for CMOS sensor	
PF1		Input	Port F1: Input port	
CMSHSY	1	Input	Horizontal synchronization input pin for CMOS sensor	

Table 2.2.1 Pin names and functions (5/8)

Pin name	Number of pins	Input/Output	Function	
PF2	1	Input	Port F2: Input port	
CMSHBK	I	Input	Input pin for CMOS sensor	
PF3	1	Input	Port F3: Input port	
CMSVSY	I	Input	Input pin for CMOS sensor	
PF6	1	Input/Output	Port F6: I/O port	
I2C1CL	1	Input/Output	I2C clock I/O	
PF7		Input/Output	Port F7: I/O port	
I2C1DA	1	Input/Output	I2C data I/O	
INTC		Input	Interrupt request pin C: an interrupt request pin that can	
PG0 to PG3		Input/Output	Port G0 to G3: I/O port	
SDC0DAT0 to	4	Input/Output	Data I/O pin for SD card	
SDC0DAT3		mp au o aip ai		
PG4		Input/Output	Port G4: I/O port	
SDC0CMD	1	Input/Output	Command I/O pin for SD card	
PG5		Input/Output	Port G5: I/O port	
SDC0WP	1	input	Write-protect input pin for SD card	
PG6		Input/Output	Port G6: I/O port	
SDC0CD	1	Input	Card detection input pin for SD card	
PG7	4	Input/Output	Port G7: I/O port	
SDC0CLK	1	Input/Output	Clock output pin for SD card	
PH0 to PH3		Input/Output	Port H0 to H3: I/O ports	
SDC1DAT0 to	4	Input/Output	Data I/O pins for SD card	
SDC1DAT3				
PH4	1	Input/Output	Port H4: I/O port	
SDC1CMD		Input/Output	Command I/O pin for SD card	
PH5	1	Input/Output	Port H5: I/O port	
SDC1WP		Input	Write-protect input pin for SD card	
PH6	1	Input/Output	Port H6: I/O port	
SDC1CD		Input	Card detection input pin for SD card	
PH7	1	Input/Output	Port H/: I/O port	
SDC1CLK		Input/Output	Clock output pin for SD card	
PJU to PJ7	8	Output	Port JU to J7: Output ports	
LD8 to LD15		Output	Data buses for LCD driver	
PKU to PK7	8	Output	Port KU to K7: Output ports	
LD 16 to LD23		Output	Data buses for LCD driver	
	1	Input/Output	Port LU: I/O port	
1230W3 9D1F99	I	Input/Output	ESS pip for SSP1	
DI 1		Input/Output	Port I 1: I/O port	
12S0CLK	1	Input/Output	I2S1 serial clock Input/output	
SP1CLK		Input/Output	Clock output pin for SSP1	
PI 2		Input/Output	Port 1 2: I/O port	
I2S0DATI	1	Input	I2S0 receive serial data input	
SP1DO		Output	Data output pin for SSP1	
PL3		Input/Output	Port L3: I/O port	
I2S0MCLK	1	Output	I2S0 master clock output for receive circuit	
SP1DI		Output	Data input pin for SSP1	
PL4		Input/Output	Port L4: I/O port	
I2SSCLK	1	Input	I2S external source clock pin	

Table 2.2.1	Pin names a	and functions	(6/8)
-------------	-------------	---------------	-------

Pin name	Number of pins	Input/Output	Function	
PM0	1	Input/Output	Port M0: I/O port	
I2S1WS	I	Input/Output	I2S1 word select input/output	
PM1	1	Input/Output	Port M1: I/O port	
I2S1CLK	I	Input/Output	I2S1 serial clock input/output	
PM2	1	Input/Output	Port M2: I/O port	
I2S1DATO	I	Output	I2S1 transmission serial data output	
PM3	1	Input/Output	Port M3: I/O port	
I2S1MCLK	I	Output	I2S1 master clock output for transmission circuit	
PN0		Input/Output	Port N0: I/O port	
U0TXD	1	Output	UART function 0 transmission data	
SIR0OUT		Output	Data output pin for IrDA1.0	
PN1		Input/Output	Port N1: I/O port	
U0RXD	1	Input	UART function 0 receive data	
SIR0IN		Input	Data input pin for IrDA1.0	
PN2	1	Input/Output	Port N2: I/O port	
U0CTSn		Input	UART function 0 data can be transmitted (Clear to send)	
PN3	1	Input/Output	Port N3: I/O port	
U0DCDn	I	Input	Modem status signal DCD (Data Carrier Detect)	
PN4		Input/Output	Port N4: I/O port	
U0DSRn	1	Input	Modem status signal DSR (Data Set Ready)	
INTD		Input	Interrupt request pin D: an interrupt request pin that can	
			program the rising/falling edge	
PN5		Input/Output	Port N5: I/O port	
U0RIn	1	Input	Modem status signal RI (Ring Indicator)	
INTE		Input	Interrupt request pin E: an interrupt request pin that can	
DNG		lanut/Output	program the rising/failing edge	
		Input/Output	Port No: I/O port	
	1		Interrupt request pin E: on interrupt request pin that can	
		input	program the rising/falling edge	
PN7		Input/Output	Port N7: I/O port	
U0RTSn	1	Output	Output modem control line RTD (Request To Send)	
INTG		Input	Interrupt request pin G: an interrupt request pin that can	
PP0 to PP7		Input/Output	Port P0 to P7: I/O ports	
INT0 to INT7	8	Input	Interrupt request pins 0 to 7: interrupt request pins that can	
			program the rising/falling edge	
PR0		Output	Port R0: Output port	
RESETOUTn	1	Output	Reset output pin	
PR1		Output	Port R1: Output port	
SMCWPn	1	Output	Write-protect control pin for memory	
FCOUT		Output	High-frequency clock output pin	
PR2		Input/Output	Port R2: I/O port	
INTH	1	Input	Interrupt request pin H: an interrupt request pin that can	
			program the rising/falling edge	
PT0	1	Input/Output	Port T0: I/O port	
SP0FSS		Input/Output	FSS pin for SSP0	
PT1	1	Input/Output	Port T1: I/O port	
SP0CLK	1	Input/Output	Clock pin for SSP0	
PT2	1	Input/Output	Port T2: I/O port	
SP0DO	1	Output	Data output pin for SSP0	
PT3	1	Input/Output	Port T3: I/O port	
SP0DI		Input	Data input pin for SSP0	

Pin name	Number of pins	Input/Output	Function
PT4	4	Input/Output	Port T4: I/O port
U1TXD	Ţ	Output	UART function 1 transmission data
PT5	4	Input/Output	Port T5: I/O port
U1RXD	I	Input	UART function 1 receive data
PT6	1	Input/Output	Port T6: I/O port
U1CTSn	Γ	Input	UART function 1 data can be transmitted (Clear to send)
PT7	1	Input/Output	Port T7: I/O port
X1USB	Γ	Input	Clock input pin for USB
DVCC1Ax	14	Power supply	VCC power supply for the main internal area
DVCC1B	2	Power supply	VCC power supply for the internal B/U area
DVCC1C	2	Power supply	VCC power supply for high-frequency clock/PLL circuit
DVSS1C	1	Power supply	VSS power supply for high-frequency clock/PLL circuit
DVCC3IO	13	Power supply	VCC power supply for external I/O (general)
DVCCM	12	Power supply	VCC power supply for external I/O (for memory)
DVCC3LCD	5	Power supply	VCC power supply for external I/O (LCD)
DVCC3I2S	2	Power supply	VCC power supply for external I/O (I2S)
DVCC3CMS	2	Power supply	VCC power supply for external I/O (CMOS_IS)
AVCC	1	Power supply	VCC power supply for external I/O (A/DC)
AVSS	1	Power supply	VSS power supply for external I/O (A/DC)
VREFH	1	Input	Reference voltage for A/D converter
VREFL	1	Input	Reference voltage for A/D converter
AVDD3Tx	2	Power supply	VDD power supply for external I/O (USB)
AVSS3Tx	5	Power supply	VSS power supply for external I/O (USB)
AVDD3C	1	Power supply	VCC power supply for external I/O (USB)
AVSS3C	1	Power supply	VSS power supply for external I/O (USB)
DVSSCOMx	36	Power supply	Shared VSS power supply (GND)

Table 2.2.1 Pin names and functions (8/8)

Pin Functions and Initial Values Arranged by Type of Power Supply - 1 (DVCCM)

Power supply	Typical pin	Alternative	Alternative	Pull	Input	Initial value after reset
to be used	name	function	function	up/down	buffer	function/pin state
	SA0 to SA7	D0 to D7	_	—	ON	D0 to D7 / Hz*
	SB0 to SB7	D8 to D15		_	ON	D8 to D15 / Hz*
	SC0 to SC7	D16 to D23		_	ON	D16 to D23 / Hz*
	SD0 to SD7	D24 to D31	-	_	ON	D24 to D31 / Hz*
	SE0 to SE7	A0 to A7		_	Ι	Address out / "L" output
	SF0 to SF7	A8 to A15		_	Ι	Address out / "L" output
	SG0 to SG7	A16 to A23		_	Ι	Address out / "L" output
	SH0 to SH1	A24 to A25	_	_	-	Address out / "L" output
	SH2	SMCBE0n	_	_	-	SMCBE0n out / "H" output
	SK5	SMCBE1n		_	Ι	SMCBE1n out / "H" output
	SK6	SMCBE2n		_	Ι	SMCBE2n out / "H" output
	SK7	SMCBE3n		_	Ι	SMCBE3n out / "H" output
	SH3	SMCCS0n		_	Ι	SMCCS0n out / "H" output
	SH4	SMCCS1n		_	Ι	SMCCS1n out / "H" output
	SH5	SMCCS2n		_	Ι	SMCCS2n out / "H" output
	SH6	SMCCS3n		_	Ι	SMCCS3n out / "H" output
	SH7	DMCCSn		_	-	DMCCSn out / "H" output
	SJ0	SMCOEn	-	_	_	SMCOEn out / "H" output
	SJ1	DMCWEn	-	_	_	DMCWEn out / "H" output
	SJ2	DMCRASn	-	_	_	DMCRASn out / "H" output
DVCCM	SJ3	DMCCASn	_	_	_	DMCCASn out / "H" output
	SJ4	DMCBA0	-	_	_	DMCBA0n out / "L" output
	SJ5	DMCBA1	-	_	_	DMCBA1n out / "L" output
	SJ6	DMCCKE	_	_	_	DMCCKEn out / "H" output
	SJ7	SMCAVDn	-	_	_	SMCAVDn out / "H" output
						When SELMEMC=0
	SK0	DMCSDQM0		_	_	DMCSDQM0 out / "L" output
	ento		2			When SELMEMC=1
						DMCDDM0 out / "L" output
						When SELMEMC=0
	SK1	DMCSDQM1	DMCDDM1	_	_	DMCSDQM1 out / "L" output
						When SELMEMC=1
					DMCDDM1 out / "L" output	
					When SELMEMC=0	
	SK2	DMCSDQM2	_	_	_	DMCSDQM2 out / "L" output
						When SELMEMC=1
						Invalid signal// "L" output
						When SELMEMC=0
	SK3	DMCSDQM3	—	—	—	DMCSDQM3 out / "L" output
	-					vvnen SELMEMC=1
	SK 4	SMCW/F~				Invalid signal/ "L" output
	314	SIVICIVEN	_	_	-	SIVIC WEN out / "H" output

Note 1: Pin names "SA0 through SA7, ..., and SW0 through SW6" are symbols used for convenience and are different from general-purpose port functions "PA0 through PA7, ..., and PT0 through PT7."

Note 2: When the "Input buffer" column shows "ON", the pin is enabled as an input in the initial state. If necessary, the pin should be processed externally. The data bus pins (SA0-SA7, SB0-SB7, SC0-SC7, SD0-SD7) are always enabled as inputs. These pins must be tied externally (pulled up/down, etc.) to prevent flow-through current.

Pin Functions and Initial Values Arranged by Type of Power Supply - 2 (DVCCM)

Power supply to be used	Typical pin name	Alternative function	Alternative function	Pull	Input buffer	Initial value after reset
				up/uown		
	SL0	DMCSCLK	DMCDCLKP	_	_	When SELMEMC=0
						DMCSCLK out / CLK output
						When SELMEMC=1
						DMCDCLKP out / CLK output
						When SELMEMC=0
	SI 1		_	_	_	Invalid signal/ "H" output
	5E1	DIVICUCENT				When SELMEMC=1
						DMCDCLKN out /Inverted CLK output
	SL2	DMCAP	-	-		DMCAP out / "L" output
DVCCM	SL3	SMCCLK	-	-		SMCCLK out / "L" output
	SL4	DMCDDQS0	—	-	ON	DMCDDQS0 / Hz*
	SL5	DMCDDQS1	_		ON	DMCDDQS1 / Hz*
	SL6	DMCCLKIN		Ι	ON	DMCCLKIN input / Hz
	SL7	SMCWAITn		Ι	ON	SMCWAITn input / Hz
						RESETOUTn output /
	PR0	RESETOUTn	—	_	_	During reset: "L" output
						After reset: "H" output
	PR1	FCOUT	SMCWPn	—	_	Port out / "L" output
	PR2	INTH	_	_	ON	INTH Input / Hz

Note 1: Pin names "SA0 through SA7, ..., and SW0 through SW6" are symbols used for convenience and are different from general-purpose port functions "PA0 through PA7, ..., and PT0 through PT7."

Note 2: When the "Input buffer" column shows "ON", the pin is enabled as an input in the initial state. If necessary, the pin should be processed externally. When DDR SDRAM is used, the DQS signals (DMCDDQS0, DMCDDQS1) are always enabled as inputs. These pins must be tied externally (pulled up/down, etc.) to prevent flow-through current.

Pin Functions and Initial Values Arranged by Type of Power Supply - 3 (DVCC3IO)

Power supply to be used	Typical pin name	Alternative function	Alternative function	Pull up/down	Input buffer	Initial state after reset function/pin state
	SM2	XT1	_	-	_	Oscillating
	SM3	XT2	_	_	_	Oscillating
	SM4	RESETn	_	PU	ON	RESETn input / "H" output
	SM5	TEST0n	_	-	ON	TEST0n input / Hz
	SM6	AM0	_	_	ON	AM0 input / Hz
	SM7	AM1	_	-	ON	AM1 input / Hz
	SN0	SELMEMC	_	-	ON	SELMEMC input / Hz
	SN1	SELDVCCM	_	-	ON	SELDVCCM input / Hz
	SN2	SELJTAG	_	Ι	ON	SELJTAG input / Hz
	SP0	ТСК	_	-	ON	TCK input / Hz
	SP1	TMS	—	_	ON	TMS input/ Hz
	SP2	TDI	—	_	ON	TDI input / Hz
DVCC3IO	SP3	TRSTn	—	_	ON	TRSTn input / Hz
	SP4	RTCK	—	_	_	RTCK out / CLK output
	SP5	TDO	_	Ι	Ι	TDO out / TDO output
	SV0 to SV7	NDD0 to NDD7	_	-	OFF	NDD0 to NDD7 / Hz
	SW0	NDREn	_	Ι	Ι	NDREn out / "H" output
	SW1	NDWEn	_	-		NDWEn out / "H" output
	SW2	NDALE	—	_	_	NDALE out / "L" output
	SW3	NDCLE	—	_	_	NDCLE out / "L" output
	SW4	NDCE0n	—	_	_	NDCE0n out / "H" output
	SW5	NDCE1n	—	_	_	NDCE1n out / "H" output
	SW6	NDRB	—	_	ON	NDRB input / Hz
	PA0 to PA7	KI0 to KI7	_	PU	ON	PA0 to PA7 input / "H" output
	PB0 to PB7	KO0 to KO7	_	_	_	PB0 to PB7 out / "H" output

Note 1: Pin names "SA0 through SA7, ..., and SW0 through SW6" are symbols used for convenience and are different from general-purpose port functions "PA0 through PA7, ..., and PT0 through PT7."

Note 2: When the "Input buffer" column shows "ON", the pin is enabled as an input in the initial state. If necessary, the pin should be processed externally. The data bus pins for NAND Flash memory (NDD0-NDD7) are disabled as inputs in the initial state.

Pin Functions and Initial Values Arranged by Type of Power Supply – 4 (DVCC3IO)

Power supply	Typical pin name	Alternative	Alternative	Pull	Input buffer	Initial state after reset
to be used		Tunction	Tunction	up/down	buildi	function/pin state
	PC0	KO8	-	-	_	PC0 out / "H" output
	PC1	KO9	_	-	_	PC1 out / "H" output
	PC2	PWE	-	-	—	PWE out / "H" output
	PC3	MLDALM	PWM0OUT	-	—	PC3 out / "H" output
	PC4	FSOUT	PWM2OUT	-	—	PC4 out / "L" output
	PC5	MLDALMn	INT8	-	ON	PC5 input / Hz
	PC6	I2C0CL	—	—	ON	PC6 input / Hz
	PC7	I2C0DA	INT9	—	ON	PC7 input / Hz
	PG0	SDC0DAT0	_	—	ON	PG0 input / Hz
	PG1	SDC0DAT1	_	-	ON	PG1 input / Hz
	PG2	SDC0DAT2	_	-	ON	PG2 input / Hz
	PG3	SDC0DAT3	_	-	ON	PG3 input / Hz
	PG4	SDC0CMD	_	-	ON	PG4 input / Hz
	PG5	SDC0WP	_	-	ON	PG5 input / Hz
	PG6	SDC0CD	_	-	ON	PG6 input / Hz
	PG7	SDC0CLK	_	-	ON	PG7 input / Hz
	PH0	SDC1DAT0	_	—	ON	PH0 input / Hz
	PH1	SDC1DAT1	_	—	ON	PH1 input / Hz
	PH2	SDC1DAT2	_	—	ON	PH2 input / Hz
	PH3	SDC1DAT3	_	—	ON	PH3 input / Hz
DVCC3IO	PH4	SDC1CMD	_	—	ON	PH4 input / Hz
	PH5	SDC1WP		_	ON	PH5 input / Hz
	PH6	SDC1CD		_	ON	PH6 input / Hz
	PH7	SDC1CLK		_	ON	PH7 input / Hz
	PN0	U0TXD	SIR0OUT	_	ON	PN0 input / Hz
	PN1	U0RXD	SIR0IN	_	ON	PN1 input / Hz
	PN2	U0CTSn	—	_	ON	PN2 input / Hz
	PN3	U0DCDn	—	_	ON	PN3 input / Hz
	PN4	U0DSRn	INTD	_	ON	PN4 input / Hz
	PN5	U0RIn	INTE	_	ON	PN5 input / Hz
	PN6	U0DTRn	INTF	_	ON	PN6 input / Hz
	PN7	U0RTSn	INTG	_	ON	PN7 input / Hz
	PP0 to PP7	INT0 to INT7	-	_	ON	PP0 to PP7 input / Hz
	PT0	SP0FSS	_	_	ON	PT0 input / Hz
	PT1	SP0CLK	_	_	ON	PT1 input / Hz
	PT2	SP0DO	_	_	ON	PT2 input / Hz
	PT3	SP0DI	-	_	ON	PT3 input / Hz
	PT4	U1TXD	_	_	ON	PT4 input / Hz
	PT5	U1RXD	_	_	ON	PT5 input / Hz
	PT6	U1CTSn	_	_	ON	PT6 input / Hz
	PT7	X1USB	—	—	ON	PT7 input / Hz

Note 1: Pin names "SA0 through SA7, ..., and SW0 through SW6" are symbols used for convenience and are different from general-purpose port functions "PA0 through PA7, ..., and PT0 through PT7."

Note 2: When the "Input buffer" column shows "ON", the pin is enabled as an input in the initial state. If necessary, the pin should be processed externally.

Pin Functions and Initial Values Arranged by Type of Power Supply – 5 (DVCC3LCD)

Power supply to be used	Typical pin name	Alternative function	Alternative function	Pull up/down	Input buffer	Initial value after reset function/pin state
	ST0-ST7	LD0-LD7	—	—	_	LD0-LD7 out / "L" output
	SU0	LCLCP	_	_		LCLCP out / "L" output
	SU1	LCLAC	_	_	I	LCLAC out / "L" output
	SU2	LCLLE	_	_	I	LCLLE out / "L" output
	SU3	LCLFP	_	_	I	LCLFP out / "L" output
DVCC3LCD	SU4	LCLLP	_	_	I	LCLLP out / "L" output
	SU5	LPRG0	_	_	I	LPRG0 out / "L" output
	SU6	LPRG1	_	_	I	LPRG1 out / "L" output
	SU7	LPRG2	_	_	I	LPRG2 out / "L" output
	PJ0-PJ7	LD8-LD15	_	_	I	PJ0-PJ7 out / "L" output
	PK0-PK7	LD16-LD23	_	_	_	PK0-PK7 out / "L" output

Note 1: Pin names "SA0 through SA7, ..., and SW0 through SW6" are symbols used for convenience and are different from general-purpose port functions "PA0 through PA7, ..., and PT0 through PT7."

Note 2: When the "Input buffer" column shows "ON", the pin is enabled as an input in the initial state. If necessary, the pin should be processed externally.

Pin Functions and Initial Values Arranged by Type of Power Supply – 6 (DVCC3CMS)

Power supply to be used	Typical pin name	Alternative function	Alternative function	Pull up/down	Input buffer	Initial value after reset function/pin state
	PE0-PE7	CMSD0- CMSD7	_	_	ON	PE0-PE7 input / Hz
	PF0	CMSPCK		Ι	ON	PF0 input / Hz
DVCC2CMC	PF1	CMSHSY		Ι	ON	PF1 input / Hz
DVCC3CIVIS	PF2	CMSHBK		Ι	ON	PF2 input / Hz
	PF3	CMSVSY		Ι	ON	PF3 input / Hz
	PF6	I2C1CL		Ι	ON	PF6 input / Hz
	PF7	I2C1DA	INTC	-	ON	PF7 input / Hz

Note 1: Pin names "SA0 through SA7, ..., and SW0 through SW6" are symbols used for convenience and are different from general-purpose port functions "PA0 through PA7, ..., and PT0 through PT7."

Note 2: When the "Input buffer" column shows "ON", the pin is enabled as an input in the initial state. If necessary, the pin should be processed externally.

TOSHIBA

Pin Functions and Initial Values Arranged by Type of Power Supply - 7 (DVCC3I2S)

Power supply to be used	Typical pin name	Alternative function	Alternative function	Pull up/down	Input buffer	Initial state after reset function/pin state
	PL0	I2S0WS	SP1FSS	_	ON	PL0 input / Hz
	PL1	I2S0CLK	SP1CLK	_	ON	PL1 input / Hz
	PL2	I2S0DATI	SP1DO	_	ON	PL2 input / Hz
	PL3	I2S0MCLK	SP1DI	_	ON	PL3 input / Hz
DVCC3I2S	PL4	I2SSCLK	—	—	ON	PL4 input / Hz
	PM0	I2S1WS	—	—	ON	PM0 input / Hz
	PM1	I2S1CLK	—	_	ON	PM1 input / Hz
	PM2	I2S1DATO	—	_	ON	PM2 input / Hz
	PM3	I2S1MCLK	_	_	ON	PM3 input / Hz

Note 1: Pin names "SA0 through SA7, ..., and SW0 through SW6" are symbols used for convenience and are different from general-purpose port functions "PA0 through PA7, ..., and PT0 through PT7."

Note 2: When the "Input buffer" column shows "ON", the pin is enabled as an input in the initial state. If necessary, the pin should be processed externally.

Pin Functions and Initial Values Arranged by Type of Power Supply – 8 (AVCC3AD)

Power supply to be used	Typical pin name	Alternative function	Alternative function	Pull up/down	Input buffer	Initial state after reset function/pin state
	PD0	AN0	—	_	OFF	AN0 input / Hz
	PD1	AN1	_	_	OFF	AN1 input / Hz
	PD2	AN2	_	—	OFF	AN2 input / Hz
	PD3	AN3	_	—	OFF	AN3 input / Hz
AVCCOAD	PD4	AN4	MX	—	OFF	AN4 input / Hz
	PD5	AN5	MY	—	OFF	AN5 input / Hz
	PD6	INTA(TSI)	PX	PD*	ON	PD6 input / Hz
	PD7	INTB	PY	_	ON	PD7 input / Hz

Note 1: Pin names "SA0 through SA7, ..., and SW0 through SW6" are symbols used for convenience and are different from general-purpose port functions "PA0 through PA7, ..., and PT0 through PT7."

Note 2: When the "Input buffer" column shows "ON", the pin is enabled as an input in the initial state. If necessary, the pin should be processed externally.

Note 3: The pull-down resistor for PD6 is disabled after reset.

Pin Functions and Initial Values Arranged by Type of Power Supply – 9 (USB)

Power supply to be used	Typical pin name	Alternative function	Alternative function	Pull up/down	Input buffer	Initial value after reset function/pin state
	SR0	DP	—	PD	ON	DP input / "L" output
	SR1	DM	—	PD	ON	DM input / "L" output
AVDD3C/T	SR3	REXT		_	1	REXT input / Hz
	SR4	VSENS		_	1	VSENS input / Hz

Note 1: Pin names "SA0 through SA7, ..., and SW0 through SW6" are symbols used for convenience and are different from general-purpose port functions "PA0 through PA7, ..., and PT0 through PT7."

Note 2: When the "Input buffer" column shows "ON", the pin is enabled as an input in the initial state. If necessary, the pin should be processed externally. The D+ and D- signals for USB contain a pull-down resistor in PHY.

Pin Functions and Initial Values Arranged by Type of Power Supply – 10 (OSC)

Power supply to be used	Typical pin name	Alternative function	Alternative function	Pull up/down	Input buffer	Initial value after reset function/pin state
	SM0	X1	—	_	-	Oscillating
DVCCTC	SM1	X2		_	-	Oscillating

Note 1: Pin names "SA0 through SA7, ..., and SW0 through SW6" are symbols used for convenience and are different from general-purpose port functions "PA0 through PA7, ..., and PT0 through PT7."

Note 2: When the "Input buffer" column shows "ON", the pin is enabled as an input in the initial state. If necessary, the pin should be processed externally.

3. Description of Operation

This chapter provides a brief description of the CPU circuit of TMPA910CRA.

3.1 CPU

This section provides a description of basic operations of the CPU of TMPA910CRA for each block.

Note that this document provides only an overview of the CPU block. Please contact ARM for details of the operation.

TMPA910CRA has a built-in 32-bit RISC processor ARM926EJ-S manufactured by ARM. The schematic diagram of the ARM926EJ-S core is shown below.

Figure 3.1.1 ARM926EJ-S core

Supported hardware is different from that of the original ARM926EJ-S. Refer to the following:

- 1. Coprocessor I/F is not supported.
- 2. Embedded ICE RT is not supported.
- 3. TCM I/F is not supported.
- 4. ETM9 I/F is not supported.

TOSHIBA

3.1.1 Reset Operation

Before resetting TMPA910CRA, make sure that the power supply voltage is within the operating range, oscillation from the internal oscillator is stable at 20 system clock cycles $(0.8 \ \mu s \ @ X1 = 25 \ MHz)$ at least, and the RESETn input pin is set to the "L" level.

When TMPA910CRA is reset, the PLL stops, the PLL output is unselected, and the clock gear is set to TOP (1/1).

The system clock therefore operates at 25 MHz (X1 = 25 MHz).

If the reset instruction is accepted, the built-in I/O, I/O ports, and other pins are initialized.

Initialize the registers of the built-in I/O.

(Refer to the chapter on ports or on Pin, for initial values.)

Note 1: This LSI has a built-in RAM, but its data may be lost as a result of reset operation. Initialize data in the built-in RAM after the reset operation.

Note 2: Although this LSI cuts off some of the power supplies (DVCC1A, DVCC1C, AVDD3Tx,AVDD3Cx) to reduce standby current (PCM function), the reset operation may cause generation of a penetration current inside the LSI if it is executed while power to be cut off (DVCC1A, DVCC1C, AVDD3Tx, ADCC3Cx) is not being supplied. Before executing the reset operation, make sure that the supply of the power to be cut off (DVCC1A, DVCC1C, AVDD3Tx, AVDD3Tx, AVDD3Cx) is sufficiently stable.

Although the original ARM926EJ-S allows selection of a vector location immediately after reset operation and endianness, they are already set as follows for this LSI.

Endian	Boot vector
Little endian	0x0000000

3.1.2 Exception

This LSI include 7types exception, and they each have privileged processed mode. Exception type are following 7-types.

Exception	Address	Note
Reset	0x0000000	
Undefined instruction execution	0x00000004	
Software interrupt (SWI) instruction	0x0000008	It is used for Operating system call.
Pre-fetch abort	0x000000C	Instruction fetch memory abort
Data abort	0x0000010	Data access memory abort
IRQ	0x0000018	Normal interrupt
FIQ	0x0000001C	High-speed interrupt

TOSHIBA

3.1.3 Multi Layer AHB

This LSI uses a multilayer AHB bus system with 7 layers.

3.2 JTAG Interface

3.2.1 Overview

The TMPA910CRAXBG provides a boundary-scan interface that is compatible with Joint Test Action Group (JTAG) specifications, using the industry-standard JTAG protocol (IEEE Standard 1149.1•1990 <Includes IEEE Standard 1449.1a•1993>).

This chapter describes this JTAG interface, including descriptions of boundary scanning and the pins and signals used by the interface.

1) JTAG standard version

IEEE Standard 1149.1 • 1990 (Includes IEEE Standard 1149.1a • 1993)

2) JTAG instructions

Standard instructions (BYPASS, SAMPLE/PRELOAD, EXTEST)

HIGHZ instruction

CLAMP instruction

3) IDCODE

Not available

- 4) Pins excluded from boundary scan (BSR)
 - a) Oscillation circuit pins (SM0-3)
 - b) USB pins (SR0-4)
 - c) JTAG control pins (SN2, SP0-5)
 - d) Power supply/GND pins (including VREFH, REFL)
 - e) A/D pins (PD0-5)
 - f) Touch panel PX and PY pins (PD6, PD7)

3.2.2 Signal Summary and Connection Example

The JTAG interface signals are listed below.

- TDI JTAG serial data input
- TDO JTAG serial data output
- TMS JTAG test mode select
- TCK JTAG serial clock input
- TRSTn JTAG test reset input
- RTCK JTAG test feedback serial clock output
- SELJTAG ICE/JTAG test select input (be based on Enable signal) 0:ICE 1:JTAG

The JTAG interface supports debugging by allowing connection with a JTAG-compliant development tool.

For information about debugging, refer to the specification of the development tool to be used.

Mode setting pin	Operation mode	
SELJTAG		
	Set "0" to this pin except Boundary Scan Mode.	
0	This setting can be used as regular Debug Mode	
	Note: Debugging cannot be carried out during internal BOOT with AM1 = 1 and AM0 = 1.	
1	This setting can be used as Boundary Scan Mode	

Figure 3.2.1 Example of connection with a JTAG development tool

3.2.3 What Is Boundary Scan?

With the evolution of ever-denser integrated circuits (ICs), surface-mounted devices, double-sided component mounting on printed-circuit boards (PCBs), and buried vias, in-circuit tests that depend upon making physical contact with internal board and chip connections have become more and more difficult to use. The greater complexity of ICs has also meant that tests to fully exercise these chips have become much larger and more difficult to write.

One solution to this difficulty has been the development of *boundary-scan* circuits. A boundary-scan circuit is a series of shift register cells placed between each pin and the internal circuitry of the IC to which the pin is connected. Normally, these boundary-scan cells are bypassed; when the IC enters test mode, however, the scan cells can be directed by the test program to pass data along the shift register path and perform various diagnostic tests. To accomplish this, the tests use the six signals, TCK, TMS, TDI, TDO, RTCK and TRSTn.

The JTAG boundary-scan mechanism (referred to in this chapter as *JTAG mechanism*) allows testing of the connections between the processor, the printed circuit board to which it is attached, and the other components on the circuit board.

The JTAG mechanism does not provide any capability for testing the processor itself.

3.2.4 JTAG Controller and Registers

The processor contains the following JTAG controller and registers:

Instruction register Boundary scan register Bypass register Device identification register Test Access Port (TAP) controller

The basic operation of JTAG is for the TAP controller state machine to monitor the TMS input signal. When it occurs, the TAP controller determines the test functionality to be implemented. This includes either loading the JTAG instruction register (IR), or beginning a serial data scan through a data register (DR), as shown in Table 3.2.1. As the data is scanned in, the state of the JTMS pin signals each new data word, and indicates the end of the data stream. The data register to be selected is determined by the contents of the instruction register.

3.2.5 Instruction Register

The JTAG instruction register includes four shift register-based cells. This register is used to select the test to be performed and/or the test data register to be accessed. As listed in Table 3.2.1, this encoding selects either the boundary scan register or the bypass register.

Instruction code (MSB to LSB)	Instruction	Selected data register
0000	EXTEST	Boundary scan register
0001	SAMPLE/PRELOAD	Boundary scan register
0100 ~1110	Reserved	Reserved
0010	HIGHZ	Bypass register
0011	CLAMP	Bypass register
1111	BYPASS	Bypass register

Table 3.2.1 JTAG instruction register bit encoding

Figure 3.2.2 shows the format of the instruction register.

The instruction code is shifted out to the instruction register from the LSB.

The bypass register is 1 bit wide. When the TAP controller is in the Shift-DR (bypass) state, the data on the TDI pin is shifted into the bypass register, and the bypass register output shifts to the TDO output pin.

In essence, the bypass register is a short-circuit which allows bypassing of board-level devices, in the serial boundary-scan chain, which are not required for a specific test. The logical location of the bypass register in the boundary-scan chain is shown in Figure 3.2.4.

Use of the bypass register speeds up access to the boundary scan register in the IC that remains active in the board-level test data path.

Figure 3.2.4 Bypass register operation
3.2.6 Boundary Scan Register

The boundary scan register includes all the inputs and outputs of the TMPA910CRA processor except some analog output and control signals. The pins of the TMPA910CRA allow any arbitrary pattern to be driven by scanning into the boundary scan register in the Shift-DR state. Incoming data to the processor is examined by enabling and shifting the boundary scan register in the Capture-DR state.

The boundary scan register is a single, 233-bit-wide, shift register-based path containing cells connected to the input and output pads on the TMPA910CRA.

The TDI input is loaded to the LSB of the boundary scan register. The MSB of the boundary scan register is retrieved from the TDO output.

3.2.7 Test Access Port (TAP)

The Test Access Port (TAP) consists of the five signal pins: TRSTn, TDI, TDO, TMS and TCK. Serial test data and instructions are communicated over these five signal pins, along with control of the test to be executed.

As Figure 3.2.5 shows, data is serially scanned into one of the three registers (instruction register, bypass register or boundary scan register) from the TDI pin, or it is scanned from one of these three registers onto the TDO pin.

The TMS input controls the state transitions of the main TAP controller state machine. The TCK input is a dedicated test clock that allows serial JTAG data to be shifted synchronously, independent of any chip-specific or system clocks.

Data on the TDI and TMS pins is sampled on the rising edge of the TCK input clock signal. Data on the TDO pin changes on the falling edge of the TCK clock signal.

TOSHIBA

3.2.8 TAP Controller

The processor implements the 16-state TAP controller as defined in the IEEE JTAG specification.

3.2.9 Resetting the TAP Controller

The TAP controller state machine can be put into the Reset state by the following method.

Assertion of the TRSTn signal input (low) resets the TAP controller. After the processor reset state is released, keep the TMS input signal asserted through five consecutive rising edges of TCK input. Keeping TMS asserted maintains the Reset state.

3.2.10 State Transitions of the TAP Controller

The state transition diagram of the TAP controller is shown in Figure 3.2.6. Each arrow between states is labeled with a 1 or 0, indicating the logic value of TMS that must be set up before the rising edge of TCK to cause the transition.

Figure 3.2.6 TAP controller state transition diagram

TENTATIVE

The following paragraphs describe each of the controller states. The left vertical column in Figure 3.2.6 is the data column, and the right vertical column is the instruction column. The data column and instruction column reference the data register (DR) and the instruction register (IR), respectively.

Test-Logic-Reset

When the TAP controller is in the Reset state, the device identification register is selected as default. The MSB of the boundary scan register is cleared to 0, disabling the outputs.

The TAP controller remains in this state while TMS is high. If TMS is held low while the TAP controller is in this state, then the controller moves to the Run-Test/Idle state.

Run-Test/Idle

In the Run-Test/Idle state, the IC is put in test mode only when certain instructions such as a built-in self test (BIST) instruction are present. For instructions that do not cause any activities in this state, all test data registers selected by the current instruction retain their previous states.

The TAP controller remains in this state while TMS is held low. When TMS is high, the controller moves to the Select-DR-Scan state.

Select-DR-Scan

This is a temporary controller state. Here, the IC does not execute any specific functions.

If TMS is held low when the TAP controller is in this state, then the controller moves to the Capture-DR state. If TMS is held high, the controller moves to the Select-IR-Scan state.

Select-IR-Scan

This is a temporary controller state. Here, the IC does not execute any specific functions.

If TMS is held low when the TAP controller is in this state, then the controller moves to the Capture-IR state. IF TMS is held high, the controller returns to the Test-Logic-Reset state.

Capture-DR

In this state, if the test data register selected by the current instruction has parallel inputs, then data can be parallel-loaded into the shift portion of the data register. If the test data register does not have parallel inputs, or if data need not be loaded into the selected data register, then the data register retains its previous state.

If TMS is held low when the TAP controller is in this state, the controller moves to the Shift-DR state. If TMS is held high, the controller moves to the Exit 1-DR state.

Shift-DR

In this controller state, the test data register connected between TDI and TDO shifts data one stage forward towards its serial output.

When the TAP controller is in this state, then it remains in the Shift-DR state if TMS is held low, or moves to the Exit 1-DR state if TMS is held high.

Exit 1-DR

This is a temporary controller state.

If TMS is held low when the TAP controller is in this state, the controller moves to the Pause-DR state. If TMS is held high, the controller moves to the Update-DR state.

Pause-DR

This state allows the shifting of the data register selected by the instruction register to be temporarily suspended. Both the instruction register and the data register retain their current states.

When the TAP controller is in this state, then it remains in the Pause-DR state if TMS is held low, or moves to the Exit 2-DR state.

Exit 2-DR

This is a temporary controller state.

When the TAP controller is in this state, it returns to the Shift-DR state if TMS is held low, or moves on to the Update-DR state if TMS is held high.

Update-DR

In this state, data is latched, on the rising edge of TCK, onto the parallel outputs of the data registers from the shift register path. The data held at the parallel output does not change while data is shifted in the associated shift register path.

When the TAP controller is in this state, it moves to either the Run-Test/Idle state if TMS is held low, or the Select-DR-Scan state if TMS is held high.

Capture-IR

In this state, data is parallel-loaded into the instruction register. The data to be loaded is 0001. The Capture-IR state is used for testing the instruction register. Faults in the instruction register, if any exist, may be detected by shifting out the data loaded in it.

When the TAP controller is in this state, it moves to either the Shift-IR state if TMS is held low, or the Exit 1-IR state if TMS is high.

Shift-IR

In this state, the instruction register is connected between TDI and TDO and shifts the captured data toward its serial output on the rising edge of TCK.

When the TAP controller is in this state, it remains in the Shift-IR state if TMS is low, or moves to the Exit 1-IR state if TMS is high.

Exit 1-IR

This is a temporary controller state.

When the TAP controller is in this state, it moves to either the Pause-IR state if TMS is held low, or the Update-IR state if TMS is held high.

Pause-IR

This state allows the shifting of the instruction register to be temporarily suspended. Both the instruction register and the data register retain their current states.

When the TAP controller is in this state, it remains in the Pause-IR state if TMS is held low, or moves to the Exit 2-IR state if TMS is held high.

Exit 2-IR

This is a temporary controller state.

When the TAP controller is in this state, it moves to either the Shift-IR state if TMS is held low, or the Update-IR state if TMS is held high.

Update-IR

This state allows the instruction previously shifted into the instruction register to be output in parallel on the rising edge of TCK. Then it becomes the current instruction, setting a new operational mode.

When the TAP controller is in this state, it moves to either the Run-Test/Idle state if TMS is low, or the Select-DR-Scan state if TMS is high.

3.2.11 Boundary Scan Order

Table 3.2.2 shows the boundary scan order of the processor signals. TDI \rightarrow 1(PF6) \rightarrow 2(PF7) ... \rightarrow 230(SU4) \rightarrow 231(PK7) \rightarrow TDO

Table 3.2.2 JTAG scan order of the TMPA910CRA processor pins

No.	Pin name										
	TDI										
1	PF6	41	PG7	81	PM3	121	PP5	161	SG6	201	PK0
2	PF7	42	PH5	82	PM1	122	PP6	162	SE6	202	ST2
3	PF1	43	PG6	83	PL3	123	PP7	163	SE7	203	ST1
4	PE7	44	PG1	84	PL0	124	PA0	164	SF1	204	ST0
5	PF2	45	PG0	85	PR0	125	PA1	165	SF6	205	PK4
6	PF3	46	PH6	86	PR1	126	PA2	166	SF7	206	PK3
7	PF0	47	PH4	87	SC3	127	PA3	167	SF0	207	PK2
8	PE6	48	PH2	88	SA0	128	PA4	168	SG0	208	ST5
9	PE3	49	PH1	89	SC6	129	PA5	169	SK3	209	ST4
10	PE4	50	PH0	90	SC5	130	PA6	170	SK2	210	ST3
11	PE5	51	PH7	91	SL6	131	PA7	171	SL2	211	SU0
12	PE0	52	PH3	92	SC4	132	PB0	172	SG7	212	PK6
13	PE1	53	SW6	93	SC1	133	PB1	173	SJ4	213	PK5
14	PE2	54	SW4	94	SA1	134	PB2	174	SJ5	214	PJ0
15	PT2	55	SW5	95	SA2	135	SM5	175	SH1	215	ST7
16	PT0	56	SW3	96	SC2	136	PB3	176	SK0	216	ST6
17	PN1	57	SV7	97	SC0	137	PB4	177	SH0	217	SU7
18	PN0	58	SW2	98	SA3	138	PB5	178	SK7	218	SU6
19	PT3	59	SW1	99	SA5	139	PB6	179	SJ2	219	SU5
20	PT1	60	SV3	100	SL4	140	PB7	180	SK5	220	PJ2
21	PT6	61	SV6	101	SL5	141	PC0	181	PR2	221	PJ1
22	PN4	62	SV2	102	SA6	142	PC1	182	SH2	222	SU2
23	PN7	63	SW0	103	SB0	143	SF2	183	SK6	223	PJ5
24	PN3	64	PP2	104	SA7	144	SD7	184	SK4	224	PJ4
25	PN5	65	SV5	105	SD0	145	SE2	185	SL0	225	PJ3
26	PN2	66	SV1	106	SA4	146	SE0	186	SL1	226	SU1
27	PN6	67	PP1	107	SB2	147	SG1	187	SK1	227	PJ7
28	PC4	68	SV4	108	SC7	148	SE3	188	SJ7	228	PJ6
29	PC3	69	SV0	109	SB3	149	SF3	189	SJ1	229	SU3
30	PC5	70	PP0	110	SD1	150	SD5	190	SL3	230	SU4
31	PC6	71	SM6	111	SD4	151	SE1	191	SJ0	231	PK7
32	PC2	72	SM7	112	SB6	152	SD6	192	SJ3		TDO
33	PT5	73	SN0	113	SB5	153	SE4	193	SH5		
34	PT4	74	SN1	114	SD3	154	SG4	194	SH6		
35	PC7	75	PT7	115	SB1	155	SG2	195	SH3		
36	SM4	76	PM0	116	SD2	156	SF4	196	SJ6		
37	PG5	77	PM2	117	SB7	157	SG5	197	SH4		
38	PG4	78	PL2	118	SB4	158	SG3	198	SH7		
39	PG3	79	PL4	119	PP3	159	SE5	199	SL7		
40	PG2	80	PL1	120	PP4	160	SF5	200	PK1		

3.2.12 Instructions Supported by the JTAG Controller Cells

This section describes the instructions supported by the JTAG controller cells of the TMPA910CRA.

(1) EXTEST instruction

The EXTEST instruction is used for external interconnect tests. The EXTEST instruction permits BSR cells at output pins to shift out test patterns in the Update-DR state and those at input pins to capture test results in the Capture-DR state.

Typically, before EXTEST is executed, the initialization pattern is shifted into the boundary scan register using the SAMPLE/PRELOAD instruction. If the boundary scan register is not initialized, indeterminate data will be transferred in the Update-DR state and bus conflicts may occur between ICs. Figure 3.2.7 shows the flow of data while the EXTEST instruction is selected.

Figure 3.2.7 Test data flow while the EXTEST instruction is selected

The following steps describe the basic test procedure for an external interconnect test.

- 1. Initialize the TAP controller to the Test-Logic-Reset state.
- 2. Load the instruction register with the SAMPLE/PRELOAD instruction. This causes the boundary scan register to be connected between TDI and TDO.
- 3. Initialize the boundary scan register by shifting in determinate data.
- 4. Then, load the initial test data into the boundary scan register.
- 5. Load the instruction register with the EXTEST instruction.
- 6. Capture the data applied to the input pin into the boundary scan register.
- 7. Shift out the captured data while simultaneously shifting in the next test pattern.
- 8. Read out the data in the boundary scan register onto the output pin.

Steps 6 to 8 are repeated for each test pattern.

(2) SAMPLE/PRELOAD instruction

This instruction targets the boundary scan register between TDI and TDO. As its name implies, the SAMPLE/PRELOAD instruction provides two functions.

SAMPLE allows the input and output pads of an IC to be monitored. While it does so, it does not disconnect the system logic from the IC pins. SAMPLE is executed in the Capture-DR state. It is mainly used to capture the values of the IC's I/O pins on the rising edge of TCK during normal operation. Figure 3.2.8 shows the flow of data for the SAMPLE phase of the SAMPLE/PRELOAD instruction.

Figure 3.2.8 Test data flow while the SAMPLE is selected

PRELOAD allows the boundary scan register to be initialized before another instruction is selected. For example, prior to selection of the EXTEST instruction, PRELOAD is used to load initialization data into the boundary scan register. PRELOAD permits shifting of the boundary scan register without interfering with the normal operation of the system logic. Figure 3.2.9 shows the flow of data for the PRELOAD phase of the SAMPLE/PRELOAD instruction.

Figure 3.2.9 Test data flow while PRELOAD is selected

(3) BYPASS instruction

This instruction targets the bypass register between JTDI and JTDO. The bypass register provides a minimum length serial path through the IC (between JTDI and JTDO) when the test does not require control or monitoring of the IC. The BYPASS instruction does not cause interference in the normal operation of the on-chip system logic. Figure 3.2.10 shows the flow of data through the bypass register while the BYPASS instruction is selected.

Figure 3.2.10 Test data flow when the BYPASS instruction is selected

(4) CLAMP instruction

The CLAMP instruction output the value that Boundary Scan register is set by Preload instruction, and execute at Bypass operation.

The CLAMP instruction selects the bypass register between TDI and TDO.

(5) HIGHZ instruction

The HIGHZ instruction disables output from internal logical circuit. When the HIGHZ instruction is executed, it places the 3-state output pins in the high-impedance state.

The HIGHZ instruction also selects the bypass register between TDI and TDO.

Notes

This section describes the details of JTAG boundary-scan operation that are specific to the processor.

1) The PR2 pin does not support the input capture function.

2) The JTAG circuit can be released from the reset state by either of the following two methods:

- Assert TRSTn, initialize the JTAG circuit, and then deassert TRSTn.
- Supply 5 or more clock pulses to TCK while the TMS pin is held at "1".

3.3 Memory Map

The memory map of TMPA910CRA is as follows:

Address	Activation of the internal BOOT ROM		Activation of external memory		
0x0000_0000 0x0000_2000	Built-in ROM : 8KB+ 8KB	Remap area(8KB)	SMCCS0n		
0x0000_4000	SMCCS0n	External area(15.8MB)			
0x0100_0000	Unused area	External area(496MB	Unused area		
0x2000_0000	Unused area	External area(16MB)	Unused area		
0x2100_0000	SMCCS0n	External area(496MB)	SMCCS0n		
0x4000_0000	DMCCSn	External area(512MB)	DMCCSn		
0x6000_0000	SMCCS1n	External area(512MB)	SMCCS1n		
0x8000_0000	Unused area	External area(512MB)	Unused area		
0xA000_0000	SMCCS2n	External area(512MB)	SMCCS2n		
0xC000_0000	Unused area	External area(512MB)	Unused area		
0xE000_0000	SMCCS3n	External area(256MB)	SMCCS3n		
0xF000_0000	Built-in IO-0 (APB) : 1MB		Built-in IO-0 (APB) : 1MB		
	Unused area		Unused area		
0xF080_0000	Built-in IO-1 (APB Port1/2) : 1MB		Built-in IO-1 (APB Port1/2) : 1MB		
0xF090_0000	Built-in IO-2 (APB Port2/2) : 1MB	Built in I/O area	Built-in IO-2 (APB Port2/2) : 1MB		
	Unused area		Unused area		
0xF200_0000	Built-in IO-3 (AHB+APB) : 16MB	(12000)	Built-in IO-3 (AHB+APB) : 16MB		
	Unused area		Unused area		
0xF400_0000	Built-in IO-4 (AHB) : 16MB		Built-in IO-4 (AHB) : 16MB		
0xF600_0000	Unused area		Unused area		
0xF800_0000	Unused area		Unused area		
0xF800_2000	Built-in RAM-3 : 8KB(Remap)		Built-in RAM-3 : 8KB(Remap)		
0xF800_4000	Built-in RAM-0 : 16KB	Built in momony	Built-in RAM-0 : 16KB		
0xF800_8000	Built-in RAM-1 : 16KB	area(128MR)	Built-in RAM-1 : 16KB		
0xF800_C000	Built-in RAM-2 : 16KB		Built-in RAM-2 : 16KB		
0xF801_0000	Unused area		Unused area		

0xFFFF_FFF

Note1: Space between 0x0000_0000 and 0x0000_1FFF (8kB) is a Remap area, and the built-in RAM3 area will be accessed when Remap is set to Remap_ON (access to F8000_2000 also leads to the RAM3 area). Note2: Access to unused area is prohibited.

Figure 3.3.1 Memory map (Details of start mode, external areas and built-in area)

TOSHIBA

TENTATIVE

			Bus Master and Slave connection				ction navailabl	n /ailable	
Address	Activation of the internal			. Acces	- :	Don't acc	CCESS U	liavaliabi	C
/ (000	BOOT ROM		CPU(D) CPU(I)	LCDC	LCDDA	DMA1	DMA2	USB
			M1	M2	М3	M4	M5	M6	M7
0x0000_0000 0x0000_2000	Built-in ROM : 8KB+ 8KB	Remap area(8KB)	0	0	×	×	0	0	×
0x0000_4000	SMCCS0n	External area(15.8MB)	0	0	0	0	0	0	0
0x0100_0000	Unused area	External area(496MB	0	0	0	0	0	0	0
0x2000_0000	Unused area	External area(16MB)	0	0	0	0	0	0	0
0x2100_0000	SMCCS0n	External area(496MB)	0	0	0	0	0	0	0
0x4000_0000	DMCCSn	External area(512MB)	0	0	0	0	0	0	0
0x6000_0000	SMCCS1n	External area(512MB)	0	0	0	0	0	0	0
0x8000_0000	Unused area	External area(512MB)	0	0	0	0	0	0	0
0xA000_0000	SMCCS2n	External area(512MB)	0	0	0	0	0	0	0
0xC000_0000	Unused area	External area(512MB)	0	0	0	0	0	0	0
0xE000_0000	SMCCS3n	External area(256MB)	0	0	0	0	0	0	0
0xF000_0000	Built-in IO-0 (APB) : 1MB		0	×	×	×	×	×	×
	Unused area					-			
0xF080_0000	Built-in IO-1 (APB Port1/2) : 1MB		0	×	×	×	X	×	×
0xF090_0000	Built-in IO-2 (APB Port2/2) : 1MB		0	×	×	×	X	×	×
	Unused area	Built-in I/O area				-			
0xF200_0000	Built-in IO-3 (AHB+APB) : 16MB	(128MB)	0	×	×	×	×	×	×
_	Unused area					-			
0xF400_0000	Built-in IO-4 (AHB) : 16MB		0	×	×	×	X	×	×
0xF600_0000	Unused area					-			
0xF800_0000	Unused area					_			
0xF800_2000	Built-in RAM-3 : 8KB(Remap)		0	0	0	0	0	0	0
0xF800_4000	Built-in RAM-0 : 16KB	Duilt in many state	0	0	0	0	0	0	0
0xF800_8000	Built-in RAM-1 : 16KB	Built-In memory	0	0	0	0	0	0	0
0xF800_C000	Built-in RAM-2 : 16KB	aita(120111D)	0	0	0	0	0	0	0
0xF801_0000	Unused area					_			

0xFFFF_FFFF

Figure 3.3.2 Memory map (details of start mode and Bus Master and Slave connection)

TOSHIBA

0x0000_0000	External/built-in R 16KB(Ren	The first 8 KB is a Remap area	
	External a	External area (3.75GB)	
0xF000_0000		SysCtrl	
0xF001_0000		WDT	
0xF002_0000		PMC	
0xF003_0000		RTC/Melody	
0xF004_0000		Timer/PWM	
0xF005_0000	built-in IO(APB)	PLLCG	
0xF006_0000	1MB	TSI	
0xF007_0000		I2C	
0xF008_0000		ADC	
0xF009_0000		Reserved	
0xF00A_0000		EBI	
0xF00B_0000		LCDOP	
0xF010_0000	Reserve		
0xF080_0000	Built-in IO(APB) 1MB PORT		
0xF090_0000	Reserve	ed	Built-in IO area
0xF200_0000		UART	(128MB)
0xF200_2000		SSP	
0xF201_0000		NANDFC	
0xF202_0000	16MB	CMOS_IS_IF	
0xF203_0000	TOWE	SDHostCtrl	
0xF204_0000		I2S	
0xF205_0000		LCDDA	
0xF300_0000	Reserve	ed	
0xF400_0000		INTC	
0xF410_0000		DMAC	
0xF420_0000	Built-in IO(AHB)	LCDC	
0xF430_0000	16MB	MPMC0	
0xF431_0000		MPMC1	
0xF440_0000		USB	
0xF600_0000	Reserve	ed	
0xF800_0000	Built-in me	Built-in memory area (128MB)	

0xFFFF_FFFF

Figure 3.3.3 Memory map (details of internal areas)

3.3.1 Boot mode

A few boot modes are available for choice to this microprocessor depending on the external pin setting.

1. Boot memory setting

Mode setting pin		pin	Operation mode						
RESETn	AM1	AM0	Operation mode						
	0	1	Start from the external 16-bit NOR Flash memory (built-in BOOT_TOM cannot be seen)						
_	1	0	Start from the external 32-bit NOR Flash memory (built-in BOOT_TOM cannot be seen)						
	1	1	BOOT (start from the built-in boot ROM)						
	0	0	TEST (this setting cannot be used)						

2. External memory voltage setting (Except NANDF)

Mode setting pin	Operation mode			
SELVCCM	Operation mode			
0	Memory-related control pins operate at 1.8±0.1V (DVCCM)			
1	Memory-related control pins operate at $3.3 \pm 0.3 V$ (DVCCM)			

3. External memory controller setting

Mode setting pin	Operation mode			
SELMEMC	operation mode			
0	Only the SDR (Single Data Rate) and Mobile SDR types of SDRAM can be used.			
1	Only the Mobile DDR (Mobile Double Data Rate) type of SDRAM can be used.			

4. JTAG pin setting

Mode setting pin	Operation mode			
SELJTAG				
	Set "0" to this pin except Boundary Scan Mode.			
0	This setting can be used as regular Debug Mode			
	Note: Debugging cannot be carried out during internal BOOT with AM1 = 1 and AM0 = 1.			
1	This setting can be used as Boundary Scan Mode			

3.4 System Controller

3.4.1 Remapping

Using the remapping function, this LSI can access the 8K-byte area of the built-in RAM from two memory areas ($0x0000_{0000}$ to $0x0000_{1}$ FFF and $0xF800_{2}000$ to $0xF800_{3}$ FFF).

Note: The Remap ON status is activated by the register setting, but it can only be deactivated by resetting the system or canceling it in the PCM status.

Figure 3.4.1 Transition of the memory space status

	BOOT Mode	Remap_ON	Multi Mode
0x0000_0000	Built-in ROM 16 KB	 Built-in RAM-3 8 KB (Remap)	External area
0x0000_2000		 Cannot be used	
0x0000_4000	External area SMCCS0n	External area SMCCS0n	External area SMCCS0n
0x0100_0000	Unused area	Unused area	Unused area
0x2000_0000	Unused area	Unused area	Unused area
0x2100_0000	External area	External area	External area
0xF000_0000	Built-in IO area	Built-in IO area	Built-in IO area
0xF800_0000			
0xF800_2000	Built-in RAM-3: 8 KB (Remap)	Built-in RAM-3: 8 KB (Remap)	Built-in RAM-3: 8 KB (Remap)
0xF800_4000	Built-in RAM-0: 16 KB	Built-in RAM-0: 16 KB	Built-in RAM-0: 16 KB
0xF800_8000	Built-in RAM-1: 16 KB	Built-in RAM-1: 16 KB	 Built-in RAM-1: 16 KB
0xF800_C000	Built-in RAM-2: 16 KB	Built-in RAM-2: 16 KB	 Built-in RAM-2: 16 KB
0xF801_0000			

0xFFFF_FFFF

Note: Space between 0x0000_0000 and 0x0000_1FFF (8kB) is a Remap area, and the built-in RAM3 area will be accessed when Remap is set to Remap_ON (access to F8000_2000 also leads to the RAM3 area).

Figure 3.4.2 Memory map (details of boot mode and external areas)

3.4.2 Register Descriptions

The system controller has the following register.

Base address = 0F000_0000

Register	Address	Description		
Name (base+)		Description		
Remap	0x0004	Reset memory map (REMAP)		

1. Remap Register

Address = (0xF000_0000) + 0x0004

Bit	Bit Symbol	Туре	Reset Value	Description
[31:1]	-	-	Undefined	Read undefined. Write as zero.
[0]	REMAP	RW	0у0	REMAP setting

[Explanation]

a. <REMAP>

It is the register that enables the REMAP function.

By writing arbitrary data, the built-in RAM3 can be accessed from the beginning of the memory map. Setting the register cannot turn off the remap status (to restore the initial status).

3.5 Clock Controller

3.5.1 Overview

The clock controller is a circuit that controls the clock for the overall MCU. It has the following features:

- a. By using a clock multiplication circuit (PLL), the clock controller supplies a clock of up to 200 MHz to the CPU. As a multiplied figure, x1, x6, or x8 can be dynamically selected.
- b. The clock gear contributes to reduction of the consumption current.
- c. Clock supply settings can be made for each block to be used.
- d. Writing to registers inside the clock controller is prohibited.

Transition of clock operation modes is as follows:

Figure 3.5.1 Clock mode status transition

TENTATIVE

TMPA910CRA

3.5.2 Block Diagrams

Clock frequency input from the X1 and X2 pins is defined as f_{OSCH} , clock frequency input from the XT1 and XT2 pins is defined as fs, and the clock selected in SYSCR1<GEAR2:0> is defined as clock f_{FCLK} for the CPU core. For peripheral IPs connected to the AHB bus, a clock obtained by dividing f_{FCLK} by 2 is defined as f_{HCLK}. For peripheral IPs connected to the APB bus, a clock obtained by dividing f_{FCLK} by 2 is defined as f_{HCLK}.

Also, two types of clock, for DRAM and for SRAM/NORF respectively, are input in the memory controller, and as a SRAM/NORF clock, $f_{\rm HCLK}$ or a clock obtained by dividing $f_{\rm HCLK}$ by 2 can be selected.

Clock constraints are defined below. Select a clock that meets these criteria for intended applications.

	Lowest frequency	Highest frequency	Notes
(a) f _{OSCH} (High speed oscillator frequency)	10 MHz	27 MHz	
(b) f _{PLL} (PLL output frequency)	60 MHz	200 MHz	
(c) f _{FCLK} (Frequency for the CPU)	1.25 MHz	200 MHz	
(d) f _{USB} (Frequency for the USB)	24 MHz	24 MHz	Accuracy of 24MHz±100 ppm is required.
(e) f _S (Low speed oscillator frequency)	30 kHz	34 kHz	

The table below shows the examples of recommended uses that meet the criteria listed above.

	High speed	PLL output	Clock for	Clock for
	oscillation:	clock:	CPU:	USB:
	foscн	f _{PLL}	f FCLK	f _{USB}
(1) USB required, Maximum CPU: 192 MHz	24 MHz	Maximum of 192 MHz	Maximum of 192 MHz	24 MHz
(2) USB required, Maximum CPU: 200 MHz	25 MHz	Maximum of 200 MHz	Maximum of 200 MHz	24 MHz (Input from the X1USB pin is required)
(3) USB not required Maximum CPU: 200 MHz	25 MHz	Maximum of 200 MHz	Maximum of 200 MHz	-

Table 3.5.2 Examples of recommended uses

3.5.3 Operation Descriptions

3.5.3.1 Register Descriptions

The following lists the SFRs and their functions.

		base address = 0xF005_0000
Register Name	Address (base+)	Description
SYSCR0	0x000	System Control Register 0
SYSCR1	0x004	System Control Register 1
SYSCR2	0x008	System Control Register 2
SYSCR3	0x00C	System Control Register 3
SYSCR4	0x010	System Control Register 4
SYSCR5	0x014	System Control Register 5
SYSCR6	0x018	System Control Register 6
SYSCR7	0x01C	System Control Register 7
-	0x040	Reserved
-	0x044	Reserved
-	0x048	Reserved
-	0x04C	Reserved
-	0x050	Reserved
CLKCR5	0x054	Clock Control Register 5

1. SYSCR0 (System Control Register 0)

Address =(0xF005_0000) + 0x0000

Bit	Bit Symbol	Туре	Reset Value	Description
[31:8]	_	-	Undefined	Read undefined. Write as zero.
[7:6]	USBCLKSEL	R/W	0у00	Selection of a clock for USB: 00 : fixed at "0" 01 : X1 pin clock 10 : X1USB pin clock 11 : fixed at "0"
[5]	_	-	Undefined	Read undefined. Write as one.
[4]	_	-	Undefined	Read undefined. Write as zero.
[3]	_	-	Undefined	Read undefined. Write as zero.
[2]	_	-	Undefined	Read undefined. Write as zero.
[1]	_	-	Undefined	Read undefined. Write as one.
[0]	_	-	Undefined	Read undefined. Write as zero.

[Explanation]

a. <USBCLKSEL> Selects the clock for USB. 00: Fixed at GND 01: X1 pin clock

10: X1USB pin clock

11: Fixed at GND

2. SYSCR1 (System Control Register 1)

Address = (0xF005_0000) + 0x0004

Bit	Bit Symbol	Туре	Reset Value	Description
[31:3]	_	-	Undefined	Read undefined. Write as zero.
[2:0]	GEAR	R/W	0y000	Clock gear selection (fc)
				000 : fc
				001 : fc/2
				010 : fc/4
				011 : fc/8
				1xx : Reserved

[Explanation]

a. <GEAR>

Selects the clock gear to be used.

000: fc

001: fc/2

010: fc/4

011: fc/8

1xx: Reserved

3. SYSCR2 (System Control Register-2)

Address =(0xF005_0000) + 0x0008

Bit	Bit Symbol	Туре	Reset Value	Description
[31:8]	_	-	Undefined	Read undefined. Write as zero.
[7]	—	_	Undefined	Read undefined. Write as zero.
[6:2]	-	-	Undefined	Read undefined. Write as zero.
[1]	FCSEL	R/W	0у0	Selection of use of a PLL output clock
				0 : f _{OSCH}
				1 : f _{PLL}
[0]	LUPFLAG	RO	0y0	End flag for the lock-up counter for the PLL
				0 : Not end
				1 : End

[Explanation]

a. <FCSEL>

Selects the clock to be output from the PLL.

 $0 : {\rm fosch}$

 $1 {\stackrel{{}_{\circ}}{}} \, f_{\rm PLL}$

b. <LUPFLAG>

Indicates the state of the PLL lock-up counter.

0: Not end

1: End

4. SYSCR3 (System Control Register 3)

Address =(0xF005_0000) + 0x000c

Bit	Bit Symbol	Туре	Reset Value	Description
[31:8]	_	-	Undefined	Read undefined. Write as zero.
[7]	PLLON	R/W	0y0	PLL operation control
				0: OFF
				1: ON
[6]	_	_	Undefined	Read undefined. Write as zero.
[5]	C2S	R/W	0y1	PLL constant value setting1
				Always write "0"
[4:0]	ND	R/W	0y00111	PLL constant value setting - 2
				b00101 for x6, b00111 for x8

[Explanation]

a. <PLLON>

Controls the operation of the PLL.

0: OFF

1: ON

b. <C2S>

PLL constant value setting - 1

PLL Constant value setting1 is "0y1", set to "0". Please take care.

c. <ND>

PLL constant value setting - 2 $$b0_0101$ for x6, and $b0_0111$ for x8$

5. SYSCR4 (System Control Register 4)

					A	ddress = (0xF005	5_0000) + 0x010
Bit	Bit Symbol	Туре	Reset Value		Desc	ription	
[31:8]	-	-	Undefined	Read undefined.	. Write as zero.		
[7:4]	RS	R/W	0y0111	PLL constant va	lue setting - 3		
				x	8	x	6
				Equal and	Less than	Equal and	Less than
				Over 140MHz	140MHz	Over 140MHz	140MHz
				0y0110	0y1001	0y0110	0y0111
[3:2]	IS	R/W	0y10	PLL constant va	lue setting - 4		
				Always write "0)1"		
[1:0]	FS	R/W	0y01	PLL constant va	lue setting – 5	•	
				x	8	х	6
				Equal and	Less than	Equal and	Less than
				Over 140MHz	140MHz	Over 140MHz	140MHz
				0y01	0y10	0y01	0y10

[Explanation]

a. <rs></rs>

0y0110
0y1001
0y0110
0y0111

b. <IS>

PLL constant value setting - 4

PLL Constant value setting4 is "0y10", set to "0y01". Please take care.

c. <FS>

PLL constant value setting - 5	
In case of 8 times PLL	
PLL out frequency: 140MHz or more over	0y01
PLL out frequency: Less than 140MHz	0y10
In case of 6 times PLL	
PLL out frequency: 140MHz or more over	0y01
PLL out frequency: Less than 140MHz	0v10

6. SYSCR5 (System Control Register 5)

Address =(0xF005_0000) + 0x0014

Bit	Bit Symbol	Туре	Reset Value	Description
[31:1]	-	-	Undefined	Read undefined. Write as zero.
[0]	PROTECT	RO	0y0	Protect Flag
				0: OFF
				1: ON

[Explanation]

By setting a dual key to the SYSCR6 and SYSCR7 registers, protection (write operation to certain SFRs in the clock controller) can be activated or released.

[Dual key]

1st-KEY :	Consecutive writing of 0x5A to SYSCR6 and 0xA5 to SYSCR7
2nd-KEY :	Consecutive writing of $0xA5$ to SYSCR6 and $0x5A$ to SYSCR7

The protection status can be checked by reading SYSCR5<PROTECT>.

Reset operation turns protection OFF. If write operation is executed to certain SFRs while protection is ON, written data will be invalidated.

The "certain" registers are as follows:

SYSCR0, SYSCR1, SYSCR2, SYSCR3, SYSCR4, SYSCR5, CLKCR5

7. SYSCR6 (System Control Register 6)

Address = (0xF005_0000) + 0x0018

Bit	Bit Symbol	Туре	Reset Value	Description
[31:8]	-	-	Undefined	Read undefined. Write as zero.
[7:0]	P-CODE0	WO	0X00	Protect code setting - 0

[Explanation]

a. <P-CODE0>

Used to set the protect code 0.

8. SYSCR7 (System Control Register 7)

Address = (0xF005_0000) + 0x001C

Bit	Bit Symbol	Туре	Reset Value	Description
[31:8]	-	-	Undefined	Read undefined. Write as zero.
[7:0]	P-CODE1	WO	0X00	Protect code setting - 1

[Explanation]

a. <P-CODE1>

Used to set the protect code 1.

9. CLKCR5 (Clock Control Register-5)

Address = (0xF005_0000) + 0x0054

Bit	Bit Symbol	Туре	Reset Value	Description
[31:7]	-	=	Undefined	Read undefined. Write as zero.
[6]	_	—	Undefined	Read undefined. Write as one.
[5:4]	-	-	Undefined	Read undefined. Write as zero.
[3]	SEL_SMC_ MCLK	R/W	0y1	SMC_MCLK selection register 1: f _{HCLK} 0: f _{HCLK} /2
[2]	SEL_TIM45	R/W	0y1	Selection of a prescaler clock for Timer45 0: fs(32.768kHz) clock 1: f _{HCLk} /2
[1]	SEL_TIM23	R/W	0y1	Selection of a prescaler for Timer23 0 : fs(32.768kHz) clock 1 : f _{HCLK} /2
[0]	SEL_TIM01	R/W	0y1	Selection of a prescaler for Timer01 0: fs(32.768kHz) clock 1: f _{HCLK} /2

[Explanation]

a. <SEL_SMC_MCLK>

Selects SMC_MCLK.

 $1: \mathbf{f}_{\mathrm{HCLK}}$

0: $f_{HCLK}/2$

b. <SEL_TIM45>

Selects the prescaler clock for Timer45.

0: fs (32.768kHz) clock

 $1 \vdots f_{\rm HCLK}/2$

c. <SEL_TIM23>

Selects the prescaler clock for Timer23. 0: fs (32.768kHz) clock 1: f_{HCLK}/2

d. <SEL_TIM01>

Selects the prescaler clock for Timer01. 0: fs (32.768kHz) clock

 $1: f_{\text{HCLK}}/2$

TOSHIBA

3.5.4 System Clock Controller

The system clock controller generates a clock to be supplied to the CPU core (f_{FCLK}) and other built-in I/Os (f_{HCLK}). With the fosch or f_{PLL} clock as an input, it is possible to use SYSCR1<GEAR2:0> to change the high speed clock gear to 1, 2, 4, or 8-speed (fc, fc/2, fc/4, or fc/8) to reduce power consumption

Reset operation activates the PLL-OFF mode, and $\langle GEAR2:0 \rangle$ is initialized to "000;" therefore, frequency of the CPU clock f_{FCLK} will be the same as f_{OSCH} . For example, when a 24 MHz oscillator is connected to the X1 and X2 pins, the frequency of f_{FCLK} becomes 24 MHz when reset operation is executed.

(1) Clock gear

By using the clock gear selection register SYSCR1<GEAR2:0>, the gear can be set to fc, fc/2, fc/4, or fc/8.

Changing $f_{\ensuremath{\text{FCLK}}}$ by using the clock gear can contribute to reduction of power consumption.

An example of clock gear switching is as follows:

[Setting example]

 $(SYSCR1) \qquad \leftarrow \qquad 0x0000_0011 \qquad ; \ shift \ f_{FCLK} \ \ to \ 1/8.$

3.5.5 Clock Multiplication Circuit (PLL)

The PLL outputs f_{PLL} clock signals whose frequency is 6 or 8 times higher than that of fosch. By using the PLL, it is possible to lower the oscillator frequency and make the internal clock faster.

Since the PLL is initialized to the stopped state when reset operation is executed, it is necessary to make settings to the SYSCR2, SYSCR3 and SYSCR4registers when using the PLL.

Similar to an oscillator, this circuit requires time to stabilize after operation is enabled, and the time thus required is called lock-up time.

A 13-stage binary counter can be used to check the lock-up time. For example, lock-up time is approximately $164\mu s$ when $f_{\rm OSCH}$ = 25 MHz.

Examples of the PLL start and stop settings are as follows:

Setting e	example – 1: PLL st	art		
	(SYSCR3)	\leftarrow	0x1000_0111	; Operation is activated with PLL x8
LUP:				
	(SYSCR2)	\rightarrow	Read	; <lupflag>==1?</lupflag>
	To LUP if <lupf< td=""><td>LAG>==</td><td>1</td><td></td></lupf<>	LAG>==	1	
	(SYSCR2)	\leftarrow	0x0000_0010	; <fcsel>=1 (change from 24 MHz to 192 MHz)</fcsel>

Note: When switching <FCSEL> from "1" to "0," a few clock cycles are required before f_{FCLK} is changed to f_{OSCH} after the register write is completed. Therefore, it is necessary to first wait the required clock cycles and then execute the next instruction. More specifically, execute 10 NOP instructions.

3.6 Boot ROM

TMPA910CRA contains a boot ROM for loading a user program to the built-in RAM. The following loading methods are supported.

3.6.1 Operation Modes

TMPA910CRA has two operation modes: external memory activation mode and internal boot ROM activation mode. An operation mode is selected in accordance with the AM1 and AM0 pin status when RESETn is asserted.

- (1) External memory mode: After reset, the CPU fetches instructions from external memory and executes them.
- (2) BOOT mode: After reset, the CPU fetches instructions from the internal boot ROM and executes them. The internal boot ROM transfers a user program to the internal RAM via USB communication, and then branches the program into the internal RAM.

This activates the user program to boot.

Table 3.6.2 shows an overview of boot operation.

Mode setting pins		oins	Operation mode	
RESETn	AM1	AM0	Operation mode	
	0	1	Start from the external bus memory (16-bit bus activation)	
	1	0	Start from the external bus memory (32-bit bus activation)	
	1	1	BOOT (start from the internal boot ROM)	
0		0	TEST (setting prohibited)	

Table 3.6.1 Operation modes

Priority		Operation after			
FIIOIIty	Source I/F		Destination	loading	
1	USB host such as a PC	USB	Internal RAM	Branch into the internal 8KB_RAM 0x0000_0000	

3.6.2 Hardware Specifications of the Internal Boot ROM

(1) Memory map

Figure 3.6.1 shows a memory map of BOOT mode.

The internal boot ROM consists of 16 KB ROM and is assigned to addresses from $0x0000_0000$ to $0x0000_3FFF.$

↑	0x0000_0000	Internal boot ROM/RAM : 8KB (Remap)	Remap area
	0x0000_2000	Internal boot ROM: 8KB	•
	0x0000_4000		
		External area	
	0xF000_0000	Internal IO-0(APB) : 1MB	Ť
	0xF080_0000	Internal IO-1(APB Port1/2) : 1MB	
4GB I	0xF090_0000	Internal IO-2(APB Port2/2) : 1MB	Internal IO area
	0xF200_0000	Internal IO-3(AHB+APB) : 16MB	(128MB)
	0xF400_0000	Internal IO-4(AHB) : 16MB	
	0xF600_0000		
	0xF800_0000		Ť
	0xF800_2000	Internal RAM-3 : 8KB(Remap)	
	0xF800_4000	Internal RAM-0 : 16KB	
	0xF800_8000	Internal RAM-1 : 16KB	Internal memory area
	0xF800_C000	Internal RAM-2 : 16KB	(128MB)
	0xF801_0000		
Ļ	0xFFFF_FFF		Ļ

Figure 3.6.1 Memory map of BOOT mode

(2) The boot ROM elimination function

After the boot sequence is executed in BOOT mode, the internal boot ROM area changes into RAM.

	BOOT mode	Remap_ON	5	Multi mode
0x0000_0000 0x0000_2000	Internal ROM 16 KB	 Internal RAM-3 8 KB(Remap) Cannot be used		External area
0x0000_4000	Unused area	 Unused area		Unused area
0x2100_0000	External area	External area		External area
0xF000_0000	Internal IO area	Internal IO area		Internal IO area
0xF800_0000				
0xF800_2000	Internal RAM-3: 8 KB (Remap)	Internal RAM-3: 8 KB (Remap)		Internal RAM-3: 8 KB (Remap)
0xF800_4000	Internal RAM-0: 16 KB	Internal RAM-0: 16 KB		Internal RAM-0: 16 KB
0xF800_8000	Internal RAM-1: 16 KB	Internal RAM-1: 16 KB		Internal RAM-1: 16 KB
0xF800_C000	Internal RAM-2: 16 KB	Internal RAM-2: 16 KB		Internal RAM-2: 16 KB
0xF801_0000				

0xFFFF_FFFF

Note: Space between 0x0000_0000 and 0x0000_1FFF (8 KB) is a Remap area, and the internal RAM3 area will be accessed when Remap is set to Remap_ON (access to F8000_2000 also leads to the RAM3 area).

Figure 3.6.2 Memory map (details of boot mode and external area)

3.6.3 Outline of Boot Operation

USB can be selected as the transfer source of boot operation.

After reset, operation of the boot program on the internal boot ROM follows the flow chart shown in Figure 3.6.3. In any case, the user program is transferred from the source to the internal RAM, and branched into the internal RAM. The internal RAM is used in the same manner regardless of the transfer source as shown in Figure 3.6.4.

Note: When downloading the user program via USB, a USB device driver and special application software are needed on the PC.

Figure 3.6.3 Flow chart of internal boot ROM operation

Figure 3.6.4 Use of the internal RAM of the boot program

Within the internal RAM, the area between 0xF800_E000 and 0xF800_FFFF is used as work and stack areas for executing the boot program. Therefore, the maximum size of the user program that can be loaded to the internal RAM is 48 KB.

Within 48 KB of the user program area between 0xF800_2000 and 0xF800_DFFF, the vector and program are written in an 8 KB space between 0xF800_2000 and 0xF800_3FFF.

When the user program is loaded, the boot program moves to its work area RAM and turn the Remap function ON.

When the Remap function is turned ON, the 8 KB space between $0xF800_2000$ and $0xF800_3FFF$ can be recognized from the space between $0x0000_0000$ and $0x0000_1FFF$.

Refer to the chapter on the "system controller" for details of this function.

The boot program will branch to $0x0000_0000$ of the last remapped RAM area.

(1) CPU status and port settings

ARM926EJ-S starts in supervisor mode after reset, and the boot program will process all programs in supervisor mode without any mode changes.

No port settings are required as ports used in the boot program are all dedicated pins.

Table 3.6.3 Port settings for the boot program

BOOT	Function	I/O	Pin settings by the boot program
LICR	D+	Input/Output	No sottings required as dedicated pins are used
USB	D-	Input/Output	No settings required as dedicated pins are used.

(2) SFR settings by the boot program

Table 3.6.4 shows the SFRs that are set by the boot program.

After the boot sequence, create a program while taking these setting values into account. Also note that the registers in the CPU and the internal RAM remain in the state after execution of the boot program.

Register name	Setting value	Description
SYSCR1	0x0010	Clock gear = 1/4
SYSCR2	0x0002	
SYSCR3	0x0087	PLL clock is used (×8)
SYSCR4	0x0065	
REMAP	0x0001	Remap ON

Table 3.6.4 List of SFRs

Note: The values to be set in the I/O registers for USB, VIC, DMAC and TMR0 are not described here. If these functions are needed in a user program, set each I/O register as necessary.
3.6.4 Download via USB

(1) Connection example

Figure 3.6.5 shows an example of USB connection (assuming that NOR Flash is program memory)

Figure 3.6.5 USB connection example

(2) Overview of the USB interface specifications

Set the oscillation frequency for the X1 and X2 pins to 24.00 MHz (± 100 ppm) when booting using USB.

The USB of this microcontroller supports high-speed communications. However, if the USB host does not support high-speed communications (USB1.1 or earlier), full-speed communications will be carried out.

(The boot ROM function does not support clock supply from the USB clock pin X1USB.) (For cautions on using the USB, refer to the chapter on the USB.)

Although there are four types of USB transfer, the following two types are used for the boot function.

Transfer type	Description
Control Transfer	Used for transmitting standard requests and vendor requests.
Bulk Transfer	Used for responding to vendor requests and transmitting a user program.

Table 3.6.5 Transfer types used by the boot program

The following shows an overview of the USB communication flow.

Figure 3.6.6 Overview of the overall flow

The table below shows vendor request commands.

Table 3.6.6	Vendor reg	uest commands
-------------	------------	---------------

	•		
Command	Vendor request value	Operation	Notes
Microcontroller information command	0x00	Send microcontroller information.	Microcontroller information data is sent by bulk IN transfer after the setup stage is completed.
User program transfer start command	0x02	Receive a user program.	Set the transfer size of a user program in wIndex. The user program is received by bulk OUT transfer after the setup stage is completed.
User program transfer result command	0x04	Send the transfer result.	Transfer result data is sent by bulk IN transfer after the setup stage is completed.

The table below shows the setup command data structure.

 Table 3.6.7
 Setup command data structure

Field	Value	Meaning	
bmRequestType	0x40	D7 0: Host to device	
		D6-D5 2: Vendor	
		D4-D0 0: Device	
bRequest	0x00, 0x02, 0x04	0x00: Microcontroller information	
		0x02: User program transfer start	
		0x04: User program transfer result	
wValue	0x00~0xFFFF	Unique data number	
		(Not used by the microcontroller)	
wIndex	0x00~0xFFFF	Write length	
		Used when starting user program transfer	
		(user program transfer size)	
wLength	0x0000	Fixed	

Table 3.6.8 Standard request commands		
Standard request	Response method	
GET_STATUS	Response by software	
CLEAR_FEATURE	Response by software	
SET_FEATURE	Response by software	
SET_ADDRESS	Response by software	
GET_DISCRIPTOR	Response by software	
SET_DISCRIPTOR	Not supported	
GET_CONFIGRATION	Response by software	
SET_CONFIGRATION	Response by software	
GET_INTERFACE	Response by software	
SET_INTERFACE	Response by software	
SYNCH_FRAME	Ignored	

The table below shows standard request commands.

The table below shows information to be returned by GET_DISCRIPTOR.

Table 3.6.9 Information returned by GET_DISCRIPTOR

DeviceDescriptor

Field	Value	Meaning
Blength	0x12	18 bytes
BdescriptorType	0x01	Device descriptor
BcdUSB	0x0200	USB Version 2.0
BdeviceClass	0x00	Device class not in use
BdeviceSubClass	0x00	Sub command not in use
BdeviceProtocol	0x00	Protocol not in use
BmaxPacketSize0	0x40	EP0 maximum packet size is 64 bytes.
IdVendor	0x0930	Vendor ID
IdProduct	0x6504	Product ID (0)
BcdDevice	0x0001	Device version (v0.1)
Imanufacturer	0x00	Index value of string descriptor indicating the manufacturer name
Iproduct	0x00	Index value of string descriptor indicating the product name
IserialNumber	0x00	Index value of string descriptor indicating the product serial number
BnumConfigurations	0x01	There is one configuration.

* The descriptor information to be returned to the USB host should be modified as required by each application.

ConfigrationDescriptor

Field	Value	Meaning
bLength	0x09	9 bytes
bDescriptorType	0x02	Configuration descriptor
wTotalLength	0x0020	Total length (32 bytes) obtained by adding each configuration and endpoint descriptor
bNumInterfaces	0x01	There is one interface.
bConfigurationValue	0x01	Configuration number 1
iConfiguration	0x00	Index value of string descriptor indicating the configuration name (Not in use)
bmAttributes	0x80	Bus power
MaxPower	0x31	Maximum power consumption (49 mA)

InterfaceDescriptor

Field	Value	Meaning
bLength	0x09	9 bytes
bDescriptorType	0x04	Interface descriptor
bInterfaceNumber	0x00	Interface number 0
bAlternateSetting	0x00	Alternate setting number 0
bNumEndpoints	0x02	There are two endpoints.
bInterfaceClass	0xFF	Specified device
bInterfaceSubClass	0x00	
bInterfaceProtocol	0x50	BulkOnly protocol
ilinterface	0x00	Index value of string descriptor indicating the interface name (Not in use)

* The descriptor information to be returned to the USB host should be modified as required by each application.

EndpointDescriptor (When the USB host supports USB2.0)

Field	Value	Meaning
<endpoint1></endpoint1>		
blength	0x07	7 bytes
bDescriptorType	0x05	Endpoint descriptor
bEndpointAddress	0x81	EP1 = IN
bmAttributes	0x02	Bulk transfer
wMaxPacketSize	0x0200	Payload 512 bytes
bInterval	0x00	(Ignored for bulk transfer)
<endpoint2></endpoint2>		
bLength	0x07	7 bytes
bDescriptor	0x05	Endpoint descriptor
bEndpointAddress	0x02	EP2 = OUT
bmAttributes	0x02	Bulk transfer
wMaxPacketSize	0x0200	Payload 512 bytes
bInterval	0x00	(Ignored for bulk transfer)

EndpointDescriptor (When the USB host supports USB1.1)

Field	Value	Meaning
<endpoint1></endpoint1>		
blength	0x07	7 bytes
bDescriptorType	0x05	Endpoint descriptor
bEndpointAddress	0x81	EP1= IN
bmAttributes	0x02	Bulk transfer
wMaxPacketSize	0x0040	Payload 64 bytes
bInterval	0x00	(Ignored for bulk transfer)
<endpoint2></endpoint2>		
bLength	0x07	7 bytes
bDescriptor	0x05	Endpoint descriptor
bEndpointAddress	0x02	EP2 = OUT
bmAttributes	0x02	Bulk transfer
wMaxPacketSize	0x0040	Payload 64 bytes
bInterval	0x00	(Ignored for bulk transfer)

* The descriptor information to be returned to the USB host should be modified as required by each application.

The table below shows information to be returned by the microcontroller information command.

Microcontroller information	ASCII code
TMPA910CRA	0x54,0x4D,0x50,0x41,0x39,0x31,0x30,0x43,0x52,0x20,0x20,0x20,0x20,0x20,0x20

The table below shows information to be returned by the transfer result command.

Transfer result	Value	Error condition		
Normal termination	0x00			
Use program not received	0x02	The user program transfer result is received without the user program transfer start command being received first.		
Received file not in Intel Hex format	0x04	The first data of a user program is not ':' (0x3A).		
Size of a received user program being larger than estimated	0x06	The size of a received user program is larger than the value set in windex of the user program transfer start command.		
Undesignated download address	0x08	The specified user program download address is not in the designated area.		
Protocol error or other error	0x0A	The user program transfer start or user program transfer result command is received first.		
		A checksum error is detected in the Intel Hex file.		
		A record type error is detected in the Intel Hex file.		
		The length of an address record in the Intel Hex file is 3 or longer.		
		The length of an end record in the Intel Hex file is other than 0.		

Table 3.6.11 Information returned by the transfer result command

(3) Description of the USB boot program operation

The boot program transfers data in Intel Hex format sent from the PC to the internal RAM. The user program starts operating after data transfer is completed. The program is executed from the address received first.

This function enables users to perform customized on-board programming control.

- a. Operation procedure
 - 1. Connect the USB cable.
 - 2. Set both the AM0 and AM1 pins to "1" and reset the microcontroller.
 - 3. After recognizing USB connection, the PC checks the information on the connected device using the GET_DISCRIPTOR command.
 - 4. The PC sends the microcontroller information command by command transfer (vendor request). After the setup stage is completed, the PC checks microcontroller information data by bulk IN transfer.
 - 5. Upon receiving the microcontroller information command, the boot program prepares microcontroller information in ASCII code.
 - 6. The PC creates the user program by converting an Intel Hex file into binary format.
 - 7. The PC sends the microcontroller transfer start command by command transfer (vendor request). After the setup stage is completed, the PC transfers the user program by bulk OUT transfer.
 - 8. After the user program has been transferred, the PC waits for about two seconds and then sends the user program transfer result command by command transfer (vendor request). After the setup stage is completed, the PC checks the transfer result by bulk IN transfer.
 - 9. Upon receiving the user program transfer result command, the boot program prepares for transmission of the transfer result value.
 - 10. If the transfer results in failure, the boot program starts the error processing routine and will not automatically recover from it. In this case, terminate the device driver on the PC and retry from Step 2.

- b. Notes on the user program format (binary)
 - 1. After receiving the checksum of a record, the boot program waits for the start mark (0x3A for ":") of the next record. Even if data other than 0x3A is transmitted between records, it will be ignored.
 - 2. The record to be transferred first does not have to be an address record. This is because the initial value of the address pointer is 0x00.
 - 3. Addresses between 0xF800_2000 and 0xF800_E000 (48 KB) are allocated as a user program transfer area. Create a user program within this address range.

Note: In USB transfers, the maximum object size that can be transferred is 64 KB since the write size is set by wIndex within the address range of 0000H to FFFFhex.

- (1) Other notes
 - a) USB connector

The USB connector must not be connected or disconnected while the boot program is running.

b) Software on the PC

A special USB device driver and application software are needed on the PC.

3.7 Interrupts

3.7.1 Functional Overview

- Twenty eight interrupt sources are supported.
- Thirty two levels of fixed hardware priority are assigned to the interrupt sources (to be used if multiple interrupt requests of the same software priority level occur simultaneously).
- Sixteen levels (0 to 15) of software interrupt priority can be set for each interrupt source.
- Hardware and software priority levels can be masked.
- Two types of interrupt requests are supported: normal interrupt request (IRQ) and high-speed interrupt request (FIQ).
- Software interrupts can be generated.

3.7.2 Block Diagram

Figure 3.7.1 Block diagram

Logic circuit of Interrupt request

3.7.3 Operation

In Interrupt Control, FIQ(Fast Interrupt Request) and IRQ(Interrupt Request) are available.

Only a single FIQ source at a time is generally used in a system, to provide a true low-latency interrupt. You can execute the interrupt service routine directly without determining the source of interrupt. And the priority level of FIQ is most high.

The below show Vectored interrupt flow.

Multiple interrupts operation timing

3.7.4 Interrupt Sources

Interrupt source number (Note)	Interrupt source	Vector address
0	WDT	Vector Address 0
1	RTC	Vector Address 1
2	Timer01	Vector Address 2
3	Timer23	Vector Address 3
4	Timer45	Vector Address 4
5	GPIOD:INTA (TSI), INTB	Vector Address 5
6	I2C ch0	Vector Address 6
7	I2C ch1	Vector Address 7
8	ADC	Vector Address 8
9	Reserved	Vector Address 9
10	UART ch0	Vector Address 10
11	UART ch1	Vector Address 11
12	SSP ch0	Vector Address 12
13	SSP ch1	Vector Address 13
14	NDFC	Vector Address 14
15	CMSIF	Vector Address 15
16	DMA transfer error	Vector Address 16
17	DMA transfer end	Vector Address 17
18	LCDC	Vector Address 18
19	Reserved	Vector Address 19
20	LCDDA	Vector Address 20
21	USB	Vector Address 21
22	SDHC	Vector Address 22
23	12S	Vector Address 23
24	Reserved	Vector Address 24
25	Reserved	Vector Address 25
26	GPIOR (INTH)	Vector Address 26
27	GPIOP (INT0 ~ INT7)	Vector Address 27
28	GPION (INTD ~ INTG)	Vector Address 28
29	GPIOF (INTC)	Vector Address 29
30	GPIOC (INT8, INT9)	Vector Address 30
31	GPIOA (KI0 ~ KI7)	Vector Address 31

Table 3.7.1 Interrupt source

Note: INTS[Num] shows the interrupt source signal. Ex: INTS[1]: RTC interrupt source signal.

3.7.5 SFRs

The following list the SFRs:

		Table 3.7.2 SFR (1/2)	Base address = 0xF400_0000
Register	Address	Description	
Name	(base+)	Description	
VICIRQSTATUS	0x0000	IRQ Status Register	
VICFIQSTATUS	0x0004	FIQ Status Register	
VICRAWINTR	0x0008	Raw Interrupt Status Register	
VICINTSELECT	0x000C	Interrupt Select Register	
VICINTENABLE	0x0010	Interrupt Enable Register	
VICINTENCLEAR	0x0014	Interrupt Enable Clear Register	
VICSOFTINT	0x0018	Software Interrupt Register	
VICSOFTINTCLEAR	0x001C	Software Interrupt Clear Register	
VICPROTECTION	0x0020	Protection Enable Register	
VICSWPRIORITYMASK	0x0024	Software Priority Mask Register	
	0x0028	Reserved	
VICVECTADDR0	0x0100	Vector Address 0 Register	
VICVECTADDR1	0x0104	Vector Address 1 Register	
VICVECTADDR2	0x0108	Vector Address 2 Register	
VICVECTADDR3	0x010C	Vector Address 3 Register	
VICVECTADDR4	0x0110	Vector Address 4 Register	
VICVECTADDR5	0x0114	Vector Address 5 Register	
VICVECTADDR6	0x0118	Vector Address 6 Register	
VICVECTADDR7	0x011C	Vector Address 7 Register	
VICVECTADDR8	0x0120	Vector Address 8 Register	
	0x0124	Reserved	
VICVECTADDR10	0x0128	Vector Address 10 Register	
VICVECTADDR11	0x012C	Vector Address 11 Register	
VICVECTADDR12	0x0130	Vector Address 12 Register	
VICVECTADDR13	0x0134	Vector Address 13 Register	
VICVECTADDR14	0x0138	Vector Address 14 Register	
VICVECTADDR15	0x013C	Vector Address 15 Register	
VICVECTADDR16	0x0140	Vector Address 16 Register	
VICVECTADDR17	0x0144	Vector Address 17 Register	
VICVECTADDR18	0x0148	Vector Address 18 Register	
_	0x014C	Reserved	
VICVECTADDR20	0x0150	Vector Address 20 Register	
VICVECTADDR21	0x0154	Vector Address 21 Register	
VICVECTADDR22	0x0158	Vector Address 22 Register	
VICVECTADDR23	0x015C	Vector Address 23 Register	
-	0x0160	Reserved	
	0x0164	Reserved	
VICVECTADDR26	0x0168	Vector Address 26 Register	
VICVECTADDR27	0x016C	Vector Address 27 Register	
VICVECTADDR28	0x0170	Vector Address 28 Register	
VICVECTADDR29	0x0174	Vector Address 29 Register	
VICVECTADDR30	0x0178	Vector Address 30 Register	
VICVECTADDR31	0x017C	Vector Address 31 Register	
VICVECTPRIORITY0	0x0200	Vector Priority 0 Register	
VICVECTPRIORITY1	0x0204	Vector Priority 1 Register	
VICVECTPRIORITY2	0x0208	Vector Priority 2 Register	
VICVECTPRIORITY3	0x020C	Vector Priority 3 Register	

Register	Address				
Name	(base+)	Description			
VICVECTPRIORITY4	0x0210	Vector Priority 4 Register			
VICVECTPRIORITY5	0x0214	Vector Priority 5 Register			
VICVECTPRIORITY6	0x0218	Vector Priority 6 Register			
VICVECTPRIORITY7	0x021C	Vector Priority 7 Register			
VICVECTPRIORITY8	0x0220	Vector Priority 8 Register			
_	0x0224	Reserved			
VICVECTPRIORITY10	0x0228	Vector Priority 10 Register			
VICVECTPRIORITY11	0x022C	Vector Priority 11 Register			
VICVECTPRIORITY12	0x0230	Vector Priority 12 Register			
VICVECTPRIORITY13	0x0234	Vector Priority 13 Register			
VICVECTPRIORITY14	0x0238	Vector Priority 14 Register			
VICVECTPRIORITY15	0x023C	Vector Priority 15 Register			
VICVECTPRIORITY16	0x0240	Vector Priority 16 Register			
VICVECTPRIORITY17	0x0244	Vector Priority 17 Register			
VICVECTPRIORITY18	0x0248	Vector Priority 18 Register			
_	0x024C	Reserved			
VICVECTPRIORITY20	0x0250	Vector Priority 20 Register			
VICVECTPRIORITY21	0x0254	Vector Priority 21 Register			
VICVECTPRIORITY22	0x0258	Vector Priority 22 Register			
VICVECTPRIORITY23	0x025C	Vector Priority 23 Register			
-	0x0260	Reserved			
-	0x0264	Reserved			
VICVECTPRIORITY26	0x0268	Vector Priority 26 Register			
VICVECTPRIORITY27	0x026C	Vector Priority 27 Register			
VICVECTPRIORITY28	0x0270	Vector Priority 28 Register			
VICVECTPRIORITY29	0x0274	Vector Priority 29 Register			
VICVECTPRIORITY30	0x0278	Vector Priority 30 Register			
VICVECTPRIORITY31	0x027C	Vector Priority 31 Register			
VICADDRESS	0x0F00	Vector Address Register			

Table 3.7.3 SFR (2/2)

1. VICIRQSTATUS (IRQ Status Register)

				Address = (0xF400_0000) + 0x0000
Bit	Bit	Туре	Reset	Description
	Symbol		Value	Description
[31:0]	IRQStatus	RO	0x0000000	IRQ interrupt status after masked (each bit) "0": No interrupts are detected "1": Interrupts are detected

[Explanation]

a. <IRQStatus>

IRQStatus[31:0] correspond to interrupt numbers 31 to 0, respectively. Example: When bit 0 of this register is set to "1", a WDT interrupt (interrupt source number 0) has been requested.

Example: when bit 0 of this register is set to "1", a wD1 interrupt (interrupt source number 0) has bee

2. VICFIQSTATUS (FIQ Status Register)

Address = (0xF400_0000) + 0x0004

Bit	Bit Symbol	Туре	Reset Value	Description
[31:0]	FIQStatus	RO	0x0000000	FIQ interrupt status after masked (each bit) "0" : No interrupts are detected "1" : Interrupts are detected

[Explanation]

a. <FIQStatus>

FIQStatus[31:0] correspond to interrupt source numbers 31 to 0, respectively. Example: When bit 0 of this register is set to "1", a WDT interrupt (interrupt source number 0) has been requested.

3. VICRAWINTR (Raw Interrupt Status Register)

Address = (0xF400_0000) + 0x0008

Bit	Bit Symbol	Туре	Reset Value	Description
[31:0]	RawInterrupt	RO	Undefined	IRQ interrupt status before masked (each bit) "0": No interrupts are detected "1": Interrupts are detected

[Explanation]

a. <RawInterrupt>

RawInterrupt [31:0] correspond to interrupt source numbers 31 to 0, respectively. Example: When bit 0 of this register is set to "1", a WDT interrupt (interrupt source number 0) has been requested.

Addroop (0xE400,0000) + 0x0000

4. VICINTSELECT (Interrupt Select Register)

Bit	Bit	Туре	Reset	Description
	Symbol		Value	Description
[31:0]	IntSelect	R/W	0x0000000	Selects interrupt type
				"0":IRQ
				"1" : FIQ

[Explanation]

a. <IntSelect>

IntSelect [31:0] correspond to interrupt source numbers 31 to 0, respectively.

Example: When bit 0 of this register is set to "1", the WDT interrupt (interrupt source number 0) is set to be of the FIQ type.

Note: Since this LSI supports only one FIQ source, only one of the bits in this register can be set to "1". Before changing the setting of this register, be sure to disable the relevant interrupt. Do not change the setting of this register while the interrupt is active and enabled.

5. VICINTENABLE (Interrupt Enable Register)

				Address = (0xF400_0000) + 0x0010
Bit	Bit Symbol	Туре	Reset Value	Description
[31:0]	IntEnable	RO	0x0000000	Interrupt enable (each bit) "0" : Disable "1" : Enable

Address = (0xF400_0000) + 0x0010

Bit	Bit Symbol	Туре	Reset Value	Description
[31:0]	IntEnable	WO	0x0000000	Interrupt enable (each bit) "0" : No effect "1" : Enable

[Explanation]

a. <IntEnable>

IntEnable [31:0] correspond to interrupt source numbers 31 to 0, respectively. Example: When bit 0 of this register is set to "1", the WDT interrupt (interrupt source number 0) is enabled.

This register is provided exclusively for enabling interrupts. Interrupts can be disabled in the VICINTENCLEAR register.

6. VICINTENCLEAR (Interrupt Enable Clear Register)

				$Autress = (0xr400_0000) + 0x0014$
Bit	Bit	Туре	Reset	Description
	Symbol		Value	Description
[31:0]	IntEnable Clear	WO	Undefined	Interrupt disable (each it)
				"1": Disable

[Explanation]

a. <IntEnable Clear>

IntEnable Clear [31:0] correspond to interrupt source numbers 31 to 0, respectively.

Setting each bit in this register clears the setting of the corresponding bit in the VICINTENABLE register (i.e., disables the corresponding interrupt).

7. VICSOFTINT (Software Interrupt Register)

				(**************************************
Bit	Bit Symbol	Туре	Reset Value	Description
[31:0]	SoftInt	WO	0x0000000	Software interrupt (each bit) "0": No effect "1": Generate a software interrupt

Address = (0xF400_0000) + 0x0018

Address = (0xE400, 0000) + 0x0018

Addroop (0xE400,0000) + 0x0014

Bit	Bit Symbol	Туре	Reset Value	Description
[31:0]	SoftInt	RO	0x0000000	Software interrupt (each bit) "0":No Active "1":Active

[Explanation]

a. <SoftInt>

SoftInt[31:0] correspond to interrupt source numbers 31 to 0, respectively.

Setting each bit in this register generates a software interrupt from the corresponding interrupt source.

8. VICSOFTINTCLEAR (Software Interrupt Clear Register)

				Address = (0xF400_0000) + 0x001C
Bit	Bit Symbol	Туре	Reset Value	Description
[31:0]	SoftIntClear	WO	Undefined	Software interrupt disable (each bit) "0": No effect "1": Disable

[Explanation]

a. <SoftIntClear>

SoftIntClear [31:0] correspond to interrupt source numbers 31 to 0, respectively.

Setting each bit in this register disables the corresponding software interrupt in the VICSOFTINT register.

9. VICPROTECTION (Protection Enable Register)

Address = (0xF400_0000) + 0x0020

Bit	Bit Symbol	Туре	Reset Value	Description
[31:1]	-	-	Undefined	Read undefined. Write as zero.
[0]	Protection	R/W	0у0	Protect mode enable :
				0y0 : Disable
				0y1 : Enable

[Explanation]

a. < Protection>

When protection is enabled, the registers of the interrupt controller can only be accessed in privileged mode.

This register can be only be Read/Write in privilege mode.

10. VICSWPRIORITYMASK (Software Priority Mask Register)

 $Address = (0xF400_0000) + 00x024$

Bit	Bit Symbol	Туре	Reset Value	Description
[31:16]	-	-	Undefined	Read undefined. Write as zero.
[15:0]	SWPriorityMask	R/W	0xFFFF	Masks interrupt priority level by software "0":Mask "1": Do not mask

[Explanation]

a. <SWPriorityMask>

SWPriorityMask[15:0] correspond to priority levels 15 to 0, respectively.

 $\label{eq:constraint} \mbox{Example: When $SWPriorityMask[15:0] = 0xFF7F, interrupts of priority level 7 are masked. }$

ISR: Interrupt service routine

11. VICVECTADDR0 (Vector Address 0 Register)

				Address = (0xF400_0000) + 0x0100
Bit	Bit	Туре	Reset	Description
	Symbol		Value	
[31:0]	VectorAddr 0	R/W	0x00000000	ISR address for interrupt source 0

[Explanation]

a. <VectorAddr 0>

Before changing the setting of this register, be sure to disable the corresponding interrupt.

VICVECTADDRn (Vector Address n Register)

(n = 0 to 8, 10 to 18, 20 to 23, 26 to 31)

Above registers, the structure and explanation are same as VICVECTADDR0,

Please refer to the explanation of VICVECTADDR0, About the name and address of registers, please refer to Table 3.7.2.

12. VICVECTPRIORITY0 (Vector Priority 0 Register)

				Address = (0xF400_0000) + 0x0200
Bit	Bit Symbol	Туре	Reset Value	Description
[31:4]	-	-	Undefined	Read undefined. Write as zero.
[3:0]	VectPriority	R/W	0y1111	Priority level for interrupt source 0: 0y0000 to 0y1111

[Explanation]

a. <VectPriority>

If multiple interrupt requests of the same software priority level occur simultaneously, the hardware priority is used to determine the interrupt to be generated.

The hardware priority is assigned according to interrupt source numbers: interrupt source number 0 has the highest priority and interrupt source number 31 has the lowest priority.

VICVECTPRIORITYn (Vector Priority n Register)

(n = 0 to 8, 10 to 18, 20 to 23, 26 to 31)

Above registers, the structure and explanation are same as VICVECTPRIORITY0,

Please refer to the explanation of VICVECTPRIORITY0, About the name and address of registers , please refer to Table 3.7.2.

13. VICADDRESS (Vector Address Register)

Address = (0xF400_0000) + 0x0F00

Bit	Bit Symbol	Туре	Reset Value	Description
[31:0]	VectAddr	R/W	0x0000000	Address of the currently active interrupt service routine (ISR)

[Explanation]

a. <VectAddr>

Read: return the address of the currently active interrupt service routine (ISR.) Write: Writing any data to this register clears the current interrupt.

Note: A read of this register must only be performed while there is an active interrupt.

A write of this register must only be performed at the end of an ISR.

3.8 DMAC (DMA Controller)

3.8.1 Functional Overview

The DMA controller has the following features:

Item	Function	Description
Number of channels	8 ch	
DMA request	16 types	16 types of DMA requests for peripheral IPs
Bus master	32 bits × 2 (AHB)	DMA1, DMA2
Priority	8 levels (hardware)	DMA channel 0 (high) to DMA channel 7 (low)
FIFO	4 words × 8 ch	
Bus width	8/16/32 bits	Source and destination can be programmed separately.
Transfer method	Burst / Single	
Burst size	1/4/8/16/32/64/128/256	
transfer count	~4095	
Address	incr / no-incr	It is possible to specify whether to increment or not to increment (fix) the source address and destination address after each transfer. (Address wrapping is not supported.)
Endian	Only little endian is supported.	
Transfer type	Peripheral circuit (register) to pheripheral circuit (register)	
	Peripheral circuit (register) to memory	
	Memory to peripheral circuit (register)	
	Memory to memory	
Special function	Scatter/gather function	

Table 3.8.1 DMA controller functions

TOSHIBA

3.8.2 Block Diagram

Table 3.8.2 DMA request number chart

DMA Pequest Number	Peripheral			
DMA Request Number	Burst	Single		
0	UART0 transmit	UART0 transmit		
1	UART0 receive	UART0 receive		
2	Reserved	Reserved		
3	Reserved	Reserved		
4	NANDC0	_		
5	CMSI	_		
6	Reserved	_		
7	Reserved	_		
8	SDHC SD buffer write request	_		
9	SDHC SD buffer read request	_		
10	I2S0	_		
11	I2S1	_		
12	Reserved	Reserved		
13	Reserved	Reserved		
14	LCDDA	LCDDA		
15	-	_		

Г

3.8.3 Register descriptions

The following lists the built-in registers and their functions.

Table 3.8.3 SFR

Base address = 0xF410_0000

Register Name	Address	Description
Register Name	(base+)	Description
DMACIntStaus	0x0000	DMAC Interrupt Status Register
DMACIntTCStatus	0x0004	DMAC Interrupt Terminal Count Status Register
DMACIntTCClear	0x0008	DMAC Interrupt Terminal Count Clear Register
DMACIntErrorStatus	0x000C	DMAC Interrupt Error Status Register
DMACIntErrClr	0x0010	DMAC Interrupt Error Clear Register
DMACRawIntTCStatus	0x0014	DMAC Raw Interrupt Terminal Count Status Register
DMACRawIntErrorStatus	0x018	DMAC Raw Error Interrupt Status Register
DMACEnbldChns	0x01C	DMAC Enabled Channel Register
DMACSoftBReq	0x020	DMAC Software Burst Request Register
DMACSoftSReq	0x024	DMAC Software Single Request Register
-	0x028	Reserved
-	0x02C	Reserved
DMACConfiguration	0x030	DMAC Configuration Register
-	0x034	Reserved
DMACC0SrcAddr	0x100	DMAC Channel0 Source Address Register
DMACC0DestAddr	0x104	DMAC Channel0 Destination Address Register
DMACCOLLI	0x108	DMAC Channel0 Linked List Item Register
DMACC0Control	0x10C	DMAC Channel0 Control Register
DMACC0Configuration	0x110	DMAC Channel0 Configuration Register
DMACC1SrcAddr	0x120	DMAC Channel1 Source Address Register
DMACC1DestAddr	0x124	DMAC Channel1 Destination Address Register
DMACC1LLI	0x128	DMAC Channel1 Linked List Item Register
DMACC1Control	0x12C	DMAC Channel1 Control Register
DMACC1Configuration	0x130	DMAC Channel1 Configuration Register
DMACC2SrcAddr	0x140	DMAC Channel2 Source Address Register
DMACC2DestAddr	0x144	DMAC Channel2 Destination Address Register
DMACC2LLI	0x148	DMAC Channel2 Linked List Item Register
DMACC2Control	0x14C	DMAC Channel2 Control Register
DMACC2Configuration	0x150	DMAC Channel2 Configuration Register
DMACC3SrcAddr	0x160	DMAC Channel3 Source Address Register
DMACC3DestAddr	0x164	DMAC Channel3 Destination Address Register
DMACC3LLI	0x168	DMAC Channel3 Linked List Item Register
DMACC3Control	0x16C	DMAC Channel3 Control Register
DMACC3Configuration	0x170	DMAC Channel3 Configuration Register
DMACC4SrcAddr	0x180	DMAC Channel4 Source Address Register
DMACC4DestAddr	0x184	DMAC Channel4 Destination Address Register
DMACC4LLI	0x188	DMAC Channel4 Linked List Item Register
DMACC4Control	0x18C	DMAC Channel4 Control Register
DMACC4Configuration	0x190	DMAC Channel4 Configuration Register
DMACC5SrcAddr	0x1A0	DMAC Channel5 Source Address Register
DMACC5DestAddr	0x1A4	DMAC Channel5 Destination Address Register
DMACC5LLI	0x1A8	DMAC Channel5 Linked List Item Register
DMACC5Control	0x1AC	DMAC Channel5 Control Register
DMACC5Configuration	0x1B0	DMAC Channel5 Configuration Register

Register Name	Address (base+)	Description
DMACC6SrcAddr	0x1C0	DMAC Channel6 Source Address Register
DMACC6DestAddr	0x1C4	DMAC Channel6 Destination Address Register
DMACC6LLI	0x1C8	DMAC Channel6 Linked List Item Register
DMACC6Control	0x1CC	DMAC Channel6 Control Register
DMACC6Configuration	0x1D0	DMAC Channel6 Configuration Register
DMACC7SrcAddr	0x1E0	DMAC Channel7 Source Address Register
DMACC7DestAddr	0x1E4	DMAC Channel7 Destination Address Register
DMACC7LLI	0x1E8	DMAC Channel7 Linked List Item Register
DMACC7Control	0x1EC	DMAC Channel7 Control Register
DMACC7Configuration	0x1F0	DMAC Channel7 Configuration Register
-	0xFE0	Reserved
-	0xFE4	Reserved
-	0xFE8	Reserved
-	0xFEC	Reserved
_	0xFF0	Reserved
_	0xFF4	Reserved
_	0xFF8	Reserved
_	0xFFC	Reserved
_	0x500	Reserved
-	0x504	Reserved
_	0x508	Reserved
-	0x50C	Reserved

Note: Access the registers by using word reads and word writes.

Address = (0xF410, 0000) + 0x0000

1. DMACIntStatus (DMAC Interrupt Status Register)

Bit	Туре	Reset Value	Description
0,11.20.		10.00	
-		Undefined	Read undefined. Write as zero.
IntStatus7	RO	0y0	DMAC channel 7 interrupt status
			0y1: Interrupt requested
			0y0: Interrupt not requested
IntStatus6	RO	0y0	DMAC channel 6 interrupt status
			0y1: Interrupt requested
			0y0: Interrupt not requested
IntStatus5	RO	0y0	DMAC channel 5 interrupt status
			0y1: Interrupt requested
			0y0: Interrupt not requested
IntStatus4	RO	0y0	DMAC channel 4 interrupt status
			0y1: Interrupt requested
			0y0: Interrupt not requesed
IntStatus3	RO	0y0	DMAC channel 3 interrupt status
			0y1: Interrupt requested
			0y0: Interrupt not requested
IntStatus2	RO	0y0	DMAC channel 2 interrupt status
		- ,	0y1: Interrupt requested
			0v0: Interrupt not requested
IntStatus1	RO	0v0	DMAC channel 1 interrupt status
		0) -	0v1: Interrupt requested
			0v0: Interrupt not requested
IntStatus0	RO	0v0	
Intolataoo		0,0	
	Bit Symbol - IntStatus7 IntStatus6 IntStatus5 IntStatus4 IntStatus3 IntStatus1 IntStatus0	Bit SymbolTypeIntStatus7ROIntStatus6ROIntStatus5ROIntStatus4ROIntStatus3ROIntStatus2ROIntStatus1ROIntStatus0RO	Bit SymbolTypeReset ValueUndefinedIntStatus7RO0y0IntStatus6RO0y0IntStatus5RO0y0IntStatus4RO0y0IntStatus3RO0y0IntStatus1RO0y0IntStatus0RO0y0

[Explanation]

a. <IntStatus[7:0]>

Indicates the status of the DMAC interrupt after reflecting the status of the terminal count interrupt enable register and error interrupt enable register. An interrupt is requeseted when a transfer error occurs or the counter completes counting.

2. DMACIntTCStatus (DMAC Interrupt Terminal Count Status Register)

Address = (0xF410_0000) + 0x0004

Bit	Bit Symbol	Туре	Reset Value	Description
[31:8]		_	Undefined	Read undefined. Write as zero.
[7]	IntStatusTC7	RO	0y0	DMAC channel 7 terminal count interrupt status
				0y1: Interrupt requested
				0y0: Interrupt not requested
[6]	IntStatusTC6	RO	0y0	DMAC channel 6 terminal count interrupt status
				1: Interrupt requested
				0: Interrupt not requested
[5]	IntStatusTC5	RO	0y0	DMAC channel 5 terminal count interrupt status
				0y1: Interrupt requested
				0y0: Interrupt not requested
[4]	IntStatusTC4	RO	0y0	DMAC channel 4 terminal count interrupt status
				0y1: Interrupt requested
				0y0: Interrupt not requested
[3]	IntStatusTC3	RO	0y0	DMAC channel 3 terminal count interrupt status
				0y1: Interrupt requested
				0y0: Interrupt not requested
[2]	IntStatusTC2	RO	0y0	DMAC channel 2 terminal count interrupt status
				0y1: Interrupt requested
				0y0: Interrupt not requested
[1]	IntStatusTC1	RO	0y0	DMAC channel 1 terminal count interrupt status
				0y1: Interrupt requested
				0y0: Interrupt not requested
[0]	IntStatusTC0	RO	0y0	DMAC channel 0 terminal count interrupt status
				0y1: Interrupt requested
				0y0: Interrupt not requested

[Explanation]

a. <IntTStatusTC[7:0]>

Indicates the enabled status of the terminal count interrupt.

3. DMACIntTCClear (DMAC Interrupt Terminal Count Clear Register)

Address = (0xF410_0000) + 0x0008

Bit	Bit Symbol	Туре	Reset Value	Description
[31:8]	-	_	Undefined	Read undefined. Write as zero.
[7]	IntTCClear7	WO	0у0	DMAC channel 7 terminal count interrupt clear 0y1: Clear 0y0: No effect
[6]	IntTCClear6	WO	0у0	DMAC channel 6 terminal count interrupt clear 0y1: Clear 0y0: No effect
[5]	IntTCClear5	WO	0y0	DMAC channel 5 terminal count interrupt clear 0y1: Clear 0y0: No effect
[4]	IntTCClear4	WO	0у0	DMAC channel 4 terminal count interrupt clear 0y1: Clear 0y0: No effect
[3]	IntTCClear3	WO	0у0	DMAC channel 3 terminal count interrupt clear 0y1: Clear 0y0: No effect
[2]	IntTCClear2	WO	0у0	DMAC channel 2 terminal count interrupt clear 0y1: Clear 0y0: No effect
[1]	IntTCClear1	WO	0у0	DMAC channel 1 terminal count interrupt clear 0y1: Clear 0y0: No effect
[0]	IntTCClear0	WO	0у0	DMAC channel 0 terminal count interrupt clear 0y1: Clear 0y0: No effect

[Explanation]

a. <IntTCClearCH[7:0]>

Writing "1" to each bit of this register clears the corresponding bit in the DMACINTTCS register.

4. DMACIntErrorStatus (DMAC Interrupt Error Status Register)

				Address = (0xF410_0000) + 0x000C
Bit	Bit Symbol	Туре	Reset Value	Description
[31:8]	-	-	Undefined	Read undefined. Write as zero.
[7]	IntErrStatus7	RO	0у0	DMAC channel 7 error interrupt status
				Oy1: Interrupt requested
				0y0: Interrupt not requested
[6]	IntErrStatus6	RO	0у0	DMAC channel 6 error interrupt status
				0y1: Interrupt requested
				0y0: Interrupt not requested
[5]	IntErrStatus5	RO	0у0	DMAC channel 5 error interrupt status
				0y1: Interrupt requested
				0y0: Interrupt not requested
[4]	IntErrStatus4	RO	0у0	DMAC channel 4 error interrupt status
				0y1: Interrupt requested
				0y0: Interrupt not requested
[3]	IntErrStatus3	RO	0у0	DMAC channel 3 error interrupt status
				0y1: Interrupt requested
				0y0: Interrupt not requested
[2]	IntErrStatus2	RO	0у0	DMAC channel 2 error interrupt status
				0y1: Interrupt requested
				0y0: Interrupt not requested
[1]	IntErrStatus1	RO	0у0	DMAC channel 1 error interrupt status
				0y1: Interrupt requested
				0y0: Interrupt not requested
[0]	IntErrStatus0	RO	0y0	DMAC channel 0 error interrupt status
				Oy1: Interrupt requested
		1		0y0: Interrupt not requested

[Explanation]

a. <IntErrStatus[7:0]>

5. DMACIntErrClr (DMAC Interrupt Error Clear Register)

Address = (0xF410_0000) + 0x0010

D:4	Bit	T	Reset	Description
BI	Symbol	туре	Value	Description
[31:8]	-	-	Undefined	Read undefined. Write as zero.
[7]	IntErrClr7	WO	0y0	DMAC channel 7 error interrupt clear
				0y1: Clear
				0y0: No effect
[6]	IntErrClr6	WO	0y0	DMAC channel 6 error interrupt clear
				0y1: Clear
				0y0: No effect
[5]	IntErrClr5	WO	0y0	DMAC channel 5 error interrupt clear
				0y1: Clear
				0y0: No effect
[4]	IntErrClr4	WO	0y0	DMAC channel 4 error interrupt clear
				0y1: Claer
				0y0: No effect
[3]	IntErrClr3	WO	0y0	DMAC channel 3 error interrupt clear
				0y1: Clear
				0y0: No effect
[2]	IntErrClr2	WO	0y0	DMAC channel 2 error interrupt clear
				0y1: Clear
				0y0: No effect
[1]	IntErrClr1	WO	0y0	DMAC channel 1 error interrupt clear
				0y1: Clear
				0y0: No effect
[0]	IntErrCIr0	WO	0y0	DMAC channel 0 error interrupt clear
				0y1: Clear
				0y0: No effect

[Explanation]

a. <IntErrClr[7:0]>

6. DMACRawIntTCStatus (DMAC Raw Interrupt Terminal Count Status Register)

 $Address = (0xF410_0000) + 0x0014$

Bit	Bit Symbol	Туре	Reset Value	Description
[31:8]	_	_	Undefined	Read undefined Write as zero
[7]	RawIntTCS7	RO	0y0	DMAC channel 7 terminal count interrupt raw status 0y1: Interrupt requested 0y0: Interrupt not requested
[6]	RawIntTCS6	RO	0у0	DMAC channel 6 terminal count interrupt raw status 1: Interrupt requested 0: Interrupt not requested
[5]	RawIntTCS5	RO	ОуО	DMAC channel 5 terminal count interrupt raw status 0y1: Interrupt requested 0y0: Interrupt not requested
[4]	RawIntTCS4	RO	0у0	DMAC channel 4 terminal count interrupt raw status 0y1: Interrupt requested 0y0: Interrupt not requested
[3]	RawIntTCS3	RO	0у0	DMAC channel 3 terminal count interrupt raw status 0y1: Interrupt requested 0y0: Interrupt not requested
[2]	RawIntTCS2	RO	ОуО	DMAC channel 2 terminal count interrupt raw status 0y1: Interrupt requested 0y0: Interrupt not requested
[1]	RawIntTCS1	RO	0у0	DMAC channel 1 terminal count interrupt raw status 0y1: Interrupt requested 0y0: Interrupt not requested
[0]	RawIntTCS0	RO	0у0	DMAC channel 0 terminal count interrupt raw status 0y1: Interrupt requested 0y0: Interrupt not requested

[Explanation]

a. <RawIntTCS[7:0]>

7. DMACRawIntErrorStatus (DMAC Raw Error Interrupt Status Register)

Address = (0xF410_0000) + 0x0018

Bit	Bit Symbol	Туре	Reset Value	Description
[31:8]	-	_	Undefined	Read undefined. Write as zero.
[7]	RawIntErrS7	RO	0y0	DMAC channel 7 error interrupt raw status
			-	0y1: Interrupt requested
				0y0: Interrupt not requested
[6]	RawIntErrS6	RO	0у0	DMAC channel 6 error interrupt raw status
				1: Interrupt requested 0: Interrupt not requested
[5]	RawIntErrS5	RO	0у0	DMAC channel 5 error interrupt raw status
				0y1: Interrupt requested
				0y0: Interrupt not requested
[4]	RawIntErrS4	RO	0у0	DMAC channel 4 error interrupt raw status
				0y1: Interrupt requested
				0y0: Interrupt not requested
[3]	RawIntErrS3	RO	0у0	DMAC channel 3 error interrupt raw status
				0y1: Interrupt requested
				0y0: Interrupt not requested
[2]	RawIntErrS2	RO	0у0	DMAC channel 2 error interrupt raw status
				0y1: Interrupt requested
				0y0: Interrupt not requested
[1]	RawIntErrS1	RO	0у0	DMAC channel 1 error interrupt raw status
				0y1: Interrupt requested
				0y0: Interrupt not requested
[0]	RawIntErrS0	RO	0у0	DMAC channel 0 error interrupt raw status
				0y1: Interrupt requested
				0y0: Interrupt not requested

[Explanation]

a. <RawIntErrS[7:0]>

8. DMACEnbldChns (DMAC Enabled Channel Register)

Address = (0xF410_0000) + 0x001C

Bit	Bit Symbol	Туре	Reset Value	Description
[31:8]		-	Undefined	Read undefined. Write as zero.
[7]	EnabledCH7	RO	0y0	DMA channel 7 enable status
				0y1: Enable
				0y0: Disable
[6]	EnabledCH6	RO	0y0	DMA channel 6 enable status
				0y1: Enable
				0y0: Disable
[5]	EnabledCH5	RO	0y0	DMA channel 5 enable status
				0y1: Enable
				0y0: Disable
[4]	EnabledCH4	RO	0у0	DMA channel 4 enable status
				0y1: Enable
				0y0: Disable
[3]	EnabledCH3	RO	0у0	DMA channel 3 enable status
				0y1: Enable
				0y0: Disable
[2]	EnabledCH2	RO	0у0	DMA channel 2 enable status
				0y1: Enable
				0y0: Disable
[1]	EnabledCH1	RO	0y0	DMA channel 1 enable status
				0y1: Enable
				0y0: Disable
[0]	EnabledCH0	RO	0у0	DMA channel 0 enable status
				0y1: Enable
				0v0: Disable

[Explanation]

a. <EnabledCH[7:0]>

0: DMA clear status

1: DMA enable status

9. DMACSoftBReq (DMAC Software Burst Request Register)

Address = (0xF410_0000) + 0x0020

D ./	Bit	Turne	Reset	Description
Bit	Symbol	Туре	Value	
[31:15]	-	-	Undefined	Read undefined. Write as zero.
[14]	SoftBReq14	R/W	0y0	DMA burst request by software for LCDDA
				0y1: Generate a DMA burst request
				0y0: No effect when data write
[13:12]	-	-	Undefined	Read undefined. Write as zero.
[11]	SoftBReq11	R/W	0у0	DMA burst request by software for I ² S1
				0y1: Generate a DMA burst request
				0y0: No effect when data write
[10]	SoftBReq10	R/W	0у0	DMA burst request by software for I ² S0
				0y1: Generate a DMA burst request
				0y0: No effect when data write
[9]	SoftBReq9	R/W	0у0	SDHC SD buffer read by software
				0y1: Generate a DMA burst request
				0y0: No effect when data write
[8]	SoftBReq8	R/W	0у0	SDHC SD buffer write by software
				0y1: Generate a DMA burst request
				0y0: No effect when data write
[7]	Reserved	-	Undefined	Read undefined. Write as zero.
[6]	Reserved	-	Undefined	Read undefined. Write as zero.
[5]	SoftBReq5	R/W	0у0	DMA burst request by software for CMSI
				0y1: Generate a DMA burst request
				0y0: No effect when data write
[4]	SoftBReq4	R/W	0у0	DMA burst request by software for NANDC0
				0y1: Generate a DMA burst request
				0y0: No effect when data write
[3:2]	-	-	Undefined	Read undefined. Write as zero.
[1]	SoftBReq1	R/W	0y0	DMA burst request by software for UART0 receive
				0y1: Generate a DMA burst request
				0y0: No effect when data write
[0]	SoftBReq0	R/W	0y0	DMA burst request by software for UART0 transmit
				0y1: Generate a DMA burst request
				0y0: No effect when data write

[Explanation]

a. <SoftBReq[15:0]>

This register is used to set DMA burst transfer requests by software. Upon completion of a DMA burst transfer, the corresponding bit of SoftBReq[15:0] is cleared.

10. DMACSoftSReq (DMAC Software Single Request Register)

Address = (0xF410_0000) + 0x0024

Bit	Bit Symbol	Туре	Reset Value	Description
[31:16]	-	-	Undefined	Read undefined. Write as zero.
[15]	-	-	Undefined	Read undefined. Write as zero.
[14]	SoftSReq14	R/W	0y0	DMA single request by software for LCDDA 0y1: Generate a DMA single request
				0y0: No effect when data write
[13:12]	-	-	Undefined	Read undefined. Write as zero.
[11:4]	-	-	Undefined	Read undefined. Write as zero.
[3:2]	-	-	Undefined	Read undefined. Write as zero.
[1]	SoftSReq1	R/W	0у0	DMA single request by software for UART0 receive 0y1: Generate a DMA single request 0y0: No effect when data write
[0]	SoftSReq0	R/W	0у0	DMA single request b software for UART0 transmit 0y1: Generate a DMA single request 0y0: No effect when data write

[Explanation]

a. <SoftSReq[15:0]>

This register is used to set DMA single transfer requests by software. Upon completeion of a DMA single transfer, the corresponding bit of SoftSReq[15:0] is cleared.

Note: Don't set "S/W DMA start" when H/W DMA request.

11. DMACConfiguration (DMAC Configuration Register)

				Address = (0xF410_0000) + 0x0030
Bit	Bit Symbol	Туре	Reset Value	Description
[31:3]	-	-	Undefined	Read undefined. Write as zero.
[2]	M2	R/W	0у0	DMA2 endianness 0 : Little endian mode 1 : Reserved
[1]	M1	R/W	0у0	DMA1 endianness 0 : Little endian mode 1 : Reserved
[0]	E	R/W	0у0	DMA circuit control 0 : Stopped 1 : Active

[Explanation]

a. <E>

Write/read operation cannot be executed to any of the DMAC registers unless the DMA circuit is avtive. To perform DMA operation, the DMA circuit must always be active.

12. DMACC0SrcAddr (DMAC Channel0 Source Address Register)

				Address = (0xF410_0000) + 0x0100
Bit	Bit Symbol	Туре	Reset Value	Description
31.01	SrcAddr	R/W	0x00000000	Set the DMA transfer source address

[Explanation]

a. <SrcAddr>

Software programs each register directly before the channel is enabled. When the DMAchannel is enabled, the register is updated as the destination address is incremented and by following the linked list when a complete packet of data has been transferred. Reading the register when the channel is active does not provide useful information. This is because by the time the software has processed the value read, the channel might have progressed. It is intended to be read-only when a channel has stopped. In this case, it shows the destination address of the last item read.

When transfer is taking place, Don't update this registers If you want to change the channel configurations, you must disable the channel first and then reconfigure the relevant register.

DMACCxSrcAddr (DMAC Channel x Source Address Register)

(x = 0 to 7)

Above registers, the structure and explanation are same as DMACC0SrcAddr,

Please refer to the explanation of DMACC0SrcAddr, About the name and address of registers , please refer to Table 3.8.3.

13. DMACC0DestAddr (DMAC Channel0 Destination Address Register)

Address = (0xF410_0000) + 0x0104

Bit	Bit	Type	Reset	Description
Dit	Symbol	турс	Value	Description
[31:0]	DestAddr	R/W	0x00000000	Set the DMA transfer destination address

[Explanation]

a. <DestAddr>

When transfer is taking place, Don't update this registers If you want to change the channel configurations, you must disable the channel first and then reconfigure the relevant register.

DMACCxDestAddr (DMAC Channel x Destination Address Register)

(x = 0 to 7)

Above registers, the structure and explanation are same as DMACC0DestAddr,

Please refer to the explanation of DMACC0DestAddr, about the name and address of registers, please refer to Table 3.8.3.

14. DMACCOLLI (DMAC Channel0 Linked List Item Register)

Address = (0xF410_0000) + 0x0108

Bit	Bit Symbol	Туре	Reset Value	Description
[31:2]	LLI	R/W	0x00000000	Set the start address of the next transfer information
[1]	-	-	Undefined	Read undefined. Write as zero.
[0]	LM	R/W	0у0	AHB master for storing LLI:
				0y0: DMA1
				0y1: DMA2

[Explanation]

a. <LLI>

The value to be set to <LLI> must be within 0xFFFF_FFF0.

If the LLI is "0", then the current LLI is the last in the chain, and the DMA channel is disabled after all DMA transfers associated with it are completed.

DMACCxLLI (DMAC Channel x Linked List Item Register)

(x = 0 to 7)

Above registers, the structure and explanation are same as DMACC0LLI,

Please refer to the explanation of DMACCOLLI, about the name and address of registers, please refer to Table 3.8.3.

15. DMACC0Control (DMAC Channel0 Control Register)

Address = (0xF410_0000) + 0x010C

Bit	Bit	Туре	Reset	Description
[31]	1	R/W	0y0	Terminal count interrupt enable register when using the scatter/gather function
				0y1: Enable
[30]	Prot[3]	R/W	0у0	Control cache permission HPROT[3] 0y0: Noncacheable 0y1: Cacheable
[29]	Prot[2]	R/W	0у0	Control buffer permission HPROT[2] 0y0: Nonbufferable
[28]	Prot[1]	R/W	0у0	Control privileged mode HPROT[1] 0y0: User mode
[27]	DI	R/W	ОуО	Increment the transfer destination address 0y0: Do not increment 0y1: Increment
[26]	SI	R/W	ОуО	Increment the transfer source address 0y0: Do not increment 0y1: Increment
[25]	D	R/W	0у0	Transfer destination AHB Master 0y0: DMA1 0y1: DMA2
[24]	S	R/W	0у0	Transfer source AHB Master 0y0: DMA1 0y1: DMA2
[23:21]	Dwidth[2:0]	R/W	0у000	Transfer destination bit width 0y000: Byte (8 bits) 0y001: Half-word (16 bits) 0y010: Word (32 bits) other: Reserved
[20:18]	Swidth[2:0]	R/W	0у000	Transfer source bit width 0y000: Byte (8 bits) 0y001: Half-word (16 bits) 0y010: Word (32 bits) other : Reserved
[17:15]	DBSize[2:0]	R/W	0у000	Transfer destination burst size: 0y000: 1 beat 0y001: 4 beats 0y010: 8 beats 0y011: 16 beats 0y100: 32 beats 0y101: 64 beats 0y101: 128 beats 0y111: 256 beats
[14:12]	SBSize[2:0]	R/W	0у000	Transfer source burst size: 0y000: 1 beat 0y001: 4 beats 0y010: 8 beats 0y011: 16 beats 0y100: 32 beats 0y101: 64 beats 0y110: 128 beats 0y111: 256 beats
[11:0]	TransferSize	R/W	0x000	Set the total transfer count

[Explanation]

The explanations below also apply to other channels.

a. <Swidth[2:0]>

The transfer source bit width must be an integral multiple of the transfer destination bit width.

b. <DBSize[2:0]>

Note: The burst size set in DBsize is unrelated to HBURST of the AHB bus.

c. <SBSize[2:0]>

Note: The burst size set in SBsize is unrelated to HBURST of the AHB bus.

d. <TransferSize>

Specifies the total number of transfers when the DMAC is operating as a flow controller. The <TransferSize> value decrements after each DMA transfer until it reaches "0". On read, the number of transfers yet to be performed is returned.

The total transfer count should be specified in units of the transfer source bit width.

Examples:	
<swidth></swidth>	<u>Transfer count unit</u>
8 bits	byte
16 bits	half-word
32 bits	word

Note: If the transfer source bit width is smaller than the transfer destination bit width, caution is required in specifying the total transfer count. Make sure that the following equation is satisfied.

Transfer source bit width \times Total transfer count = Transfer destination bit width \times N N: Integer

DMACCxControl (DMAC Channel x Control Register)

(x = 0 to 7)

Above registers, the structure and explanation are same as DMACC0Control,

Please refer to the explanation of DMACC0Control, about the name and address of registers, please refer to Table 3.8.3.

16. DMACC0Configuration (DMAC Channel0 Configuration Register)

 $Address = (0xF410_0000) + 0x0110$

Bit	Bit Symbol	Туре	Reset Value		Description				
[31:19]	-	-	Undefined	Read undefined.	Write as zero.				
[18]	Halt	R/W	0y0	0y0: Enable DMA	A requests				
			-	0y1: Ignore DMA	a requests				
[17]	Active	RO	0y0	0y0: No data in t	he FIFO				
				0y1: The FIFO ha	as data				
[16]	Lock	R/W	0y0	0y0: Disable lock	ked transfers				
				0y1: Enable lock	ed transfers				
[15]	ITC	R/W	0y0	Terminal count in	nterrupt enable register				
				0y0: Disable inte	rrupts				
				0y1: Enable inter	rrupts				
[14]	IE	R/W	0y0	Error interrupt en	nable register				
				0y0: Disable inte	rrupts				
				0y1: Enable inter	rrupts				
[13:11]	FlowCntrl	R/W	0y000	<u>.</u>	r				
				FlowCntrl	Transfer method				
				setting value					
				0y000	Memory to Memory				
				0y001	Memory to Peripheral				
				0y010	Peripheral to Memory				
				0y011 Peripheral to Peripheral					
				0y100-0y111: Reserved					
[10]	-	-	Undefined	Read undefined. Write as zero.					
[9:6]	DestPeripheral	R/W	0y000	Transfer destination peripheral (Note1)					
				0y000-0y1111					
[5]	-	-	Undefined	Read undefined.	Write as zero.				
[4:1]	SrcPeripheral	R/W	0y000	Transfer source	peripheral (Note1)				
				0y000-0y1111					
[0]	E	R/W	0y0	Channel enable					
				0y0 : Disable					
				0y1 : Enable					

Note: Please refer to Table 3.8.2 DMA request number chart.

[Explanation]

a. <DestPeripheral>

This is a DMA request peripheral number in binary. This setting will be ignored if memory is specified as the transfer destination.

b. <SrcPeripheral>

This is a DMA request peripheral number in binary.

This setting will be ignored if memory is specified as the transfer source.

c. <E>

This bit is used to enable or disable the channel. If the channel is disabled during transfer, the data in the channel's FIFO will be lost. To re-start, the channel must be initialized.

To temporarily stop DMA transfer, use the <Halt> bit to disable DMA requests, poll the <Active> bit until it becomes "0", and then clear the <E> bit to disable the channel.

DMACCxConfiguration (DMAC Channel1Channel x Configuration Register)

(x = 0 to 7)

Above registers, the structure and explanation are same as DMACC0Configuration

Please refer to the explanation of DMACC0Configuration, about the name and address of registers, please refer to Table 3.8.3.

3.8.4 Special Function

1) Scatter/gather function

When a part of image data is cut out and transferred, the image data cannot be handled as consecutive data. The addresses of the image data to be transferred are scattered according to specific rules. Since DMA can only transfer data at consecutive addresses, the transfer settings must be renewd each time a gap occurs in the sequence of transfer addresses.

The scatter/gather function enables continuous DMA operation by allowing transfer settings (source address, destination address, transfer count, transfer bus width) to be re-loaded each time a specified number of DMA transfers have been completed. This is done through the use of linked lists and without any involvement of the CPU.

The scatter/gather function is controlled by setting the DMACCxLLI register to "1". A linked list includes information comprised of the following four words:

- 1) DMACCxSrcAddr
- 2) DMACCxDestAddr
- 3) DMACCxLLI
- 4) DMACCxControl

It is also possible to generate interrups in conjunction with the scatter/gather function.

An interrupt can be generated after each LLI operation by setting the terminal count interrupt enable bit of the DMACCxControl register. This bit allows the user to add LLI operation conditions and to perform branch processing etc. even during transfer using linked lists. An interrupt can be cleared by setting the corresponding bit of the DMACIntTCClear register

2) Liked list operation

To use the scatter/gather function, a series of linked lists should be created to define source and destination data areas.

A linked list is called "LLI".

Each LLI controls data transfer of one block, which is equivalent to normal DMA continuous transfer. Upon completion of each DMA transfer, the next LLI is loaded to continuously perform DMA opration (daisy-chained operation).

The following shows a setting example:

- 1. Set the information for the first DMA transfer in the DMA registers as in the case of normal DMA operation.
- 2. Write the information for the second and subsequent transfers at the memory address specified by "next LLI AddressX".
- 3. To finish the linked list operation with the Nth DMA transfer, set "next LLI AddressX" to 0x00000000.

Example: When transferring data in the area enclosed by the square

DMACCxSrcAddr: DMACCxDestAddr: DMACCxLLI : DMACCxControl :

0x0A200 Destination address 1 0x200000 Set the number of burst transfers, etc.

Linked List

3.9 Port Functions

The list of port pin functions and input-output port settings shows how to set each pin.

Information on power sources is also provided as different power sources are used for individual external pins.

Power Supply	Destination	Repre- sentative name	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	No. of pads	No. of external INT pins	No. of internal INT vectors	I/O port	Open-drain port
		SA				D[7	[o:				8				
		SB				D[1:	5:8]				8				
		sc				D[23	:16]				8				
		SD				D[31	:24]				8				
		SE				A[7	.:o]				8				
		SF				A[1:	5:8]				8				
DVCCM	Memory	SG				A[23	:16]				8				
		HS	DMCCSn	SMCCS3n	SMCCS2n	SMCCS1n	SMCCSOn	SMCBEOn	A[25]	A[24]	8				
		S	SMCAVDn	DMCCKE	DMCBA1	DMCBA0	DMCCASn	DMCRASn	DMCWEn	SMCOEn	8				
		SK	SMCBE3n	SMCBE2n	SMCBE1n	SMCWEn	DMCSDQM3	DMCSDQM2	DMCSDQM1 DMCDDM1	DMCSDQM0 DMCDDM0	8				
		SL	SMCWAITn	DMCCLKIN	DMCDDQS1	DMCDDQS0	SMCCLK	DMCAP	DMCDCLKN	DMCDCLKP	8				
DVCC3IO	Clock, mode	SM	AM1	AMO	TESTON	RESETn	ХТ2	XT1	X2	X1	œ				
DVCC1C	setting, etc.	SN						SELJTAG	SELDVCCM	SELMEMC	ю				
DVCC3IO	JTAG	SP			TDO	RTCK	TRSTn	TDI	TMS	тск	6				
AVDD3C	USB2	SR				VSENS	REXT		DM	DP	5				
	((ST	LD7	LD6	LD5	LD4	LD3	LD2	LD1	LD0	8				
DVCC3LCD	гслл	SU	LPRG2	LPRG1	LPRG0	LCLLP	LCLFP	LCLLE	LCLAC	LCLCP	8				
		SV	NDD7	NDD6	NDD5	NDD4	NDD3	NDD2	NDD1	NDD0	8				
D V U S I S I S I S I S I S I S I S I S I S	INAINUL	SW		NDRB	NDCE1n	NDCE0n	NDCLE	NDALE	NDWEn	NDREn	7				
Note 1: Dec Note 2: The	dicated pins	s (with nc ative nam	b port functio Te "Sx" in the	n). ∍ table abov	/e is only a s	wmbol and d	oes not hav	e any gener	al-purpose p	ort function.					

Table 3.9.1 TMPA910CRA pin assignment (dedicated pins)

TMPA910CRA- 250

20	08-05	-30

Note 2: The representative name "Px" in the table above indicates the general-purpose port function.

1						1				-		-			. ,		
Open-drain port		8	8			2											
I/O port	8(I)	8(O)	5(O) 3(I/O)	8(I)	8(I)	4(I) 2(I/O)	8(I/O)	8(I/O)	8(O)	8(O)	5(I/O)	4(I/O)	8(I/O)	8(I/O)	2(O) 1(I/O)	8(I/O)	
No. of internal INT vectors	1		~	1		٢							٢	1	٦		
Nol of external INT pins	8		2	2		1							4	8	1		
Nol of pads	8	8	ω	8	8	6	8	8	8	8	5	4	8	8	3	8	
BitO	NIO	ЮО	KO8	ANO	CMSD0	CMSPCK	SDC0DAT0	SDC1DAT0	LD8	LD16	I2S0WS SP1FSS	I2S1WS	U0TXD SIR0OUT	INTO	RESETOUTn	SP0FSS	
Bit1	KI1	KO1	609	AN1	CMSD1	CMSHSY	SDC0DAT1	SDC1DAT1	FD9	LD17	12S0CLK SP1CLK	I2S1CLK	UORXD SIROIN	INT1	SMCWPn, FCOUT	SPOCLK	
Bit2	KI2	КО2	PWE	AN2	CMSD2	CMSHBK	SDC0DAT2	SDC1DAT2	LD10	LD18	I2S0DATI SP1DO	I2S1DATO	UOCTSn	INT2	INTH	SPODO	
Bit3	KI3	КОЗ	MLDALM PWM0OUT	AN3	CMSD3	CMSVSY	SDC0DAT3	SDC1DAT3	LD11	LD19	12S0MCLK SP1DI	I2S1MCLK	UODCDn	INT3		SPODI	
Bit4	KI4	KO4	FSOUT PWM2OUT	AN4 MX	CMSD4		SDCOCMD	SDC1CMD	LD12	LD20	12SSCLK		U0DSRn INTD	INT4		U1TXD	
Bit5	KI5	KO5	MLDALMn INT8	AN5 MY	CMSD5		SDC0WP	SDC1WP	LD13	LD21			UORIn INTE	INT5		U1RXD	
Bit6	816	90X	12C0CL	PX INTA(TSI)	CMSD6	I2C1CL	SDC0CD	SDC1CD	LD14	LD22			UODTRn INTF	INT6		U1CTSn	unction)
Bit7	KI7	K07	I2C0DA INT9	PΥ INTB	CMSD7	I2C1DA INTC	SDCOCLK	SDC1CLK	LD15	LD23			UORTSn INTG	INT7		X1USB	ve the nort f
Repre- sentative name	ΡA	PB	РС	ΡD	ΡE	ΡF	ЪG	Hd	PJ	РК	ΡL	ΡM	N	ЬР	РК	РТ	ev also have
Destination	Key	12C0	Other	ADC TSI,INT	SI-SOMO	12C1		SUcard		гсло	I2S0 SPIC1	I2S1	UART0 INT	INT	Memory	SPICO, USB UART1	rnose nins (th
Power Supply		DVC3IO		AVCC3AD		DVCC3CMS		DVCC3IO		DVCC3FCD	DVCC30S		DVCC3I2S	DVCC3IO	DVCCM	DVCC3IO	Note 1. Dual-bu

TENTATIVE

Register		-		Mea	ning							Initia	I Value							
Name	Х/Х	Address	Description	0	1	PortA Po	ortB P	ortC Po	rtD Port	E Port	F Port(Bort	PortJ	PortK	PortL	PortM	PortN I	PortP	ortR F	ortT
GPIOnDATA	R/W	0x000 -0x3FC	Data register	I	I	0×FF 0>	KFF 0.	XEF 0X	FF 0xF	= 0xFI	F OxFF	: OxFF	0×00	0×00	0×FF	0xFF	0×FF	DXFF (XFD (XFF
GPIOnDIR	RM	0x400	Data direction register	Input port	Output port		0	x1F		0×0	00×0	0×00			0×00	0×00	00×00	0×00	0×03	00×0
GPIOnFR1	RM	0x424	Function register 1	GPIO	Function 1 input or Output enable		0	×00 0×	3F 0x0	0×0(0×00	0×00	0×00	0×00	0×00	0×00	0x00	0) 10×0	00×0
GPIOnFR2	RM	0x428	Function register 2	GPIO	Function 2 input or Output enable		0	×00 0×	00						0×00		0x00			
GPIOnIS	R/W	0x804	Interrupt sensitivity register	Edge	Level	0×00	0	×00 0×	00	0×0	c						0×00	0×00	00×0	
GPIOnIBE	RM	0×808	Interrupt both edges register	Single edge	Both edges	0×00	0	×00 0×	00	0×0	с						00×00	0×00	00×(
GPIOnIEV	RM	0x80C	Interrupt event register	Falline edge or Low level	Rising edge or High level	0×00	0	×00 0×	00	0×0	c						0×00	0×00	00×0	
GPIONIE	RM	0x810	Interrupt enable register	Disable	Enable	0x00	0	×00 0×	00	0×0	C						0x00	0×00	00×0	
GPIOnRIS	RO	0x814	Raw literrupt status register	Not requested	Requested	0×00	0	×00 0×	00	0×0	с						0×00	0×00	00×0	
GPIOnMIS	RO	0x818	Masked interrupt status register	Not requested	Requested	0×00	0	×00 0×	00	0×0	c						0x00	0×00	00×0	
GPIOnIC	MO	0x81C	Interrupt clear register	Ι	Clear	0x00	0	×00 0×	00	0×0(0						0x00	0×00	00×0	
GPIOnODE	RM	0xC00	Open-drain output enable register	3-state output	Open-drain output	Ö	x00 0	00×		0×0	0									

Table 3.9.3 TMPA910CRA address and initial value table

TENTATIVE

Writes are prohibited depending on the bits.

No register exists.

3.9.1 Data Registers

[Notes on data registers]

All data registers allow all the 8 bits to be read or written simultaneously. It is also possible to mask certain bits in reading from or writing to the data registers.

Data registers allow accesses to a 256-address space (0x0000 to 0x03FC). (Assume that addresses are shifted to the high-order side by 2 bits. The lower 2 bits have no meaning. Valid addresses exist at every 4 addresses, such as 0x000, 0x0004, and so on.)

Accesses to the 256-address space are done through the same data register. Valid bits vary according to the address to be accessed.

Bits [9:2] of the address to be accessed correspond to bits [7:0] of the data register. Address bits that are "1" are accessed in the data register and address bits that are "0" are masked.

Address[9:2]	Bit9	Bit8	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2
Bit mask	bm7	bm6	bm5	bm4	bm3	bm2	bm1	bm0

• Example: Writing 0x93 to address 0x00E8 of Port C by using bit masks

bit mask	bm	า7	bm6	bm	า5	bm4		bm3	}	bm2	Ł	om1		bm0	
		0	0		1		1		1	0)		1	()
GPIOCDATA															
Before write		PC7	PC6		PC5		PC4		PC3		PC2		PC1		PC0
Write data		1			0		1		0		0		1		1
	L	-12/2	422	L	-122	Ч	\mathbb{V}	- 4	\mathbb{V}	4		4	$^{\circ}$	4	$^{\circ}$
GPIOCDAT.	PC	7	PC6	PC	25	PC4		PC3	}	PC2	F	PC1		PC0	
	Re	etained	Retained	"0	"Write	"1"\	Nrite	"0"\	Nrite	Reta	ined	"1"V	Vrite	Reta	ained

• Example: Reading 0x12 from address 0x00E8 of Port C by using bit masks

bit mask	bm	7	bm6		bm	5	bm	4	bm:	3	bm	2	bm1		bmC)
		0		0		1		1		1		0		1		0
GPIOCDATA		PC7		PC6		PC5		PC4		PC3		PC2		PC1		PC0
		1		0		0		1		0		0		1		1
	U	\bigcirc			L	\bigcirc	L		L		L					
Read value	"0"	Read	"0"F	Read	"0"	Read	"1"	Read	"0"	Read	"0"	Read	"1"F	Read	"0"F	Read

Note: All the bits are valid in accessing 0x03FC, and no bits are valid in accessing 0x0000.

3.9.2 Port Function Settings

This section describes the settings of Port A through Port T that can also function as general-purpose ports. Each port should basically be accessed in word (32-bit) units.

3.9.2.1 Port A

Port A can be used not only as general-purpose input pins but also as key input pins. By enabling interrupts, Port A is used as key input pins (K17-K10).

Function-st	pecific	settinas
	2001110	ooungo

Function	Data Value	Interrupt Enable
General-purpose input	GPIOADATA	GPIOAIE
Key input	*	0/1

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
KI7	KI6	KI5	K4	KI3	KI2	KI1	KI0

Note: All bits support the interrupt function. In the initial state, all bits are pull up state.

Base address = 0xF080_0000

Register Name	Address (base+)	Description
GPIOADATA	0x03FC	PortA Data Regsiter
GPIOAIS	0x0804	PortA Interrupt Selection Register (Level and Edge)
GPIOAIBE	0x0808	PortA Interrupt Selection Register (Fellow edge and Both edge)
GPIOAIEV	0x080C	PortA Interrupt Selection Register
		(Fall down edge/Low level and Rising up edge/High level)
GPIOAIE	0x0810	PortA Interrupt Enable Register
GPIOARIS	0x0814	PortA Interrupt Status Register (Raw)
GPIOAMIS	0x0818	PortA Interrupt Status Register (Masked)
GPIOAIC	0x081C	PortA Interrupt Clear Register

1. GPIOADATA (Port Data Regsiter)

Address = (0xF080_0000) +(0x03FC)

Bit	Bit Symbol	Туре	Reset Value	Bit Mask	Description
[31:8]	-	-	Undefined	-	Read undefined. Write as zero.
[7:0]	PA[7:0]	RO	0xFF	Bm7:0	Port A data register

[Explanation]

a. <PA[7:0]>

Data register: Stores data.

See notes on data registers for the bit mask function.

2. GPIOAIS (Port Interrupt Selection Register (Level and Edge))

Address = (0xF080_0000) +(0x0804)

Bit	Bit Symbol	Туре	Reset Value	Description
[31:8]	_	-	Undefined	Read undefined. Write as zero.
[7:0]	PA7IS:PA0IS	R/W	0x00	Port A interrupt sensitivity register
				0: Edge-sensitive
				1: Level-sensitive

[Explanation]

a. <PA7IS:PA0IS>

Interrupt sensitivity register: Selects edge-sensitive or level-sensitive.

- 0: Edge-sensitive
- 1: Level-sensitive

3. GPIOAIBE (Port Interrupt Selection Register (Fellow edge and Both edge))

Address = (0xF080_0000) +(0x0808)

Bit	Bit Symbol	Туре	Reset Value	Description
[31:8]	-	-	Undefined	Read undefined. Write as zero.
[7:0]	PA7IBE:PA0IBE	R/W	0x00	Port A interrupt both edges register
				0: Single edge
				1: Both edges

[Explanation]

a. <PA7IBE:PA0IBE>

Interrupt both edges register: Selects single edge or both edges.

0: Single edge

- 1: Both edges
- 4. GPIOAIEV (Port Interrupt Selection Register (Fall down edge/Low level and Rising up edge/High level))

Bit	Bit Symbol	Туре	Reset Value	Description
[31:8]	_	-	Undefined	Read undefined. Write as zero.
[7:0]	PA7IEV:PA0IEV	R/W	0x00	Port A interrupt event register
				0: Falling edge/Low level
				1: Rising edge/High level

Address = (0xF080_0000) +(0x080C)

[Explanation]

a. <PA7IEV:PAIEV>

Interrupt event register: Selects falling edge or rising edge for edge-sensitive interrupts, and Low level or High level for level-sensitive interrupts.

- 0: Falling edge/Low level
- 1: Rising edge/High level
- 5. GPIOAIE (Port Interrupt Enable Register)

Address = (0xF080_0000) +(0x0810)

Bit	Bit Symbol	Туре	Reset Value	Description
[31:8]	_	-	Undefined	Read undefined. Write as zero.
[7:0]	PA7IE:PA0IE	R/W	0x00	Port A interrupt enable register
				0: Disable
				1: Enable

[Explanation]

a. <PA7IE:PA0IE>

Interrupt enable register: Enables or disables interrupts.

- 0: Disable
- 1: Enable

6. GPIOARIS (Port Interrupt Status Register (Raw))

Address = (0xF080_0000) +(0x0814)

Bit	Bit Symbol	Туре	Type Reset Descriptio			
[31:8]	_	-	Undefined	Read undefined. Write as zero.		
[7:0]	PA7RIS:PA0RIS	RO	0x00	Port A interrupt raw status register		
				0: Not requested		
				1: Requested		

[Explanation]

a. <PA7RIS:PA0RIS>

Interrupt raw status register: Monitors the interrupt status before masking.

0: Not requested

1: Requested

7. GPIOAMIS (Port Interrupt Status Register (Masked))

Address = (0xF080_0000) +(0x0818)

Bit	Bit Symbol	Туре	Reset Value	Description
[31:8]	-	-	Undefined	Read undefined. Write as zero.
[7:0]	PA7MIS:PA0MIS	RO	0x00	Port A interrupt masked status register
				0: Not requested
				1: Requested

[Explanation]

a. <PA7MIS:PA0MIS>

 $Interrupt\ masked\ status\ register \because Monitors\ the\ interrupt\ status\ after\ masking.$

0: Not requested

1: Requested

8. GPIOAIC (Port Interrupt Clear Register)

Address = (0xF080_0000) +(0x081C)

Bit	Bit Symbol	Туре	Reset Value	Description
[31:8]	_	-	Undefined	Read undefined. Write as zero.
[7:0]	PA7IC:PA0IC	WO	0x00	Port A interrupt clear register
				0: No effect
				1: Clear

[Explanation]

a. <PA7IC:PA0IC>

Interrupt clear register: Clears edge-sensitive interrupts.

0: No effect

1: Clear

3.9.2.2 Port B

Port B can be used not only as general-purpose output pins but also as key output pins. By enabling open-drain output, Port B is used as key output pins (KO7-KO0).

Function-s	pecific	settings
------------	---------	----------

Function	Data Value	Oepn-Drain Enable	
General-purpose output	GPIOBDATA	GPIOBODE	
Key output	*	0/1	

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
KO7	KO6	KO5	KO4	KO3	KO2	KO1	KO0

Note: All bits support open-drain output.

Base address = 0xF080_1000

Register Name	Address (base+)	Description		
GPIOBDATA	0x03FC	PortB Data Regsiter		
GPIOBODE	0x0C00	PortB Open-drain Output Enable Register		

1. GPIOBDATA (Port Data Regsiter)

Address = (0xF080_1000) +(0x03FC)

Bit	Bit Symbol	Туре	Reset Value	Bit mask	Description
[31:8]	-	-	Undefined	-	Read undefined. Write as zero.
[7:0]	PB[7:0]	R/W	0xFF	Bm7:0	Port B data register

[Explanation]

a. <PB[7:0]>

Data register: Stores data.

See notes on data registers for the bit mask function.

2. GPIOBODE (Port Open-drain Output Enable Register)

Address = (0xF080_1000) +(0x0C00)

Bit	Bit Symbol	Туре	Reset Value	Description		
[31:8]	-	-	Undefined	Read undefined. Write as zero.		
[7:0]	PB7ODE:PB0ODE	R/W	0x00	Port B open-drain output enable register		
				0: 3-state output		
				1: Open-drain (Pch disabled) output		

[Explanation]

a. <PB7ODE:PB0ODE>

Open-drain output enable register: Selects 3-state ourput or open-drain output.

0: 3-state output

1: Open-drain (Pch disabled) output

3.9.2.3 Port C

The upper 3 bits (bits [7:5]) of Port C can be used as general-purpose input/output pins and the lower 5 bits (bits [4:0]) can be used as general-purpose output pins.

Port C can also be used as interrupt (INT9, INT8), I2C (I2C0DA, I2C0CL), low-frequency clock output (FSOUT), melody output (MLDALM, MLDALMn), and external power supply control (PWE) pins.

Function-specific settings 1

Function	Data Value	Input/Output Select	Function Select 1	Function Select 2	Interrupt Enable	Open-Drain Enable
General-purpose input	GPIOCDATA	GPIOCDIR	GPIOCFR1	GPIOCFR2	GPIOCIE	GPIOCODE
Interrupt	*	0	0	0	0/1	-

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
INT9	Input	INT8					

Note: Only bits 7 and 5 support the interrupt function.

Function-specific settings 2

Function	Data Value	Input/Output Select	Function Select 1	Function Select 2	Interrupt Enable	Open-Drain Enable
General-purpose output	GPIOCDATA	GPIOCDIR	GPIOCFR1	GPIOCFR2	GPIOCIE	GPIOCODE
Key output	*	1	0	0		0/1

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
Output	Output	Output	Output	Output	Output	KO9	KO8

Note: Bits 5 to 0 support open-drain output.

Function-specific settings 3

Function	Data Value	Input/Output Select	Function Select 1	Function Select 2	Interrupt Enable	Open-Drain Enable
I2C	GPIOCDATA	GPIOCDIR	GPIOCFR1	GPIOCFR2	GPIOCIE	GPIOCODE
MLDALM PWE	*	*	1	0	0	0/1

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
I2C0DA	I2C0CL	MLDALMn	FSOUT	MLDALM	PWE		

Function-specific settings 4

Function	Data Value	Input/Output Select	Function Select 1	Function Select 2	Interrupt Enable	Open-Drain Enable
DW/M	GPIOCDATA	GPIOCDIR	GPIOCFR1	GPIOCFR2	GPIOCIE	GPIOCODE
FVVIVI	*	*	0	1	0	0/1

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
			PWM2OUT	PWM0OUT			

Note:

In this MCU, Power manager circuits is built-in, circuits power except some special circuits and IO pins can be cut off (In detail, please refer to PMC chapter).

Even if the power of some internal circuits is cut off, the statuses of external IO can be held.

Please pay attention to port setting, PC2 is a special port. Refer to the below chart.

TMPA910CRAXBG

. In the case of setting PC2 as general port, please set PMCCTL<PMCPWE> = 0y0

. In the PCM (Power Cut Mode), the general port function of PC2 can't be used.

Base address = 0xF080_2000

Register Name	Address (base+)	Description			
GPIOCDATA	0x03FC	PortC Data Regsiter			
GPIOCDIR	0x0400	PortC Data Direction Register			
GPIOCFR1	0x0424	PortC Function Register1			
GPIOCFR2	0x0428	PortC Function Register2			
GPIOCIS	0x0804	PortC Interrupt Selection Register (Level and Edge)			
GPIOCIBE	0x0808	PortC Interrupt Selection Register (Fellow edge and Both edge)			
GPIOCIEV	0x080C	PortC Interrupt Selection Register			
		(Fall down edge/Low level and Rising up edge/High level)			
GPIOCIE	0x0810	PortC Interrupt Enable Register			
GPIOCRIS	0x0814	PortC Interrupt Status Register (Raw)			
GPIOCMIS	0x0818	PortC Interrupt Status Register (Masked)			
GPIOCIC	0x081C	PortC Interrupt Clear Register			
GPIOCODE	0x0C00	PortC Open-drain Output Enable Register			

1. GPIOCDATA (Port Data Regsiter)

Address = (0xF080_2000) +(0x03FC)

Bit	Bit Symbol	Туре	Reset Value	Bit mask	Description
[31:8]	-	-	Undefined	-	Read undefined. Write as zero.
[7:0]	PC[7:0]	R/W	0xEF	Bm7:0	Port C data register

[Explanation]

a. <PC[7:0]>

Data register: Stores data.

See notes on data registers for the bit mask function.

2. GPIOCDIR (Port Data Direction Register)

Address = (0xF080_2000) +(0x0400)

Bit	Bit Symbol	Туре	Reset Value	Description
[31:8]	-	-	Undefined	Read undefined. Write as zero.
[7:5]	PC7C:PC5C	R/W	0y000	Port C data direction register
				0: Input
				1: Output
[4:0]	PC4C:PC0C	-	0y11111	Must be written as "1".
				Read as "1".

[Explanation]

a. <PC7C:PC5C>

Data direction register: Selects input or output when Port C is used as a general-purpose port.

0: Input

1: Output

3. GPIOCFR1(Port Function Register1)

Address = (0xF080_2000) +(0x0424)

Bit	Bit Symbol	Туре	Reset Value	Description
[31:8]	-	-	Undefined	Read undefined. Write as zero.
[7:2]	PC7F1:PC2F1	R/W	0y000000	Port C function register 1
[1:0]	PC1F1:PC0F1	_	0y00	Must be written as "0".
				Read as "0".

[Explanation]

a. <PC7F1:PC2F1>

Function register 1: Controls the function setting.

4. GPIOCFR2 (Port Function Register2)

Address = (0xF080_2000) +(0x0428)

Bit	Bit Symbol	Туре	Reset Value	Description
[31:8]	-	-	Undefined	Read undefined. Write as zero.
[7:5]	PC7F2:PC5F2	-	0y000	Must be written as "0".
				Read as "0".
[4:3]	PC4F2:PC3F2	R/W	0y00	Port C function register 2
[2:0]	PC2F2:PC0F2	_	0y000	Must be written as "0".
				Read as "0".

[Explanation]

a. <PC7F2:PC5F2>, <PC2F2:PC0F2>

Function register 2: Controls the function setting.

Note: The function register 1 and function register 2 can only be set exclusively of each other. These registers must not simultaneously be written as "1" even for an instant.

Mode	GPIOCFR1	GPIOCFR2
General-purpose	0	0
Function 1	1	0
Function 2	0	1
Prohibited	1	1

 Table 3.9.4
 Function register setting table

5. GPIOCIS (Port Interrupt Selection Register (Level and Edge))

Address = (0xF080_2000) +(0x0804)

Bit	Bit Symbol	Туре	Reset Value	Description	
[31:8]	_	-	Undefined	Read undefined. Write as zero.	
[7]	PC7IS	R/W	0у0	Port C interrupt sensitivity register	
				0: Edge-sensitive	
				1: Level-sensitive	
[6]	PC6IS	_	0у0	Must be written as "0".	
				Read as "0".	
[5]	PC5IS	R/W	0y0	Port C interrupt sensitivity register	
				0: Edge-sensitive	
				1: Level-sensitive	
[4:0]	PC4IS:PC0IS	-	0y00000	Must be written as "0".	
				Read as "0".	

[Explanation]

a. <PC7IS, PC5IS>

Interrupt sensitivity register: Selects edge-sensitive or level-sensitive.

- 0: Edge-sensitive
- 1: Level-sensitive
- 6. GPIOCIBE (Port Interrupt Selection Register (Fellow edge and Both edge))

Address = (0xF080_2000) +(0x0808)

Bit	Bit Symbol	Туре	Reset Value	Description
[31:8]	_	-	Undefined	Read undefined. Write as zero.
[7]	PC7IBE	R/W	0у0	Port C interrupt both edges register
				0: Single edge
				1: Both edges
[6]	PC6IBE	-	0y0	Must be written as "0".
				Read as "0".
[5]	PC5IBE	R/W	0у0	Port C interrupt both edges register
				0: Single edge
				1: Both edges
[4:0]	PC7IBE:PC0IBE	=	0y0000	Must be written as "0".
				Read as "0".

[Explanation]

a. <PC7IBE, PC5IBE>

Interrupt both edges register: Selects single edge or both edges.

- 0: Single edge
- 1: Both edges

7. GPIOCIEV (Port Interrupt Selection Register (Fall down edge/Low level and Rising up edge/High level))

Address = (0xF080_2000) +(0x080C)

Bit	Bit Symbol	Туре	Reset Value	Description
[31:8]	-	-	Undefined	Read undefined. Write as zero.
[7]	PC7IEV	R/W	0у0	Port C interrupt event register
				0: Falling edge/Low level
				1: Rising edge/High level
[6]	PC6IEV	-	0у0	Must be written as "0".
				Read as "0".
[5]	PC5IEV	R/W	0у0	Port C interrupt event register
				0: Falling edge/Low level
				1: Rising edge/High level
[4:0]	PC4IEV:PC0IEV	-	0y00000	Must be written as "0".
				Read as "0".

[Explanation]

a. <PC7IEV,PC5IEV>

Interrupt event register: Select falling edge or rising edge for edge-sensitive interrupts, and Low level or High level for level-sensitive interrupts.

- 0: Falling edge/Low level
- 1: Rising edge/High level
- 8. GPIOCIE (Port Interrupt Enable Register)

Bit	Bit Symbol	Туре	Reset Value	Description
[31:8]	-	-	Undefined	Read undefined. Write as zero.
[7]	PC7IE	R/W	0y0	Port C interrupt enable register
				0: Disable
				1: Enable
[6]	PC6IE	-	0у0	Must be written as "0".
				Read as "0".
[5]	PC5IE	R/W	0у0	Port C interrupt enable register
				0: Disable
				1: Enable
[4:0]	PC4IE:PC0IE	_	0y0000	Must be written as "0".
				Read as"0".

TMPA910CRA- 265

a. <PC7IE, PC5IE>

Interrupt enable register: Enables or disables interrupts.

- 0: Disable
- 1: Enable

9. GPIOCRIS (Port Interrupt Status Register (Raw))

Address = (0xF080_2000) +(0x0814)

Bit	Bit Symbol	Туре	Reset Value	Description
[31:8]	_	-	Undefined	Read undefined. Write as zero.
[7]	PC7RIS	RO	0у0	Port C interrupt raw status register
				0: Not requested
				1: Requested
[6]	PC6RIS	-	0у0	Writes prohibited.
				Read as "0".
[5]	PC5RIS	RO	0у0	Port C interrupt masked status register
				0: Not requested
				1: Requested
[4:0]	PC4RIS:PC0RIS	-	0y0000	Writes prohibited.
				Read as"0".

[Explanation]

a. <PC7RIS, PC5RIS>

Interrupt raw status register: Monitors the interrupt status before masking.

0: Not requested

1: Requested

10. GPIOCMIS (Port Interrupt Status Register (Masked))

 $Address = (0xF080_2000) + (0x0818)$

Bit	Bit Symbol	Туре	Reset Value	Description
[31:8]	_	-	Undefined	Read undefined. Write as zero.
[7]	PC7MIS	RO	0у0	Port C interrupt masked status register
				0: Not requested
				1: Requested
[6]	PC6MIS	-	0у0	Writes prohibited.
				Read as"0".
[5]	PC5MIS	RO	0у0	Port C interrupt masked status register
				0: Not requested
				1: Requested
[4:0]	PC4MIS:PC0MIS	-	0y0000	Writes prohibited.
				Read as "0".

[Explanation]

a. <PC7MIS, PC5MIS>

Interrupt masked status register: Monitors the interrupt status after masking. 0: Not requested

1: Requested

11. GPIOCIC (Port Interrupt Clear Register)

Address = (0xF080_2000) +(0x081C)

Bit	Bit Symbol	Туре	Reset Value	Description
[31:8]	_	-	Undefined	Read undefined. Write as zero.
[7]	PC7IC	WO	0у0	Port C interrupt clear register
				0: No effect
				1: Clear request
[6]	PC6IC	_	0у0	Must be written as "0".
				Reads prohibited.
[5]	PC5IC	WO	0y0	Port C interrupt clear register
				0: No effect
				1: Clear request
[4:0]	PC4IC:PC0IC	-	0y0000	Must be written as "0".
				Reads prohibited.

[Explanation]

a. <PC7IC, PC5IC>

Interrupt clear register: Clears edge-sensitive interrupts.

0: No effect

1: Clear

12. GPIOCODE (Port Open-drain Output Enable Register)

Address = (0xF080_2000) +(0x0C00)

Bit	Bit Symbol	Туре	Reset Value	Description		
[31:8]	-	-	Undefined	Read undefined. Write as zero.		
[7:0]	PC7ODE:PC0ODE	R/W	0x00	Port C open-drain output enable register		
				0: 3-state output		
				1: Open-drain (Pch disabled) output		

[Explanation]

a. <PC7ODE:PC0ODE>

Open-drain output enable register: Selects 3-state output or open-drain output.

0: 3-state output

1: Open-drain (Pch disabled) output

3.9.2.4 Port D

Port D can be used as general-purpose input pins.

Port D can also be used as interrupt (INTB, INTA), ADC (AN5-AN0), and touch screen control (PX(INTA), PY, MX, MY) pins.

Function-specific settings 1

Function	Data Value	Function Select 1	Funtion Select 2	Interrupt Enable
General-purpose input	GPIODDATA	GPIODFR1	GPIODFR2	GPIODIE
Interrupt	*	0	0	0/1

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
INTB	INTA	Input	Input	Input	Input	Input	Input

Note: Only bits 7 and 6 support the interrupt function.

Function-specific settings 2

Function	Data Value	Functin Select 1	Function Select 2	Interrupt Enable
	GPIODDATA	GPIODFR1	GPIODFR2	GPIODIE
ADC	*	1	0	

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
		AN5	AN4	AN3	AN2	AN1	AN0

Function-specific settings 3

Function	Data Value	Function Select 1	Function Select 2	Interrupt Enable
TO	GPIODDATA	GPIODFR1	GPIODFR2	GPIODIE
151	*	0	1	

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
PY	PX(INTA)	(MY)	(MX)				

Base address = 0xF080_3000

Register	Address	Description	
Name	(base+)	Description	
GPIODDATA	0x03FC	PortD Data Regsiter	
GPIODFR1	0x0424	PortD Function Register1	
GPIODFR2	0x0428	PortD Function Register2	
GPIODIS	0x0804	PortD Interrupt Selection Register (Level and Edge)	
GPIODIBE	0x0808	PortD Interrupt Selection Register (Fellow edge and Both edge)	
GPIODIEV	0x080C	PortD Interrupt Selection Register	
		(Fall down edge/Low level and Rising up edge/High level)	
GPIODIE	0x0810	PortD Interrupt Enable Register	
GPIODRIS	0x0814	PortD Interrupt Status Register (Raw)	
GPIODMIS	0x0818	PortD Interrupt Status Register (Masked)	
GPIODIC	0x081C	PortD Interrupt Clear Register	

1. GPIODDATA (Port Data Regsiter)

Address = (0xF080_3000) +(0x03FC)

Bit	Bit Symbol	Туре	Reset Value	Bit mask	Description
[31:8]	-	-	Undefined	-	Read undefined. Write as zero.
[7:0]	PD[7:0]	RO	0xFF	Bm7:0	Port D data register

[Explanation]

a. <PD[7:0]>

Data register: Stores data.

See notes on data registers for the bit mask function.

2. GPIODFR1(Port Function Register1)

Address = (0xF080_3000) +(0x0424)

Bit	Bit Symbol	Туре	Reset Value	Description
[31:8]	-	-	Undefined	Read undefined. Write as zero.
[7:6]	PD7F1:PD6F1	_	0y00	Must be written as "0".
				Read as "0".
[5:0]	PD5F1:PD0F1	R/W	0y111111	Port D function register 1

[Explanation]

a. <PD5F1:PD0F1>

Function register 1: Controls the function setting.

3. GPIODFR2 (Port Function Register2)

 $Address = (0xF080_3000) + (0x0428)$

Bit	Bit Symbol	Туре	Reset Value	Description
[31:8]	-	-	Undefined	Read undefined. Write as zero.
[7:6]	PD7F2:PD6F2	R/W	0у00	Port D function register 2
[5:0]	PD5F2:PD0F2	_	0y0000000	Must be written as "0".
				Read as "0".

[Explanation]

a. <PD7F2:PD6F2>

Function register 2: Controls the function setting.

Note: The function register 1 and function register 2 can only be set exclusively of each other. These registers must not simultaneously be written as "1" even for an instant.

Mode	GPIODFR1	GPIODFR2
General-purpose	0	0
Function 1	1	0
Function 2	0	1
Prohibited	1	1

 Table 3.9.5
 Function register setting table

4. GPIODIS (Port Interrupt Selection Register (Level and Edge))

Address = (0xF080_3000) +(0x0804)

Bit	Bit Symbol	Туре	Reset Value	Description
[31:8]	-	-	Undefined	Read undefined. Write as zero.
[7:6]	PD7IS:PD6IS	R/W	0у00	Port D interrupt sensitivity register
				0: Edge-sensitive
				1: Level-sensitive
[5:0]	PD5IS:PD0IS	-	0y00000	Must be written as "0".
				Read as "0".

[Explanation]

a. <PD7IS:PD6IS>

Interrupt sensitivity register: Selects edge-sensitive or level-sensitive.

- 0: Edge-sensitive
- 1: Level-sensitive
- 5. GPIODIBE (Port Interrupt Selection Register (Fellow edge and Both edge))

 $Address = (0xF080_3000) + (0x0808)$

Bit	Bit Symbol	Туре	Reset Value	Description
[31:8]	-	-	Undefined	Read undefined. Write as zero.
[7:6]	PD7IBE:PD6IBE	R/W	0у00	Port D interrupt both edges register
				0: Single edge
				1: Both edges
[5:0]	PD5IBE:PD0IBE	-	0y00000	Must be written as "0".
				Read as"0".

[Explanation]

a. <PD7IBE:PD6IBE>

Interrupt both edges register: Selects single edge or both edges.

- 0: Single edge
- 1: Both edges

6. GPIODIEV (Port Interrupt Selection Register (Fall down edge/Low level and Rising up edge/High level))

Address = (0xF080_3000) +(0x080C)

Bit	Bit Symbol	Туре	Reset Value	Description
[31:8]	_	-	Undefined	Read undefined. Write as zero.
[7:6]	PD7IEV:PD6IEV	R/W	0y00	Port D interrupt event register
				0: Falling edge/Low level
				1: Rising edge/High level
[5:0]	PD5IEV:PD0IEV	_	0y000000	Must be written as "0".
				Read as "0".

[Explanation]

a. <PD7IEV:PD6IEV>

Interrupt event register: Selects falling edge or rising edge for edge-sensitive interrupts, and Low level or High level for level-sensitive interrupts.

- 0: Falling edge/Low level
- 1: Rising edge/High level
- 7. GPIODIE (Port Interrupt Enable Register)

Address = (0xF080_3000) +(0x0810)

Bit	Bit Symbol	Туре	Reset Value	Description
[31:8]	-	-	Undefined	Read undefined. Write as zero.
[7:6]	PD7IE:PD6IE	R/W	0y00	Port D interrupt enable register
				0: Disable
				1: Enable
[5:0]	PD5IE:PD0IE	-	0y00000	Must be written as "0".
				Read as "0".

[Explanation]

a. <PD7IE:PD6IE>

Interrupt enable register: Enables or disables interrupts.

- 0: Disable
- 1: Enable

8. GPIODRIS (Port Interrupt Status Register (Raw))

Address = (0xF080_3000) +(0x0814)

Bit	Bit Symbol	Туре	Reset Value	Description
[31:8]	-	_	Undefined	Read undefined. Write as zero.
[7:6]	PD7RIS:PD6RIS	RO	0y00	Port D interrupt raw status register
				0: Not requested
				1: Requested
[5:0]	PD5RIS:PD0RIS	-	0y000000	Writes prohibited.
				Read as "0".

[Explanation]

a. <PD7RIS:PD0RIS>

Interrupt raw status register: Monitors the interrupt status before masking.

- 0: Not requested
- 1: Requested
- 9. GPIODMIS (Port Interrupt Status Register (Masked))

 $Address = (0xF080_3000) + (0x0818)$

Bit	Bit Symbol	Туре	Reset Value	Description
[31:8]	_	-	Undefined	Read undefined. Write as zero.
[7:6]	PD7MIS:PD6MIS	RO	0y00	Port D interrupt masked status register
	1			0: Not requested
				1: Requested
[5:0]	PD5MIS:PD0MIS	-	0y00000	Writes prohibited.
	1	1		Read as "0".

[Explanation]

a. <PD7MIS:PD6MIS>

Interrupt masked status register: Monitors the interrupt status after masking.

- 0: Not requested
- 1: Requested

10. GPIODIC (Port Interrupt Clear Register)

Address = (0xF080_3000) +(0x081C)

Bit	Bit Symbol	Туре	Reset Value	Description
[31:8]	_	-	Undefined	Read undefined. Write as zero.
[7:6]	PD7IC:PD6IC	WO	0y00	Port D interrupt clear register
				0: No effect
				1: Clear
[5:0]	PD5IC:PD0IC	-	0y000000	Must be written as "0".
				Reads prohibited.

[Explanation]

a. <PD7IC:PD0IC>

Interrupt clear register: Clears edge-sensitive interrupts.

0: No effect

1: Clear

3.9.2.5 Port E

Port E can be used as general-purpose input pins.

Port E can also be used as data input pins for the CMOS image sensor (CMSD7-CMSD0).

Function-specific settings 1

Function	Data Value	Function Select 1	
Conoral nurnage innut	GPIOEDATA	GPIOEFR1	
General-purpose input	*	0	

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
Input							

Function-specific settings 2

Function	Data Value	Function Select 1	
	GPIOEDATA	GPIOEFR1	
CIVIOS-IS	*	1	

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
CMSD7	CMSD6	CMSD5	CMSD4	CMSD3	CMSD2	CMSD1	CMSD0

Base address = 0xF080_4000

Register Name	Address (base+)	Description
GPIOEDATA	0x03FC	PortE Data Regsiter
GPIOEFR1	0x0424	PortE Function Register1

1. GPIOEDATA (Port Data Regsiter)

	Address = (0xF080_4000) +(0x03									
Bit	Bit Symbol	Туре	Reset Value	Bit mask	Description					
[31:8]	-	-	Undefined	-	Read undefined. Write as zero.					
[7:0]	PE[7:0]	RO	0xFF	Bm7:0	Port E data register					

[Explanation]

a. <PE[7:0]>

Data register: Stores data.

See notes on data registers for the bit mask function.

2. GPIOEFR1(Port Function Register1)

Address = (0xF080_4000) +(0x0424)

Bit	Bit Symbol	Туре	Reset Value	Description
[31:8]	-	-	Undefined	Read undefined. Write as zero.
[7:0]	PE7F1:PE0F1	R/W	0x00	Port E function register 1

[Explanation]

a. <PE7F1:PE0F1>

Function register 1: Controls the function setting.

3.9.2.6 Port F

The upper 2 bits (bits [7:6]) of Port F can be used as general-purpose input/output pins and the lower 4 bits (bits [3:0]) can be used as general-purpose input pins. (Bits [5:4] are not used.)

Port F can also be used as interrupt (INTC), I2C (I2C1DA, I2C1CL), and CMOS image sensor control (CMOSVSY, CMSHBK, CMSHSY, CMSPCK) pins.

Function-specific settings 1

Function	Data Value Input/Output Select		Function Select	Interrupt Enable	Open-Drain Enable
General-purpose Input	GPIOFDATA	GPIOFDIR	GPIOFFR1	GPIOFIE	GPIOFODE
Interrupt	*	0	0	0/1	

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
INTC	Input			Input	Input	Input	Input

Note: Only bit 7 supports the interrupt function.

Function-specific settings 2

Function	Data Value	Input/Output Select	Function Select 1	Interrupt Enable	Open-Drain Enable
	GPIOFDATA	GPIOFDIR	GPIOFFR1	GPIOFIE	GPIOFODE
General-purpose output	*	1	0		0/1

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
Output	Output						

Note 3: Only bits 7 and 6 support open-drain output.

Function-specific settings 3

Function	Data Value	Input/Output Select	Function Select 1	Interrupt Enable	Open-Drain Enable
12C	GPIOFDATA	GPIOFDIR	GPIOFFR1	GPIOFIE	GPIOFODE
CMOS-IS	*	0	1		0/1

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
I2C1DA	I2C1CL			CMSVSY	CMSHBK	CMSHSY	CMSPCK

Base address = 0xF080_5000

Register Name	Address (base+)	Description
GPIOFDATA	0x03FC	PortF Data Regsiter
GPIOFDIR	0x0400	PortF Data Direction Register
GPIOFFR1	0x0424	PortF Function Register1
GPIOFIS	0x0804	PortF Interrupt Selection Register (Level and Edge)
GPIOFIBE	0x0808	PortF Interrupt Selection Register (Fellow edge and Both edge)
GPIOFIEV	0x080C	PortF Interrupt Selection Register
		(Fall down edge/Low level and Rising up edge/High level)
GPIOFIE	0x0810	PortF Interrupt Enable Register
GPIOFRIS	0x0814	PortF Interrupt Status Register (Raw)
GPIOFMIS	0x0818	PortF Interrupt Status Register (Masked)
GPIOFIC	0x081C	PortF Interrupt Clear Register
GPIOFODE	0x0C00	PortF Open-drain Output Enable Register

1. GPIOFDATA (Port Data Regsiter)

 $Address = (0xF080_5000) + (0x03FC)$

Bit	Bit Symbol	Туре	Reset Value	Bit mask	Description
[31:8]	-	-	Undefined	-	Read undefined. Write as zero.
[7:4]	PF[7:4]	R/W	0y1111	Bm7:4	Port F data register
[3:0]	PF[3:0]	RO	0y1111	Bm3:0	Port F data register

[Explanation]

a. $<\!\operatorname{PF}[7:\!0]>$

Data register: Stores data.

See notes on data registers for the bit mask function.

2. GPIOFDIR (Port Data Direction Register)

 $Address = (0xF080_{5000}) + (0x0400)$

Bit	Bit Symbol	Туре	Reset Value	Description
[31:8]	-	-	Undefined	Read undefined. Write as zero.
[7:6]	PF7C:PF6C	R/W	0y00	Port F data direction register
				0: Input
				1: Output
[5:0]	PF5C:PF0C	-	0y000000	Must be written as "0".
				Read as "0".

[Explanation]

a. <PF7C:PF6C>

Data direction register: Selects input or output for each pin used as a general-purpose port.

0: Input

1: Output

3. GPIOFFR1 (Port Function Register1)

 $Address = (0xF080_{5000}) + (0x0424)$

Bit	Bit Symbol	Туре	Reset Value	Description
[31:8]	-	-	Undefined	Read undefined. Write as zero.
[7:6]	PF7F1:PF6F1	R/W	0y0000000	Port F function register 1
[5:4]	PF5F1:PF4F1	-	0y00	Must be written as "0".
				Read as "0".
[3:0]	PF3F1:PF0F1	R/W	0y0000	Port F function register 1

[Explanation]

a. <PF7F1:PF6F1, PF7F3:PF0F1>

Function register 1: Controls the function setting.

4. GPIOFIS (Port Interrupt Selection Register (Level and Edge))

Address = (0xF080_5000) +(0x0804)

Bit	Bit Symbol	Туре	Reset Value	Description
[31:8]	-	-	Undefined	Read undefined. Write as zero.
[7]	PF7IS	R/W	0у0	Port F interrupt sensitivity register
				0: Edge-sensitive
				1: Level-sensitive
[6:0]	PF6IS:PF0IS	-	0y0000000	Must be written as "0".
				Read as "0".

[Explanation]

a. <PF7IS>

Interrupt sensitivity register: Selects edge-sensitive or level-sensitive.

- 0: Edge-sensitive
- 1: Level-sensitive

5. GPIOFIBE (Port Interrupt Selection Register (Fellow edge and Both edge))

 $Address = (0xF080_{5000}) + (0x0808)$

Bit	Bit Symbol	Туре	Reset Value	Description
[31:8]	-	-	Undefined	Read undefined. Write as zero.
[7]	PF7IBE	R/W	0у0	Port F interrupt both edges register
				0: Single edge
				1: Both edges
[6:0]	PF6IBE:PF0IBE	-	0y000000	Must be written as "0".
				Read as "0".

[Explanation]

a. <PFF7IBE>

Interrupt both edges register: Selects single edge or both edges.

0: Single edge

1: Both edges

6. GPIOFIEV (Port Interrupt Selection Register (Fall down edge/Low level and Rising up edge/High level))

Address = (0xF080_5000) +(0x080C)

Bit	Bit Symbol	Туре	Reset Value	Description
[31:8]	-	_	Undefined	Read undefined. Write as zero.
[7]	PF7IEV	R/W	0y0	Port F interrupt event register
				0: Falling edge/Low level
				1: Rising edge/High level
[6:0]	PF6IEV:PF0IEV	-	0y000000	Must be written as "0".
				Read as "0".

[Explanation]

a. <PF7IEV>

Interrupt event register: Selects falling edge or rising edge for edge-sensitive interrupts, and Low level or High level for level-sensitive interrupts.

- 0: Falling edge/Low level
- 1: Rising edge/High level

7. GPIOFIE (Port Interrupt Enable Register)

Address = (0xF080_5000) +(0x0810)

Bit	Bit Symbol	Туре	Reset Value	Description
[31:8]	-	-	Undefined	Read undefined. Write as zero.
[7]	PF7IE	R/W	0у0	Port F interrupt enable register
				0: Disable
				1: Enable
[6:0]	PF6IE:PF0IE	_	0y000000	Must be written as "0".
				Read as "0".

[Explanation]

a. <PF7IE>

Interrupt enable register: Enables or disables interrupts.

- 0: Disable
- 1: Enable
- 8. GPIOFRIS (Port Interrupt Status Register (Raw))

 $Address = (0xF080_{5000}) + (0x0814)$

Bit	Bit Symbol	Туре	Reset Value	Description
[31:8]	-	-	Undefined	Read undefined. Write as zero.
[7]	PF7RIS:PF0RIS	RO	0у0	Port F interrupt raw status register 0: Not requested
				1: Requested
[6:0]	PF6RIS:PF0RIS	-	0y0000000	Writes prohibited.
				Read as "0".

[Explanation]

a. <PF7RIS>

Interrupt raw status register: Monitors the interrupt status before masking.

- 0: Not requested
- 1: Requested

9. GPIOFMIS (Port Interrupt Status Register (Masked))

Address = (0xF080_5000) +(0x0818)

Bit	Bit Symbol	Туре	Reset Value	Description
[31:8]	-	-	Undefined	Read undefined. Write as zero.
[7]	PF7MIS	RO	0y0	Port F interrupt masked status register
				0: Not requested
				1: Requested
[6:0]	PF6MIS:PF0MIS	-	0y000000	Writes prohibited.
				Read as "0".

[Explanation]

a. <PF7MIS>

Interrupt masked status register: Monitors the interrupt status after masking.

- 0: Not requested
- 1: Requested

10. GPIOFIC (Port Interrupt Clear Register)

Address = (0xF080_5000) +(0x081C)

Bit	Bit Symbol	Туре	Reset Value	Description
[31:8]	-	-	Undefined	Read undefined. Write as zero.
[7]	PF7IC	WO	0у0	Port F interrupt clear register
				0: No effect
				1: Clear
[6:0]	PF6IC:PF0IC	_	0y0000000	Must be written as "0".
				Reads prohibited.

[Explanation]

a. <PF7IC>

Interrupt clear register: Clears edge-sensitive interrupts.

- 0: No effect
- 1: Clear

11. GPIOFODE (Port Open-drain Output Enable Register)

Address = (0xF080_5000) +(0x0C00)

Bit	Bit Symbol	Туре	Reset Value	Description
[31:8]	_	-	Undefined	Read undefined. Write as zero.
[7:6]	PF7ODE:PF6ODE	R/W	0у00	Port F open-drain output enable register
				0: 3-state output
				1: Open-drain (Pch disabled) output
[5:4]	PF5ODE:PF4ODE	-	0у00	Must be written as "0".
				Read as "0".
[3:0]	PF3ODE:PF0ODE	R/W	0y0000	Port F open-drain output enable register
				0: 3-state output
				1: Open-drain (Pch disabled) output

[Explanation]

a. <PF7ODE:PF6ODE, PF3ODE:PF0ODE >

Open-drain output enable register: Selects 3-state output or open-drain output.

0: 3-state output

1: Open-drain (Pch disabled) output

3.9.2.7 Port G

Port G can be used as general-purpose input/output pins.

Port G can also be used as SD host controller function pins (SDC0CLK, SDC0CD, SDC0WP, SDC0CMD, SDC0DAT3, SDC0DAT2, SDC0DAT1, SDC0DAT0).

Function-specific settings 1

Function	Data Value	Input/Output Select	Function Select 1
Conorol numuoo innut	GPIOGDATA	GPIOGDIR	GPIOGFR1
General-purpuse input	*	0	0

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
Input							

Function-specific settings 2

Function Data Value		Input/Output Select	Function Select 1
	GPIOGDATA	GPIOGDIR	GPIOGFR1
General-purpose output	*	1	0

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
Output							

Function-specific settings 3

Function	Data Value	Input/Output Select	Function Select 1
	GPIOGDATA	GPIOGDIR	GPIOGFR1
SDHC(chu)	*	*	1

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
SDC0CLK	SDC0CD	SDC0WP	SDC0CMD	SDC0DAT3	SDC0DAT2	SDC0DAT1	SDC0DAT0

Base address = 0xF080_6000

Register	Address	Description		
Name	(base+)	Description		
GPIOGDATA	0x03FC	PortG Data Regsiter		
GPIOGDIR	0x0400	PortG Data Direction Register		
GPIOGFR1	0x0424	PortG Function Register1		

1. GPIOGDATA (Port Data Regsiter)

Address = (0xF080_6000) +(0x03FC)

Bit	Bit Symbol	Туре	Reset Value	Bit mask	Description
[31:8]	-	-	Undefined	-	Read undefined. Write as zero.
[7:0]	PG[7:0]	R/W	0xFF	Bm7:0	Port G data register

[Explanation]

a. <PG[7:0]>

Data register: Stores data.

See notes on data registers for the bit mask function.

2. GPIOGDIR (Port Data Direction Register)

 $Address = (0xF080_{6000}) + (0x0400)$

Bit	Bit Symbol	Туре	Reset Value	Description
[31:8]	-	-	Undefined	Read undefined. Write as zero.
[7:0]	PG7C:PG0C	R/W	0x00	Port G data direction register
				0: Input
				1: Output

[Explanation]

a. <PG7C:PG0C>

Data direction register: Selects input or output for each pin used as a general-purpose port.

0: Input

1: Output

3. GPIOGFR1(Port Function Register1)

 $Address = (0xF080_{6000}) + (0x0424)$

Bit	Bit Symbol	Туре	Reset Value	Description
[31:8]	-	-	Undefined	Read undefined. Write as zero.
[7:0]	PG7F1:PG0F1	R/W	0x00	Port G function register 1

[Explanation]

a. <PG7F1:PG0F1>

Function register 1: Controls the function setting.

3.9.2.8 Port H

Port H can be used as general-purpose input/output pins.

Port H can also be used as SD host controller function pins (SDC1CLK, SDC1CD, SDC1WP, SDC1CMD, SDC1DAT3, SDC1DAT2, SDC1DAT1, SDC1DAT0).

Function-specific settings 1

Function	Data Value	Input/Output Select	Function Select 1
	GPIOHDATA	GPIOHDIR	GPIOHFR1
General-purpose input	*	0	0

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
Input							

Function-specific settings 2

Function	Data Value	Input/Output Select	Function Select 1
	GPIOHDATA	GPIOHDIR	GPIOHFR1
General-purpose output	*	1	0

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
	Output						

Function-specific settings 3

Function	Data Value	Input/Output Select	Function Select 1
	GPIOHDATA	GPIOHDIR	GPIOHFR1
SDHC(ch1)	*	*	1

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
SDC1CLK	SDC1CD	SDC1WP	SDC1CMD	SDC1DAT3	SDC1DAT2	SDC1DAT1	SDC1DAT0

Base address = 0xF080_7000

Register	Address	Description	
Name	(base+)	Description	
GPIOHDATA	0x03FC	PortH Data Regsiter	
GPIOHDIR	0x0400	PortH Data Direction Register	
GPIOHFR1	0x0424	PortH Function Register1	

1. GPIOHDATA (Port Data Regsiter)

Address = (0xF080_7000) +(0x03FC)

Bit	Bit Symbol	Туре	Reset Value	Bit mask	Description
[31:8]	-	-	Undefined	-	Read undefined. Write as zero.
[7:0]	PH[7:0]	RW	0xFF	Bm7:0	Port H data register

[Explanation]

a. <PH[7:0] >

Data register: Stores data.

See notes on data registers for the bit mask function.

2. GPIOHDIR (Port Data Direction Register)

 $Address = (0xF080_7000) + (0x0400)$

Bit	Bit Symbol	Туре	Reset Value	Description
[31:8]	-	-	Undefined	Read undefined. Write as zero.
[7:0]	PH7C:PH0C	R/W	0x00	Port H data direction register
				0: Input
				1: Output

[Explanation]

a. <PH7C:PH0C>

Data direction register: Selects input or output for each pin used as a general-purpose port.

0: Input

1: Output

3. GPIOHFR1 (Port Function Register1)

 $Address = (0xF080_7000) + (0x0424)$

Bit	Bit Symbol	Туре	Reset Value	Description
[31:8]	-	-	Undefined	Read undefined. Write as zero.
[7:0]	PH7F1:PH0F1	R/W	0x00	Port H function register 1

[Explanation]

a. <PH7F1:PH0F1>

Function register 1: Controls the function setting.

3.9.2.9 Port J

Port J can be used as general-purpose output pins.

Port J can also be used as LCD cotroller function pins (LD15-LD8).

Function-specific settins	c settins '	pecific	Function-s
---------------------------	-------------	---------	------------

Function	Data Value	Function Select 1
	GPIOJDATA	GPIOJFR1
General-purpose output	*	0

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
Output							

Function-specific settings 2

Function	Data Value	Function Select 1
LCDC	GPIOJDATA	GPIOJFR1
	*	1

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
LD15	LD14	LD13	LD12	LD11	LD10	LD9	LD8

Base address = 0xF080_8000

Register Name	Address (base+)	Description		
GPIOJDATA	0x03FC	PortJ Data Regsiter		
GPIOJFR1	0x0424	PortJ Function Register1		

1. GPIOJDATA (Port Data Regsiter)

Address = (0xF080_8000) +(0x03FC)

Bit	Bit Symbol	Туре	Reset Value	Bit mask	Description
[31:8]	-	-	Undefined	-	Read undefined. Write as zero.
[7:0]	PJ[7:0]	R/W	0x00	Bm7:0	Port J data register

[Explanation]

a. <PJ[7:0]>

Data Register: Stores data.

See notes on data registers for the bit mask function.

2. GPIOJFR1 (Port Function Register1)

Address = (0xF080_8000) +(0x0424)

Bit	Bit Symbol	Туре	Reset Value	Description
[31:8]	-	-	Undefined	Read undefined. Write as zero.
[7:0]	PJ7F1:PJ0F1	R/W	0x00	Port J function register 1

[Explanation]

a. <PJ7F1:PJ0F1>

Functin register 1: Controls the function setting.

3.9.2.10 Port K

Port K can be used as general-purpose output pins.

Port K can also be used as LCD controller function pins (LD23-LD16).

Function-specific settings 1

Function	Data Value	Function Select 1	
	GPIOKDATA	GPIOKFR1	
General-purpose output	*	0	

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
Output							

Function-specific settings 2

Function	Data Value	Function Select 1
LCDC	GPIOKDATA	GPIOKFR1
	*	1

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
LD23	LD22	LD21	LD20	LD19	LD18	LD17	LD16

Base address = 0xF080_9000

Register	Address	Description	
Name	(base+)	Description	
GPIOKDATA	0x03FC	PortK Data Regsiter	
GPIOKFR1	0x0424	PortK Function Register1	

1. Port Data Regsiter

GPIOKDATA

Address = (0xF080_9000) +(0x03FC)

Bit	Bit Symbol	Туре	Reset Value	Bit mask	Description
[31:8]	-	-	Undefined	-	Read undefined. Write as zero.
[7:0]	PK[7:0]	R/W	0x00	Bm7:0	Port K data register

[Explanation]

a. <PK[7:0]>

Data register: Stores data.

See notes on data registers for the bit mask function.

2. GPIOKFR1 (Port Function Register1)

Address = (0xF080_9000) +(0x0424)

Bit	Bit Symbol	Туре	Reset Value	Description
[31:8]	-	-	Undefined	Read undefined. Write as zero.
[7:0]	PK7F1:PK0F1	R/W	0x00	Port K function register 1

[Explanation]

a. <PK7F1:PK0F1>

Function register 1: Controls the function setting.

3.9.2.11 Port L

Port L can be used as general-purpose input/output pins. (Bits [7:5] are not used.)

In addition, Port L can also be used as I2S function (I2SSCLK, I2S0MCLK, I2S0DATI, I2S0CLK, I2S0WS) and SPI function (SP1DI, SP1DO, SP1CLK, SP1FSS) pins.

Function-specific settings 1

Function	Data Value	Input/Output Select	Function Select 1	Function Select 2
Conorol numero innut	GPIOLDATA	GPIOLDIR	GPIOLFR1	GPIOLFR2
General-purpose input	*	0	0	0

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
			Input	Input	Input	Input	Input

Function-specific settings 2

Function	Data Value	Input/Output Select	Function Select 1	Function Select 2
	GPIOLDATA	GPIOLDIR	GPIOLFR1	GPIOLFR2
General-purpose output	*	1	0	0

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
			Output	Output	Output	Output	Output

Function-specific settings 3

Function	Data Value	Input/Output Select	Function Select 1	Function Select 2
126(ab0)	GPIOLDATA	GPIOLDIR	GPIOLFR1	GPIOLFR2
125(cn0)	*	*	1	0

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
			I2SSCLK	I2S0MCLK	I2S0DATI	I2S0CLK	I2S0WS

Function-specific settings 4

Function	Data Value	Input/Output Select	Function Select 1	Functionj Select 2
	GPIOLDATA	GPIOLDIR	GPIOLFR1	GPIOLFR2
SPI(ch1)	*	*	0	1

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
				SP1DI	SP1DO	SP1CLK	SP1FSS

Base address = 0xF080_A000

Register Name	Address (base+)	Description		
GPIOLDATA	0x03FC	PortL Data Regsiter		
GPIOLDIR	0x0400	PortL Data Direction Register		
GPIOLFR1	0x0424	PortL Function Register1		
GPIOLFR2	0x0428	PortL Function Register2		

1. GPIOLDATA (Port Data Regsiter)

 $Address = (0xF080_A000) + (0x3FC)$

Bit	Bit Symbol	Туре	Reset Value	Bit mask	Description
[31:8]	-	-	Undefined	-	Read undefined. Write as zero.
[7:0]	PL[7:0]	R/W	0xFF	Bm7:0	Port L data register

[Explanation]

a. <PL[7:0]>

Data register: Stores data.

See notes on data registers for the bit mask function.

2. GPIOLDIR (Port Data Direction Register)

Address = (0xF080_A000) +(0x0400)

Bit	Bit Symbol	Туре	Reset Value	Description
[31:8]	-	-	Undefined	Read undefined. Write as zero.
[7:5]	PL7C:PL5C	_	0y000	Must be written as "0".
				Read as "0".
[4:0]	PL4C:PL0C	R/W	0y00000	Port L data direction register
				0: Input
				1: Output

[Explanation]

a. <PL4C:PL0C>

Data direction register: Selects input or output for each pin used as a general-purpose port.

0: Input

1: Output

3. Port Function Register1

GPIOLFR1

 $Address = (0xF080_A000) + (0x0424)$

Bit	Bit Symbol	Туре	Reset Value	Description
[31:8]	-	-	Undefined	Read undefined. Write as zero.
[7:5]	PL7F1:PL5F1	_	0y000	Must be written as "0".
				Read as "0".
[4:0]	PL4F1:PL0F1	R/W	0y00000	Port L function register 1

[Explanation]

a. <PL4F1:PL0F1> Function register 1: Controls the function setting.

4. GPIOLFR2 (Port Function Register2)

Address = (0xF080_A000) +(0x0428)

Bit	Bit Symbol	Туре	Reset Value	Description
[31:8]	_	-	Undefined	Read undefined. Write as zero.
[7:5]	PL7F2:PL5F2	-	0y000	Must be written as "0".
				Read as "0".
[4:0]	PL4F2:PL0F2	R/W	0y0000	Port L function register 2

[Explanation]

a. <PL4F2:PL0F2>

Function register 2: Controls the function setting.

Note: The function register 1 and function register 2 can only be set exclusively of each other. There registers must not simultaneously be written as "1" even for an instant.

Mode	GPIOLFR1	GPIOLFR2	
General-purpose	0	0	
Function 1	1	0	
Function 2	0	1	
Prohibited	1	1	

T				
Table 3.9.6	Function	register	setting	table

3.9.2.12 Port M

Port M can be used as general-purpose input/output pins. (Bits [7:4] are not used.) Port M can also be used as I2S function pins (I2S1MCLK, I2S1DATI, I2S1CLK, I2S1WS).

Function-specific settings 1

Function	Data Value	Input/Output Select	Function Select 1
	GPIOMDATA	GPIOMDIR	GPIOMFR1
General-purpose input	*	0	0

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
				Input	Input	Input	Input

Function-specific settings 2

Function	Data Value	Input/Output Select	Function Select 1
Conorol numbers output	GPIOMDATA	GPIOMDIR	GPIOMFR1
General-purpose output	*	1	0

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
				Output	Output	Output	Output

Function-specific settings 3

Function	Data Value	Input/Output Select	Function Select 1
100(-1-4)	GPIOMDATA	GPIOMDIR	GPIOMFR1
125(ch1)	*	*	1

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
				I2S1MCLK	I2S1DATO	I2S1CLK	I2S1WS

Base address = 0xF080_B000

Register Name	Address (base+)	Description
GPIOMDATA	0x03FC	PortM Data Regsiter
GPIOMDIR	0x0400	PortM Data Direction Register
GPIOMFR1	0x0424	PortM Function Register1

1. GPIOMDATA (Port Data Regsiter)

					Address = (0xF080_B000) +(0x03FC)
Bit	Bit Symbol	Туре	Reset Value	Bit mask	Description
[31:8]	-	-	Undefined	-	Read undefined. Write as zero.
[7:0]	PM[7:0]	R/W	0xFF	Bm7:0	Port M data register

[Explanation]

a. <PM[7:0] >

Data register: Stores data.

See notes on data registers for the bit mask function.

2. GPIOMDIR (Port Data Direction Register)

Address = (0xF080_B000) +(0x0400)

Bit	Bit Symbol	Туре	Reset Value	Description
[31:8]	-	-	Undefined	Read undefined. Write as zero.
[7:4]	PM7C:PM4C	-	0y0000	Must be written as "0".
				Read as "0".
[3:0]	PM3C:PM0C	R/W	0y0000	Port M data direction register
				0: Input
				1: Output

[Explanation]

a. <PM7C:PM0C>

Data direction register: Selects input or output for each pin used as a general-purpose port.

0: Input

1: Output

3. GPIOMFR1 (Port Function Register1)

Address = (0xF080_B000) +(0x0424)

Bit	Bit Symbol	Туре	Reset Value	Description
[31:8]	_	-	Undefined	Read undefined. Write as zero.
[7:4]	PM7F1:PM4F1	-	0y0000	Must be written as "0".
				Read as "0".
[3:0]	PM3F1:PM0F1	R/W	0y0000	Port M function register 1

[Explanation]

a. <PM7F1:PM0F1>

Function register 1: Controls the function setting.

3.9.2.13 Port N

Port N can be used as general-purpose input/output pins.

Port N can also be used as UART function (U0RTSn, U0DTRn, U0RIn, U0DSRn, U0DCDn, U0CTSn, U0RXD, U0TXD, SIR0IN, SIR0OUT) and interrupt function (INTD, INTE, INTF, INTG) pins.

Function-specific settings 1

Function	Data Value	Input/Output Select	Function Select 1	Function Select 2	Interrupt Enable
	GPIONDATA	GPIONDIR	GPIONFR1	GPIONFR2	GPIONIE
General-purpose input	*	0	0	0	0/1

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
INTG	INTF	INTE	INTD	Input	Input	Input	Input

Note: Only bits 7 to 4 support the interrupt function.

Function-specific settings 2

Function	Data Value	Input/Output Select	Function Select 1	Function Select 2	Interrupt Enable
	GPIONDATA	GPIONDIR	GPIONFR1	GPIONFR2	GPIONIE
General-purpose output	*	1	0	0	

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
Output							

Function-specific settings 3

Function	Data Value	Input/Output Select	Function Select 1	Function Select 2	Interrupt Enable
	GPIONDATA	GPIONDIR	GPIONFR1	GPIONFR2	GPIONIE
UART(ChU)	*	*	1	0	

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
U0RTSn	U0DTRn	U0RIn	U0DSRn	U0DCDn	U0CTSn		U0TXD

Function-specific settings 4

Function	Data Value	Input/Output Select	Function Select 1	Function Select 2	Interrupt Enable
UART	GPIONDATA	GPIONDIR	GPIONFR1	GPIONFR2	GPIONIE
(ch0/IrDA)	*	*	0	1	

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
						U0RXD/ SIR0IN	SIR0OUT

Base address = 0xF080_C000

Register Name	Address (base+)	Description	
GPIONDATA	0x03FC	PortN Data Regsiter	
GPIONDIR	0x0400	PortN Data Direction Register	
GPIONFR1	0x0424	PortN Function Register1	
GPIONFR2	0x0428	PortN Function Register2	
GPIONIS	0x0804	PortN Interrupt Selection Register (Level and Edge)	
GPIONIBE	0x0808	PortN Interrupt Selection Register (Fellow edge and Both edge)	
GPIONIEV	0x080C	PortN Interrupt Selection Register	
		(Fall down edge/Low level and Rising up edge/High level)	
GPIONIE	0x0810	PortN Interrupt Enable Register	
GPIONRIS	0x0814	PortN Interrupt Status Register (Raw)	
GPIONMIS	0x0818	PortN Interrupt Status Register (Masked)	
GPIONIC	0x081C	PortN Interrupt Clear Register	

1. GPIONDATA (Port Data Regsiter)

Address = (0xF080_C000) +(0x03FC)

Bit	Bit Symbol	Туре	Reset Value	Bit mask	Description
[31:8]	-	-	Undefined	-	Read undefined. Write as zero.
[7:0]	PN[7:0]	R/W	0xFF	Bm7:0	Port N data register

[Explanation]

a. <PN[7:0]>

Data register: Stores data.

See notes on data registers for the bit mask function.

2. GPIONDIR (Port Data Direction Register)

 $Address = (0xF080_C000) + (0x0400)$

Bit	Bit Symbol	Туре	Reset Value	Description
[31:8]	-	-	Undefined	Read undefined. Write as zero.
[7:0]	PN7C:PN0C	R/W	0x00	Port N data direction register
				0: Input
				1: Output

[Explanation]

a. <PN7C:PN0C>

Data direction register: Selects input or or output for each pin used as a general-purpose port.

0: Input

1: Output

3. GPIONFR1 (Port Function Register1)

 $Address = (0xF080_C000) + (0x0424)$

Bit	Bit Symbol	Туре	Reset Value	Description
[31:8]	-	-	Undefined	Read undefined. Write as zero.
[7:2]	PN7F1:PN2F1	R/W	0y000000	Port N function register 1
[1]	PN1F1	-	0у0	Must be written as "0".
				Read as "0".
[0]	PN0F1	R/W	0y0	Port N function register 1

[Explanation]

a. <PN7F1:PN2F1,PN0F1> Function register 1: Controls the function setting.

4. GPIONFR2 (Port Function Register2)

Address = (0xF080_C000) +(0x0428)

Bit	Bit Symbol	Туре	Reset Value	Description
[31:8]	-	-	Undefined	Read undefined. Write as zero.
[7:2]	PN7F2:PN2F2	-	0y000000	Must be written as "0".
				Read as "0".
[1:0]	PN1F2:PN0F2	R/W	0y00	Port N function register 2

[Explanation]

a. <PN7F2:PN2F2. PN1F2:PN0F2>

Function register 2: Controls the function setting.

Note: The function register 1 and function register 2 can only be set exclusively of each other. These registers must not simultaneously be written as "1" even for an instant.

2	able eletti i alletteri regieter eetting table						
	Mode	GPIONFR1	GPIONFR2				
	General-purpose	0	0				
	Function 1	1	0				
	Function 2	0	1				
	Prohibited	1	1				

Table 3 9 7	Function	register	setting table	
10016 0.0.1	i unction	register	setting table	

5. GPIONIS (Port Interrupt Selection Register (Level and Edge))

 $Address = (0xF080_C000) + (0x0804)$

Bit	Bit Symbol	Туре	Reset Value	Description
[31:8]	-	-	Undefined	Read undefined. Write as zero.
[7:4]	PN7IS:PN4IS	R/W	0y0000	Port N interrupt sensitivity register
				0: Edge-sensitive
				1: Level-sensitive
[3:0]	PN3IS:PN0IS	-	0y0000	Must be written as "0".
				Read as "0".

[Explanation]

a. <PN7IS:PN4IS>

Interrupt sensitivity register: Selects edge-sensitive or level-sensitive.

- 0: Edge-sensitive
- 1: Level-sensitive

6. GPIONIBE (Port Interrupt Selection Register (Fellow edge and Both edge))

Address = (0xF080_C000) +(0x0808)

Bit	Bit Symbol	Туре	Reset Value	Description
[31:8]	-	-	Undefined	Read undefined. Write as zero.
[7:4]	PN7IBE:PN4IBE	R/W	0y0000	Port N interrupt both edges register
				0: Single edge
				1: Both edges
[3:0]	PN3IBE:PN0IBE	-	0y0000	Must be written as "0".
				Read as "0".

[Explanation]

a. <PN7IBE:PN4IBE>

Interrupt both edges register: Selects single edge or both edges.

0: Single edge

1: Both edges

7. GPIONIEV (Port Interrupt Selection Register (Fall down edge/Low level and Rising up edge/High level))

Address = (0xF080_C000) +(0x080C)

Bit	Bit Symbol	Туре	Reset Value	Description
[31:8]	-	-	Undefined	Read undefined. Write as zero.
[7:4]	PN7IEV:PN4IEV	R/W	0y0000	Port N interrupt event register
				0: Falling edge/Low level
				1: Rising edge/High level
[3:0]	PN3IEV:PN0IEV	_	0y0000	Must be written as "0".
				Read as "0".

[Explanation]

a. <PN7IEV:PN4IEV>

Interrupt event register: Selects falling edge or rising edge for edge-sensitive interrupts, and Low level or High level for level-sensitive interrupts.

- 0: Falling edge/Low level
- 1: Risig edge/High level
- 8. GPIONIE (Port Interrupt Enable Register)

 $Address = (0xF080_C000) + (0x0810)$

Bit	Bit Symbol	Туре	Reset Value	Description
[31:8]	_	-	Undefined	Read undefined. Write as zero.
[7:4]	PN7IE:PN4IE	R/W	0y0000	Port N interrupt enable register
				0: Disable
				1: Enable
[3:0]	PN3IE:PN0IE	_	0y0000	Must be written as "0".
				Read as "0".

[Explanation]

a. <PN7IE:PN4IE>

Interrupt enable register: Enables or disables interrupts.

- 0: Disable
- 1: Enable

9. GPIONRIS (Port Interrupt Status Register (Raw))

Address = (0xF080_C000) +(0x0814)

Bit	Bit Symbol	Туре	Reset Value	Description
[31:8]	-	-	Undefined	Read undefined. Write as zero.
[7:4]	PN7RIS:PN4RIS	RO	0y0000	Port N interrupt raw status register
				0: Not requested
				1: Requested
[3:0]	PN3RIS:PN0RIS	-	0y0000	Writes prohibited.
				Read as "0".

[Explanation]

a. <PN7RIS:PN0RIS >

 $Interrupt \ raw \ status \ register \because Monitors \ the \ interrupt \ status \ before \ masking.$

0: Not requested

1: Requested

10. GPIONMIS (Port Interrupt Status Register (Masked))

 $Address = (0xF080_C000) + (0x0818)$

Bit	Bit Symbol	Туре	Reset Value	Description
[31:8]	-	-	Undefined	Read undefined. Write as zero.
[7:4]	PN7MIS:PN3MIS	RO	0y0000	Port N interrupt masked status register
				0: Not requested
				1: Requested
[3:0]	PN3MIS:PN0MIS	-	0y0000	Writes prohibited.
				Read as "0".

[Explanation]

a. <PN7MIS:PN0MIS>

Interrupt masked status register: Monitors the interrupt status after masking.

- 0: Not requested
- 1: Requested

11. GPIONIC (Port Interrupt Clear Register)

Address = (0xF080_C000) +(0x081C)

Bit	Bit Symbol	Туре	Reset Value	Description
[31:8]	-	-	Undefined	Read undefined. Write as zero.
[7:4]	PN7IC:PN4IC	WO	0y0000	Port N interrupt clear register
				0: No effect
				1: Clear
[3:0]	PN3IC:PN0IC	-	0y0000	Must be written as "0".
				Reads prohibited.

[Explanation]

a. <PN7IC:PN4C>

Interrupt clear register: Clears edge-sensitive interrupts.

0: No effect

1: Clear

3.9.2.14 Port P

Port P can be used as general-purpose input/output pins.

Port P can also be used as interrupt function pins (INT7-INT0).

Function-specific settings 1

Function	Data Value	Input/Output Select	Interrupt Enable
General-purpose input	GPIOPDATA	GPIOPDIR	GPIOPIE
Interrupt	*	0	0/1

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
INT7	INT6	INT5	INT4	INT3	INT2	INT1	INT0

Note: All bits support the interrupt function.

Function-specific settings 2

Function	Data Value	Input/Output Select	Interrupt Enable
General-purpose	GPIOPDATA	GPIOPDIR	GPIOPIE
output	*	1	

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
Output							

Base address = 0xF080_D000

Register	Address	Description
Name	(base+)	Description
GPIOPDATA	0x03FC	PortP Data Regsiter
GPIOPDIR	0x0400	PortP Data Direction Register
GPIOPIS	0x0804	PortP Interrupt Selection Register (Level and Edge)
GPIOPIBE	0x0808	PortP Interrupt Selection Register (Fellow edge and Both edge)
GPIOPIEV	0x080C	PortP Interrupt Selection Register
		(Fall down edge/Low level and Rising up edge/High level)
GPIOPIE	0x0810	PortP Interrupt Enable Register
GPIOPRIS	0x0814	PortP Interrupt Status Register (Raw)
GPIOPMIS	0x0818	PortP Interrupt Status Register (Masked)
GPIOPIC	0x081C	PortP Interrupt Clear Register

1. GPIOPDATA (Port Data Regsiter)

 $Address = (0xF080_D000) + (0x03FC)$

Bit	Bit Symbol	Туре	Reset Value	Bit mask	Description
[31:8]	-	-	Undefined	-	Read undefined. Write as zero.
[7:0]	PP[7:0]	R/W	0xFF	Bm7:0	Port P data register

[Explanation]

a. <PP[7:0]>

Data register: Stores data.

See notes on data registers for the bit mask function.

2. GPIOPDIR (Port Data Direction Register)

 $Address = (0xF080_D000) + (0x0400)$

Bit	Bit Symbol	Туре	Reset Value	Description
[31:8]	-	-	Undefined	Read undefined. Write as zero.
[7:0]	PP7C:PP0C	R/W	0x00	Port P data direction register
				0: Input
				1: Output

[Explanation]

a. <PP7C:PP0C>

Data direction register: Selects input or output for each pin used as a general-purpose port.

0: Input

1: Output

3. GPIOPIS (Port Interrupt Selection Register (Level and Edge))

Address = (0xF080_D000) +(0x0804)

Bit	Bit Symbol	Туре	Reset Value	Description
[31:8]	-	-	Undefined	Read undefined. Write as zero.
[7:0]	PP7IS:PP0IS	R/W	0x00	Port P interrupt sensitivity register
				0: Edge-sensitive
				1: Level-sensitive

[Explanation]

a. <PP7IS:PP0IS>

Interrupt sensitivity register: Selects edge-sensitive or level-sensitive.

0: Edge-sensitive

1: Level-sensitive

4. GPIOPIBE (Port Interrupt Selection Register (Fellow edge and Both edge))

Address = (0xF080_D000) +(0x0808)

Bit	Bit Symbol	Туре	Reset Value	Description
[31:8]	-	-	Undefined	Read undefined. Write as zero.
[7:0]	PP7IBE:PP0IBE	R/W	0x00	Port P interrupt both edges register
				0: Single edge
				1: Both edges

[Explanation]

a. <PP7IBE:PP0IBE>

Interrupt both edges register: Selects single edge or both edges.

0: Single edge

1: Both edges

5. GPIOPIEV (Port Interrupt Selection Register (Fall down edge/Low level and Rising up edge/High level))

Bit	Bit Symbol	Туре	Reset Value	Description
[31:8]	-	-	Undefined	Read undefined. Write as zero.
[7:0]	PC7IEV:PC0IEV	R/W	0x00	Port C interrupt event register
				0: Falling edge/Low level
				1: Rising edge/High level

Address = (0xF080_D000) +(0x080C)

[Explanation]

a. <PP7IEV:PP0IEV>

Interrupt event register: Selects falling edge or rising edge for edge-sensitive interrupts, and Low level or High level for level-sensitive interrupts.

- 0: Falling edge/Low level
- 1: Rising edge/High level
- 6. GPIOPIE (Port Interrupt Enable Register)

Address = (0xF080_D000) +(0x0810)

Bit	Bit Symbol	Туре	Reset Value	Description
[31:8]	_	-	Undefined	Read undefined. Write as zero.
[7:0]	PP7IE:PP0IE	R/W	0x00	Port P interrupt enable register
				0: Disable
				1: Enable

[Explanation]

a. <PP7IE:PP0IE >

Interrupt enable register: Enables or disables interrupts.

- 0: Disable
- 1: Enable

7. GPIOPRIS (Port Interrupt Status Register (Raw))

Address = (0xF080_D000) +(0x0814)

Bit	Bit Symbol	Туре	Reset Value	Description
[31:8]	_	-	Undefined	Read undefined. Write as zero.
[7:0]	PP7RIS:PP0RIS	RO	0x00	Port P interrupt raw status register
				0: Not requested
				1: Requested

[Explanation]

a. <PP7RIS:PP0RIS >

Interrupt raw status register: Monitors the interrupt status before masking.

0: Not requested

1: Requested

8. GPIOPMIS (Port Interrupt Status Register (Masked))

Address = (0xF080_D000) +(0x0818)

Bit	Bit Symbol	Туре	Reset Value	Description
[31:8]	_	-	Undefined	Read undefined. Write as zero.
[7:0]	PP7MIS:PP0MIS	RO	0x00	Port P interrupt masked status register
				0: Not requested
				1: Requested

[Explanation]

a. <PP7MIS:PP0MIS>

Interrupt masked status register: Monitors the interrupt status after masking.

0: Not requested

1: Requested

9. GPIOPIC (Port Interrupt Clear Register)

Address = (0xF080_D000) +(0x081C)

Bit	Bit Symbol	Туре	Reset Value	Description
[31:8]	_	-	Undefined	Read undefined. Write as zero.
[7:0]	PP7IC:PP0IC	WO	0x00	Port P interrupt clear register
				0: No effect
				1: Clear

[Explanation]

a. <PP7IC:PP0IC>

Interrupt clear register: Clears edge-sensitive interrupts.

0: No effect

1: Clear

3.9.2.15 Port R

Bit 2 of Port R can be used as a general-purpose input/output pin and bits [0:1] can be used as general-purpose output pins. (Bits [7:3] are not used.)

Port R can also be used as reset output (RESETOUTn), high-frequency clock output (FCOUT), and interrupt function (INTH) pins.

Function-specific settings 1

Function	Data Value	Input/Output Select	Functino Select 1	Function Select 2	Interrupt Enable
General-purpose input	GPIORDATA	GPIORDIR	GPIORFR1	GPIORFR2	GPIORIE
Interrupt	*	0	0	0	0/1

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
					INTH		

Note: Only bit 2 supports the interrupt function.

Function-specific settings 2

Function	Function Data Value Input/Output Select		Function Select 1	Function Select 2	Interrupt Enable
	GPIORDATA	GPIORDIR	GPIORFR1	GPIORFR2	GPIORIE
General-purpose output	*	1	0	0	

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
					Output	SMCWPn	Output

Function-specific settings 3

Function	Data Value	Input/Output Select	Function Select 1	Function Select 2	Interrupt Enable
	GPIORDATA	GPIORDIR	GPIORFR1	GPIORFR2	GPIORIE
General-purpose output	*	*	1	0	

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
							RESETOUTn

Function-specific settings 4

Function	Data Value	Input/Output Select	Function Select 1	Function Select 2	Interrupt Enable
	GPIORDATA	GPIORDIR	GPIORFR1	GPIORFR2	GPIORIE
General-purpose output	*	*	0	1	

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
						FCOUT	

Base address = 0xF080_E000

Register Name	Address (base+)	Description			
GPIORDATA	0x03FC	PortR Data Regsiter			
GPIORDIR	0x0400	PortR Data Direction Register			
GPIORFR1	0x0424	PortR Function Register1			
GPIORFR2	0x0428	PortR Function Register2			
GPIORIS	0x0804	PortR Interrupt Selection Register (Level and Edge)			
GPIORIBE	0x0808	PortR Interrupt Selection Register (Fellow edge and Both edge)			
GPIORIEV	0x080C	PortR Interrupt Selection Register			
		(Fall down edge/Low level and Rising up edge/High level)			
GPIORIE	0x0810	PortR Interrupt Enable Register			
GPIORRIS	0x0814	PortR Interrupt Status Register (Raw)			
GPIORMIS	0x0818	PortR Interrupt Status Register (Masked)			
GPIORIC	0x081C	PortR Interrupt Clear Register			

1. GPIORDATA (Port Data Regsiter)

 $Address = (0xF080_E000) + (0x03FC)$

Bit	Bit Symbol	Туре	Reset Value	Bit mask	Description
[31:8]	-	-	Undefined	-	Read undefined. Write as zero.
[7:0]	PR[7:0]	R/W	0xFD	Bm7:0	Port R data register

[Explanation]

a. <PR[7:0]>

Data register: Stores data.

See notes on data registers for the bit mask function.

2. GPIORDIR (Port Data Direction Register)

Address = (0xF080_E000) +(0x0400)

Bit	Bit Symbol	Туре	Reset Value	Description
[31:8]	-	-	Undefined	Read undefined. Write as zero.
[7:3]	PR7C:PR3C	_	0y00000	Must be written as "0".
				Reads prohibited.
[2]	PR2C	R/W	0у0	Port R data direction register
				0: Input
				1: Output
[1:0]	PR1C:PR0C	_	0y11	Must be written as "0".
				Reads prohibited.

[Explanation]

a. <PR7C:PR0C>

Data direction register: Selects input or output for each pin used as a general-purpose port.

0: Input

1: Output

3. GPIORFR1 (Port Function Register1)

Address = (0xF080_E000) +(0x0424)

Bit	Bit Symbol	Туре	Reset Value	Description	
[31:8]	-	-	Undefined	Read undefined. Write as zero.	
[7:1]	PR7F1:PR1F1	_	0y000000	Must be written as "0".	
				Reads prohibited.	
[0]	PR0F1	R/W	0y1	Port R function register 1	

[Explanation]

a. <PR7F1:PR1F1> Function register 1: Controls the function setting.

4. GPIORFR2 (Port Function Register2)

 $Address = (0xF080_E000) + (0x0428)$

Bit	Bit Symbol	Туре	Reset Value	Description
[31:8]	_	-	Undefined	Read undefined. Write as zero.
[7:2]	PR7F1:PR2F1	-	0y000000	Must be written as "0".
				Reads prohibited.
[1]	PR1F2	R/W	0у0	Port R function register 2
[0]	PR0F2	_	0у0	Must be written as "0".
				Reads prohibited.

[Explanation]

a. <PR1F2>

Function register 2: Controls the function setting.

Note: The function register 1 and function register 2 can only be set exclusively of each other. These registers must not simultaneously be written as "1" even for an instant.

ļ	able 5.9.6 Function register setting table						
	Mode	GPIORFR1	GPIORFR2				
	General-purpose	0	0				
	Function 1	1	0				
	Function 2	0	1				
	Prohibited	1	1				

 Table 3.9.8
 Function register setting table

5. GPIORIS (Port Interrupt Selection Register (Level and Edge))

 $Address = (0xF080_E000) + (0x0804)$

Bit	Bit Symbol	Туре	Reset Value	Description	
[31:8]	-	-	Undefined	Read undefined. Write as zero.	
[7:3]	PR7IS:PR3IS	-	0y00000	Must be written as "0".	
				Reads prohibited.	
[2]	PR2IS	R/W	0y0	Port R interrupt sensitivity register	
				0: Edge-sensitive	
				1: Level-sensitive	
[1:0]	PR1IS:PR0IS	_	0y00	Must be written as "0".	
				Reads prohibited.	

[Explanation]

a. <PR2IS>

Interrupt sensitivity register: Selects edge-sensitive or level-sensitive.

- 0: Edge-sensitive
- 1: Level-sensitive

6. GPIORIBE (Port Interrupt Selection Register (Fellow edge and Both edge))

Address = (0xF080_E000) +(0x0808)

Bit	Bit Symbol	Туре	Reset Value	Description	
[31:8]	-	-	Undefined	Read undefined. Write as zero.	
[7:3]	PR7IBE:PR3IBE	-	0y00000	Must be written as "0".	
				Reads prohibited.	
[2]	PR2IBE	R/W	0у0	Port R interrupt both edges register	
				0: Single edge	
				1: Both edges	
[1:0]	PR1IBE:PR0IBE	_	0у00	Must be written as "0".	
				Reads prohibited.	

[Explanation]

a. <PR2IBE>

Interrupt both edges register: Selects single edge or both edges.

0: Single edge

1: Both edges

7. GPIORIEV (Port Interrupt Selection Register (Fall down edge/Low level and Rising up edge/High level))

Address = (0xF080_E000) +(0x080C)

Bit	Bit Symbol	Туре	Reset Value	Description	
[31:8]	-	-	Undefined	Read undefined. Write as zero.	
[7:3]	PR7IEV:PR3IEV	-	0y00000	Must be written as "0".	
				Reads prohibited.	
[2]	PR2IEV	R/W	0y0	Port R interrupt event register	
				0: Falling edge/Low level	
				1: Rising edge/High level	
[1:0]	PR1IEV:PR0IEV	=	0y00	Must be written as "0".	
				Reads prohibited.	

[Explanation]

a. <3PR2IEV>

Interrupt event register: Selects falling edge or rising edge for edge-sensitive interrupts, and Low level or High level for level-sensitive interrupts.

- 0: Falling edge/Low level
- 1: Rising edge/High level
- 8. GPIORIE (Port Interrupt Enable Register)

Address = (0xF080_E000) +(0x0810)

Bit	Bit Symbol	Туре	Reset Value	Description
[31:8]	-	-	Undefined	Read undefined. Write as zero.
[7:3]	PR7IE:PR3IE	_	0y00000	Must be written as "0".
				Reads prohibited.
[2]	PR2IE	R/W	0у0	Port R interrupt enable register
				0: Disable
				1: Enable
[1:0]	PR1IE:PR0IE	-	0y00	Must be written as "0".
				Reads prohibited.

[Explanation]

a. <PR2IE >

Interrupt enable register: Enables or disables interrupts.

0: Disable

1: Enable

9. GPIORRIS (Port Interrupt Status Register (Raw))

Address = (0xF080_E000) +(0x0814)

Bit	Bit Symbol	Туре	Reset Value	Description
[31:8]	-	-	Undefined	Read undefined. Write as zero.
[7:3]	PR7RIS:PR3RIS	-	0y00000	Writes prohibited.
				Read as "0".
[2]	PR2RIS	RO	0у0	Port R interrupt raw status register
				0: Not requested
				1: Requested
[1:0]	PR1RIS:PR0RIS	-	0y00	Writes prohibited.
				Read as "0".

[Explanation]

a. <PR2RIS >

Interrupt raw status register: Monitors the interrupt status before masking.

0: Not requested

1: Requested

10. GPIORMIS (Port Interrupt Status Register (Masked))

 $Address = (0xF080_E000) + (0x0818)$

Bit	Bit Symbol	Туре	Reset Value	Description	
[31:8]	_	-	Undefined	Read undefined. Write as zero.	
[7:3]	PR7MIS:PR3MIS	-	0y00000	Writes prohibited.	
				Read as "0".	
[2]	PR2MIS	RO	0у0	Port R interrupt masked status register	
				0: Not requested	
				1: Requested	
[1:0]	PR1MIS:PR0MIS	-	0y00	Writes prohibited.	
				Read as "0".	

[Explanation]

a. <PR2MIS>

Interrupt masked status register: Monitors the interrupt status after masking.

- 0: Not requested
- 1: Requested

11. GPIORIC (Port Interrupt Clear Register)

Address = (0xF080_E000) +(0x081C)

Bit	Bit Symbol	Туре	Reset Value	Description	
[31:8]	-	-	Undefined	Read undefined. Write as zero.	
[7:3]	PR7IC:PR3IC	-	0y00000	Must be written as "0".	
				Reads prohibited	
[2]	PR2IC	WO	0у0	Porr R interrupt clear register	
				0: No effect	
				1: Clear	
[1:0]	PR1IC:PR0IC	_	0y00	Writes prohibited.	
				Read as "0".	

[Explanation]

a. <PR2IC>

Interrupt clear register: Clears edge-sensitive interrupts.

0: No effect

1: Clear

3.9.2.16 Port T

Port T can be used as general-purpose input/output pins.

Port T can also be used as USB external clock input (X1USB), UART function (U1CTSn, U1RXD, U1TXD), and SPI function (SP0DI, SP0DO, SP0CLK, SP0FSS) pins.

Function-specific setting 1

Function	Data Value	Input/Output Select	Function Select 1
General-purpose input	GPIOTDATA	GPIOTDIR	GPIOTFR1
NANDF select	*	0	0

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
Input							

Function-specific setting 2

Function	Data Value	Input/Output Select	Function Select 1
	GPIOTDATA	GPIOTDIR	GPIOTFR1
General-purpose output	*	1	0

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
Output							

Function-specific settings 3

Function	Data Value	Input/Output Select	Function Select 1
	GPIOTDATA	GPIOTDIR	GPIOTFR1
General-purpose output	*	*	1

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
X1USB	U1CTSn	U1RXD	U1TXD	SP0DI	SP0DO	SP0CLK	SP0FSS

Base address = 0xF080_F000

Register Name	Address (base+)	Description
GPIOTDATA	0x03FC	PortT Data Regsiter
GPIOTDIR	0x0400	PortT Data Direction Register
GPIOTFR1	0x0424	PortT Function Register1

1. GPIOTDATA (Port Data Regsiter)

 $Address = (0xF080_F000) + (0x03FC)$

Bit	Bit Symbol	Туре	Reset Value	Bit mask	Description
[31:8]	-	-	Undefined	-	Read undefined. Write as zero.
[7:0]	PT[7:0]	R/W	0xFF	Bm7:0	Port T data register

[Explanation]

a. <PT[7:0]>

Data register: Stores data.

See notes on data registers for the bit mask function.

2. GPIOTDIR (Port Data Direction Register)

Address = (0xF080_F000) +(0x0400)

Bit	Bit Symbol	Туре	Reset Value	Description
[31:8]	_	-	Undefined	Read undefined. Write as zero.
[7:0]	PT7C:PT0C	R/W	0x00	Port T data direction register
				0: Input
				1: Output

[Explanation]

a. <PT7C:PT0C>

Data direction register: Selects input or output for each pin used as a general-purpose port.

0: Input

1: Output

3. GPIOTFR1 (Port Function Register1)

Address = (0xF080_F000) +(0x0424)

Bit	Bit Symbol	Туре	Reset Value	Description
[31:8]	_	-	Undefined	Read undefined. Write as zero.
[7:0]	PT7F1:PT0F1	R/W	0x00	Port T function register 1

[Explanation]

a. <PT7F1:PT0F1>

Function register 1: Controls the function setting.

3.9.3 Notes

• Procedure for using the interrupt function

Interrupts can be detected in various modes depending on the sensitivity setting. The following procedure should be observed when the interrupt function is enabled (GPIOnIE=1) or the interrupt mode settings (GPIOnIS, GPIOnIBE, GPIOnIEV) are modified.

- 1. Disable interrupts in a relevant bit of the GPIOnIE register (GPIOnIE=0).
- 2. Set a relevant bit of the interrupt mode setting registers (GPIOnIS, GPIOnIBE, GPIOnIEV).
- 3. Clear the interrupt in a relevant bit of the GPIOnIC register (GPIOnIC=1).
- 4. Enable interrupts in a relevant bit of the GPIOnIE register (GPIOnIE=1).

3.10 MPMC

This LSI contains two types of memory controller with different specifications.

Depending on the connected external memory and settings of the external pin SELMEMC (port SN0), one of two types of controller (MPMC0/MPMC1) can be selected.

By set SELDVCCM (port SN1) and register PMCDRV, The Voltage of memory interface DVCCM can be selected to correspond to 1.8V or 3.3V. In the case of using SDRAM, moreover special Pins need be set and register need be configured. Show in the following Table

Momony contr		e for External memory	1.8V±0.1V	3.3V±0.3V		
memory contro	JI Sel					
		"0" input				
MPMCO	Pin set	SELDVCCM (Not	te1)	"0" input	"1" input	
IVIFIVICU		DMCCLKIN		"0"	input	
		PMCDRV <drv_m< td=""><td>MEM1:0></td><td>0y11</td><td>0y01</td></drv_m<>	MEM1:0>	0y11	0y01	
SDRAM is	Register set	16bit_bus	dee waar aanfin?	0x000	000010	
used		32bit_bus	amc_user_config3	0x0000011		
		SELMEMC (Note	91)	"1"input		
		SELDVCCM (Not	te1)	"0"input		
Distant				DMCDCLKP		
MPMC1	FIIISEL	In set		connect to		
		DIVICCENIN		External Memory	N/A	
				(Note2)		
	Register	PMCDRV <drv_< td=""><td>MEM1:0></td><td>0y11</td><td></td></drv_<>	MEM1:0>	0y11		
SDRAM is	configuration	16bit_bus	dma waar aanfig E	0x00000048		
used		32bit_bus	unic_usei_coniig_5	N/A		

Table 3.10.1	memory	/ control	and	Voltage	set
	memory		anu	vonago	301

Note1: The SELMEMC and SELDVCCM pins derive power from DVCC3IO. Therefore, "0" input should be 0 V and "1" input should be 3.3 V.

Note 2: In the case, Use MPMC1 to control DDR SDRAM, feedback clock DMCCLKP for MPMC1 data latch need to be input. As system application, DMCCLKP must be connected to DMCCLKIN (input pin) as short as possible. Use MPMC0 to control SDR SDRAM, or not control SDR SDRAM. DMCCLKIN need be connect to GND against port Leak current.

Following shows differences in support memory between MPMC0 and MPMC1.

MPMC0:	32-bit/16-bit Standard type SDR SDRAM $$
	32-bit/16-bit Mobile type SDR SDRAM
	32-bit/16-bit NORF (Separate bus only)
	32-bit/16-bit SRAM (Separate bus only)
MPMC1:	16-bit LVCMOS type DDR SDRAM
	32-bit/16-bit NORF (Separate bus only)
	32-bit/16-bit SRAM (Separate bus only)

Mode setting pin	Operation mode	
SELMEMC	Operation mode	
0	Use MPMC0	
1	Use MPMC1	

Note 1: SDR SDRAM and DDR SDRAM cannot be used concurrently.

Note 2: The two memory controllers cannot be used by dynamically switching between them. The memory controller to be used must be fixed.

Refer to chapters on respective circuits for details. Following shows MPMC blocks figure

MPMC

Corresponding to the connected external memory, set pin and register as following.

Note: The two memory controllers cannot be used by dynamically switching between them. The memory controller to be used must be fixed

mode set pin	Operation mode				
SELDVCCM	Operation mode				
0	Control pin of external memory except NAND Flash operate in the DVCCM= $1.8\pm0.1V$				
1	Control pin of external memory operate in the DVCCM=3.3±0.3V				

And correspond to power voltage, drive power of relation ports need be adjusted. And moreover in the case of using SDRAM, relation pins connection and the constant value setting register need be set.

Following Table show the setting.

port drive power set register	Operation mode	
PMCDRV <drv_mem1:0></drv_mem1:0>	Operation mode	
0y11	control pin of external memory except NAND Flash operate in the DVCCM=1.8±0.1V	
0y01	control pin of external memory operate in the DVCCM=3.3±0.3V	

Note: The PMCDRV register should be set during low-speed operation (PLL = OFF) after reset is released.

[Use SDR type SDRAM]

AC adjustment setting register	Operation mode		
dmc_user_config_3	Operation mode		
0x0000010	Use MPMC0 to control SDR type SDRAM, 16bit bus		
0x0000011	Use MPMC0 to control SDR type SDRAM, 32bit bus		

Note: The dmc_user_config_3 register should be set after reset is released and before SDRAM is initialized. This also applies after HOT_RESET by the PMC is released.

pin treatment	Operation mode			
DMCCLKIN	Operation mode			
This pin isn't used, Please set DMCCLKIN to GND	Use MPMC0 to control SDR type SDRAM, 16/32 bit bus			

[DDR type SDRAM]

Bus width setting register	Operation mode		
dmc_user_config_5	Operation mode		
020000048	Use MPMC1 to control DDR type SDRAM, 16bit bus		
0x0000048	(32bit bus DDR type SDRAM isn't supported)		

Note: The dmc_user_config_5 register should be set after reset is released and before SDRAM is initialized. This also applies after HOT_RESET by the PMC is released.

pin treatment	Operation mode					
DMCCLKIN	Operation mode					
Connect DMCCLKIN to DMCCLKP	Use MPMC1 to control DDR type SDRAM, 16bit bus (32bit bus DDR type SDRAM isn't supported)					

3.10.1 EBI (External Bus Interface)

Memory controller (MPMC0 and MPMC1) have a built-in SMC (Static Memory Contoroller) circuit and DMC (Dynamiv Memory Controller) circuit.

The external bus of SMC is used also as the external bus of DMC, in TMPA910CRA. However, SMC and DMC function as independent circuits completely, in Memory controller. DMC and SMC circuits are controlled by EBI (External Bus Interface).

EBI shfts the bus according to the Access request from Memory controller (DMC and SMC). EMI make one Access request wait when two Access request of DMC and SMC are generated, and one controller generate Access request continuously.

To avoid the one Access request is made to wait for a long time when one Access request is generated continuously, EMI manage the overlapped time, also it has a "Time out counter"; the bus is released forcibely.

In TMPA910CRA, DMC (High-speed access and Access request is high frequency) is preceded.

Therefore, it has function for DMC request is handled first by setting Time out cycle of SMC side to register.

DMC time out cycle	SMC time out cycle
1024 clock (Fixed)	to 1024 clock (Register setting enable)

Table 3.10.2 Timeout for EBI

SMC time out cycle setting register

base address = $0xF00A_{0000}$

Register Name	Address (base+)	Туре	Reset value	Description
smc_timeout	0x0050	R/W	0x000000FF	SMC Time Out Register

"0x00000000" cannot be set. "0x00000001~0x000000FF" only is effective.

The smc_timeout cycle is controlled by 10 bit counter, however, the effective bits in control register are Low-order 8bits only. The most significant bit (bit 7) of effective bits control High-order 3bit of the 10 bit couter.

smc_timeout register

Note: To avoid a UnderFlow in LCDC when setting DMC memory (SDRAM) to VRAM of LCDC, It is recommended to set this register to "01". Please use this function together the QOS function (refer to "DMC "section)

TOSHIBA

3.10.2 Overview of MPMC0

MPMC0 contains both a DMC (Dynamic Memory Controller) that control SDRAM and SMC (Static Memory Controller) that control NORF and SRAM.

Features of a DMC (Dynamic Memroy Controller):

- a. Supports 32-bit/16-bit SDR SDRAM
- b. Supports 1 channel Chip Select
- c. Supports adjusting function in each clock for SDRAM every timing.
- d. Supports power-down of active and precharge modes of SDRAM

Features of an SMC (Static Memory Controller):

- (a) Supports synchronous and asynchronous, 32-bit/16-bit SRAM and NOR flash (only separate buses are supported, and multiplex buses are not supported)
- (b) Supports 4 channels Chip Select
- (c) Cycle timings and memory data bus widths can be programmed for each Chip Select

3.10.3 Functions of MPMC0

Figure 3.10.1 is a simplified block diagram of MPMC0 circuits.

Figure 3.10.1 MPMC0 block diagram

- (a) Bus matrix
 - 1. About bus matrix of AHB0, AHB1, AHB2, AHB3, Arbiter mode is RoundRobin. Following diagram show the priority of bus request

dotted line is the point of handling end, bus is released

Priority of handling : $(1 \rightarrow 2) \rightarrow (3 \rightarrow 4) \rightarrow (5)$

2. About bus matrix 3 of LCDDA, DMAC1, DMAC2, USB, the mode of bus priority is by request timing, the early bus request is handled first. In the same time, handling priority is decided by hardware priority.

Hardware priority is shown following LCDDA > USB > DMAC1 > DMAC2

Following diagram show the priority of bus request.

dotted line is the point of handling end, bus is released

Handling priority : $(1 \rightarrow 2 \rightarrow 3 \rightarrow 5 \rightarrow 4)$

(b) Clock Variety

Control clock is controlled in PLLCG circuit,

- 1. Dynamic memory clock: use HCLK clock
- 2. Static memory clock: use HCLK or 1/2 HCLK

3.10.3.1 DMC (Dynamic Memeory Controller)

(1) DMC block diagram

Figure 3.10.2 is a DMC block diagram.

Figure 3.10.2 DMC block diagram

(a) Arbiter

The arbiter receives access commands from the DMC I/F and the memory manager, and after access arbitration, it passes the highest priority command to the memory I/F.

Data is read from the memory I/F to the DMC I/F.

(b) Memory manager

The memory manager monitors and controls status of DMC block.

- (2) DMC Function operation
 - (a) Arbiter operation
 - 1. read/write access arbitration
 - 2. For read accesses, Qos (Quality of service) is provided
 - 3. Hazard detection (Read after Read (RAR) and Write after Write (WAW)).
 - Note: For DMC , Read after write and Write after Read are not provided
 - 4. The arbiter keeps track of the activity of the bank of FSMs in the memory interface. This enables the arbiter to select an entry from the queue that does not stall the memory pipeline.
 - (b) Memory manager operation
 - 1. Monitor and control DMC circuit
 - 2. Issuing direct comandNOP
 - PRECHARGEALL
 - AUTOREFRESH
 - MODEREG
 - EXTENDED MODEREG.
 - 3. Auto Refresh function is provided

Set Auto Refresh timing by 15bit counter

(c) Memory interface operation

According to use, there are three kinds built-in FIFO

- 1. command FIFO
- 2. read data FIFO:10word
- 3. write data FIFO:10word
- * As the FIFO sizes of either read or write FIFO is 10 words.

For once translation, the max size is 8 words. (1word=32bit data)

(d) Power reduction function

DMC provide 2 kinds of Power reduction.

- 1. Set dmc_memc_cmd_3 register to realize Low Power (Self Refresh Mode).
- 2. Set dmc_memory_cfg_3 register, stop memory clock (DMCCLK) or as no memory access, CKE is set to invalid (CKE=low).

Note: The above two types of power reduction features cannot be used concurrently.

(e) QoS Function

The QoS function is the service function for outstanding handling at RoundRobin which is controlled by Bus matrix for MPMC.

 $dmc_id_x_cfg_3 < qos_min > is set by a register within the DMC on a port by port basis.$ $dmc_id_x_cfg_3 < qos_min > indicates a required read maximum latency.$

A QoS timeout causes the transaction to be raised to a higher priority.

You can also set the $dmc_id_x_cfg_3 < qos_min > to enable for a specific port so that its transfers are serviced with a higher priority.$

This impacts the overall memory band width because it limits the options of the scheduling algorithm.

If dmc_id_x_cfg_3<qos_enable> enable bit for the port is set in the register bank, the qos_max latency value is decremented every cycle until it reaches zero.

If the entry is still in the queue when the Internal counter value reaches zero then the entry becomes high priority. This is called a *time-out*.

If qos_min is set to enable, qos_max value is ignored and always it becomes maximum priority.

Table 3.10.3 Example SDR memory setup

Base address = 0xF430_0000

Register address	Write data	Description						
0x0014	0x0000006	Set cas_Latency to 3						
0x0018	0x0000000	Set t_dqss to 0						
0x001C	0x0000002	Set t_mrd to 2						
0x0020	0x0000007	Set t_ras to 7						
0x0024	0x000000B	Set t_rc to 11						
0x0028	0x0000015	Set t_rcd to 5 and schedule_rcd to 2						
0x002C	0x000001F2	Set t_rfc to 18 and schedule_rfc to 15						
0x0030	0x0000015	Set t_rp to 5 and schedule_rp to 2						
0x0034	0x0000002	Set t_rrd to 2						
0x0038	0x0000003	Set t_wr to 3						
0x003C	0x0000002	Set t_wtr to 2						
0x0040	0x0000001	Set t_xp to 1						
0x0044	0x0000000A	Set t_xsr to 10						
0x0048	0x00000014	Set t_esr to 20						
0x000C	0x00610020	Set memory configuration						
0x0010	0x00000A60	Set auto refresh period to be every 2656 dmc_mclkperiods						
0x0200	0x000000FF	Set chip select for chip 0 to be 0x00XXXXXX, rbc configuration						
0x0204	0x000140FE	Set chip select for chip 1 to be 0x40XXXXXX, rbc configuration						
0x0208	0x000180FF	Set chip select for chip 2 to be 0x80XXXXX, rbc configuration						
0x020C	0x000180FF	Set chip select for chip 3 to be 0xC0XXXXXX, rbc configuration						
0x0008	0x000C0000	Carry out chip0 Nop command						
0x0008	0x00000000	Carry out chip0 Prechargeallcommand						
0x0008	0x00040000	Carry out chip0 Autorefreshcommand						
0x0008	0x00040000	Carry out chip0 Autorefreshcommand						
0x0008	0x00080032	Carry out chip0 Mode Regcommand 0x32mapped to low add bits						
0x0008	0x001C0000	Carry out chip1 Nopcommand						
0x0008	0x00100000	Carry out chip1 Prechargeallcommand						
0x0008	0x00140000	Carry out chip1 Autorefreshcommand						
0x0008	0x00140000	Carry out chip1 Autorefreshcommand						
0x0008	0x00180032	Carry out chip1 Mode Regcommand 0x32mapped to low add bits						
0x0008	0x002C0000	Carry out chip2 Nopcommand						
0x0008	0x00200000	Carry out chip2 Prechargeallcommand						
0x0008	0x00240000	Carry out chip2 Autorefreshcommand						
0x0008	0x00240000	Carry out chip2 Autorefreshcommand						
0x0008	0x00280032	Carry out chip2 Mode Regcommand 0x32mapped to low add bits						
0x0008	0x003C0000	Carry out chip3 Nopcommand						
0x0008	0x00300000	Carry out chip3 Prechargeallcommand						
0x0008	0x00340000	Carry out chip3 Autorefreshcommand						
0x0008	0x00340000	Carry out chip3 Autorefreshcommand						
0x0008	0x00380032	Carry out chip3 Mode Regcommand 0x32mapped to low add bits						
0x0004	0x0000000	Change DMC state to Ready						

(3) DMC register explanation of MPMC0

Table 3.10.4 DMC SFR list of MPMC0

Base address= 0xF430_0000

Register	Address	Type	Report value	Description			
Name	(base+)	Type	ILESEL VAIUE				
dmc_memc_status_3	0x0000	RO	0x00000384	DMC Memory Controller Status Register			
dmc_memc_cmd_3	0x0004	WO	-	DMC Memory Controller Command Register			
dmc_direct_cmd_3	0x0008	WO	-	DMC Direct Command Register			
dmc_memory_cfg_3	0x000C	R/W	0x00010020	DMC Memory Configuration Register			
dmc_refresh_prd_3	0x0010	R/W	0x00000A60	DMC Refresh Period Register			
dmc_cas_latency_3	0x0014	R/W	0x0000006	DMC CAS Latency Register			
dmc_t_dqss_3	0x0018	R/W	0x0000001	DMC t_dqss Register			
dmc_t_mrd_3	0x001C	R/W	0x0000002	DMC t_mrd Register			
dmc_t_ras_3	0x0020	R/W	0x0000007	DMC t_ras Register			
dmc_t_rc_3	0x0024	R/W	0x000000B	DMC t_rc Register			
dmc_t_rcd_3	0x0028	R/W	0x0000001D	DMC t_rcd Register			
dmc_t_rfc_3	0x002C	R/W	0x00000212	DMC t_rfc Register			
dmc_t_rp_3	0x0030	R/W	0x000001D	DMC t_rp Register			
dmc_t_rrd_3	0x0034	R/W	0x0000002	DMC t_rrd Register			
dmc_t_wr_3	0x0038	R/W	0x0000003	DMC t_wr Register			
dmc_t_wtr_3	0x003C	R/W	0x0000002	DMC t_wtr Register			
dmc_t_xp_3	0x0040	R/W	0x0000001	DMC t_xp Register			
dmc_t_xsr_3	0x0044	R/W	0x000000A	DMC t_xsr Register			
dmc_t_esr_3	0x0048	R/W	0x00000014	DMC t_esr Register			
dmc_id_0_cfg_3	0x0100	R/W	0x0000000	DMC id_<0-3>_cfg Registers			
dmc_id_1_cfg_3	0x0104						
dmc_id_2_cfg_3	0x0108						
dmc_id_3_cfg_3	0x010C						
dmc_chip_0_cfg_3	0x0200	R/W	0x0000FF00	DMC chip_0_cfg Registers			
Reserved	0x0204	-	Undefined	Read undefined. Write as zero.			
Reserved	0x0208	-	Undefined	Read undefined. Write as zero.			
Reserved	0x020C	-	Undefined	Read undefined. Write as zero.			
Reserved	0x0300	-	Undefined	Read undefined. Write as zero.			
dmc_user_config_3	0x0304	WO	Undefined	DMC user_config Register			
Reserved	0x0E00	-	Undefined	Read undefined. Write as zero.			
Reserved	0x0E04	-	Undefined	Read undefined. Write as zero.			
Reserved	0x0E08	-	Undefined	Read undefined. Write as zero.			
Reserved	0x0FE0-0x0FEC	-	Undefined	Read undefined. Write as zero.			
Reserved	0x0FF0-0x0FFC		Undefined	Read undefined. Write as zero.			

Note: The APB supports only single-word 32-bit accesses. Read from or write to registers at single-word 32-bit.

MPMC0

The permission status of Register Read/Write access (dmc_memc_status_3 status) o:permit ×:prohibit

5		Read				Write				
Register Name	Туре	dmc_memc_status_3				dmc_memc_status_3				
Namo		config	Ready	Paused	Low_power	config	Ready	Paused	Low_power	
dmc_memc_status_3	RO	0	0	0	0	×	×	×	×	
dmc_memc_cmd_3	WO	×	×	×	×	0	0	0	0	
dmc_direct_cmd_3	WO	×	×	×	×	0	×	×	×	
dmc_memory_cfg_3	R/W	0	×	×	0	0	×	×	×	
dmc_refresh_prd_3	R/W	0	×	×	0	0	×	×	0	
dmc_cas_latency_3	R/W	0	×	×	0	0	×	×	0	
dmc_t_dqss_3	R/W	0	×	×	0	0	×	×	0	
dmc_t_mrd_3	R/W	0	×	×	0	0	×	×	0	
dmc_t_ras_3	R/W	0	×	×	0	0	×	×	0	
dmc_t_rc_3	R/W	0	×	×	0	0	×	×	0	
dmc_t_rcd_3	R/W	0	×	×	0	0	×	×	0	
dmc_t_rfc_3	R/W	0	×	×	0	0	×	×	0	
dmc_t_rp_3	R/W	0	×	×	0	0	×	×	0	
dmc_t_rrd_3	R/W	0	×	×	0	0	×	×	0	
dmc_t_wr_3	R/W	0	×	×	0	0	×	×	0	
dmc_t_wtr_3	R/W	0	×	×	0	0	×	×	0	
dmc_t_xp_3	R/W	0	×	×	0	0	×	×	0	
dmc_t_xsr_3	R/W	0	×	×	0	0	×	×	0	
dmc_t_esr_3	R/W	0	×	×	0	0	×	×	0	
dmc_id_0_cfg_3	R/W	0	×	×	0	0	×	×	0	
dmc_id_1_cfg_3										
dmc_id_2_cfg_3										
dmc_id_3_cfg_3										
dmc_chip_0_cfg_3	R/W	0	×	×	0	0	×	×	0	
dmc_user_config_3	WO	0	×	×	×	×	×	×	×	

MPMC0 register can't be read/write in reset status.

1. dmc_memc_status_3 (DMC Memory Controller Status Register)

 $Address = (0xF430_0000) + (0x0000)$

Bit	Bit Symbol	Туре	Reset Value	Description
[31:10]	-	-	Undefined	Read undefined. Write as zero.
[9]	memory_banks	RO	0y1	Setting value of the maximum number of banks that the DMC supports: Fixed to 0y1 (4 banks)
[8:7]	_	-	Undefined	Read undefined. Write as zero.
[6:4]	memory_ddr	RO	0у000	Types of SDRAM that the DMC supports: 0y000 = SDR SDRAM 0y001 = Reserved 0y011 = Reserved 0y010 = Reserved 0y1xx = Reserved
[3:2]	memory_width	RO	0y01	External memory bus width: 0y00 = 16-bit 0y01 = 32-bit 0y10 = Reserved 0y11 = Reserved.
[1:0]	memc_status	RO	0у00	Memory controller status: 0y00 = Config 0y01 = Ready 0y10 = Paused 0y11 = Low_power.

[Explanation]

a. <memory_banks>

Setting value of the maximum number of banks that the DMC supports: Fixed to 0y1 (4 banks)

b. <memory_ddr>

Types of SDRAM that the DMC supports: Fix to 0y000 (SDR SDRAM)

c. <memory_width>

External memory bus width:

- 0y00 = 16-bit
- 0y01 = 32-bit
- 0y10 = Reserved
- 0y11 = Reserved.
- d. <memc_status>

Memory controller status: 0y00 = Config 0y01 = Ready 0y10 = Paused 0y11 = Low Power About Low Power status,

About Low Power status, self-refresh Entry (command output), Low Power status can't be mirrored to <memc_status> at once. After time setted by dmc_t_esr_3<t_esr> register, and moreover a few clocks, <memc_status> is "Low Power".

2. dmc_memc_cmd_3 (DMC Memory Controller Command Register)

Address = (0xF430_0000) + (0x0004)

Bit	Bit Symbol	Туре	Reset Value	Description
[31:3]	-	_	Undefined	Read undefined. Write as zero.
[2:0]	memc_cmd	WO	_	Change the memory controller status: 0y000 = Go 0y001 = Sleep 0y010 = Wakeup 0y011 = Pause 0y100 = Configure.

[Explanation]

a. <memc_cmd>

Settings of this register can change the DMC FSM state. If a previously issued command for changing the states is being executed, a new command is issued after the previous command is completed.

When the register is set to Sleep, after All Bank Precharge is executed, CKE will be "L," and the SDRAM will self-refresh.

When Wakeup is executed, a self-refresh Exit command will be issued. The SDRAM then exits the self-refresh state.

Following diagram show DMC state transitions.

External memory state transitions

3. dmc_direct_cmd_3 (DMC Direct Command Register)

Address = (0xF430_0000) + (0x0008)

Bit	Bit Symbol	Туре	Reset Value	Description
[31:22]	-	-	Undefined	Read undefined. Write as zero.
[21:20]	chip_nmbr	WO	-	CS number: 0y00 = CS0
				other = Reserved
[19:18]	memory_cmd	WO	_	Determines the command required:
	-			0y00 = Prechargeall
				0y01 = Autorefresh
				0y10 = Modereg or Extended modereg access
				0y11 = NOP
[17:16]	bank_addr	WO	_	Bits mapped to external memory bank address bits when
				command is Modereg access.
				0y00 = bank0
				0y01 = bank1
				0y10 = bank2
				0y11 = bank3
[15:14]	=	-	Undefined	Read undefined. Write as zero.
[13:0]	addr_13_to_0	WO	-	Bits mapped to external memory address bits [13:0] when
				command is Modereg access.
				0x0000 to 0x3FFF

[Explanation]

This register enables writing of registers of various modes supported by external memory. Commands such as NOP, Prechargeall, and Autorefresh commands are generated. This register enables the initialization command.

a. <chip_nmbr>

Set CS number 0y00 = CS0 Other = Reserved

b. <memory_cmd>

Determines the command required: 0y00 = Prechargeall 0y01 = Autorefresh 0y10 = Modereg or Extended modereg access 0y11 = NOP

c. <bank_addr>

Bits mapped to external memory bank address bits when command is Modereg access. $0y00=\mathrm{bank}0$

- 0y01 = bank1
- 0y10 = bank2
- 0y11 = bank3
- d. <addr_13_to_0>

Bits mapped to external memory address bits [13:0] when command is Modereg access. 0x0000 to 0x3fff

4. dmc_memory_cfg_3 (DMC Memory Configuration Register)

Address = (0xF430_0000) + (0x000C)

Bit	Bit	Type	Reset	Description
DR	Symbol	1300	Value	Decemption
[31:23]	_	-	Undefined	Read undefined. Write as zero.
[22:21]	active_chips	R/W	0y00	Number of memory chips that can generate the Refresh
				command:
				0y00 = 1 chip
				0y01 = Reserved
				0y10 = Reserved
				0y11 = Reserved
[20:18]	-	-	Undefined	Read undefined. Write as zero.
[17:15]	memory_burst	R/W	0y010	Set the read and write access burst length for the SDRAM
				0y000 = Burst 1
				0y001 = Burst 2
				0y010 = Burst 4
				0y011 = Burst 8
				0y100 = Burst 16
[4.4]	aton many alash	DAV	00	
[14]	stop_mem_clock	R/W	UyU	memory clock stop:
				0y0 = Disable
[12]	auto nowor down	D/M	0.40	SDRAM auto Power down Enable:
[13]	auto_power_down	N/ V V	UyU	0y1 - Enable
				0y0 = Disable
[12:7]	power down prd	R/W	0y000000	Number of SDRAM automatic power-down memory clocks:
	·		,	(Min. value = 1)
				Oy000001 to Oy111111
[6]	ap_bit	R/W	0y0	The position of the auto-precharge bit in the memory
				address:
				0y0 = address bit 10
				0y1 = address bit 8.
[5:3]	row_bits	R/W	0y100	The number of row address bits:
				0y000 = 11 bits
				0y001 = 12 bits
				0y010 = 13 bits
				UyU11 = 14 bits
				0y100 = 15 Dits
				uyiui = io bits.
[2:0]	aalump bita	D AA/	0,000	$u_{11} = 1 \text{(Selveu}$
[2.0]	column_pits	r./ v v	0,000	0.000 = 8 bits
				0,000 = 0 bits
				$0_{1}0_{1}0_{1} = 0_{1}0_{1}0_{1}$
				0y010 = 10 bits 0y011 = 11 bits
				$0 \times 100 = 12$ bits
				other = Reserved

[Explanation]

a. <active_chips>

Number of memory chips that can generate the Refresh command

b. <memory_burst>

You must program this value into the SDRAM mode register using the direct_cmd Register , and it must match it.

c. <stop_mem_clock>

The clock supply to the SDRAM can be stopped while it is not being accessed. When an SDRAM access request occurs again, the clock is automatically restarted.

- Note1:Depending on the SDRAM type, it may not be possible to stop the clock supply to the SDRAM while it is not being accessed. When using this function, be sure to carefully check the specifications of the SDRAM to be used.
- Note2: The memory clock stop function and the SDRAM auto power down function cannot be used concurrently. Use only either of the two.
- d. <auto_power_down>

When no SDRAM access request is present and the command FIFO of the memory controller becomes empty, the SDRAM can be placed into power-down mode by automatically disabling CKE after the number of clock cycles specified in the power_down_prd field. When an SDRAM access request occurs again, CKE is automatically enabled to exit the power-down mode.

- Note: The memory clock stop function and the SDRAM auto power down function cannot be used concurrently. Use only either of the two.
- e. <row_bits>

The combination of row size, column size, BRC/RBC, and memory width must ensure that neither the MSB of the row address nor the MSB of the bank address exceeds address range [27:0].

f. <column_bits>

Set Column address bits.

5. dmc_refresh_prd_3 (DMC Refresh time Register)

 $Address = (0xF430_0000) + (0x0010)$

Bit	Bit Symbol	Туре	Reset Value	Description
[31:15]	-	-	Undefined	Read undefined. Write as zero.
[14:0]	refresh_prd	R/W	0x0A60	Auto-refresh cycle (number of memory clocks): 0x0000 to 0x7FFF

[Explanation]

a. <refresh_prd>

The value of the refresh counter decrement from the value set in the dmc_refresh_prd (the number of dmc_mclk cycles), and when the counter reaches zero, individual auto-refresh Refresh requests are made to external memory.

Figure 3.10.3 Auto refresh cycles operation example

6. dmc_cas_latency_3 (DMC CAS Latency Register)

Address = (0xF430_0000) + (0x0014)

Bit	Bit Symbol	Туре	Reset Value	Description
[31:4]	-	-	Undefined	Read undefined. Write as zero.
[3:1]	cas_latency	R/W	0y11	CAS latency setting (number of memory clocks)
[0]	_	_	Undefined	Read undefined. Write as zero.

[Explanation]

a. <cas_latency>

CAS latency setting (number of memory clocks)

Figure 3.10.4 CAS latency example (CL=2)

7. dmc_t_dqss_3 (DMC t_dqss Register)

 $Address = (0xF430_0000) + (0x0018)$

Bit	Bit Symbol	Туре	Reset Value	Description
[31:2]	-	-	Undefined	Read undefined. Write as zero.
[1:0]	t_dqss	R/W	0y01	DQS setting (number of memory clocks) in the initial state(before operation), fix to 0y00

[Explanation]

* There isn't DQS in MPMC0, <t_dqss> must be set to 0y00 in initial set.

8. dmc_t_mrd_3 (DMC t_mrd Register)

 $Address = (0xF430_0000) + (0x001C)$

Bit	Bit Symbol	Туре	Reset Value	Description
[31:7]	-	-	Undefined	Read undefined. Write as zero.
[6:0]	t_mrd	R/W	0y0000010	Mode register command time
				(Number of memory clocks)
				0x00 to 0x7F

[Explanation]

a. <t_mrd>

set time from mode register command(set by dmc_direct_cmd_3<addr_13_to_0>) to other command(memory clocks) 0x00 to 0x7F

* As the balance of the other AC setting or operation, the time of actual operation is longer than the value of <t_mrd>, the value of <t_mrd> setting is the minimum value of actual operation.

Figure 3.10.5 <t_mrd> set the time from mode register write to other commands

9. dmc_t_ras_3 (DMC t_ras Register)

Address = (0xF430_0000) + (0x0020)

Bit	Bit Symbol	Туре	Reset Value	Description
[31:4]	-	-	Undefined	Read undefined. Write as zero.
[3:0]	t_ras	R/W	0x7	Time between RAS and Precharge
				(number of memory clocks)
				0x0 to 0xF

[Explanation]

a. <t_ras> Time between RAS and Precharge (number of memory clocks) 0x0 to 0xF

* As the balance of the other AC setting or operation, the time of actual operation is longer than the value of <t_mrd>, the value of <t_mrd> setting is the minimum value of actual operation.

Figure 3.10.6 Time from Active to Precharge

10. dmc_t_rc_3 (DMC t_rc Register)

 $Address = (0xF430_0000) + (0x0024)$

Bit	Bit Symbol	Туре	Reset Value	Description
[31:4]	_	-	Undefined	Read undefined. Write as zero.
[3:0]	t_rc	R/W	0y1011	Delay between Active bank A and Active bank A(Number of memory clocks) 0x0 to 0xF

[Explanation]

a. <t_rc>

In the same BANK, The delay time from Active bank command to Active bank command (memory clocks)

0x0 to 0xF

* As the balance of the other AC setting or operation, the time of actual operation is longer than the value of <t_mrd>, the value of <t_mrd> setting is the minimum value of actual operation.

Figure 3.10.7 from Active bank A to Active bank A

11. dmc_t_rcd_3 (DMC t_rcd Register)

Address = (0xF430_0000) + (0x0028)

Bit	Bit Symbol	Туре	Reset Value	Description
[31:6]	-	=	Undefined	Read undefined. Write as zero.
[5:3]	schedule_rcd	R/W	0y011	Set min delay from RAS to CAS
				Set to (t_rcd setting value -3)
[2:0]	t_rcd	R/W	0y101	Set min delay from RAS to CAS
				(Number of memory clocks)
				0y000 to 0y111

[Explanation]

- a. <schedule_rcd>
 Set min delay from RAS to CAS
 Set to (t_rcd setting value -3)
- b. <t_rcd> Set min delay from RAS to CAS (Number of memory clocks) 0y000 to 0y111

Figure 3.10.8 The time from Active to read command

12. dmc_t_rfc_3 (DMC t_rfc Register)

Address = (0xF430_0000) + (0x002C)

Bit	Bit Symbol	Туре	Reset Value	Description
[31:10]	_	-	Undefined	Read undefined. Write as zero.
[9:5]	schedule_rfc	R/W	0y10000	Autorefresh command time setting
				Set to (t_rfc setting value -3)
[4:0]	t_rfc	R/W	0y10010	Autorefresh command time setting
				(Number of memory clocks)
				0y00000 to 0y11111

Note: When dmc_mclk and dmc_aclk have the same cycle(This product have the same cycle)

[Explanation]

a. <schedule_rfc>

Autorefresh command time setting Set to (t_rfc setting value -3)

a. <t_rfc>

Autorefresh command time setting (Number of memory clocks) 0y00000 to 0y11111

13. dmc _t_rp_3 (DMC t_rp Register)

Address = (0xF430_0000) + (0x0030)

Bit	Bit Symbol	Туре	Reset Value	Description
[31:6]	_	-	Undefined	Read undefined. Write as zero.
[5:3]	schedule_rp	R/W	0y011	Precharge delay setting to RAS
				Set to (t_rp setting value -3)
[2:0]	t_rp	R/W	0y101	Set the time from Precharge to RAS (number of memory clocks) 0y000 to 0y111

Note: When dmc_mclk and dmc_aclk have the same cycle(This product have the same cycle)

[Explanation]

a. <schedule_rp>

Set the time from Precharge to RAS Set to (t_rp setting value -3)

b. <t_rp>

Set the time from Precharge to RAS (number of memory clocks) 0y000 to 0y111

Figure 3.10.9 Precharge to command, Autorefresh time

14. dmc_t_rrd_3 (DMC t_rrd Register)

Address = (0xF430_0000) + (0x0034)

Bit	Bit Symbol	Туре	Reset Value	Description
[31:4]	-	-	Undefined	Read undefined. Write as zero.
[3:0]	t_rrd	R/W	0y0010	Delay time from Active bank A to Active bank B(Number of memory clocks) 0x0 to 0xF

[Explanation]

a. <t_rrd>

Delay time from Active bank A to Active bank B $\,$ (Number of memory clocks) 0x0 to 0xF

Figure 3.10.10 Time between Active bank A and other Active bank B

15. dmc_t_wr_3 (DMC t_wr Register)

Address = (0xF430_0000) + (0x0038)

Bit	Bit Symbol	Туре	Reset Value	Description
[31:3]	-	-	Undefined	Read undefined. Write as zero.
[2:0]	t_wr	R/W	0y011	Delay from write last data to Precharge
				(Number of memory clocks)
				0y000 to 0y111

[Explanation]

a. <t_wr>

Delay from write last data to Precharge (Number of memory clocks) Actual time (memory clocks): <t_wr> + 1.

But set <t_wr>=0y000, Actual time (memory clocks) = 9 memory clocks

16. dmc_t_wtr_3 (DMC t_wtr Register)

Address = (0xF430_0000) + (0x003C)

Bit	Bit Symbol	Туре	Reset Value	Description
[31:3]	-	-	Undefined	Read undefined. Write as zero.
[2:0]	t_wtr	R/W	0y010	setting value from write last data to read command (memory clocks) 0y000 to 0y111

[Explanation]

a. <t_wtr>

Setting value from write last data to read command (memory clocks) But set <t_wtr>=0y000, Actual time (memory clocks) = 8 memory clocks

17. dmc _t_xp_3 (DMC t_xp Register)

 $Address = (0xF430_0000) + (0x0040)$

Bit	Bit Symbol	Туре	Reset Value	Description
[31:8]	-	-	Undefined	Read undefined. Write as zero.
[7:0]	t_xp	R/W	0x01	Set the exit power-down command time (Number of memory clocks) 0x00 to 0xFF

[Explanation]

a. <t_xp>

From Powerdown Exit command to Exit time (memory clocks) Actual time (memory clocks): <t_xp> + 1

Figure 3.10.11 From Powerdown Exit command to Exit time

18. dmc_t_xsr_3 (DMC t_xsr Register)

 $Address = (0xF430_0000) + (0x0044)$

Bit	Bit Svmbol	Туре	Reset Value	Description
[31:8]	_	_	Undefined	Read undefined. Write as zero.
[7:0]	t_xsr	R/W	0x0A	time from Exit self-refresh command to other command
				(memory clocks)
				0x00 to 0xFF

[Explanation]

a. <t_xp>

Time from Exit self-refresh command to other command (memory clocks)

19. dmc_t_esr_3 (DMC t_esr Register)

Address = (0xF430_0000) + (0x0048)

Bit	Bit Symbol	Туре	Reset Value	Description
[31:8]	_	-	Undefined	Read undefined. Write as zero.
[7:0]	t_esr	R/W	0x14	the minimum time from self-refresh Entry to Exit: (memory clocks) 0x00 to 0xFF

Note: Self-refersh Exit have to use Wakeup direct command ,this register is only to set the the minimum time from self-refresh Entry to Exit

[Explanation]

a. <t_xp>

The minimum time from self-refresh Entry to Exit (memory clocks) $0 \mathrm{x00}$ to $0 \mathrm{xFF}$

Figure 3.10.12 SelfRefresh Entry and Exit

20. dmc_id_<0-3>_cfg_3 Registers

 $\begin{array}{l} Address = (0xF430_0000) + (0x0100) \\ Address = (0xF430_0000) + (0x0104) \\ Address = (0xF430_0000) + (0x0108) \\ Address = (0xF430_0000) + (0x010C) \end{array}$

Bit	Bit	Tuno	Reset	Description
DIL	Symbol	туре	Value	Description
[31:10]	_	-	Undefined	Read undefined. Write as zero.
[9:2]	qos_max	R/W	0x00	maximum QoS:
				0x00 ~ 0xFF
[1]	qos_min	R/W	0y0	minimum QoS selection:
				0y0 = QoS max mode
				0y1 = QoS min mode
[0]	qos_enable	R/W	0y0	Enable QoS
				0y0 = Disable
				0y1 = Enable

[Explanation]

QoS setting register list

register	address	correspond to AHB
dmc_id_0_cfg_3	0xF430_0000) + (0x0100)	AHB0 : CPU Data
dmc_id_1_cfg_3	0xF430_0000) + (0x0104)	AHB1 : CPU Inst
dmc_id_2_cfg_3	0xF430_0000) + (0x0108)	AHB2 : LCDC
dmc_id_3_cfg_3	0xF430_0000) + (0x010C)	AHB3 : multilayer matrix2
		(LCDDA,USB,DMAC1,DMAC2)

a. <qos_max>

QoS maximum value setting 0x00 to 0xFF

b. <qos_min>

Minimum QoS selection:

- 0y0 = QoS max mode
- 0y1 = QoS min mode,

QoS minimum have priority over QoS maximum

- c. <qos_enable> Enable QoS 0y0 = Disable
 - 0y1 = Enable

21. dmc_chip_0_cfg_3 (DMC chip_0_cfg Registers)

 $Address = (0xF430_0000) + (0x0200)$

Bit	Bit Symbol	Туре	Reset Value	Description
[31:17]	_	-	Undefined	Read undefined. Write as zero.
[16]	brc_n_rbc	R/W	0y0	Decode from the AHB address
				Memory address structure:
				0y0 = row, bank, column
				0y1 = bank, row, column
[15:8]	address_match	R/W	Oxff	Set the AHB address [31:24] and a comparison value:
				0x00 to 0xff
[7:0]	address_mask	R/W	0x00	Set the mask value of the AHB address [31:24]:
				The bit for the value "1" is a bit for address comparison
				0x00 to 0xff

[Explanation]

a. <brc_n_rbc>

Decode from the AHB address Memory address structure: 0y0 = row, bank, column 0y1 = bank, row, column

b. <address_match>

The setting value and the post-mask AHB address [31:24] are compared for CS. Do not access DMC area (Not used) except for setting CS area, if you accessed to memory under 512MB.

c. <address_mask>

For the Memory Address Mask Register, determine which bit in the address should be or should not be compared. Select "1" to compare, and select "0" to not compare.

22. dmc_user_config_3 (DMC user_config Register)

Address = (0xF430_0000) + (0x0304)

Bit	Bit Symbol	Туре	Reset Value	Description
[31:8]	_	-	Undefined	Read undefined. Write as zero.
[7]	Reserved	_	Undefined	Read undefined. Write as zero.
[6:4]	dmclk_out1	WO	0y000	SDR SDRAM constant value setting:
				must fix to 0y001
[3:1]	Reserved	-	Undefined	Read undefined. Write as zero.
[0]	sdr_width	WO	0у0	Set the memory data bus width of corresponding external SDR memory 0y0: 16bit
				0y1: 32bit

[Explanation]

a. <sdr_width>

Set the memory data bus width of corresponding external SDR memory 0y0 = 16bit 0y1 = 32bit

- 3.10.3.2 SMC (Static Memroy Controller)
 - (1) SMC block diagram

Figure 3.10.13 is a SMC block diagram.

Figure 3.10.13 SMC block diagram

(a) Arbiter

The Arbiter receives accesses from the memory manager. After arbitration, The highest priority command is practiced.

(b) Memory manager

Updates timing registers and controls commands issued to memory

- (2) SMC Functionfunction
 - (a) operation

The SMC states are as follows:

Reset: Power is applied to the device, and HRESETn is held Low.

- Ready: This indicates the normal operation of the device. The SMC register bank can be configured through the AHB. External memory can be accessed by the SMC.
- (b) APB slave I/F

The APB slave I/F adds a state wait for all reads and writes

Wait of more than one state is generated in the following cases:

outstanding direct commands.

A memory command is received, but the previous memory command has not been completed.

(c) Format

- 1. hazard
 - Read After Read (RAR)
 - Write After Write (WAW)
 - Read After Write (RAW)
 - Write After Read (WAR)
- 2. Access to the SRAM memory
 - Standard SRAM access
 - Memory address shifting
 - Memory burst alignment

The burst align settings are necessary in order to support asynchronous page mode memory. No burst align settings are necessary for NorFlash.

Memory burst length: The supported memory burst transfer length is from 1 to 32 beats. A continuous burst is also supported. However, the length of burst transfer is limited by the size of read and write data FIFOs. The burst length of read and write data is 4.

Booting using the SRAM: The lowest RAM CS (generally RAM CS0) can be booted.

(d) Memory manager operation

The memory manager controls the SMC state and manages update of chip configuration registers.

(e) Chip configuration registers

A function that synchronizes with switching of SMC operational modes

Direct commands

The SMC supports updating of the controller and memory configuration registers by using the following two methods:

Control by using memory device pins:

Software mechanism: Control by sequence requests by read/write commands

(f) Memory I/F operation

The memory I/F issues commands and controls their timings.

(3) SMC Registers for MPMC0

Register Name	Address (base+)	Туре	Reset value	Description	
smc_memc_status_3	0x0000	RO	0x00000000	SMC Memory Controller Status Register	
smc_memif_cfg_3	0x0004	RO	0x0000002D	SMC Memory Interface Configuration Register	
Reserved	0x0008	-	_	Prohibition against writing	
Reserved	0x000C	-	-	Prohibition against writing	
smc_direct_cmd_3	0x0010	WO	_	SMC Direct Command Register	
smc_set_cycles_3	0x0014	WO	_	SMC Set Cycles Register	
smc_set_opmode_3	0x0018	WO	_	SMC Set Opmode Register	
Reserved	0x0020	-	Undefined	Read undefined. Write as zero.	
smc_sram_cycles0_0_3 smc_sram_cycles0_1_3 smc_sram_cycles0_2_3 smc_sram_cycles0_3_3	0x0100 0x0120 0x0140 0x0160	RO	0x0002B3CC	SMC SRAM Cycles Registers <0-3>	
smc_opmode0_0_3 smc_opmode0_1_3 smc_opmode0_2_3 smc_opmode0_3_3	0x0104 0x0124 0x0144 0x0164	RO	0x00000802	SMC Opmode Registers <0-3>	
Reserved	0x0200	-	Undefined	Read undefined. Write as zero.	
Reserved	0x0204	-	Undefined	Read undefined. Write as zero.	
Reserved	0x0E00	-	Undefined	Read undefined. Write as zero.	
Reserved	0x0E04	-	Undefined	Read undefined. Write as zero.	
Reserved	0x0E08	_	Undefined	Read undefined. Write as zero.	
Reserved	0x0FE0-0x0FEC	_	Undefined	Read undefined. Write as zero.	
Reserved	0x0FF0-0x0FFC	-	Undefined	Read undefined. Write as zero.	

Table 3.10.5 MPMC0 SMC SFR list

Note: The APB supports only single-word 32-bit accesses. Read from or write to registers at single-word 32-bit.

1. smc_memc_status_3 (SMC Memory Controller Status Register)

Address = (0xF430_1000) + (0x0000)

Bit	Bit Symbol	Туре	Reset Value	Description
[31:1]	-	-	Undefined	Read undefined. Write as zero.
[0]	state	RO	0y0	SMC state:
				0y0 = Ready
				0y1 = Reserved

Note: This register cannot be read while it is being reset.

[Explanation]

a. <state>

SMC state 0y0 = Ready 0y1 = Reserved

2. smc_memif_cfg_3 (SMC Memory Interface Configuration Register)

Address = (0xF430_1000) + (0x0004)

Bit	Bit Symbol	Туре	Reset Value	Description
[31:6]	-	-	Undefined	Read undefined. Write as zero.
[5:4]	memory_width0	RO	0y10	Maximum external SMC memory bus width: 0y00 = Reserved. 0y01 = 16 bits 0y10 = 32 bits 0y11 = Reserved
[3:2]	memory_chips0	RO	0y11	Number of supported memory CS: 0y00 = 1 chip 0y01 = 2 chips 0y10 = 3 chips 0y11 = 4 chips
[1:0]	memory_type0	RO	0y01	Number of supported memory types: 0y00 = Reserved 0y01 = SRAM 0y10 = Reserved 0y11 = Reserved

Note: This register cannot be read while it is being reset.

[Explanation]

a. <memory_width0>

Maximum external SMC memory bus width: 0y01 = 16 bits 0y10 = 32 bits Others = Reserved

b. <memory_chips0>

The number of memory CS 0y00 = 1 chip 0y01 = 2 chips 0y10 = 3 chips 0y11 = 4 chips

c. <memory_type0> Support external memory 0y01 = SRAM Others = Reserved

3. smc_direct_cmd_3 (SMC Direct Command Register)

Address = (0xF430_1000) + (0x0010)

Bit	Bit Symbol	Туре	Reset Value	Description
[31:26]	_	_	Undefined	Read undefined. Write as zero.
[25:23]	chip_select	WO	_	CS selection: 0y000 = CS0 0y001 = CS1 0y010 = CS2 0y101 = CS3 0y100 to 0y111 = reserved
[22:21]	cmd_type	WO	_	current command: 0y00 = UpdateRegs and AHB command 0y01 = ModeReg access 0y10 = UpdateRegs 0y11 = ModeReg and updateRegs
[20]	-	-	Undefined	Reserved
[19:0]	addr	WO	_	When cmd_type accesses ModeReg: Add set value: specify the external memory address [19:0]. When cmd_type accesses UpdateRegs and the AHB command: Addr [15:0] is set to the set value of hwdata[15:0], and the set value of Addr[19:16] will be undefined.

Note: This register cannot be written while it is in the Reset state.

The **SMC Direct Command** Register transfers commands to external memory, and controls updating of the chip configuration register values held in the set_opmode and set_cycles registers.

[Explanation]

- a. <chip_select>
 - CS selection 0y000 = CS0 0y001 = CS1 0y010 = CS2 0y011 = CS3 0y100 to 0y111 = Reserved
- b. <cmd_type>

Current command: 0y00 = UpdateRegs and AHB command 0y01 = ModeReg access 0y10 = UpdateRegs 0y11 = ModeReg and date Regs

c. <addr>

When cmd_type accesses ModeReg: Addr set value: specify the external memory address [19:0].

When cmd_type accesses UpdateRegs and the AHB command:

Addr[15:0] is set to the set value of hwdata[15:0], and the set value of Addr[19:16] will be undefined.

4. smc_set_cycles_3 (SMC Set Cycles Register)

 $Address = (0xF430_{1000}) + (0x0014)$

Bit	Bit Symbol	Туре	Reset Value	Description
[31:23]	-	-	Undefined	Read undefined. Write as zero.
[22:20]	Reserved	-	Undefined	Read undefined. Write as zero.
[19:17]	Set_t5	WO	_	Set value of tTR (holding register) 0y000 to 0y111
[16:14]	Set_t4	WO	-	Set value of tPC (holding register) 0y000 to 0y111
[13:11]	Set_t3	WO	_	Set value of tWP (holding register) 0y000 to 0y111
[10:8]	Set_t2	WO	-	Set value of tCEOE (holding register) 0y000 to 0y111
[7:4]	Set_t1	WO	_	Set value of tWC (holding register) 0y0000 to 0y1111
[3:0]	Set_t0	WO	_	Set value of tRC (holding register) 0y0000 to 0y1111

Note: This register cannot be written while it is in the Reset state.

This register is provided to adjust the access cycle of static memory and should be set to satisfy the A.C. specifications of the memory to be used. If the wait signal by an external pin is also used, the access cycle is determined to satisfy the settings of both this register and the external wait signal.

Note that the external wait signal is only effective in synchronous mode. It cannot be used in asynchronous mode.

This is a holding register for enabling setting values. By executing one of the following operations, the settings values of this register will be updated to the configuration register of the memory manager and enabled.

(1) The smc_direct_cmd register executes register update.

(2) The smc_direct_cmd register accesses modereg or memory.

[Explanation]

a. $<Set_t5>$

Set value of t_{TR} (holding register). 0y000 to 0y111

b. <Set_t4>

Set value of $t_{\rm PC}$ (holding register). 0y000 to 0y111

- c. <Set_t3>Set value of twp (holding register).0y000 to 0y111
- d. <Set_t2>

Set value of $t_{\rm CEOE}$ (holding register). 0y000 to 0y111

e. $<Set_t1>$

Set value of twc (holding register). 0y0000 to 0y1111

f. $<Set_t0>$

Set value of $t_{\rm RC}$ (holding register). 0y0000 to 0y1111

5. smc_set_opmode_3 (SMC Set Opmode Register)

Address = (0xF430_1000) + (0x0018)

Bit	Bit	Type	Reset	Description
Dit	Symbol	туре	Value	Description
[31:16]	-	-	Undefined	Read undefined. Write as zero.
[15:13]	set_burst_align	WO	_	Memory burst boundary split setting: (holding register) 0y000 = bursts can cross any address boundary 0y001 = split at the 32-beat burst boundary 0y010 = split at the 64-beat burst boundary 0y011 = split at the 128-beat burst boundary 0y100 = split at the 256-beat burst boundary other = Reserve
[12]	set_bls	wo	-	bls timing setting: (holding register) 0y0 = chip select timing 0y1 = Reserved
[11]	set_adv	WO	_	Address valid (adv) field set value (holding register) 0y0 = Memory does not use the address signal smc_adv. 0y1 = Memory uses the address signal smc_adv.
[10]	-	-	Undefined	Read undefined. Write as zero.
[9:7]	set_wr_bl	WO	_	Write burst length (holding register) 0y000 = 1 beat 0y001 = 4 beats other = Reserved
[6]	set_wr_sync	WO	_	Holding register of the wr_sync field set value: 0y0 = asynchronous write mode 0y1 = synchronous write mode
[5:3]	set_rd_bl	WO	-	Read burst length (holding register) 0y000 = 1 beat 0y001 = 4 beats other = Reserved
[2]	set_rd_sync	WO	_	Holding register of the rd_sync field set value: 0y0 = asynchronous read mode 0y1 = synchronous read mode
[1:0]	set_mw	WO	_	Holding register of the memory data bus width set value: 0y00 = reserved 0y01 = 16 bits 0y10 = 32 bits 0y11 = reserved

Note: This register cannot be written while it is in the Reset state.

The APB registers smc_set_opmode act as holding registers, the settings values of this register are effective if either:

(1) The smc_direct_cmd Register indicates only a register update is taking place

(2) The smc_direct_cmd Register indicates either a modereg operation or a memory access has taken place, and is complete.

[Explanation]

a. <set_burst_align>

For asynchronous transfers:

When set_rd_sync = 0, MPMC0 always aligns read bursts to the memory burst boundary. When set_wr_sync = 0, MPMC0 always aligns write bursts to the memory burst boundary.

b. $<set_bls>$

This is a holding register for the SRAM chip smc_opmode Register. It controls the timing of bls (byte-lane strobe) output.

6. smc_sram_cycles0_0_3 (SMC SRAM Cycles Registers 0 <0>)

 $Address = (0xF430_{1000}) + (0x0100)$

Bit	Bit Symbol	Туре	Reset Value	Description
[31:20]	-	=	Undefined	Read undefined. Write as zero.
[19:17]	t_tr	RO	0y001	Turnaround time for SRAM chip configuration 0y000 to 0y111
[16:14]	t_pc	RO	0y010	page cycle time: 0y000 to 0y111
[13:11]	t_wp	RO	0y110	delay time for smc_we_n_0: 0y000 to 0y111
[10:8]	t_ceoe	RO	0y011	delay time for smc_oe_n_0: 0y000 to 0y111
[7:4]	t_wc	RO	0y1100	write cycle time: 0y0000 to 0y1111
[3:0]	t_rc	RO	0y1100	read cycle time: 0y0000 to 0y1111

Note: This register cannot be read while it is in the Reset state.

[Explanation]

a. <t_tr>

Turnaround time for SRAM chip configuration 0y000 to 0y111

b. <t_pc>

page cycle time: 0y000 to 0y111

c. <t_wp>

delay time for s smc_we_n_0: 0y000 to 0y111

- d. <t_ceoe>
 delay time for smc_oe_n_0:
 0y000 to 0y111
- e. <t_wc> Write cycle time 0y0000 to 0y1111
- f. <t_rc>

Read cycle time 0y0000 to 0y1111

7. smc_sram_cycles0_1_3 (SMC SRAM Cycles Registers 0 <1>)

 $Address = (0xF430_1000) + (0x0120)$

Bit	Bit Symbol	Туре	Reset Value	Description
[31:20]	-	=	Undefined	Read undefined. Write as zero.
[19:17]	t_tr	RO	0y001	Turnaround time for SRAM chip configuration 0y000 to 0y111
[16:14]	t_pc	RO	0y010	page cycle time: 0y000 to 0y111
[13:11]	t_wp	RO	0y110	delay time for smc_we_n_0: 0y000 to 0y111
[10:8]	t_ceoe	RO	0y011	delay time for smc_oe_n_0: 0y000 to 0y111
[7:4]	t_wc	RO	0y1100	write cycle time: 0y0000 to 0y1111
[3:0]	t_rc	RO	0y1100	read cycle time: 0y0000 to 0y1111

Note: This register cannot be read while it is in the Reset state.

[Explanation]

a. <t_tr>

Turnaround time for SRAM chip configuration 0y000 to 0y111

b. <t_pc>

page cycle time: 0y000 to 0y111

c. <t_wp>

delay time for s smc_we_n_0: 0y000 to 0y111

- d. <t_ceoe>
 delay time for smc_oe_n_0:
 0y000 to 0y111
- e. <t_wc> Write cycle time: 0y0000 to 0y1111
- f. <t_rc> Read cycle time:

0y0000 to 0y1111

8. smc_sram_cycles0_2_3 (SMC SRAM Cycles Registers 0 <2>)

 $Address = (0xF430_{1000}) + (0x0140)$

Bit	Bit Symbol	Туре	Reset Value	Description
[31:20]	-	=	Undefined	Read undefined. Write as zero.
[19:17]	t_tr	RO	0y001	Turnaround time for SRAM chip configuration 0y000 to 0y111
[16:14]	t_pc	RO	0y010	page cycle time: 0y000 to 0y111
[13:11]	t_wp	RO	0y110	delay time for smc_we_n_0: 0y000 to 0y111
[10:8]	t_ceoe	RO	0y011	delay time for smc_oe_n_0: 0y000 to 0y111
[7:4]	t_wc	RO	0y1100	write cycle time: 0y0000 to 0y1111
[3:0]	t_rc	RO	0y1100	read cycle time: 0y0000 to 0y1111

Note: This register cannot be read while it is in the Reset state.

[Explanation]

a. <t_tr>

Turnaround time for SRAM chip configuration 0y000 to 0y111

b. <t_pc>

page cycle time: 0y000 to 0y111

c. <t_wp>

delay time for s smc_we_n_0: 0y000 to 0y111

- d. <t_ceoe>
 delay time for smc_oe_n_0:
 0y000 to 0y111
- e. <t_wc> Write cycle time: 0y0000 to 0y1111
- f. <t_rc>

Read cycle time: 0y0000 to 0y1111

9. smc_sram_cycles0_3_3 (SMC SRAM Cycles Registers 0 <3>)

 $Address = (0xF430_{1000}) + (0x0160)$

Bit	Bit Symbol	Туре	Reset Value	Description
[31:20]	-	=	Undefined	Read undefined. Write as zero.
[19:17]	t_tr	RO	0y001	Turnaround time for SRAM chip configuration 0y000 to 0y111
[16:14]	t_pc	RO	0y010	page cycle time: 0y000 to 0y111
[13:11]	t_wp	RO	0y110	delay time for smc_we_n_0: 0y000 to 0y111
[10:8]	t_ceoe	RO	0y011	delay time for smc_oe_n_0: 0y000 to 0y111
[7:4]	t_wc	RO	0y1100	write cycle time: 0y0000 to 0y1111
[3:0]	t_rc	RO	0y1100	read cycle time: 0y0000 to 0y1111

Note: This register cannot be read while it is in the Reset state.

[Explanation]

a. <t_tr>

Turnaround time for SRAM chip configuration 0y000 to 0y111

b. <t_pc>

page cycle time: 0y000 to 0y111

c. <t_wp>

delay time for s smc_we_n_0: 0y000 to 0y111

- d. <t_ceoe>
 delay time for smc_oe_n_0:
 0y000 to 0y111
- e. <t_wc> Write cycle time:

0y0000 to 0y1111

f. <t_rc>

Read cycle time: 0y0000 to 0y1111

Page read

TENTATIVE


```
Synchronous read and asynchronous write
```


10. smc_opmode0_0_3 (SMC Opmode Registers 0<0>)

Address = (0xF430_1000) + (0x0104)

Bit	Bit Symbol	Туре	Reset Value	Description
[31:24]	address_match	RO	0x00	Setting value of compared with the address [31:24
[23:16]	address_mask	RO	0x00	Specify whether or not the address [31:24] can be
				compared
				"1"= can be compared
[15:13]	burst_align	RO	0y000	Memory burst boundary split set value:
				0y000 = bursts can cross any address boundary
				0y001 = split at the 32-beat burst boundary
				0y010 = split at the 64-beat burst boundary
				0y011 = split at the 128-beat burst boundary
				0y100 = split at the 256-beat burst boundary
				other = Reserve
[12]	bls	RO	0y0	bls timing :
				0y0 = chip select
				0y1 = Reserved
[11]	adv	RO	0y1	use address Advance signal
				(address valid)
				0y1 = use address Advance signal
[10]	-	-	Undefined	Read undefined. Write as zero.
[9:7]	wr_bl	RO	0y000	Write memory burst length:
				0y000 = 1beat
				0y001 = 4beats
				other = Reserved
[6]	wr_sync	RO	0y0	Memory operation mode:
				0y0 = asynchronous write operation
				0y1 = synchronous write operation
[5:3]	rd_bl	RO	0y000	Read memory burst length:
				0y000 = 1 beat
				0y001 = 4 beats
				other = Reserve
[2]	rd_sync	RO	0y0	Memory operation mode:
				0y0 = asynchronous read operation
				0y1 = synchronous read operation
[1:0]	mw	RO	0y10	Memory data bus width :
				0y00 = Reserved
				0y01 = 16bits
				0y10 = 32bits
				0y11 = Reserved

Note: These registers cannot be read while they are in the Reset state.

[Explanation]

a. <burst_align>

For asynchronous transfers:

When set_rd_sync = 0, MPMC0 always aligns read bursts to the memory burst boundary. When set_wr_sync = 0, MPMC0 always aligns write bursts to the memory burst boundary.

b. <bls>

11.	smc_opmode0_	_1_	_3	(SMC	Opmode	Registers	0<1>))
-----	--------------	-----	----	------	--------	-----------	-------	---

 $Address = (0xF430_1000) + (0x0124)$

Bit	Bit Symbol	Туре	Reset Value	Description
[31:24]	address_match	RO	0x00	Setting value of compared with the address [31:24]
[23:16]	address_mask	RO	0x00	Specify whether or not the address [31:24] can be
				compared
				"1"= can be compared
[15:13]	burst_align	RO	0y000	Memory burst boundary split set value:
				0y000 = bursts can cross any address boundary
				0y001 = split at the 32-beat burst boundary
				0y010 = split at the 64-beat burst boundary
				0y011 = split at the 128-beat burst boundary
				0y100 = split at the 256-beat burst boundary
				other = Reserve
[12]	bls	RO	0y0	bls timing :
				0y0 = chip select
				0y1 = Reserved
[11]	adv	RO	0y1	use address Advance signal
				(address valid)
				0y1 = use address Advance signal
[10]	-	-	Undefined	Read undefined. Write as zero.
[9:7]	wr_bl	RO	0y000	Write memory burst length:
				0y000 = 1beat
				0y001 = 4beats
				other = Reserved
[6]	wr_sync	RO	0y0	Memory operation mode:
				0y0 = asynchronous write operation
				0y1 = synchronous write operation
[5:3]	rd_bl	RO	0y000	Read memory burst length:
				0y000 = 1 beat
				0y001 = 4 beats
				other = Reserve
[2]	rd_sync	RO	0y0	Memory operation mode:
				0y0 = asynchronous read operation
				0y1 = synchronous read operation
[1:0]	mw	RO	0y10	Memory data bus width :
				0y00 = Reserved
				0y01 = 16bits
				0y10 = 32bits
				0y11 = Reserved

Note: These registers cannot be read while they are in the Reset state.

[Explanation]

a. <burst_align>

For asynchronous transfers:

When set_rd_sync = 0, MPMC0 always aligns read bursts to the memory burst boundary. When set_wr_sync = 0, MPMC0 always aligns write bursts to the memory burst boundary.

b. <bls>

12. smc_opmode0_2_3 (SMC Opmode Registers 0<2>)

Address = (0xF430_1000) + (0x0144)

Bit	Bit Symbol	Туре	Reset Value	Description
[31:24]	address_match	RO	0x00	Setting value of compared with the address [31:24]
[23:16]	address_mask	RO	0x00	Specify whether or not the address [31:24] can be compared "1"= can be compared
[15:13]	burst_align	RO	0у000	Memory burst boundary split set value: 0y000 = bursts can cross any address boundary 0y001 = split at the 32-beat burst boundary 0y010 = split at the 64-beat burst boundary 0y011 = split at the 128-beat burst boundary 0y100 = split at the 256-beat burst boundary other = Reserve
[12]	bls	RO	0у0	bls timing : 0y0 = chip select 0y1 = Reserved
[11]	adv	RO	0y1	use address Advance signal (address valid) 0y1 = use address Advance signal
[10]	-	-	Undefined	Read undefined. Write as zero.
[9:7]	wr_bl	RO	0у000	Write memory burst length: 0y000 = 1beat 0y001 = 4beats other = Reserved
[6]	wr_sync	RO	0у0	Memory operation mode: 0y0 = asynchronous write operation 0y1 = synchronous write operation
[5:3]	rd_bl	RO	0у000	Read memory burst length: 0y000 = 1 beat 0y001 = 4 beats other = Reserve
[2]	rd_sync	RO	0у0	Memory operation mode: 0y0 = asynchronous read operation 0y1 = synchronous read operation
[1:0]	mw	RO	0y10	Memory data bus width : 0y00 = Reserved 0y01 = 16bits 0y10 = 32bits 0y11 = Reserved

Note: These registers cannot be read while they are in the Reset state.

[Explanation]

a. <burst_align>

For asynchronous transfers:

When set_rd_sync = 0, MPMC0 always aligns read bursts to the memory burst boundary. When set_wr_sync = 0, MPMC0 always aligns write bursts to the memory burst boundary.

b. <bls>

13. smc_opmode0_3_3 (SMC Opmode Registers 0<3>)

Address = (0xF430_1000) + (0x0164)

Bit	Bit	Туре	Reset	Description
	Symbol		Value	
[31:24]	address_match	RO	0x00	Setting value of compared with the address [31:24
[23:16]	address_mask	RO	0x00	Specify whether or not the address [31:24] can be
				compared
[45:40]	hund alian	DO	0000	T = can be compared
[15:13]	burst_align	RU	09000	Memory burst boundary split set value: 0x000 - bursts con cross only address boundary
				0y000 = built is call closs any address boundary 0y001 = split at the 32-beat burst boundary
				0y001 = split at the 61-best burst boundary
				0y010 = split at the 128-beat burst boundary
				0y100 - split at the 256-beat burst boundary
				other = Reserve
[12]	bls	RO	0v0	bls timing ·
[]	510		0,0	0y0 = chip select
				0v1 = Reserved
[11]	adv	RO	0v1	use address Advance signal
				(address valid)
				0y1 = use address Advance signal
[10]	-	_	Undefined	Read undefined. Write as zero.
[9:7]	wr_bl	RO	0y000	Write memory burst length:
			-	0y000 = 1beat
				0y001 = 4beats
				other = Reserved
[6]	wr_sync	RO	0y0	Memory operation mode:
				0y0 = asynchronous write operation
				0y1 = synchronous write operation
[5:3]	rd_bl	RO	0y000	Read memory burst length:
				0y000 = 1 beat
				0y001 = 4 beats
				other = Reserve
[2]	rd_sync	RO	0y0	Memory operation mode:
				0y0 = asynchronous read operation
				0y1 = synchronous read operation
[1:0]	mw	RO	0y10	Memory data bus width :
				0y00 = Reserved
				0y01 = 16bits
				0y10 = 32bits
				0y11 = Reserved

Note: These registers cannot be read while they are in the Reset state.

[Explanation]

a. <burst_align>

For asynchronous transfers:

When set_rd_sync = 0, MPMC0 always aligns read bursts to the memory burst boundary. When set_wr_sync = 0, MPMC0 always aligns write bursts to the memory burst boundary.

b. <bls>

TOSHIBA

3.10.4 Overview of MPMC1

MPMC1 contains both a DMC (Dynamic Memory Controller) that control SDRAM and SMC (Static Memory Controller) that control NORF and SRAM.

Features of a DMC (Dynamic Memroy Controller):

- b. Supports 16-bit DDR SDRAM(only support LVCMOS type memory I/O power)
- c. Supports 1 channel Chip Select
- d. Supports adjusting function in each clock for SDRAM each timing.
- e. Supports power-down of active and precharge modes of SDRAM

Features of an SMC (Static Memory Controller):

- (d) Supports synchronous and asynchronous, 32-bit/16-bit SRAM and NOR flash (only separate buses are supported, and multiplex buses are not supported)
- (e) Supports 4 channels Chip Select
- (f) Cycle timings and memory data bus widths can be programmed for each Chip Select

3.10.5 Function of MPMC 1

Figure 3.10.15 is a simplified block diagram of MPMC0 circuits.

(a) Bus matrix

About bus matrix of AHB0, AHB1, AHB2, AHB3, AHB4, AHB5
 Arbiter mode is RoundRobin. Following diagram show the priority of bus request

dotted line is the point of handling end, bus is released

Priority of handling $: (1) \rightarrow (2) \rightarrow (3) \rightarrow (4) \rightarrow (5) \rightarrow (6) \rightarrow (7)$

2. About bus matrix 2 of LCDDA, USB, the mode of bus priority is by request timing, the early bus request is handled first. In the same time, handling priority is decided by hardware priority.

Hardware priority is shown following

Hardware priority is shown following LCDDA (high) $C1 \rightarrow USB$ (low)

dotted line is the point of handling end, bus

Handling priority $(1) \rightarrow (2) \rightarrow (3) \rightarrow (4)$

(b) Clock Variety

Control clock is controlled in PLLCG circuit,

- 1. Dynamic memory clock: Use HCLK clock
- 2. Static memory clock: Use HCLK or $1/2\ \text{HCLK}$

3.10.5.1 DMC (Dynamic Memeory Controller)

(1) DMC block diagram

Figure 3.10.16 DMC block diagram

When accessing to the DMC, the AHB bus cannot execute read and write operations at the same time.

(a) Arbiter

The arbiter receives access commands from the DMC I/F and the memory manager, and after access arbitration, it passes the highest priority command to the memory I/F. Data is read from the memory I/F to the DMC I/F.

(b) Memory manager

The memory manager monitors and controls the DMC current.
- (2) DMC Functionoperation
 - (a). Arbiter operation
 - 1. read/write access arbitration
 - 2. For read accesses, Qos (Quality of service) is provided
 - 3. Hazard detection (Read after Read (RAR) and Write after Write (WAW)).

Note: For DMC , Read after write and Write after Read are not provided

4. The arbiter keeps track of the activity of the bank of FSMs in the memory interface. This enables the arbiter to select an entry from the queue that does not stall the memory pipeline.

(b) Memory manager operation

- 1. Monitor and control DMC circuit
- 2. Issuing direct comandNOP
 - PRECHARGEALL
 - AUTOREFRESH
 - MODEREG
 - EXTENDED MODEREG.
- 3. Auto Refresh function is provided

Set Auto Refresh timing by 15bit counter

(c). Memory interface operation

According to use, there are three kinds built-in FIFO

- 1. command FIFO
- 2. read data FIFO:10word
- 3. write data FIFO:10word
- As the FIFO sizes of either read or write FIFO is 10 word.

For once translation, the max size is 8 word.

(d). Power reduction function

DMC provide 2 kinds of Power reduction.

- 1. Set dmc_memc_cmd_3 register to realize Low Power (Self Refresh Mode).
- 2. Set dmc_memory_cfg_3 register, stop memory clock (DMCCLK) or as no memory access, CKE is set to invalid (CKE=low).

Note: The above two types of power reduction features cannot be used concurrently.

(e).QoS Function

The QoS function is the service function for outstanding handling at RoundRobin which is controlled by Bus matrix for MPMC.

dmc_id_x_cfg_3<qos_min> is set by a register within the DMC on a port by port basis. dmc_id_x_cfg_3<qos_min> indicates a required read maximum latency.

A QoS timeout causes the transaction to be raised to a higher priority.

You can also set the $dmc_id_x_cfg_3 < qos_min > to enable for a specific port so that its transfers are serviced with a higher priority.$

This impacts the overall memory band width because it limits the options of the scheduling algorithm.

If dmc_id_x_cfg_3<qos_enable> enable bit for the port is set in the register bank, the qos_max latency value is decremented every cycle until it reaches zero.

If the entry is still in the queue when the Internal counter value reaches zero then the entry becomes high priority. This is called a *time-out*.

If qos_min is set to enable, qos_max value is ignored and always it becomes maximum priority.

Table 3.10.6 Example SDR memory setup

Base address 0xF431_0000

Register address	Write data	Description				
0x0014	0x0000004	Set cas_latency to 2				
0x0018	0x0000001	Set t_dqssto 1				
0x001C	0x0000002	Sett_mrdto 2				
0x0020	0x0000007	Sett_rasto 7				
0x0024	0x000000B	Set t_rcto 11				
0x0028	0x0000015	Set t_rcdto 5 and schedule_rcdto 2				
0x002C	0x000001F2	Set t_rfcto 18 and schedule_rfcto 15				
0x0030	0x0000015	Set t_rpto 5 and schedule_rpto 2				
0x0034	0x0000002	Set t_rrdto 2				
0x0038	0x0000003	Set t_wrto 3				
0x003C	0x0000002	Set t_wtrto 2				
0x0040	0x0000001	Set t_xpto 1				
0x0044	0x0000000A	Set t_xsrto 10				
0x0048	0x00000014	Set t_esrto 20				
0x000C	0x00610009	Set memory configurationa				
0x0010	0x00000640	Set auto refresh time to be every 1600 dmc_mclkperiods				
0x0200	0x000000FF	Set chip select for chip 0 to be 0x00XXXXXX, rbc configuration				
0x0204	0x000040FF	Set chip select for chip 1 to be 0x40XXXXXX, rbc configuration				
0x0208	0x000080FF	Set chip select for chip 2 to be 0x80XXXXXX, rbc configuration				
0x020C	0x0000C0FF	Set chip select for chip 3 to be 0xC0XXXXXX, rbc configuration				
0x0008	0x000C0000	Carry out chip0 Nopcommand				
0x0008	0x00000000	Carry out chip0 Prechargeallcommand				
0x0008	0x00090000	Extended mode register setup				
0x0008	0x00080122	Mode register setup				
0x0008	0x00000000	Precharge all				
0x0008	0x00040000	Carry out chip0 Autorefreshcommand				
0x0008	0x00040000	Carry out chip0 Autorefreshcommand				
0x0008	0x00080032	Carry out chip0 Mode Regcommand 0x32mapped to low add bits				
0x0008	0x001C0000	Carry out chip1 Nopcommand				
0x0008	0x00100000	Carry out chip1 Prechargeallcommand				
0x0008	0x00190000	Extended mode register setup				
0x0008	0x00180122	Mode register setup				
0x0008	0x00100000	Precharge all				

DDR memory setup example (continued)

Register address	Write data	Description
0x0008	0x00140000	Carry out chip1 Autorefreshcommand
0x0008	0x00140000	Carry out chip1 Autorefreshcommand
0x0008	0x00180032	Carry out chip1 Mode Regcommand 0x32mapped to low add bits
0x0008	0x002C0000	Carry out chip2 Nopcommand
0x0008	0x00200000	Carry out chip2 Prechargeallcommand
0x0008	0x00290000	Extended mode register setup
0x0008	0x00280122	Mode register setup
0x0008	0x00200000	Precharge all
0x0008	0x00240000	Carry out chip2 Autorefreshcommand
0x0008	0x00240000	Carry out chip2 Autorefreshcommand
0x0008	0x00280032	Carry out chip2 Mode Regcommand 0x32mapped to low add bits
0x0008	0x003C0000	Carry out chip3 Nopcommand
0x0008	0x00300000	Carry out chip3 Prechargeallcommand
0x0008	0x00390000	Extended mode register setup
0x0008	0x00380122	Mode register setup
0x0008	0x00300000	Precharge all
0x0008	0x00340000	Carry out chip3 Autorefreshcommand
0x0008	0x00340000	Carry out chip3 Autorefreshcommand
0x0008	0x00380032	Carry out chip3 Mode Regcommand 0x32mapped to low add bits
0x0004	0x00000000	Change DMC state to ready

Note: memory setting

- 9 column bits, 12 row bits

- precharge all bit is shared with A10

- power-down period of 0

- auto power down is disabled

- dynamic clock stopping is disabled

- memory burst size of 4.

TMPA910CRA

(3) MPMC1 DMC register

Table 3.10.7 SFR list

Base address= 0xF431_0000

Register	Address	Type Reset value		Description	
Name	(base+)	туре	Reset value	Description	
dmc_memc_status_5	0x0000	RO	0x00000390	DMC Memory Controller Status Register	
dmc_memc_cmd_5	0x0004	WO	-	DMC Memory Controller Command Register	
dmc_direct_cmd_5	0x0008	WO	-	DMC Direct Command Register	
dmc_memory_cfg_5	0x000C	R/W	0x00010020	DMC Memory Configuration Register	
dmc_refresh_prd_5	0x0010	R/W	0x00000A60	DMC Refresh Period Register	
dmc_cas_latency_5	0x0014	R/W	0x0000006	DMC CAS Latency Register	
dmc_t_dqss_5	0x0018	R/W	0x00000001	DMC t_dqss Register	
dmc_t_mrd_5	0x001C	R/W	0x00000002	DMC t_mrd Register	
dmc_t_ras_5	0x0020	R/W	0x0000007	DMC t_ras Register	
dmc_t_rc_5	0x0024	R/W	0x0000000B	DMC t_rc Register	
dmc_t_rcd_5	0x0028	R/W	0x0000001D	DMC t_rcd Register	
dmc_t_rfc_5	0x002C	R/W	0x00000212	DMC t_rfc Register	
dmc_t_rp_5	0x0030	R/W	0x0000001D	DMC t_rp Register	
dmc_t_rrd_5	0x0034	R/W	0x00000002	DMC t_rrd Register	
dmc_t_wr_5	0x0038	R/W	0x0000003	DMC t_wr Register	
dmc_t_wtr_5	0x003C	R/W	0x00000002	DMC t_wtr Register	
dmc_t_xp_5	0x0040	R/W	0x00000001	DMC t_xp Register	
dmc_t_xsr_5	0x0044	R/W	0x0000000A	DMC t_xsr Register	
dmc_t_esr_5	0x0048	R/W	0x00000014	DMC t_esr Register	
dmc_id_0_cfg_5	0x0100	R/W	0x00000000	DMC id_<0-5>_cfg Registers	
dmc_id_1_cfg_5	0x0104				
dmc_id_2_cfg_5	0x0108				
dmc_id_3_cfg_5	0x010C				
dmc_id_4_cfg_5	0x0110				
dmc_id_5_cfg_5	0x0114				
dmc_chip_0_cfg_5	0x0200	R/W	0x0000FF00	DMC chip_0_cfg Registers	
Reserved	0x0204	-	Undefined	Read undefined. Write as zero.	
Reserved	0x0208	-	Undefined	Read undefined. Write as zero.	
Reserved	0x020C	-	Undefined	Read undefined. Write as zero.	
Reserved	0x0300	-	Undefined	Read undefined. Write as zero.	
dmc_user_config_5	0x0304	WO	Undefined	DMC user_config Register	
Reserved	0x0E00	-	Undefined	Read undefined. Write as zero.	
Reserved	0x0E04	-	Undefined	Read undefined. Write as zero.	
Reserved	0x0E08	-	Undefined	Read undefined. Write as zero.	
Reserved	0x0FE0-0x0FEC	-	Undefined	Read undefined. Write as zero.	
Reserved	0x0FF0-0x0FFC	-	Undefined	Read undefined. Write as zero.	

Note: The APB supports only single-word 32-bit accesses. Read from or write to registers at single-word 32-bit.

MPMC1

				Read		Write			
Register Name	Туре	dmc_memc_status_5				dmc_memc_status_5			
Namo		config	Ready	Paused	Low_power	config	Ready	Paused	Low_power
dmc_memc_status_5	RO	0	0	0	0	×	×	×	×
dmc_memc_cmd_5	WO	×	×	×	×	0	0	0	0
dmc_direct_cmd_5	WO	×	×	×	×	0	×	×	×
dmc_memory_cfg_5	R/W	0	×	×	0	0	×	×	0
dmc_refresh_prd_5	R/W	0	×	×	0	0	×	×	0
dmc_cas_latency_5	R/W	0	×	×	0	0	×	×	0
dmc_t_dqss_5	R/W	0	×	×	0	0	×	×	0
dmc_t_mrd_5	R/W	0	×	×	0	0	×	×	0
dmc_t_ras_5	R/W	0	×	×	0	0	×	×	0
dmc_t_rc_5	R/W	0	×	×	0	0	×	×	0
dmc_t_rcd_5	R/W	0	×	×	0	0	×	×	0
dmc_t_rfc_5	R/W	0	×	×	0	0	×	×	0
dmc_t_rp_5	R/W	0	×	×	0	0	×	×	0
dmc_t_rrd_5	R/W	0	×	×	0	0	×	×	0
dmc_t_wr_5	R/W	0	×	×	0	0	×	×	0
dmc_t_wtr_5	R/W	0	×	×	0	0	×	×	0
dmc_t_xp_5	R/W	0	×	×	0	0	×	×	0
dmc_t_xsr_5	R/W	0	×	×	0	0	×	×	0
dmc_t_esr_5	R/W	0	×	×	0	0	×	×	0
dmc_id_0_cfg_5	R/W	0	×	×	0	0	×	×	0
dmc_id_1_cfg_5									
dmc_id_2_cfg_5									
dmc_id_3_cfg_5									
dmc_id_4_cfg_5									
dmc_id_5_cfg_5									
dmc_chip_0_cfg_3	R/W	0	×	×	0	0	×	×	0
dmc_user_config_3	WO	0	×	×	×	×	×	×	×

MPMC1 register can't be read/write in reset status.

1. dmc_memc_status_5 (DMC Memory Controller Status Register)

 $Address = (0xF431_0000) + (0x0000)$

Bit	Bit Symbol	Туре	Reset Value	Description
[31:10]	_	-	Undefined	Read undefined. Write as zero.
[9]	memory_banks	RO	0y1	Setting value of the maximum number of banks that the DMC supports: Fixed to 0y1 (4 banks)
[8:7]	_	-	Undefined	Read undefined. Write as zero.
[6:4]	memory_ddr	RO	0y001	Types of SDRAM that the DMC supports: 0y000 = Reserved 0y001 = DDR SDRAM 0y011 = Reserved 0y010 = Reserved 0y1xx = Reserved
[3:2]	memory_width	RO	0у00	External memory bus width: 0y00 = 16-bit 0y01 = 32-bit 0y10 = Reserved 0y11 = Reserved.
[1:0]	memc_status	RO	0у00	Memory controller status: 0y00 = Config 0y01 = Ready 0y10 = Paused 0y11 = Low_power.

[Explanation]

- a. <memory_banks>
 Setting value of the maximum number of banks that the DMC supports:
 Fixed to 0y1 (4 banks)
- b. <memory_ddr>

Types of SDRAM that the DMC supports: Only 0y001 (DDR SDRAM)

- c. <memory_width> External memory bus width: 0y00 = 16·bit 0y01 = 32·bit 0y10 = Reserved 0y11 = Reserved
- d. <memc_status>

Memory controller status: 0y00 = Config 0y01 = Ready 0y10 = Paused 0y11 = Low Power About Low Power status,

About Low Power status, self-refresh Entry (command output), Low Power status can't be mirrored to <memc_status> at once. After time setted by dmc_t_esr_5<t_esr> register, and moreover a few clocks, <memc_status> is "Low Power".

2. dmc_memc_cmd_5 (DMC Memory Controller Command Register)

Address = (0xF431_0000) + (0x0004)

Bit	Bit Symbol	Туре	Reset Value	Description
[31:3]	-	_	Undefined	Read undefined. Write as zero.
[2:0]	memc_cmd	WO	_	Change the memory controller status: 0y000 = Go 0y001 = Sleep 0y010 = Wakeup 0y011 = Pause 0y100 = Configure.

[Explanation]

a. <memc_cmd>

Settings of this register can change the DMC FSM state. If a previously issued command for changing the states is being executed, a new command is issued after the previous command is completed.

When the register is set to Sleep, after All Bank Precharge is executed, CKE will be "L," and the SDRAM will self-refresh.

When Wakeup is executed, a self-refresh Exit command will be issued. The SDRAM then exits the self-refresh state.

Following diagram show DMC state transitions.

External memory state transitions

3. dmc_direct_cmd_5 (DMC Direct Command Register)

 $Address = (0xF431_0000) + (0x0008)$

Bit	Bit Symbol	Туре	Reset Value	Description
[31:22]	_	-	Undefined	Read undefined. Write as zero.
[21:20]	chip_nmbr	WO	-	CS number: 0y00 = CS0 other = Reserved
[19:18]	memory_cmd	WO	-	Determines the command required: 0y00 = Prechargeall 0y01 = Autorefresh 0y10 = Modereg or Extended modereg access 0y11 = NOP
[17:16]	bank_addr	WO	-	Bits mapped to external memory bank address bits when command is Modereg access. 0y00 = bank0 0y01 = bank1 0y10 = bank2 0y11 = bank3
[15:14]	_	_	Undefined	Read undefined. Write as zero.
[13:0]	addr_13_to_0	WO	_	Bits mapped to external memory address bits [13:0] when command is Modereg access. 0x0000 to 0x3FFF

Note:

Use dmc_direct_cmd_5 to configure cas latency of DDR_SDRAM memory, The setting of cas latency(CL) is different from SDR_SDRAM. The CL setting value of DDR_SDRAM memory is lower "1" than the CL setting value of memory controler

Example: dmc_cas_latency_5 \leftarrow 0x00000004 (set memory controller CL=2) dmc_direct_cmd_5 \leftarrow 0x00080033 (set DDR SDRAM memory CL=3)

[Explanation]

This register enables writing of registers of various modes supported by external memory. Commands such as NOP, Prechargeall, and Autorefresh commands are generated. This register enables the initialization command.

a. <chip_nmbr>

Set CS number 0y00 = CS0 Other = Reserved

b. <memory_cmd>

Determines the command required: 0y00 = Prechargeall 0y01 = Autorefresh 0y10 = Modereg or Extended modereg access 0y11 = NOP

c. <bank_addr>

Bits mapped to external memory bank address bits when command is Modereg access. 0y00 = bank0

0y01 = bank1 0y10 = bank2

- 0y10 = bank20y11 = bank3
- d. <addr_13_to_0>

Bits mapped to external memory address bits $[13 \div 0]$ when command is Modereg access. 0x0000 to 0x3fff

4. dmc_memory_cfg_5 (DMC Memory Configuration Register)

Address = (0xF431_0000) + (0x000C)

Bit	Bit	Type	Reset	Description
	Symbol		Value	2000.19.001
[31:23]	-	-	Undefined	Read undefined. Write as zero.
[22:21]	active_chips	R/W	0y00	Number of memory chips that can generate the Refresh
				command:
				0y00 = 1 chip
				0y01 = Reserved
				0y10 = Reserved
				0y11 = Reserved
[20:18]	-	-	Undefined	Read undefined. Write as zero.
[17:15]	memory_burst	R/W	0y010	Set the read and write access burst length for the SDRAM
				0y000 = Reserved
				0y001 = Burst 2
				0y010 = Burst 4
				0y011 = Burst 8
				0y100 = Burst 16
				other = Reserved
[14]	stop_mem_clock	R/W	0y0	memory clock stop:
				0y1 = Enable
14.01		544		
[13]	auto_power_down	R/W	0y0	SDRAM auto Power down Enable:
				$0y_1 = Enable$
[12:7]	power down prd	P/\/	0,000000	0y0 = Disable
[12.7]	power_down_prd	D/ VV	0,000000	(Min_value = 1)
				(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
[6]	ap bit	R/W	0v0	The position of the auto-precharge bit in the memory
[-]			- , -	address:
				0y0 = address bit 10
				0y1 = address bit 8.
[5:3]	row_bits	R/W	0y100	The number of row address bits:
				0y000 = 11 bits
				0y001 = 12 bits
				0y010 = 13 bits
				0y011 = 14 bits
				0y100 = 15 bits
				0y101 = 16 bits.
				other = Reserved
[2:0]	column_bits	R/W	0y000	The number of column address bits:
				0y000 = 8 bits
				0y001 = 9 bits
				0y010 = 10 bits
				0y011 = 11 bits
				0y100 = 12 bits.
				other = Reserved

[Explanation]

a. <active_chips>

Number of memory chips that can generate the Refresh command:

b. <memory_burst>

You must program this value into the SDRAM mode register using the direct_cmd Register , and it must match it.

c. <stop_mem_clock>

The clock supply to the SDRAM can be stopped while it is not being accessed. When an SDRAM access request occurs again, the clock is automatically restarted.

Note1:Depending on the SDRAM type, it may not be possible to stop the clock supply to the SDRAM while it is not being accessed. When using this function, be sure to carefully check the specifications of the SDRAM to be used.

d. <auto_power_down>

When no SDRAM access request is present and the command FIFO of the memory controller becomes empty, the SDRAM can be placed into power-down mode by automatically disabling CKE after the number of clock cycles specified in the power_down_prd field. When an SDRAM access request occurs again, CKE is automatically enabled to exit the power-down mode.

- Note: The memory clock stop function and the SDRAM auto power down function cannot be used concurrently. Use only either of the two.
- e. <row_bits>

The combination of row size, column size, BRC/RBC, and memory width must ensure that neither the MSB of the row address nor the MSB of the bank address exceeds address range [27:0].

f. <column_bits> Set Column address bits.

Note2: The memory clock stop function and the SDRAM auto power down function cannot be used concurrently. Use only either of the two.

5. dmc_refresh_prd_5 (DMC Refresh time Register)

 $Address = (0xF431_0000) + (0x0010)$

Bit	Bit Symbol	Туре	Reset Value	Description
[31:15]	-	-	Undefined	Read undefined. Write as zero.
[14:0]	refresh_prd	R/W	0x0A60	Auto-refresh cycle (number of memory clocks): 0x0000 to 0x7FFF

[Explanation]

a. <refresh_prd>

The value of the refresh counter decrement from the value set in the dmc_refresh_prd (the number of dmc_mclk cycles), and when the counter reaches zero, individual auto-refresh Refresh requests are made to external memory.

6. dmc_cas_latency_5 (DMC CAS Latency Register)

 $Address = (0xF431_0000) + (0x0014)$

Bit	Bit Symbol	Туре	Reset Value	Description
[31:4]	-	-	Undefined	Read undefined. Write as zero.
[3:1]	cas_latency	R/W	0y11	CAS latency setting (number of memory clocks) 0y000 to 0y111
[0]	cas_half_cycle	R/W	0у0	set CAS latency offset 0y0 = 0 offset 0y1 = Half cycle offset

Note:

Use dmc_cas_latency_5 to configure cas latency of memory controler, The setting of cas latency(CL) is different from SDR_SDRAM. The CL setting value of DDR_SDRAM memory is lower "1" than the CL setting value of memory controler

Example: dmc_cas_latency_5 \leftarrow 0x0000004 (set memory controller CL=2) dmc_direct_cmd_5 \leftarrow 0x00080033 (set DDR SDRAM memory CL=3)

[Explanation]

a. <cas_latency>

CAS latency setting (number of memory clocks)

Figure 3.10.17 CAS latency example (CL=2)

7. dmc_t_dqss_5 (DMC t_dqss Register)

Address = (0xF431_0000) + (0x0018)

Bit	Bit Symbol	Туре	Reset Value	Description
[31:2]	-	-	Undefined	Read undefined. Write as zero.
[1:0]	t_dqss	R/W	0y01	DQS setting (number of memory clocks) 0y00 to 0y11

[Explanation]

a. $<t_dqss>$

Set DQS (memory clocks) 0y00 to 0y11

8. dmc_t_mrd_5 (DMC t_mrd Register)

Address = (0xF431_0000) + (0x001C)

Bit	Bit Symbol	Туре	Reset Value	Description
[31:7]	-	-	Undefined	Read undefined. Write as zero.
[6:0]	t_mrd	R/W	0y0000010	Mode register command time
				(Number of memory clocks)
				0x00 to 0x7F

[Explanation]

a. <t_mrd>

set time from mode register command(set by dmc_direct_cmd_5<addr_13_to_0>) to other command(memory clocks) 0x00 to 0x7F

Figure 3.10.18 <t_mrd> set the time from mode register write to command

9. dmc_t_ras_5 (DMC t_ras Register)

Address = (0xF431_0000) + (0x0020)

Bit	Bit Symbol	Туре	Reset Value	Description
[31:4]	-	-	Undefined	Read undefined. Write as zero.
[3:0]	t_ras	R/W	0x7	Time between RAS and Precharge (number of memory clocks)
				0x0 to 0xF

[Explanation]

a. $< t_ras >$

Time between RAS and Precharge (number of memory clocks) 0x0 to 0xF

Figure 3.10.19 Time from Active to Precharge

10. dmc_t_rc_5 (DMC t_rc Register)

 $Address = (0xF431_0000) + (0x0024)$

Bit	Bit Symbol	Туре	Reset Value	Description
[31:4]	-	-	Undefined	Read undefined. Write as zero.
[3:0]	t_rc	R/W	0y1011	Delay between Active bank A and Active bank A (Number of memory clocks)
				0x0 to 0xF

[Explanation]

a. <t_rc>

In the same BANK, The delay time from Active bank command to Active bank command (memory clocks) $0x0\ to\ 0xF$

Figure 3.10.20 from Active bank A to Active bank A

11. dmc_t_rcd_5 (DMC t_rcd Register)

Address = (0xF431_0000) + (0x0028)

Bit	Bit Symbol	Туре	Reset Value	Description
[31:6]	-	-	Undefined	Read undefined. Write as zero.
[5:3]	schedule_rcd	R/W	0y011	Set min delay from RAS to CAS
				Set to (t_rcd setting value -3)
[2:0]	t_rcd	R/W	0y101	Set min delay from RAS to CAS
				(Number of memory clocks)
				0y000 to 0y111

[Explanation]

- a. <schedule_rcd>
 Set min delay from RAS to CAS
 Set to (t_rcd setting value -3)
- b. <t_rcd>

Set min delay from RAS to CAS (Number of memory clocks) 0y000 to 0y111

Figure 3.10.21 The time from Active to read command

12. dmc_t_rfc_5 (DMC t_rfc Register)

Address = (0xF431_0000) + (0x002C)

Bit	Bit Symbol	Туре	Reset Value	Description
[31:10]	-	-	Undefined	Read undefined. Write as zero.
[9:5]	schedule_rfc	R/W	0y10000	Autorefresh command time setting
				Set to (t_rfc setting value -3)
[4:0]	t_rfc	R/W	0y10010	Autorefresh command time setting
				(Number of memory clocks)
				0y00000 to 0y11111

Note: When dmc_mclk and dmc_aclk have the same cycle(This product have the same cycle)

[Explanation]

a. <schedule_rfc>

Autorefresh command time setting Set to (t_rfc setting value -3)

b. <t_rfc>

Autorefresh command time setting (Number of memory clocks) 0y00000 to 0y11111

13. dmc _t_rp_5 (DMC t_rp Register)

Address = (0xF431_0000) + (0x0030)

Bit	Bit Symbol	Туре	Reset Value	Description
[31:6]	-	=	Undefined	Read undefined. Write as zero.
[5:3]	schedule_rp	R/W	0y011	Precharge delay setting to RAS
				Set to (t_rp setting value -3)
[2:0]	t_rp	R/W	0y101	Set the timer from Precharge to RAS (number of memory
				clocks)
				0y000 to 0y111

Note: When dmc_mclk and dmc_aclk have the same cycle(This product have the same cycle)

[Explanation]

a. <schedule_rp>

Set the timer from Precharge to RAS Set to (t_rp setting value -3)

b. <t_rp>

Set the timer from Precharge to RAS (number of memory clocks) 0y000 to 0y111

Figure 3.10.22 Precharge to command, Autorefresh time

14. dmc_t_rrd_5 (DMC t_rrd Register)

Address = (0xF431_0000) + (0x0034)

Bit	Bit Symbol	Туре	Reset Value	Description
[31:4]	-	-	Undefined	Read undefined. Write as zero.
[3:0]	t_rrd	R/W	0y0010	Delay time from Active bank A to Active bank B (Number of memory clocks) 0x0 to 0xF

[Explanation]

a. <t_rrd>

Delay time from Active bank A to Active bank B $\,$ (Number of memory clocks) 0x0 to 0xF

Figure 3.10.23 Time between Active bank A and other Active bank B

15. dmc_t_wr_5 (DMC t_wr Register)

 $Address = (0xF431_0000) + (0x0038)$

Bit	Bit Symbol	Туре	Reset Value	Description
[31:3]	-	-	Undefined	Read undefined. Write as zero.
[2:0]	t_wr	R/W	0y011	Delay from write last data to Precharge (Number of memory clocks) 0y000 to 0y111

[Explanation]

a. <t_wr>

Delay from write last data to Precharge (Number of memory clocks) Actual time (memory clocks) : <t_wr> + 1.

But set <t_wr>=0y000, Actual time (memory clocks)= 9 memory clocks

16. dmc_t_wtr_5 (DMC t_wtr Register)

Address = (0xF431_0000) + (0x003C)

Bit	Bit Symbol	Туре	Reset Value	Description
[31:3]	-	_	Undefined	Read undefined. Write as zero.
[2:0]	t_wtr	R/W	0y010	Setting value from write last data to read command (memory clocks) 0y000 to 0y111

[Explanation]

a. <t_wtr>

Setting value from write last data to read command (memory clocks) But set <t_wtr>=0y000, Actual time (memory clocks)= 8 memory clocks

17. dmc _t_xp_5 (DMC t_xp Register)

 $Address = (0xF431_0000) + (0x0040)$

Bit	Bit Symbol	Туре	Reset Value	Description
[31:8]	-	-	Undefined	Read undefined. Write as zero.
[7:0]	t_xp	R/W	0x01	Set the exit power-down command time (Number of memory clocks) 0x00 to 0xFF

[Explanation]

a. <t_xp>

From Powerdown Exit command to Exit time (memory clocks) Actual time (memory clocks): <t_xp> + 1

Figure 3.10.24 From Powerdown Exit command to Exit time

18. dmc_t_xsr_5 (DMC t_xsr Register)

 $Address = (0xF431_0000) + (0x0044)$

Bit	Bit Symbol	Туре	Reset Value	Description
[31:8]	_	_	Undefined	Read undefined. Write as zero.
[7:0]	t_xsr	R/W	0x0A	time from Exit self-refresh command to other command
				(memory clocks) 0x00 to 0xFF

[Explanation]

a. <t_xp>

Time from Exit self-refresh command to other command (memory clocks)

19. dmc_t_esr_5 (DMC t_esr Register)

 $Address = (0xF431_0000) + (0x0048)$

Bit	Bit Symbol	Туре	Reset Value	Description
[31:8]	_	-	Undefined	Read undefined. Write as zero.
[7:0]	t_esr	R/W	0x14	The minimum time from self-refresh Entry to Exit: (memory clocks)
				0x00 to 0xFF

Note: Self-refersh Exit have to use Wakeup direct command, this register is only to set the the minimum time from self-refresh Entry to Exit

[Explanation]

a. <t_xp>

The minimum time from self-refresh Entry to Exit (memory clocks) 0x00 to 0xFF

Figure 3.10.25 SelfRefresh Entry and Exit

20. dmc_id_<0-5>_cfg_5 (DMC id_<0-5>_cfg Registers)

 $\begin{array}{l} \mbox{Address} = (0xF431_0000) + (0x0100) \\ \mbox{Address} = (0xF431_0000) + (0x0104) \\ \mbox{Address} = (0xF431_0000) + (0x0108) \\ \mbox{Address} = (0xF431_0000) + (0x0110) \\ \mbox{Address} = (0xF431_0000) + (0x0114) \\ \mbox{Address}$

Bit	Bit	Turne	Reset	Description
	Symbol	туре	Value	Description
[31:10]	_	-	Undefined	Read undefined. Write as zero.
[9:2]	qos_max	R/W	0x00	maximum QoS:
				0x00 ~ 0xFF
[1]	qos_min	R/W	0y0	minimum QoS selection:
				0y0 = QoS max mode
				0y1 = QoS min mode
[0]	qos_enable	R/W	0y0	QoS setting:
				0y0 = Disable
				0y1 = Enable

QoS setting register list

register	address	correspond to AHB
dmc_id_0_cfg_5	0xF431_0000) + (0x0100)	AHB0 : CPU Data
dmc_id_1_cfg_5	0xF431_0000) + (0x0104)	AHB1 : CPU Inst
dmc_id_2_cfg_5	0xF431_0000) + (0x0108)	AHB2 : LCDC
dmc_id_3_cfg_5	0xF431_0000) + (0x010C)	AHB3 : multilayer matrix2
		(LCDDA, USB)
dmc_id_4_cfg_5	0xF431_0000) + (0x0110)	AHB4 : DMA1
dmc_id_5_cfg_5	0xF431_0000) + (0x0114)	AHB5 : DMA2

[Explanation]

- a. <qos_max>
 - QoS maximum value setting 0x00 to 0xFF
- b. <qos_min>

Minimum QoS selction:

- 0y0 = QoS max mode
- 0y1 = QoS min mode,

 QoS minimum have priority over QoS maximum

- c. <qos_enable>
 - Enable QoS
 - 0y0 = Disable
 - 0y1 = Enable

21. dmc_chip_0_cfg_5 (DMC chip_0_cfg Registers)

 $Address = (0xF431_0000) + (0x0200)$

Bit	Bit Symbol	Туре	Reset Value	Description
[31:17]	_	-	Undefined	Read undefined. Write as zero.
[16]	brc_n_rbc	R/W	0y0	Decode from the AHB address
				Memory address structure:
				0y0 = row, bank, column
				0y1 = bank, row, column
[15:8]	address_match	R/W	Oxff	Set the AHB address [31:24] and a comparison value:
				0x00 to 0xff
[7:0]	address_mask	R/W	0x00	Set the mask value of the AHB address [31:24]:
				The bit for the value "1" is a bit for address comparison
				0x00 to 0xff

[Explanation]

a. <brc_n_rbc>

Decode from the AHB address Memory address structure: 0y0 = row, bank, column 0y1 = bank, row, column

b. <address_match>

The setting value and the post-mask AHB address [31:24] are compared for CS. Do not access DMC area (Not used) except for setting CS area, if you accessed to memory under 512MB.

c. <address_mask>

For the Memory Address Mask Register, determine which bit in the address should be or should not be compared. Select "1" to compare, and select "0" to not compare.

22. dmc_user_config_5 (DMC user_config Register)

 $Address = (0xF431_0000) + (0x0304)$

Bit	Bit	Туре	Reset	Description
	Symbol		Value	
[31:8]	_	-	Undefined	Read undefined. Write as zero.
[7]	Reserved	-	Undefined	Read undefined. Write as zero.
[6:4]	dqs_in	WO	0y000	DDR SDRAM constant value setting:
				Fix to 0y100
[3:1]	dmc_clk_in	WO	0y000	DDR SDRAM constant value setting:
				Fix to 0y100
[0]	sdr_width	WO	0y0	data bus width of external DDR SDRAM :
				0y0 : 16bit
				0y1 : Reserved

[Explanation]

a. <sdr_width>

Set the memory data bus width of corresponding external SDR memory 0y0 = 16bit 0y1 = reserved

(1) SMC (Static Memroy Controller)

Figure 3.10.26 is a SMC block diagram.

Figure 3.10.26 SMC block diagram

(a) Arbiter

The Arbiter receives accesses from the memory manager. After arbitration, The highest priority command is practiced.

(b) Memory manager

Updates timing registers and controls commands issued to memory

- (2) SMC Functionfunction
 - (a) Operation

The SMC states are as follows:

Reset: Power is applied to the device, and HRESETn is held Low.

- Ready: This indicates the normal operation of the device. The SMC register bank can be configured through the AHB. External memory can be accessed by the SMC.
- (b) APB slave I/F

The APB slave I/F adds a state wait for all reads and writes

Wait of more than one state is generated in the following cases:

outstanding direct commands.

A memory command is received, but the previous memory command has not been completed.

(c) Format

1. hazard

- Read After Read (RAR)
- Write After Write (WAW)
- Read After Write (RAW)
- Write After Read (WAR)
- 2. Access to the SRAM memory
 - Standard SRAM access
 - Memory address shifting
 - Memory burst alignment

The burst align settings are necessary in order to support asynchronous page mode memory. No burst align settings are necessary for NorFlash.

Memory burst length: The supported memory burst transfer length is from 1 to 32 beats. A continuous burst is also supported. However, the length of burst transfer is limited by the size of read and write data FIFOs. The burst length of read and write data is 4.

Booting using the SRAM: The lowest RAM CS (generally RAM CS0) can be booted.

(d) Memory manager operation

The memory manager controls the SMC state and manages update of chip configuration registers.

(e) Chip configuration registers

A function that synchronizes with switching of SMC operational modes Direct commands

The SMC supports updating of the controller and memory configuration registers by using the following two methods:

Control by using memory device pins:

Software mechanism: Control by sequence requests by read/write commands

(f) Memory I/F operation

The memory I/F issues commands and control their timings.

(3) SMC Registers for MPMC1

Table 3.10.8 MPMC1 SMC SFR list

Register Name	Address (base+)	Туре	Reset value	Description
smc_memc_status_5	0x0000	RO	0x0000000	SMC Memory Controller Status Register
smc_memif_cfg_5	0x0004	RO	0x0000002D	SMC Memory Interface Configuration Register
Reserved	0x0008	-	-	Prohibition against writing
Reserved	0x000C	-	_	Prohibition against writing
smc_direct_cmd_5	0x0010	WO	-	SMC Direct Command Register
smc_set_cycles_5	0x0014	WO	-	SMC Set Cycles Register
smc_set_opmode_5	0x0018	WO	-	SMC Set Opmode Register
Reserved	0x0020	-	Undefined	Read undefined. Write as zero.
smc_sram_cycles0_0_5 smc_sram_cycles0_1_5 smc_sram_cycles0_2_5 smc_sram_cycles0_3_5	0x0100 0x0120 0x0140 0x0160	RO	0x0002B3CC	SMC SRAM Cycles Registers <0-3>
smc_opmode0_0_5 smc_opmode0_1_5 smc_opmode0_2_5 smc_opmode0_3_5	0x0104 0x0124 0x0144 0x0164	RO	0x00000802	SMC Opmode Registers <0-3>
Reserved	0x0200	_	Undefined	Read undefined. Write as zero.
Reserved	0x0204	-	Undefined	Read undefined. Write as zero.
Reserved	0x0E00	-	Undefined	Read undefined. Write as zero.
Reserved	0x0E04	-	Undefined	Read undefined. Write as zero.
Reserved	0x0E08		Undefined	Read undefined. Write as zero.
Reserved	0x0FE0-0x0FEC	-	Undefined	Read undefined. Write as zero.
Reserved	0x0FF0-0x0FFC		Undefined	Read undefined. Write as zero.

Note: The APB supports only single-word 32-bit accesses. Read from or write to registers at single-word 32-bit.

1. smc_memc_status_5 (SMC Memory Controller Status Register)

Address = (0xF431_1000) + (0x0000)

Bit	Bit Symbol	Туре	Reset Value	Description
[31:1]	-	-	Undefined	Read undefined. Write as zero.
[0]	state	RO	0y0	SMC state:
				0y0 = Ready
				0y1 = Reserved

Note: This register cannot be read while it is being reset.

[Explanation]

a. <state>

SMC state 0y0 = Ready 0y1 = Reserved

2. smc_memif_cfg_5 (SMC Memory Interface Configuration Register)

 $Address = (0xF431_{1000}) + (0x0004)$

Bit	Bit Symbol	Туре	Reset Value	Description
[31:6]	-	-	Undefined	Read undefined. Write as zero.
[5:4]	memory_width0	RO	0y10	Maximum external SMC memory bus width: 0y00 = Reserved. 0y01 = 16 bits 0y10 = 32 bits 0y11 = Reserved
[3:2]	memory_chips0	RO	0y11	Number of supported memory CS: 0y00 = 1 chip 0y01 = 2 chips 0y10 = 3 chips 0y11 = 4 chips
[1:0]	memory_type0	RO	0y01	Number of supported memory types: 0y00 = Reserved 0y01 = SRAM 0y10 = Reserved 0y11 = Reserved

Note: This register cannot be read while it is being reset.

[Explanation]

a. <memory_width0>

Maximum external SMC memory bus width: 0y01 = 16 bits 0y10 = 32 bits Others = Reserved

b. <memory_chips0>

The number of memory CS 0y00 = 1 chip 0y01 = 2 chips 0y10 = 3 chips 0y11 = 4 chips

c. <memory_type0> Support external memory 0y01 = SRAM Others = Reserved

3. smc_direct_cmd_5 (SMC Direct Command Register)

 $Address = (0xF431_1000) + (0x0010)$

Bit	Bit Symbol	Туре	Reset Value	Description
[31:26]	-	_	Undefined	Read undefined. Write as zero.
[25:23]	chip_select	WO	_	CS selection: 0y000 = CS0 0y001 = CS1 0y010 = CS2 0y011 = CS3 0y100-0y111 = reserved
[22:21]	cmd_type	WO	_	current command: 0y00 = UpdateRegs and AHB command 0y01 = ModeReg access 0y10 = UpdateRegs 0y11 = ModeReg and updateRegs
[20]	-	-	Undefined	Reserved
[19:0]	addr	WO	_	When cmd_type accesses ModeReg: Addr set value: specify the external memory address [19:0]. When cmd_type accesses UpdateRegs and the AHB command: Addr [15:0] is set to the set value of hwdata [15:0], and the set value of Addr [19:16] will be undefined.

Note: This register cannot be written while it is in the Reset state.

The **SMC Direct Command** Register transfers commands to external memory, and controls updating of the chip configuration register values held in the set_opmode and set_cycles registers.

[Explanation]

- a. <chip_select>
 - CS selection 0y000 = CS0 0y001 = CS1 0y010 = CS2 0y011 = CS3 0y100 to 0y111 = Reserved
- b. <cmd_type>

Current command: 0y00 = UpdateRegs and AHB command 0y01 = ModeReg access 0y10 = UpdateRegs 0y11 = ModeReg and dateRegs

c. <addr>

When cmd_type accesses ModeReg: Adrr set value: specify the external memory address [19:0].

When cmd_type accesses UpdateRegs and the AHB command:

Addr [15:0] is set to the set value of hwdata [15:0], and the set value of Addr [19:16] will be undefined.

4. smc_set_cycles_5 (SMC Set Cycles Register)

 $Address = (0xF431_1000) + (0x0014)$

Bit	Bit Symbol	Туре	Reset Value	Description
[31:23]	_	-	Undefined	Read undefined. Write as zero.
[22:20]	Reserved	-	Undefined	Read undefined. Write as zero.
[19:17]	Set_t5	WO	-	Set value of t _{TR} (holding register) 0y000 to 0y111
[16:14]	Set_t4	WO	_	Set value of t _{PC} (holding register) 0y000 to 0y111
[13:11]	Set_t3	WO	_	Set value of t _{WP} (holding register) 0y000 to 0y111
[10:8]	Set_t2	WO	-	Set value of t _{CEOE} (holding register) 0y000 to 0y111
[7:4]	Set_t1	WO	_	Set value of t _{WC} (holding register) 0y0000 to 0y1111
[3:0]	Set_t0	WO	_	Set value of t _{RC} (holding register) 0y0000 to 0y1111

Note: This register cannot be written while it is in the Reset state.

This register is provided to adjust the access cycle of static memory and should be set to satisfy the A.C. specifications of the memory to be used. If the wait signal by an external pin is also used, the access cycle is determined to satisfy the settings of both this register and the external wait signal.

Note that the external wait signal is only effective in synchronous mode. It cannot be used in asynchronous mode.

This is a holding register for enabling setting values. By executing one of the following operations, the settings values of this register will be updated to the configuration register of the memory manager and enabled.

- (1) The smc_direct_cmd register executes register update.
- (2) The smc_direct_cmd register accesses modereg or memory.

[Explanation]

a. <Set_t5>

Set value of t_{TR} (holding register).

0y000 to 0y111

b. $<Set_t4>$

Set value of t_{PC} (holding register). 0y000 to 0y111

c. <Set_t3>

Set value of t_{WP} (holding register). 0y000 to 0y111

d. <Set_t2>

Set value of $t_{\rm CEOE}$ (holding register). 0y000 to 0y111

e. $<Set_t1>$

Set value of $t_{\rm WC}$ (holding register). 0y0000 to 0y1111

f. $<Set_t0>$

Set value of $t_{\rm RC}$ (holding register). 0y0000 to 0y1111

5. smc_set_opmode_5 (SMC Set Opmode Register)

Address = (0xF431_1000) + (0x0018)

Dit	Bit	Turna	Reset	Description
Dit	Symbol	туре	Value	Description
[31:16]	-	-	Undefined	Read undefined. Write as zero.
[15:13]	set_burst_align	WO	_	Memory burst boundary split setting: (holding register) 0y000 = bursts can cross any address boundary 0y001 = split at the 32-beat burst boundary 0y010 = split at the 64-beat burst boundary 0y011 = split at the 128-beat burst boundary 0y100 = split at the 256-beat burst boundary other = Reserve
[12]	set_bls	WO	-	bls timing setting: (holding register) 0y0 = chip select timing 0y1 = Reserved
[11]	set_adv	WO	_	Address valid (adv) field set value (holding register) 0y0 = Memory does not use the address signal smc_adv. 0y1 = Memory uses the address signal smc_adv.
[10]	-	-	Undefined	Read undefined. Write as zero.
[9:7]	set_wr_bl	WO	_	Write burst length (holding register) 0y000 = 1 beat 0y001 = 4 beats other = Reserved
[6]	set_wr_sync	WO	_	Holding register of the wr_sync field set value: 0y0 = asynchronous write mode 0y1 = synchronous write mode
[5:3]	set_rd_bl	WO	_	Read burst length (holding register) 0y000 = 1 beat 0y001 = 4 beats other = Reserved
[2]	set_rd_sync	WO	_	Holding register of the rd_sync field set value: 0y0 = asynchronous read mode 0y1 = synchronous read mode
[1:0]	set_mw	WO	-	Holding register of the memory data bus width set value: 0y00 = reserved 0y01 = 16 bits 0y10 = 32 bits 0y11 = reserved

Note: This register cannot be written while it is in the Reset state.

The APB registers smc_set_opmode act as holding registers, the settings values of this register are effective if either:

- (1) The smc_direct_cmd Register indicates only a register update is taking place
- (2) The smc_direct_cmd Register indicates either a modereg operation or a memory access has taken place, and is complete.

[Explanation]

a. <set_burst_align>

For asynchronous transfers:

When set_rd_sync = 0, MPMC1 always aligns read bursts to the memory burst boundary. When set_wr_sync = 0, MPMC1 always aligns write bursts to the memory burst boundary.

b. $<set_bls>$

This is a holding register for the SRAM chip smc_opmode Register. It controls the timing of bls (byte-lane strobe) output.

6. smc_sram_cycles0_0_5 (SMC SRAM Cycles Registers 0 <0>)

 $Address = (0xF431_{1000}) + (0x0100)$

Bit	Bit Symbol	Туре	Reset Value	Description
[31:20]	-	-	Undefined	Read undefined. Write as zero.
[19:17]	t_tr	RO	0y001	Turnaround time for SRAM chip configuration 0y000 to 0y111
[16:14]	t_pc	RO	0y010	page cycle time: 0y000 to 0y111
[13:11]	t_wp	RO	0y110	delay time for smc_we_n_0: 0y000 to 0y111
[10:8]	t_ceoe	RO	0y011	delay time for smc_oe_n_0: 0y000 to 0y111
[7:4]	t_wc	RO	0y1100	write cycle time: 0y0000 to 0y1111
[3:0]	t_rc	RO	0y1100	read cycle time: 0y0000 to 0y1111

Note: This register cannot be read while it is in the Reset state.

[Explanation]

a. <t_tr>

Turnaround time for SRAM chip configuration 0y000 to 0y111

b. <t_pc>

Page cycle time: 0y000 to 0y111

c. <t_wp>

delay time for smc_we_n_0: 0y000 to 0y111

- d. <t_ceoe>
 delay time for smc_oe_n_0:
 0y000 to 0y111
- e. <t_wc> Write cycle time 0y0000 to 0y1111
- f. <t_rc>

7. smc_sram_cycles0_1_5 (SMC SRAM Cycles Registers 0 <1>)

 $Address = (0xF431_{1000}) + (0x0120)$

Bit	Bit Symbol	Туре	Reset Value	Description
[31:20]	-	-	Undefined	Read undefined. Write as zero.
[19:17]	t_tr	RO	0y001	Turnaround time for SRAM chip configuration 0y000 to 0y111
[16:14]	t_pc	RO	0y010	page cycle time: 0y000 to 0y111
[13:11]	t_wp	RO	0y110	delay time for smc_we_n_0: 0y000 to 0y111
[10:8]	t_ceoe	RO	0y011	delay time for smc_oe_n_0: 0y000 to 0y111
[7:4]	t_wc	RO	0y1100	write cycle time: 0y0000 to 0y1111
[3:0]	t_rc	RO	0y1100	read cycle time: 0y0000 to 0y1111

Note: This register cannot be read while it is in the Reset state.

[Explanation]

a. <t_tr>

Turnaround time for SRAM chip configuration 0y000 to 0y111

b. <t_pc>

Page cycle time: 0y000 to 0y111

c. <t_wp>

delay time for s smc_we_n_0: 0y000 to 0y111

- d. <t_ceoe>
 delay time for smc_oe_n_0:
 0y000 to 0y111
- e. <t_wc> Write cycle time 0y0000 to 0y1111
- f. <t_rc>

8. smc_sram_cycles0_2_5 (SMC SRAM Cycles Registers 0 <2>)

 $Address = (0xF431_1000) + (0x0140)$

Bit	Bit Symbol	Туре	Reset Value	Description
[31:20]	-	-	Undefined	Read undefined. Write as zero.
[19:17]	t_tr	RO	0y001	Turnaround time for SRAM chip configuration 0y000 to 0y111
[16:14]	t_pc	RO	0y010	page cycle time: 0y000 to 0y111
[13:11]	t_wp	RO	0y110	delay time for smc_we_n_0: 0y000 to 0y111
[10:8]	t_ceoe	RO	0y011	delay time for smc_oe_n_0: 0y000 to 0y111
[7:4]	t_wc	RO	0y1100	write cycle time: 0y0000 to 0y1111
[3:0]	t_rc	RO	0y1100	read cycle time: 0y0000 to 0y1111

Note: This register cannot be read while it is in the Reset state.

[Explanation]

a. <t_tr>

Turnaround time for SRAM chip configuration 0y000 to 0y111

b. <t_pc>

Page cycle time: 0y000 to 0y111

c. <t_wp>

delay time for smc_we_n_0 0y000 to 0y111

- d. <t_ceoe>
 delay time for smc_oe_n_0:
 0y000 to 0y111
- e. <t_wc> Write cycle time 0y0000 to 0y1111
- f. <t_rc>

9. smc_sram_cycles0_3_5 (SMC SRAM Cycles Registers 0 <3>)

 $Address = (0xF431_{1000}) + (0x0160)$

Bit	Bit Symbol	Туре	Reset Value	Description
[31:20]	-	-	Undefined	Read undefined. Write as zero.
[19:17]	t_tr	RO	0y001	Turnaround time for SRAM chip configuration 0y000 to 0y111
[16:14]	t_pc	RO	0y010	page cycle time: 0y000 to 0y111
[13:11]	t_wp	RO	0y110	delay time for smc_we_n_0: 0y000 to 0y111
[10:8]	t_ceoe	RO	0y011	delay time for smc_oe_n_0: 0y000 to 0y111
[7:4]	t_wc	RO	0y1100	write cycle time: 0y0000 to 0y1111
[3:0]	t_rc	RO	0y1100	read cycle time: 0y0000 to 0y1111

Note: This register cannot be read while it is in the Reset state.

[Explanation]

a. <t_tr>

Turnaround time for SRAM chip configuration 0y000 to 0y111

b. <t_pc>

Page cycle time: 0y000 to 0y111

c. <t_wp>

delay time for smc_we_n_0: 0y000 to 0y111

- d. <t_ceoe>
 delay time for smc_oe_n_0:
 0y000 to 0y111
- e. <t_wc> Write cycle time 0y0000 to 0y1111
- f. <t_rc>

Asynchronous read

Asynchronous write

Page read

TENTATIVE


```
Synchronous read and asynchronous write
```


10.	smc_opmode0_	_0_	5	(SMC	Opmode	Registers	0<0>))
-----	--------------	-----	----------	------	--------	-----------	-------	---

Address = (0xF431_1000) + (0x0104)

Bit	Bit Symbol	Туре	Reset Value	Description
[31:24]	address_match	RO	0x00	Setting value of compared with the address [31:24]
[23:16]	address_mask	RO	0x00	Specify whether or not the address [31:24] can be
				compared
				"1"= can be compared
[15:13]	burst_align	RO	0y000	Memory burst boundary split set value:
				0y000 = bursts can cross any address boundary
				0y001 = split at the 32-beat burst boundary
				0y010 = split at the 64-beat burst boundary
				0y011 = split at the 128-beat burst boundary
				0y100 = split at the 256-beat burst boundary
				other = Reserve
[12]	bls	RO	0y0	bls timing :
				0y0 = chip select
				0y1 = Reserved
[11]	adv	RO	0y1	use address Advance signal
				(address valid)
				0y1 = use address Advance signal
[10]	-	-	Undefined	Read undefined. Write as zero.
[9:7]	wr_bl	RO	0y000	Write memory burst length:
				0y000 = 1beat
				0y001 = 4beats
				other = Reserved
[6]	wr_sync	RO	0y0	Memory operation mode:
				0y0 = asynchronous write operation
				0y1 = synchronous write operation
[5:3]	rd_bl	RO	0y000	Read memory burst length:
				0y000 = 1 beat
				0y001 = 4 beats
				other = Reserve
[2]	rd_sync	RO	0y0	Memory operation mode:
				0y0 = asynchronous read operation
				0y1 = synchronous read operation
[1:0]	mw	RO	0y10	Memory data bus width :
				0y00 = Reserved
				0y01 = 16bits
				0y10 = 32bits
				0y11 = Reserved

Note: These registers cannot be read while they are in the Reset state.

[Explanation]

a. <address_match>

Setting value of compared with the address [31:24].

b. <address_mask>

Specify whether or not the address $\left[31{:}24\right]$ can be compared.

"1"= can be compared

c. <burst_align>

Memory burst boundary split set value: 0y000 = bursts can cross any address boundary 0y001 = split at the 32-beat burst boundary 0y010 = split at the 64-beat burst boundary 0y011 = split at the 128-beat burst boundary 0y100 = split at the 256-beat burst boundary other = Reserve

d. <bls>

bls timing : 0y0 = chip select 0y1 = Reserved

e. <adv>

Use address Advance signal (address valid) 0y1 = use address Advance signal

f. $<wr_bl>$

Write memory burst length: 0y000 = 1beat 0y001 = 4beats Other = Reserved

g. <wr_sync>

Memory operation mode: 0y0 = asynchronous write operation 0y1 = synchronous write operation

h. <rd_bl>

Read memory burst length: 0y000 = 1 beat 0y001 = 4 beats Other = Reserve

i. <rd_sync>

Memory operation mode: 0y0 = asynchronous read operation

0y1 = synchronous read operation

j. <mw>

The Reset value depends on setting state. The CS0 meomry data bus width can be set for Boot.

11.	smc_opmode0_	_1_	5	(SMC	Opmode	Registers	0<1>))
-----	--------------	-----	---	------	--------	-----------	-------	---

 $Address = (0xF431_1000) + (0x0124)$

Bit	Bit Symbol	Туре	Reset Value	Description		
[31:24]	address_match	RO	0x00	Setting value of compared with the address [31:24]		
[23:16]	address_mask	RO	0x00	Specify whether or not the address [31:24] can be compared "1"= can be compared		
[15:13]	burst_align	RO	0у000	Memory burst boundary split set value: 0y000 = bursts can cross any address boundary 0y001 = split at the 32-beat burst boundary 0y010 = split at the 64-beat burst boundary 0y011 = split at the 128-beat burst boundary 0y100 = split at the 256-beat burst boundary other = Reserve		
[12]	bls	RO	0у0	bls timing : 0y0 = chip select 0y1 = Reserved		
[11]	adv	RO	0y1	use address Advance signal (address valid) 0y1 = use address Advance signal		
[10]	-	_	Undefined	Read undefined. Write as zero.		
[9:7]	wr_bl	RO	0у000	Write memory burst length: 0y000 = 1beat 0y001 = 4beats other = Reserved		
[6]	wr_sync	RO	0у0	Memory operation mode: 0y0 = asynchronous write operation 0y1 = synchronous write operation		
[5:3]	rd_bl	RO	0у000	Read memory burst length: 0y000 = 1 beat 0y001 = 4 beats other = Reserve		
[2]	rd_sync	RO	0у0	Memory operation mode: 0y0 = asynchronous read operation 0y1 = synchronous read operation		
[1:0]	mw	RO	0y10	Memory data bus width : 0y00 = Reserved 0y01 = 16bits 0y10 = 32bits 0y11 = Reserved		

Note: These registers cannot be read while they are in the Reset state.

[Explanation]

Please refer to the explanation for the $smc_{opmode0_0_5}$ register.

12.	smc_opmode0_	2_{5}	(SMC	Opmode	Registers	0<2>)
-----	--------------	---------	------	--------	-----------	-------

Address = (0xF431_1000) + (0x0144)

Bit	Bit Symbol	Туре	Reset Value	Description
[31:24]	address_match	RO	0x00	Setting value of compared with the address [31:24]
[23:16]	address_mask	RO	0x00	Specify whether or not the address [31:24] can be compared "1"= can be compared
[15:13]	burst_align	RO	0у000	Memory burst boundary split set value: 0y000 = bursts can cross any address boundary 0y001 = split at the 32-beat burst boundary 0y010 = split at the 64-beat burst boundary 0y011 = split at the 128-beat burst boundary 0y100 = split at the 256-beat burst boundary other = Reserve
[12]	bls	RO	0у0	bls timing : 0y0 = chip select 0y1 = Reserved
[11]	adv	RO	0y1	use address Advance signal (address valid) 0y1 = use address Advance signal
[10]	_	=	Undefined	Read undefined. Write as zero.
[9:7]	wr_bl	RO	0у000	Write memory burst length: 0y000 = 1beat 0y001 = 4beats other = Reserved
[6]	wr_sync	RO	0у0	Memory operation mode: 0y0 = asynchronous write operation 0y1 = synchronous write operation
[5:3]	rd_bl	RO	0у000	Read memory burst length: 0y000 = 1 beat 0y001 = 4 beats other = Reserve
[2]	rd_sync	RO	0у0	Memory operation mode: 0y0 = asynchronous read operation 0y1 = synchronous read operation
[1:0]	mw	RO	0y10	Memory data bus width : 0y00 = Reserved 0y01 = 16bits 0y10 = 32bits 0y11 = Reserved

Note: These registers cannot be read while they are in the Reset state.

[Explanation]

Please refer to the explanation for the $smc_{opmode0_0_5}$ register.

13. smc_opmode0_3_5 (SMC Opmode Registers 0<3>)

Address = (0xF431_1000) + (0x0164)

Bit	Bit Symbol	Туре	Reset Value	Description
[31:24]	address_match	RO	0x00	Setting value of compared with the address [31:24]
[23:16]	address_mask	RO	0x00	Specify whether or not the address [31:24] can be compared "1"= can be compared
[15:13]	burst_align	RO	0у000	Memory burst boundary split set value: 0y000 = bursts can cross any address boundary 0y001 = split at the 32-beat burst boundary 0y010 = split at the 64-beat burst boundary 0y011 = split at the 128-beat burst boundary 0y100 = split at the 256-beat burst boundary other = Reserve
[12]	bls	RO	0у0	bls timing : 0y0 = chip select 0y1 = Reserved
[11]	adv	RO	0y1	use address Advance signal (address valid) 0y1 = use address Advance signal
[10]	-	-	Undefined	Read undefined. Write as zero.
[9:7]	wr_bl	RO	0у000	Write memory burst length: 0y000 = 1beat 0y001 = 4beats other = Reserved
[6]	wr_sync	RO	0у0	Memory operation mode: 0y0 = asynchronous write operation 0y1 = synchronous write operation
[5:3]	rd_bl	RO	0у000	Read memory burst length: 0y000 = 1 beat 0y001 = 4 beats other = Reserve
[2]	rd_sync	RO	0у0	Memory operation mode: 0y0 = asynchronous read operation 0y1 = synchronous read operation
[1:0]	mw	RO	0y10	Memory data bus width : 0y00 = Reserved 0y01 = 16bits 0y10 = 32bits 0y11 = Reserved

Note: These registers cannot be read while they are in the Reset state.

[Explanation]

Please refer to the explanation for the smc_opmode 0_0_5 register.

3.11 NAND-Flash Controller (NDFC)

3.11.1 Overview

The NAND-Flash Controller (NDFC) is provided with dedicated pins for connecting with the NAND-Flash memory. The NDFC also has an ECC calculation function for error correction. It supports the Hamming Code ECC calculation method for the NAND-Flash memory of SLC (Single Level Cell) type that is capable of detecting a single-bit error for every 256 bytes and the Reed-Solomon ECC calculation method for the NAND-Flash memory of MLC (Multi-Level Cell) type that is capable of detecting four error addresses for every 512 bytes.

The NDFC has the following features:

- a. Controls the NAND-Flash memory interface through registers.
- b. Supports 8-bit NAND-Flash memory devices (Does not support 16-bit devices).
- c. Supports page sizes of 512 bytes and 2048 bytes.
- d. Includes an ECC generation circuit using Hamming codes (for SLC type).
- e. Includes a 4-address (4-byte) error detection circuit using Reed-Solomon coding/encoding techniques (for MLC type).
- f. Provides an Autoload function for high-speed data transfer by using two 16-byte (4-word) FIFOs together with a DMA controller.
- Note: The /WP (Write Protect) pin of the NAND Flash is not supported. When this function is needed, prepare it on an external circuit.

3.11.2 Block Diagram

3.11.3 Operation Description

a. Setting the commands and addresses to the NAND-Flash memory

The commands and addresses for executing instructions such as Page Read and Page Write to the NAND-Flash memory are set by software.

At this time, the external pins are changed that are made compatible with the NDCExn, NDCLE, and NDALE pins by setting the values compliant to the operation specifications to the NDFMCR0<CE,CLE,ALE> register.

When a command value and address value are written to the NDFDTR register at this setting state, those values are output from the NDD7-NDD0 pins and the NDREn pins become active in synchronization with the output values.

The setting to meet the AC specifications of the NAND-Flash memory must have been selected by the NDFMCR2 <SPLW2:0, SPHW2:0, SPLR2:0, SPHR2:0> register before execution.

b. Reading data from the NAND-Flash memory in page units and writing data to the built-in RAM

In this section, a high-speed data read function with a smaller burden to the CPU is implemented by using the built-in DMA controller in addition to two 16-byte FIFOs contained in the NDFC and the Autoload function.

For execution, perform the settings described in Steps (1) and (2) below. Note that because the Autoload function at data read starts automatically after detection of a rising edge of the NDR/B pin in the state of <ALS>= "1," the settings of Steps (1) and (2) must be performed after command setting to the NAND-Flash but before address setting.

(1) Assign the NDFC to an arbitrary channel of the DMA controller and set the relevant registers.

The following is an example in which the NDFC is assigned to DMAC channel 0:

DMACC0SrcAddr	$\leftarrow \text{Address of NDFDTR}$
DMACC0DestAddr	$\leftarrow \text{Address of the built-in RAM}$
DMACC0Control	\leftarrow <swidth[2:0]>= 0y010 (32 bits),</swidth[2:0]>
	<dwidth[2:0]>= 0y010(32 bits),</dwidth[2:0]>
	<sbsize[2:0]> = 0y001 (4 beats),</sbsize[2:0]>
	<TransferSize[11:0]> = 0x80 (512B/4B)
DMACC0Configurati	ion \leftarrow <flowcntrl[13:11]> = 0y010 (Peripheral to Memory),</flowcntrl[13:11]>
	<itc>=1 (DMA termination interrupt is enabled.)</itc>

(2) Write "0" to the NDFMCR1<SELAL> register and "1" to the <ALS> register.

When Step (2) is performed, the NDFC begins detecting a rising edge of the R/B pin and, after detecting a rising edge, starts a read cycle of 1-byte data. Each time the NDFC reads 1-byte data, it stores the read data in the first-stage 16-byte FIFO (FIFO-0) and generates the error code by entering the data to either Hamming Code ECC calculator or Reed-Solomon ECC calculator depending on the setting of the NDFMCR1<ECCS> register.

When FIFO-0 becomes full of data, FIFO-0 switches to the second-stage FIFO (FIFO-1) for continued data read. In addition, the NDFC asserts a DMA transfer request to the DMAC at the fill-up of FIFO-0 to request the transfer of the FIFO-0 data to the built-in RAM.

Data can be read from the NDFC efficiently at a higher speed by switching between two 16-byte FIFOs in this way.

When a total of 512 bytes of data has been read, the DMAC asserts a DMA termination interrupt and the CPU uses the interrupt to start the next process.

The following shows a conceptual timing chart of the entire system.

<als> register</als>				
NDRB				<u>^</u>
NDREn <u>``</u>			497 498	512
FIFO used for read from the NAND-Flash	∢ 0 · >∢ 1 ·	→◀0·→	□ □ ·	- >
FIFO to be read by the DMAC	⊲ 0- ►	⊲ -1- ≻	◄- 0- ►	∢- 1-►
DMAC end interrupt				

Note that if data cannot be read from a FIFO of the NDFC because another job is executed by the DMAC or internal bus, the Autoload function is suspended for that duration.

c. Data writing from the built-in RAM to the NAND-Flash memory in page units

The following is a description of data writing using the Autoload function that is performed similarly to data reading from the NAND-Flash. For execution, perform the settings described in Steps (1) and (2) below.

(1) Assign the NDFC to an arbitrary channel of the DMA controller and set the relevant registers.

The following is an example in which the NDFC is assigned to DMAC channel 0:

DMACC0SrcAddr	\leftarrow Address of the built-in RAM
DMACC0DestAddr	← Address of NDFDTR
DMACC0Control	\leftarrow <swidth[2:0]>= 0y010 (32 bits),</swidth[2:0]>
	<dwidth[2:0]>= 0y010 (32 bits),</dwidth[2:0]>
	<sbsize[2:0]> = 0y001 (4 beats),</sbsize[2:0]>
	<TransferSize[11:0]> = 0x80(512B/4B)
DMACC0Configuratio	$m \leftarrow \langle FlowCntrl \rangle = 0y001 (Memory to Peripheral),$
	<itc>=1 (DMA termination interrupt is enabled.)</itc>

(2) Write "1" to the NDFMCR1<SELAL> register and "1" to the <ALS> register.

When Step (2) is performed, the NDFC asserts a DMA request, because both FIFO-0 and FIFO-1 are empty, to have the DMA controller transfer data from the built-in RAM to FIFO-0 and FIFO-1.

When the data transfer from the DMA controller to FIFO-0 and FIFO-1 is terminated, the NDFC uses the FIFO-0 data to start a write cycle of 1-byte data. Each time the NDFC writes 1-byte data, it generates the error code by entering the data to either Hamming Code ECC calculator or Reed-Solomon ECC calculator depending on the setting of the NDFMCR1<ECCS> register. When FIFO-0 becomes empty, FIFO-0 switches to the second-stage FIFO (FIFO-1) for continued data write.

In addition, the NDFC asserts a DMA transfer request to the DMAC at the time of FIFO-0's becoming empty to request the data transfer from the built-in RAM to FIFO-0.

Data can be written from the NDFC efficiently at a higher speed by switching between two 16-byte FIFOs in this way.

When a total of 512 bytes of data has been written, the DMAC asserts a DMA termination interrupt and the CPU uses the interrupt to start the next process. The following shows a conceptual timing chart of the entire system.

- Note: Write operation to the NAND-Flash memory is not terminated by the Autoload function of the NDFC at the time of assertion of a DMAC end interrupt. Check that <ALS> = "0" during the DMAC end interrupt processing and then execute the next process (processing of the error code). Note that if data cannot be written to a FIFO of the NDFC because another job is executed by the DMAC or internal bus, the Autoload function is suspended for that duration.
- d. Error code read or write to or from the redundant area

The Autoload function cannot be used. Execute read or write to or from NAND-Flash by software as in the case of setting a command or address.

e. Waveform adjusting function for NDREn and NDWEn

When setting of a command and address, data read, or data write is performed to the NDFDTR register, the NDFC generates waveforms for the NDREn and NDWEn pins.

At this time, the Low width and High width for the NDREn and NDWEn pins can be adjusted. Adjustment should be done in accordance with the A.C specifications including the NDFC operation clock, HCLK (up to 100 MHz), and the NAND-Flash access time. (For details, refer to the electric characteristics.)

The following figure shows a timing chart example in which continuous accesses are made when NDFMCR2<SPL[W2:0]>=0y011, <SPLR[2:0]>=0x011,

NDFMCR2<SPHW[2:0]>=0y010, and <SPHR[2:0]>=0y010. (The data drive time becomes longer at data write.)

3.11.4 ECC Control

This section describes ECC control. NAND-Flash memory devices may inherently include error bits. It is therefore necessary to implement the error correction processing using ECC (Error Correction Code).

Figure 3.11.1 shows a basic flowchart for ECC control.

Figure 3.11.1 Basic Flow of ECC Control

Write:

- 1. When data is written to the actual NAND-Flash memory, the ECC generator in the NDFC simultaneously generates ECC for the written data.
- 2. The ECC is written to the redundant area in the NAND-Flash separately from the valid data.

Read:

- 1. When data is read from the NAND-Flash memory, the ECC generator in the NDFC simultaneously generates ECC for the read data as in the case of data writing.
- 2. The ECC written to the redundant area from the NAND-Flash memory is read. The ECC at the time of data writing and that at time of data reading are used to calculate error bits for correction.

3.11.4.1 Difference between Hamming Code ECC Calculation Method and Reed-Solomon ECC Calculation Method

The NDFC includes an ECC generator supporting SLC (or 2LC: two valued data) and MLC (or 4LC: four valued data only at present).

The ECC calculation using Hamming codes (supporting SLC) generates 22 bits of ECC for every 256 bytes of valid data and is capable of detecting and correcting a single-bit error for every 256 bytes. Error bit detection calculation and correction must be implemented by software.

When using Smart Media, Hamming codes should be used.

The ECC calculation using Reed-Solomon codes (supporting MLC) generates 80 bits of ECC for every 1 byte to 518 bytes of valid data and is capable of detecting and correcting error bits at four addresses for every 518 bytes. Although the Reed-Solomon ECC calculation method needs error bit correction to be implemented by software as in the case of the Hamming Code ECC calculation method, error bit detection calculation is supported by hardware.

The differences between Hamming Code ECC calculation method and Reed-Solomon ECC calculation method are summarized in Table 3.11.1.

Table 3.11.1 Differences between Hamming Code ECC Calculation Method and
Reed-Solomon ECC Calculation Method

	Hamming	Reed Solomon
Maximum number of correctable errors	1-bit	4-address (All the 8 bits at one address are correctable.)
Number of ECC bits	22 bits/256 bytes	80 bits / ~512 bytes
Error bit detection method	Supported by software.	Detected by hardware.
Error bit correction method	Supported by software.	Supported by software.
Error bit detection time	Supported by software, so it depends on how the software is made.	See the table below.
Others	Supports SmartMedia.	_

Number of Error Bits	Reed-Solomon Error Bit Detection Time (Units: Clocks)	Remarks	
4	813 (max)		
3	648 (max)	These values indicate the total number of clocks for detecting error bit(s) but do not include the register read/write time by the CPU.	
2	358 (max)		
1	219 (max)		
0	1		

- 3.11.4.2 Error Correction Methods
 - Hamming ECC
 - The ECC generator generates 44 bits of ECC for a page containing 512 bytes of valid data. The error correction process must be performed in units of 256 bytes (22 bits of ECC). The following explains how to implement error correction on 256 bytes of valid data using 22 bits of ECC.
 - If the NAND-Flash memory to be used has a large-capacity page size (e.g. 2048 bytes), the error correction process must be repeated several times to cover the entire page.
 - 1. The calculated ECC and the ECC in the redundant area are rearranged, so that the lower 2 bytes of each ECC represent line parity (LPR15: 0) and the upper 1 byte (of which the upper 6 bits are valid) represents column parity (CPR7: 2).
 - 2. The two rearranged ECCs are XORed.
 - 3. If the XOR result is 0, indicating an ECC match, the error correction process ends normally (no error). If the XOR result is other than 0, it is checked whether or not the error data can be corrected.
 - 4. If the XOR result contains only one ON bit, it is determined that a single-bit error exists in the ECC data itself and the error correction process terminates here (error not correctable).
 - 5. If every two bits of bits 0 to 15 and bits 18 to 23 of valid data in the XOR result are either 0y01 or 0y10, it is determined that the error data is correctable and error correction is performed accordingly. If the XOR result contains either 0y00 or 0y11, it is determined that the error data is not correctable and the error correction process terminates abnormally.

	Example of Correctable XOR Result	Example of Uncorrectable XOR Result		
Binary	10 01 10 00 Column parity 10 10 01 10 Line parity 01 01 10 10 Line parity	10 10 00 Column parity 10 10 01 10 01 01 10 10		

6. For correction of the data, the line information in error is created from the line parity of the XOR result and the bit information is created from the column parity and then the error bit is inverted. The error correction is now completed.

Example: When the XOR result is 0y10_01_10_00_10_10_01_10_01_01_10_10

Convert two bytes of line parity into one byte. $(10 \rightarrow 1, 01 \rightarrow 0)$ Convert six bits of column parity into three bits. $(10 \rightarrow 1, 01 \rightarrow 0)$ Line parity: 10 10 01 10 01 01 10 10 $1 \quad 0 \quad 01 \quad 10 \quad 01 \quad 01 \quad 10 \quad 10$ $1 \quad 1 \quad 0 \quad 1 \quad 0 \quad 0 \quad 1 \quad 1 = 0xD3$ In this case, an error exists at address 0xD3. Note that this address 0xD3.

In this case, an error exists at address 0xD3. Note that this address is a relative address in 256 bytes not an absolute address, so due care must be used when correcting this error.

Column parity: 10 01 10

 \rightarrow Error in bit 5

Error correction is performed by inverting the data in bit 5 at address 0xD3.

Reed-Solomon ECC

- The ECC generator generates 80 bits of ECC for up to 518 bytes of valid data. If the NAND-Flash memory to be used has a large-capacity page size (e.g. 2048 bytes), the error correction process must be repeated several times to cover the entire page.
- Basically no calculation is needed for error correction. If error detection is performed properly, the NDFC only needs to refer to the error address and error bit. However, it may be necessary to convert the error address, as explained below.
- 1. If the error address indicated by the NDRSCAn register is in the range of 0x000 to 0x007, this error exists in the ECC area and no correction is needed in this case. (It is not able to correct the error in the ECC area. Note, however, that if the error exists in the ECC area, this LSI has only the ability to correct errors up to 4 symbols including the error in the ECC area.
- 2. If the error address indicated by the NDRSCAn register is in the range of 0x008 to 0x207, the error address is obtained by subtracting this address from 0x207.

Example 1: When NDRSCAn = 0x005 and NDRSCDn = 0x04 = 0y0000_0100

Because the error address is in the range of 0x000 to 0x007, no correction is needed. (Although an error exists in bit 2, no correction is needed.)

Example 2: When NDRSCAn = 0x083 and NDRSCDn = 0x81 = 0y1000_0001

Error correction is performed by inverting the data in bits 7 and 0 at address 0x184 (0x207 - 0x083).

Note : If the error address (after conversion) is in the range of 0x000 to 0x007, it indicates that an error bit exists in redundant area (ECC). In this case, no error correction is needed. If the number of error bits is not more than 4 symbols, the Reed-Solomon ECC calculation method calculates each error bit precisely even if it is the redundant area (ECC).

3.11.5 Description of Registers

The following lists the SFRs:

Base address = 0xF201_0000 Register Address Description Name (base+) NDFMCR0 0x0000 NAND-Flash Control Register-0 NDFMCR1 0x0004 NAND-Flash Control Register-1 NDFMCR2 0x0008 NAND-Flash Control Register-2 NDFINTC 0x000C NAND-Flash Interrupt Control Register NDFDTR 0x0010 NAND-Flash Data Register NDECCRD0 0x0020 NAND-Flash ECC-code Read Register-0 NDECCRD1 0x0024 NAND-Flash ECC-code Read Register-1 NDECCRD2 0x0028 NAND-Flash ECC-code Read Register-2 0x0030 NDRSCA0 NAND-Flash Reed-Solomon Calculation result Address Register-0 NDRSCD0 0x0034 NAND-Flash Reed-Solomon Calculation result Data Register-0 NDRSCA1 0x0038 NAND-Flash Reed-Solomon Calculation result Address Register-1 NDRSCD1 0x003C NAND-Flash Reed-Solomon Calculation result Data Register-1 NDRSCA2 0x0040 NAND-Flash Reed-Solomon Calculation result Address Register-2 NDRSCD2 0x0044 NAND-Flash Reed-Solomon Calculation result Data Register-2 NDRSCA3 0x0048 NAND-Flash Reed-Solomon Calculation result Address Register-3 NDRSCD3 0x004C NAND-Flash Reed-Solomon Calculation result Data Register-3

1. NDFMCR0 (NAND-Flash Control Register-0)

Address = (0xF201_0000) + (0x0000)

Dit	Dit Cymphol	Turne	Reset	Description
DIL	BIL SYMDOI	туре	Value	Description
[31:12]	-	-	Undefined	Read undefined. Write as zero.
[11]	RSECCL	R/W	0у0	Reed Solomon ECC-Latch
				0 : Disable (Enable 80-bit F/F update.)
				1 : Enable (Disable 80-bit F/F update.)
[10]	RSEDN	R/W	0у0	Reed-Solomon operation select
				0 : Encode (for write)
				1 : Decode (for read)
[9]	RSESTA	WO	0у0	Reed-Solomon error calculation start
				0:-
				1 : Start
[8]	RSECGW	R/W	0y0	Reed-Solomon ECC-Generator write enable
				0 : Disable
				1 : Enable
[7]	WE	R/W	0y0	Write operation enable
				0 : Disable
				1 : Enable
[6]	ALE	R/W	0y0	NDALE pin control
				0 : Output "0"
				1 : Output "1"
[5]	CLE	R/W	0y0	NDCLE pin control
				0 : Output "0"
				1 : Output "1"
[4]	CE0	R/W	0y0	NDCE0n pin control
				0 : Output "1"
				1 : Output "0"
[3]	CE1	R/W	0y0	NDCE1n pin control
				0 : "1" output
				1 : "0" output
[2]	ECCE	R/W	0y0	ECC circuit enable
				0 : Disable
				1 : Enable
[1]	BUSY	RO	0y0	NAND-Flash status
				0 : Ready
				1 : Busy
[0]	ECCRST	WO	0y0	ECC circuit reset
				0:-
				1 : Reset

[Explanation]

a. <ECCRST>

The <ECCRST> bit is used for both Hamming and Reed-Solomon codes.

To reset the Hamming ECC, set NDFMCR1<ECCS> = "0" (to reset the Reed-Solomon ECC, set NDFMCR1<ECCS> = "1"), then write "1" to this bit, and the ECC in this circuit is cleared. The contents of the NDECCRDn register are also cleared at the same time.

b. <BUSY>

The <BUSY> bit is used for both Hamming and Reed-Solomon codes. This bit is used to check the state of the NAND-Flash memory (NDR/B pin). It is set to "1" when the NAND-Flash is "busy" and to "0" when it is "ready". Since the NDFC incorporates a noise filter of several clocks, a change in the NDR/B pin state is reflected on the <BUSY> flag after some delay.

c. <ECCE>

The <ECCE> bit is used for both Hamming and Reed-Solomon codes.

This bit is used to control the ECC circuit. To reset the ECC (to write "1" to <ECCRST>), this bit must have been enabled ("1").

d. <CE1:0>, <CLE>, <ALE>

The <CE1:0>, <CLE>, and <ALE> bits are used for both Hamming and Reed-Solomon codes. These pins are used to control the pins of the NAND-Flash memory.

e. <WE>

The <WE> bit is used for both Hamming and Reed-Solomon codes. This bit is used to control activation of the NDWEn pin. This is a protective register to prevent the NDWEn pin from being activated inadvertently for the NAND-Flash memory.

f.<RSECGW>

The <RSECGW> bit is used only for Reed-Solomon codes. When Hamming codes are used, this bit should be set to "0".

Since the valid data part and the ECC are processed differently in this circuit, reading the valid data part and reading the ECC should be managed separately by software.

To read valid data from the NAND-Flash memory, set <RSECGW> to "0" (Disable). To read the ECC written in the redundant area of the NAND-Flash, set <RSECGW> to "1" (Enable).

Note: Valid data and ECC that use the DMAC cannot be read continuously. After valid data has been read, data transfer should be stopped once to change the <RSECGW> bit from "0" to "1" before ECC is read. Immediately after ECC is read from the NAND-Flash memory, accesses (read/write) to the NAND-Flash memory or error bit calculation cannot be performed for a duration of 20 system clocks that is used for internal processing. Wait processing or other by software is needed.

g. <RSESTA>

The <RSESTA> bit is used only for Reed-Solomon codes.

The error address and error bit position are calculated using an intermediate code generated from the ECC for written data and the ECC for read data Writing "1" to <RSESTA> starts this calculation.

h. <RSEDN>

The <RSEDN> bit is used only for Reed-Solomon codes. When Hamming codes are used, this bit should be set to "0".

For a write operation, this bit should be set to "0" (Encode) to generate ECC. The ECC read from the NDECCRDn register is written to the redundant area of the NAND-Flash memory. For a read operation, this bit should be set to "1" (Decode). Then, valid data is read from the NAND-Flash memory and the ECC written in the redundant area of the NAND-Flash memory is read to generate an intermediate code for calculating the error address and error bit position.

i.<RSECCL>

The <RSECCL> bit is used only for Reed-Solomon codes. When Hamming codes are used, this bit should be set to "0".

The Reed-Solomon processing unit is comprised of two circuits: an ECC generating circuit and a circuit to calculate the error address and error bit position from the ECC.

No special care is needed if ECC generation and error calculation are performed in series. If these operations need to be performed in parallel, the intermediate code used for error calculation must be latched while the calculation is being performed.

The <RSECCL> bit is provided to enable the latch operation for the intermediate code generated from the ECC for written data and the ECC for read data to calculate the error address and error bit position.

When <RSECCL> is set to "1", the intermediate code is latched so that no ECC is transferred to the error calculator even if the ECC generator updates the ECC, thus making it possible that the ECC generator can generate the ECC for another page while the ECC calculator is calculating the error address and error bit position. At this time, the ECC generator can perform both Encode (write) and Decode (read) operations.

When <RSECCL> is set to "0," the latch is released and the contents of the ECC calculator are updated sequentially as the data in the ECC generator is updated.

2. NDFMCR1 (NAND-Flash Control Register-1)

Address = (0xF201_0000) + (0x0004)

	Bit	+	Reset		
Bit	Symbol	Туре	Value	Description	
[31:16]	-	-	Undefined	Read undefined. Write as zero.	
[15:12]	STATE	RO	0y0000	Status of the Reed-Solomon ECC calculator	
				(Valid after calculation processing is started.)	
				0000 : Calculation ended with no error.	
				0001 : Calculation ended with errors of more than 5 symbols (uncorrectable).	
				0010, 0011 : Calculation ended with errors of 4 symbols or less (correctable).	
				0100-1111 : Calculating	
[11:10]	SERR	RO	Undefined	Number of errors in the Reed-Solomon ECC calculator	
				(Valid after calculation processing ended)	
				00 : 1-address error	
				01 : 2-address error	
				10 : 3-address error	
				11 : 4-address error	
[9]	SELAL	R/W	0y0	Autoload function select	
				0 : Data read from the NAND-Flash	
				1 : Data write to the NAND-Flash	
[8]	ALS	R/W	0y0	Autoload start (at write time)	
				0:-	
				1 : Start	
				Autoload status (at read time)	
				0 : Before or after execution	
				1 : Being executed	
[7:2]	-	-	Undefined	Read undefined. Write as zero.	
[1]	ECCS	R/W	0у0	ECC circuit select	
				0 : Hamming	
				1 : Reed-Solomon	
[0]	-	-	Undefined	Read undefined. Write as zero.	

[Explanation]

a. <ECCS>

The <ECCS> bit is used to select whether to use Hamming codes or Reed-Solomon codes. This bit is set to "0" for using Hamming codes and to "1" for using Reed-Solomon codes. It is also necessary to set this bit for clearing ECC.

b. <ALS>

The <ALS> bit is used for both Hamming and Reed-Solomon codes.

This is the register that controls the function to transfer data read/write for the NAND-Flash by using the DMAC. Writing "1" to <ALS> enables the 16-byte FIFO-0/1.

In addition, a read operation allows the user to know the status of the Autoload function. (When 512-byte read or write is executed by the Autoload function, this register is cleared to "0".)

c. <SELAL>

The <SELAL> bit is used for both Hamming and Reed-Solomon codes.

This bit is used to select data read or data write for the NAND-Flash when the Autoload function is executed.

d. <SEER[1:0]>, <STATE[3:0]>

The <SEER1:0> and <STATE3:0> bits are used only for Reed-Solomon codes. When Hamming codes are used, these bits have no meaning.

These bits are used as flags to indicate the states of error address and error bit calculation results.

3. NDFMCR2 (NAND-Flash Control Register-2)

Address = (0xf201_0000) + (0x0008)

Bit	Bit	Tuno	Reset	Description
DIL	Symbol	туре	Value	Description
[31:15]	-	-	Undefined	Read undefined. Write as zero.
[14:12]	SPLW	RW	0y000	NDWEn Low pulse width setting
				000 : Reserved
				001 : 1 cycle of HCLK
				010 : 2 cycles of HCLK
				011 : 3 cycles of HCLK
				100 : 4 cycles of HCLK
				101 : 5 cycles of HCLK
				110-111 : Reserved
[11]	-	-	Undefined	Read undefined. Write as zero.
[10:8]	SPHW	RW	0y000	NDWEn High pulse width setting
				000 : Reserved
				001 : 1 cycle of HCLK
				010 : 2 cycles of HCLK
				011 : 3 cycles of HCLK
				100 : 4 cycles of HCLK
				101 : 5 cycles of HCLK
				110-111 : Reserved
[7]		_	Undefined	Read undefined. Write as zero.
[6:4]	SPLR	RW	0y000	NDREn Low pulse width setting
				000 : Reserved
				001 : 1 cycle of HCLK
				010 : 2 cycles of HCLK
				011 : 3 cycles of HCLK
				100 : 4 cycles of HCLK
				101 : 5 cycles of HCLK
				110-111 : Reserved
[3]	-	-	Undefined	Read undefined. Write as zero.
[2:0]	SPHR	RW	0y000	NDREn High pulse width setting
				000 : Reserved
				001 : 1 cycle of HCLK
				010 : 2 cycles of HCLK
				011 : 3 cycles of HCLK
				100 : 4 cycles of HCLK
				101 : 5 cycles of HCLK
				110-111 : Reserved

[Explanation]

a. <SPLR, SPHR, SPLW, SPHW>

These are registers to set the Low and High pulse width of the NDREn and NDWEn pins.

The pulse width is given by the set value \times the period of HCLK. Bits "0," "6," and "7" are disabled for setting.

4. NDFINTC (NAND-Flash Interrupt Control Register)

Address = (0xF201_0000) + (0x000C)

Bit	Bit	Туре	Reset	Description
	Symbol		Value	
[31:8]	-	-	Undefined	Read undefined. Write as zero.
[7]	RSEIC	WO	0у0	Reed-Solomon calculator end interrupt clear register
				0:-
				1 : Clear
[6]	RSEEIS	RO	0y0	Reed-Solomon calculator end interrupt masked status
				0 : Interrupt not requested
				1 : Interrupt requested
[5]	RSERIS	RO	0y0	Reed-Solomon calculator end interrupt raw status
				0 : Interrupt not requested
				1 : Interrupt requested
[4]	RSEIE	RW	0y0	Reed-Solomon calculator end interrupt enable register
				0 : Disable interrupt requests
				1 : Enable interrupt requests
[3]	RDYIC	WO	0y0	NAND-Flash ready interrupt clear register
				0:-
				1 : Clear
[2]	RDYEIS	RO	0y0	NAND-Flash ready interrupt masked status
				0 : Interrupt not requested
				1 : Interrupt requested
[1]	RDYRIS	RO	0y0	NAND-Flash ready interrupt raw status
				0 : Interrupt not requested
				1 : Interrupt requested
[0]	RDYIE	RW	0y0	NAND-Flash ready interrupt enable register
				0 : Disable interrupt requests
				1: Enable interrupt requests

[Explanation]

a. <***IE>, <***RIS>, <***EIS>, <***IC>

These are 4-bit registers to support two types of interrupts: a READY interrupt that occurs when the status of the monitored R/B pin changes from Busy to Ready and a Reed-Solomon calculation end interrupt that occurs when Reed-Solomon calculation of address and data ends. The NDFC asserts one interrupt request obtained by ORing these two interrupt requests to the interrupt controller. Therefore, the user is requested to check the register contents during interrupt processing and perform the processing appropriate to the individual interrupt source.

The following figure shows the relationship between these registers:

5. NDFDTR (NAND-Flash Data Register)

Address = (0xF201_0000) + (0x0010)

Bit	Bit Symbol	Туре	Reset Value	Description
[31:0]	DATA	R/W	Undefined	Data register

[Explanation]

a. <DATA>

This register is used to access the NDFDTR register when reading or writing data to or from the NAND-Flash memory or setting commands and addresses to the memory.

When data is written to this register, the data is written to the NAND-Flash memory. When a read operation is made to this register, data is read from the NAND-Flash memory One-word transfer can be used through the DMA operation.

Note: Although this register is readable and writable, it contains no F/F. If reading is done after writing, the written data is not held because the operations for writing and reading are different.

TOSHIBA

TENTATIVE

6. NDECCRD0 (NAND-Flash ECC-code Read Register-0)

Address = (0xF201_0000) + (0x0020)

Bit	Bit	Туре	Reset	Description
Dit	Symbol		Value	Description
[31:0]	CODE0	RO	0x00000000	Register to store ECC code

7. NDECCRD1 (NAND-Flash ECC-code Read Register-1)

Address = (0xF201_0000) + (0x0024)

Bit	Bit Symbol	Туре	Reset Value	Description
[31:0]	CODE1	RO	0x00000000	Register to store ECC code

8. NDECCRD2 (NAND-Flash ECC-code Read Register-2)

 $Address = (0xF201_0000) + (0x0028)$

Bit	Bit Symbol	Туре	Reset Value	Description
[31:16]	-	_	Undefined	Read undefined.
[15:0]	CODE2	RO	0x0000	Register to store ECC code

[Explanation]

a. <CODE2/1/0>

This register is used to read the ECC calculated in this circuit.

When "0" is written to NDFMCR0<ECCE> after read/write ends, ECC is prepared in this register (when the value of NDFMCR0<ECCE> changes from "1" to "0," the ECC in this register is updated).

The Hamming ECC calculation generates 22 bits of ECC for every 256 bytes of valid data and the Reed-Solomon ECC calculation generates 80 bits of ECC for every 1 byte to 518 bytes of valid data.

Three 32-bit width registers are provided to store 80 bits.

The table below shows the format for storing ECC.

Note: Before reading ECC from the NAND Flash ECC register, be sure to set NDFMCR0<ECCE> to "0". The ECC in the NAND Flash ECC register is updated when NDFMCR0<ECCE> changes from "1" to "0". Also note that when the ECC in the ECC generator is reset by NDFMCR0<ECCRST>, the contents of this register are not reset.

Register Name	Hamming	Reed-Solomon
NDECCRD0<15:0>	[15:0] Line parity	[15:0]
	(for the first 256 bytes)	R/S ECC code 79:64
NDECCRD0<31:16>	[23:18] Column parity	[31:16]
	(for the first 256 bytes)	R/S ECC code 63:48
NDECCRD1<15:0>	[15:0] Line parity	[15:0]
	(for the second 256 bytes)	R/S ECC code 47:32
NDECCRD1<31:16>	[23:18] Column parity	[31:16]
	(for the second 256 bytes)	R/S ECC code 31:16
NDECCRD2<15:0>	Not used	[15:0]
		R/S ECC code 15:0

The table below shows examples of how ECC is written to the redundant area of the NAND-Flash memory.

When using Hamming codes with SmartMedia, the addresses of the redundant area are specified by the physical format of SmartMedia. For details, refer to the SmartMedia Physical Format Specifications.

	Reed-Solomon	NAND-Flash Address
NDECCRD0	[15:0]	Upper 8 bits [79:72]→ address 518
	R/S ECC code 79:64	Lower 8 bits [71:64] \rightarrow address 519
NDECCRD1	[15:0]	Upper 8 bits [63:56] \rightarrow address 520
	R/S ECC code 63:48	Lower 8 bits [55:48] \rightarrow address 521
NDECCRD2	[15:0]	Upper 8 bits [47:40] \rightarrow address 522
	R/S ECC code 47:32	Lower 8 bits [39:32] \rightarrow address 523
NDECCRD3	[15:0]	Upper 8 bits [31:24] \rightarrow address 524
	R/S ECC code 31:16	Lower 8 bits [23:16] \rightarrow address 525
NDECCRD4	[15:0]	Upper 8 bits [15:8] \rightarrow address 526
	R/S ECC code 15:0	Lower 8 bits [7:0] \rightarrow address 527

TENTATIVE

9. NDRSCA0 (NAND-Flash Reed-Solomon Calculation result Address Register-0)

 $Address = (0xF201_0000) + (0x0030)$

Bit	Bit	Туре	Reset	Description
	Symbol	,	Value	I
[31:10]	-	-	Undefined	Read undefined.
[9:0]	AL	RO	0x000	Register to store Reed-Solomon error 0 address

10. NDRSCD0 (NAND-Flash Reed-Solomon Calculation result Data Register-0)

 $Address = (0xF201_0000) + (0x0034)$

Bit	Bit Symbol	Туре	Reset Value	Description
[31:8]	-	-	Undefined	Read undefined.
[7:0]	DATA	RO	0x00	Register to store Reed-Solomon error 0 data

11. NDRSCA1 (NAND-Flash Reed-Solomon Calculation result Address Register-1)

 $Address = (0xF201_0000) + (0x0038)$

Bit	Bit Symbol	Туре	Reset Value	Description
[31:10]	-	-	Undefined	Read undefined.
[9:0]	AL	RO	0x000	Register to store Reed-Solomon error 1 address

12. NDRSCD1 (NAND-Flash Reed-Solomon Calculation result Data Register-1)

Address = (0xF201_0000) + (0x003C)

Bit	Bit	Type	Reset	Description
Dit	Symbol	туре	Value	Description
[31:8]	-	-	Undefined	Read undefined.
[7:0]	DATA	RO	0x00	Register to store Reed-Solomon error 1 data

TENTATIVE

13. NDRSCA2 (NAND-Flash Reed-Solomon Calculation result Address Register-2)

 $Address = (0xF201_0000) + (0x0040)$

Bit	Bit	Type	Reset	Description
	Symbol	51	Value	ľ
[31:10]	-	-	Undefined	Read undefined.
[9:0]	AL	RO	0x000	Register to store Reed-Solomon error 2 address

14. NDRSCD2 (NAND-Flash Reed-Solomon Calculation result Data Register-2)

 $Address = (0xF201_0000) + (0x0044)$

Bit	Bit Symbol	Туре	Reset Value	Description
[31:8]	-	-	Undefined	Read undefined.
[7:0]	DATA	RO	0x00	Register to store Reed-Solomon error 2 data

15. NDRSCA3 (NAND-Flash Reed-Solomon Calculation result Address Register-3)

Address = (0xF201_0000) + (0x0048)

Bit	Bit Symbol	Туре	Reset Value	Description
[31:10]	-	-	Undefined	Read undefined.
[9:0]	AL	RO	0x000	Register to store Reed-Solomon error 3 address

16. NDRSCD3 (NAND-Flash Reed-Solomon Calculation result Data Register-3)

Address = (0xF201_0000) + (0x004C)

Bit	Bit Symbol	Туре	Reset Value	Description
[31:8]	-	-	Undefined	Read undefined.
[7:0]	DATA	RO	0x00	Register to store Reed-Solomon error 3 data

[Explanation]

a. <AL,DATA>

If an error is found at only one address, the error address is stored in the NDRSCA0 register and the error data in the NDRSCD0 register. If errors are found at two addresses, the error addresses are stored in the NDRSCA0 and NDRSCA1 registers and the error data in the NDRSCD0 and NDRSCD1 registers. Valid error addresses are stored in this way when error bits are found at four or less addresses.

For the number of error addresses, read the contents of NDFMCR1<SEER1:0>.

3.11.6 Examples of Accessing the NAND-Flash

```
(1) Page write (SLC type)
```

```
— Main Program ———
  ; ***** Initialize for NDFC *****
       condition: 8bit-bus, CE0, SLC, 512Byte/Page, Hamming
 (NDFMCR0)
                              0x0000_0010
                                                   ; NDCE0n pin=0, ECC-disable
 (NDFMCR1)
                              0x0000_0000
                                                   ; ECC=Hamming
                  ←
 (NDFMCR2)
                              0x0000_3343
                                                   ; NDWEn L=3clk,H=3clk,
                  ←
                                                   ; NDREn L=4clk,H=3clk
 (NDFINTC)
                  ←
                              0x0000_0000
                                                   ; ALL Interrupt Disable
 ; ***** Setting Command, Address to NAND-Flash *****
 (NDFMCR0)
                              0x0000_00b0
                                                   ;NDCE0n pin=0, NDCLE=1, NDALE=0
                   ←
 (NDFDTR)
                              0x80
                                                   ; Write Command(1<sup>st-</sup>cycle of Page-Program)
                   ←
 (NDFMCR0)
                   ←
                              0x0000_00d0
                                                   ;NDCE0n pin =0, NDCLE=0, NDALE=1
 (NDFDTR)
                              0x??
                                                   ; Write Address (3,4 or 5-times)
                   (NDFMCR0)
                              0x0000_0095
                                                   ;NDCE0n pin=0, NDCLE=0, NDALE=0
                                                   ; ECC Enable and Reset
 ; ***** Writing 512Byte Valid data *****
 Have the DMAC and INTC support the Autoload function of 512-byte write data. (Details are omitted.)
                                                                    (Including INTTC interrupt enable)
 (NDFMCR1)
                              0x0000_0300
                                                   ; <SELALS>=1, Start Auto-Load
                   ←
 5
----- INTTC Interrupt Processing Program ----
 (NDFMCR1)
                              Read and check
                                                   ; Check that <ALS>=0 (end). If not, perform polling.
 (NDFMCR0)
                              0x0000_0090
                                                   ; ECC-Disable
                   ←
 Return to the main program
    - Main Program -----
 ; ***** Reading ECC code from NDFC *****
 (NDECCRD0)
                             Read
                                                   ; ECC code for the first 256 bytes
 (NDECCRD1)
                  \rightarrow
                                                   ; ECC code for the second 256 bytes
                             Read
  ; ***** Writing Dummy data & ECC code*****
  (NDFDTR)
                              0x??
                                                   ; Write dummy data (1 byte x 8 times)
  (NDFDTR)
                   ~
                              FCC code
                                                   ; Write ECC code (1 byte x 3 times)
                                                   Write to D520: LPR7:0
                                                                                 For second 256 bytes
                                                   Write to D521: LPR15:8
                                                                                 For second 256 bytes
                                                    Write to D522: CPR5:0+11b
                                                                                 For second 256 bytes
  ;
  (NDFDTR)
                              0x??
                                                   ; Write dummy data (1 byte x 2 times)
  (NDFDTR)
                                                   ; Write ECC code (1byte x 3 times)
                              ECC code
                                                   Write to D525:LPR7:0
                                                                                 For first 256 bytes
  ;
                                                   Write to D526:LPR15:8
                                                                                 For first 256 bytes
                                                    Write to D527:CPR5:0+11b
                                                                                 For first 256 bytes
```


; ***** Set Auto F	Page program	n****								
; (NDFMCR0) (NDFDTR) (NDFMCR0)	FMCR0)←0x0000_00b0;NDCEn pin=0, NDCLE=1, NDALE=00FDTR)←0x10; Write Command(2nd cycle of Page-Program)0FMCR0)←0x0000_0010;NDCEn pin=0, NDCLE=0, NDALE=0									
; ***** Wait till Pa	age-Program	a End *****								
; Wait for the pag ; 1) write a read : 2) use a Ready ; second method	ge program t status comm r interrupt by I is used.	to end. Whether or not the p nand to read the status fron detection of NDR/B pin risi	brogram has ended can be checked by two methods: In the NDD7 to NDD0 pins (polling method), and Ing edge. The following describes a case in which the							
; (NDFINTC)	←	0x0000_0009	; Clear/enable RDY interrupt							
Enable NDFC in	terrupt in the	e INTC. (Details omitted)								
—— INTNDFC I	nterrupt Pro	cessing Program ——								

End processing Return to the main program

*** E0, SLC, 512Byte/Pa 0x0000_0010 0x0000_0000 0x0000_3343 0x0000_0000 ddress to NAND-Flas - 0x0000_00b0 - 0x00 alid data ***** support the Autoload - 0x0000_0100 - 0x0000_00d0 - 0x?? - 0x0000_00b0 - 0x030	age, Hamming ; NDCEn pin=0, ECC-disable ; ECC=Hamming ; NDWEn L=3clk,H=3clk, ; NDREn L=4clk,H=3clk ; ALL Interrupt Disable th ***** ;NDCEn pin=0, NDCLE=1, NDALE=0 ; Write Command(1 ^{st-} cycle of Page-Read) d function of 512-byte read data. (Details are omitter (Including INTTC interrupt enable) ; <selals>=0, Start Auto-Load ; NDCEn pin=0, NDCLE=0, NDALE=1 ; Write Address (3,4 or 5-times) ; NDCEn pin=0, NDCLE=1, NDALE=0 ; Read Command(2nd cycle of Page-Read</selals>
*** E0, SLC, 512Byte/Pa 0x0000_0010 0x0000_0000 0x0000_3343 0x0000_0000 ddress to NAND-Flas 0x0000_00b0 0x00 alid data ***** support the Autoload 0x0000_0100 0x0000_00d0 0x?? 0x0000_00b0 0x030	age, Hamming ; NDCEn pin=0, ECC-disable ; ECC=Hamming ; NDWEn L=3clk,H=3clk, ; NDREn L=4clk,H=3clk ; ALL Interrupt Disable ; ALL Interrupt Disable ; NDCEn pin=0, NDCLE=1, NDALE=0 ; Write Command(1 ^{st-} cycle of Page-Read) d function of 512-byte read data. (Details are omitter (Including INTTC interrupt enable) ; <selals>=0, Start Auto-Load ; NDCEn pin=0, NDCLE=0, NDALE=1 ; Write Address (3,4 or 5-times) ; NDCEn pin=0, NDCLE=1, NDALE=0 ; Read Command(2nd cycle of Page-Read</selals>
E0, SLC, 512Byte/Pa 0x0000_0010 0x0000_0000 0x0000_3343 0x0000_0000 ddress to NAND-Flas - 0x0000_00b0 - 0x00 alid data ***** support the Autoload - 0x0000_0100 - 0x0000_00d0 - 0x?? - 0x0000_00b0 - 0x030	age, Hamming ; NDCEn pin=0, ECC-disable ; ECC=Hamming ; NDWEn L=3clk,H=3clk, ; NDREn L=4clk,H=3clk ; ALL Interrupt Disable wh ***** ;NDCEn pin=0, NDCLE=1, NDALE=0 ; Write Command(1 st -cycle of Page-Read) d function of 512-byte read data. (Details are omitter (Including INTTC interrupt enable) ; <selals>=0, Start Auto-Load ; NDCEn pin=0, NDCLE=0, NDALE=1 ; Write Address (3,4 or 5-times) ; NDCEn pin=0, NDCLE=1, NDALE=0 ; Read Command(2nd cycle of Page-Read</selals>
0x0000_0010 0x0000_0000 0x0000_3343 0x0000_0000 ddress to NAND-Flas - 0x0000_00b0 - 0x00 alid data ***** support the Autoload - 0x0000_0100 - 0x0000_00d0 - 0x?? - 0x0000_00b0 - 0x030	; NDCEn pin=0, ECC-disable ; ECC=Hamming ; NDWEn L=3clk,H=3clk, ; NDREn L=4clk,H=3clk ; ALL Interrupt Disable ; ALL Interrupt Disable ; NDCEn pin=0, NDCLE=1, NDALE=0 ; Write Command(1 ^{st-} cycle of Page-Read) d function of 512-byte read data. (Details are omitter (Including INTTC interrupt enable) ; <selals>=0, Start Auto-Load ; NDCEn pin=0, NDCLE=0, NDALE=1 ; Write Address (3,4 or 5-times) ; NDCEn pin=0, NDCLE=1, NDALE=0 ; Read Command(2nd cycle of Page-Read</selals>
0x0000_0010 0x0000_0000 0x0000_3343 0x0000_0000 ddress to NAND-Flas - 0x0000_00b0 - 0x00 alid data ***** support the Autoload - 0x0000_0100 - 0x0000_00d0 - 0x?? - 0x0000_00b0 - 0x030	; NDCEn pin=0, ECC-disable ; ECC=Hamming ; NDWEn L=3clk,H=3clk, ; NDREn L=4clk,H=3clk ; ALL Interrupt Disable ; ALL Interrupt Disable ; NDCEn pin=0, NDCLE=1, NDALE=0 ; Write Command(1 ^{st-} cycle of Page-Read) d function of 512-byte read data. (Details are omitter (Including INTTC interrupt enable) ; <selals>=0, Start Auto-Load ; NDCEn pin=0, NDCLE=0, NDALE=1 ; Write Address (3,4 or 5-times) ; NDCEn pin=0, NDCLE=1, NDALE=0 ; Read Command(2nd cycle of Page-Read</selals>
0x0000_0000 0x0000_3343 0x0000_0000 ddress to NAND-Flas - 0x0000_00b0 - 0x00 alid data ***** - 0x0000_00b0 - 0x0000_00d0 - 0x?? - 0x0000_00b0 - 0x030	; ECC=Hamming ; NDWEn L=3clk,H=3clk, ; NDREn L=4clk,H=3clk ; ALL Interrupt Disable ; NDCEn pin=0, NDCLE=1, NDALE=0 ; Write Command(1 st cycle of Page-Read) d function of 512-byte read data. (Details are omitter (Including INTTC interrupt enable) ; <selals>=0, Start Auto-Load ; NDCEn pin=0, NDCLE=0, NDALE=1 ; Write Address (3,4 or 5-times) ; NDCEn pin=0, NDCLE=1, NDALE=0 ; Read Command(2nd cycle of Page-Read</selals>
0x0000_3343 0x0000_0000 ddress to NAND-Flas - 0x0000_00b0 - 0x00 alid data ***** - support the Autoload - 0x0000_0100 - 0x0000_00d0 - 0x?? - 0x0000_00b0 - 0x030	; NDWEn L=3clk,H=3clk, ; NDREn L=4clk,H=3clk ; ALL Interrupt Disable ; NDCEn pin=0, NDCLE=1, NDALE=0 ; Write Command(1 ^{st-} cycle of Page-Read) d function of 512-byte read data. (Details are omitter (Including INTTC interrupt enable) ; <selals>=0, Start Auto-Load ; NDCEn pin=0, NDCLE=0, NDALE=1 ; Write Address (3,4 or 5-times) ; NDCEn pin=0, NDCLE=1, NDALE=0 ; Read Command(2nd cycle of Page-Read</selals>
0x0000_0000 ddress to NAND-Flas - 0x0000_00b0 - 0x00 alid data ***** support the Autoload - 0x0000_0100 - 0x0000_00d0 - 0x?? - 0x0000_00b0 - 0x030	; ALL Interrupt Disable ; NDCEn pin=0, NDCLE=1, NDALE=0 ; Write Command(1 ^{st-} cycle of Page-Read) d function of 512-byte read data. (Details are omitter (Including INTTC interrupt enable) ; <selals>=0, Start Auto-Load ; NDCEn pin=0, NDCLE=0, NDALE=1 ; Write Address (3,4 or 5-times) ; NDCEn pin=0, NDCLE=1, NDALE=0 ; Read Command(2nd cycle of Page-Read</selals>
ddress to NAND-Flas - 0x0000_00b0 - 0x00 alid data ***** - support the Autoload - 0x0000_0100 - 0x0000_00d0 - 0x?? - 0x0000_00b0 - 0x030	 sh ***** sh ****** sh ****** sh ******* sh ************* sh ************************************
 - 0x0000_00b0 - 0x00 alid data ***** support the Autoload - 0x0000_0100 - 0x0000_00d0 - 0x?? - 0x0000_00b0 - 0x030 	;NDCEn pin=0, NDCLE=1, NDALE=0 ; Write Command(1 ^{st-} cycle of Page-Read) d function of 512-byte read data. (Details are omitte (Including INTTC interrupt enable) ; <selals>=0, Start Auto-Load ; NDCEn pin=0, NDCLE=0, NDALE=1 ; Write Address (3,4 or 5-times) ; NDCEn pin=0, NDCLE=1, NDALE=0 ; Read Command(2nd cycle of Page-Read</selals>
 - 0x0000_00b0 - 0x00 alid data ***** support the Autoload - 0x0000_0100 - 0x0000_00d0 - 0x?? - 0x0000_00b0 - 0x030 	 ;NDCEn pin=0, NDCLE=1, NDALE=0 ; Write Command(1st cycle of Page-Read) d function of 512-byte read data. (Details are omittee (Including INTTC interrupt enable) ; <selals>=0, Start Auto-Load</selals> ; NDCEn pin=0, NDCLE=0, NDALE=1 ; Write Address (3,4 or 5-times) ; NDCEn pin=0, NDCLE=1, NDALE=0 ; Read Command(2nd cycle of Page-Read)
 - 0x00 alid data ***** support the Autoload - 0x0000_0100 - 0x0000_00d0 - 0x?? - 0x0000_00b0 - 0x030 	; Write Command(1 ^{st-} cycle of Page-Read) I function of 512-byte read data. (Details are omitter (Including INTTC interrupt enable) ; <selals>=0, Start Auto-Load ; NDCEn pin=0, NDCLE=0, NDALE=1 ; Write Address (3,4 or 5-times) ; NDCEn pin=0, NDCLE=1, NDALE=0 ; Read Command(2nd cycle of Page-Read</selals>
alid data ***** support the Autoload - 0x0000_0100 - 0x0000_00d0 - 0x?? - 0x0000_00b0 - 0x030	f function of 512-byte read data. (Details are omitte (Including INTTC interrupt enable) ; <selals>=0, Start Auto-Load ; NDCEn pin=0, NDCLE=0, NDALE=1 ; Write Address (3,4 or 5-times) ; NDCEn pin=0, NDCLE=1, NDALE=0 ; Read Command(2nd cycle of Page-Read</selals>
- 0x0000_0100 - 0x0000_0100 - 0x?? - 0x0000_00b0 - 0x?30	f function of 512-byte read data. (Details are omitte (Including INTTC interrupt enable) ; <selals>=0, Start Auto-Load ; NDCEn pin=0, NDCLE=0, NDALE=1 ; Write Address (3,4 or 5-times) ; NDCEn pin=0, NDCLE=1, NDALE=0 ; Read Command(2nd cycle of Page-Read</selals>
 - 0x0000_0100 - 0x0000_00d0 - 0x?? - 0x0000_00b0 - 0x030 	 (Including INTTC interrupt enable) ; <selals>=0, Start Auto-Load</selals> ; NDCEn pin=0, NDCLE=0, NDALE=1 ; Write Address (3,4 or 5-times) ; NDCEn pin=0, NDCLE=1, NDALE=0 ; Read Command(2nd cycle of Page-Read
 - 0x0000_0100 - 0x0000_00d0 - 0x?? - 0x0000_00b0 - 0x030 	; <selals>=0, Start Auto-Load ; NDCEn pin=0, NDCLE=0, NDALE=1 ; Write Address (3,4 or 5-times) ; NDCEn pin=0, NDCLE=1, NDALE=0 ; Read Command(2nd cycle of Page-Read</selals>
 - 0x0000_0100 - 0x0000_00d0 - 0x?? - 0x0000_00b0 - 0x030 	; NDCEn pin=0, NDCLE=0, NDALE=1 ; Write Address (3,4 or 5-times) ; NDCEn pin=0, NDCLE=1, NDALE=0 ; Read Command(2nd cycle of Page-Read
 - 0x0000_00d0 - 0x?? - 0x0000_00b0 - 0x030 	; NDCEn pin=0, NDCLE=0, NDALE=1 ; Write Address (3,4 or 5-times) ; NDCEn pin=0, NDCLE=1, NDALE=0 ; Read Command(2nd cycle of Page-Read
- 0x?? - 0x0000_00b0 - 0x030	; Write Address (3,4 or 5-times) ; NDCEn pin=0, NDCLE=1, NDALE=0 ; Read Command(2nd cycle of Page-Read
- 0x0000_00b0 - 0x030	; NDCEn pin=0, NDCLE=1, NDALE=0 ; Read Command(2nd cycle of Page-Read
- 0x030	; Read Command(2nd cycle of Page-Read
01000	
- 0x0000 0095	: NDCEn pin=0. NDCLE=0. NDALE=0
	; ECC Enable and Reset
ssing Program ——–	-
- 0x0000_0090	; Disable ECC
ta & ECC code from N	NAND-Flash *****
→ Read	; Read dummy data (1 byte x 8 times)
→ Read	; Read ECC code (1 byte x 3 times)
→ Read	; Read dummy data (1 byte x 2 times)
 Read 	; Read ECC code (1 byte x 3 times)
rom NDFC *****	
\rightarrow Pood	; ECC code for the first 256 bytes
· Nedu	; ECC code for the second 256 bytes
	 → Read

The ECC code generated for the read operation and the ECC code read from the memory are compared. If any error is found, the error processing routine is executed to correct the error data. For details, see 3.11.4.2 "Error Correction Methods".

Return to the main program

TENTATIVE

(3) Page write (MLC type) Main Program —— ***** Initialize for NDFC ***** condition: 8bit-bus, CE0, MLC, 512Byte/Page, Reed Solomon 0x0000_0410 ; NDCEn pin=0, ECC-disable (NDFMCR0) (NDFMCR1) 0x0000 0002 ; ECC=Reed-Solomon ← 0x0000_3343 (NDFMCR2) ; NDWEn L=3clk,H=3clk, ; NDWEn L=4clk,H=3clk (NDFINTC) 0x0000_0000 ; ALL Interrupt Disable ; ***** Setting Command, Address to NAND-Flash ***** 0x0000_04b0 ; NDCEn pin=0, NDCLE=1, NDALE=0 (NDFMCR0) (NDFDTR) ; Write command (1^{st-}cycle of Page-Program) 0x80 (NDFMCR0) 0x0000_04d0 ; NDCEn pin=0, NDCLE=0, NDALE=1 ← (NDFDTR) ; Write Address (3,4 or 5-times) 0x?? ~ (NDFMCR0) 0x0000_0495 ; NDCEn pin=0, NDCLE=0, NDALE=0 ; ECC enable and reset ; ***** Writing 512Byte Valid data ***** Have the DMAC and INTC support the Autoload function of 512-byte write data. (Details are omitted.) (Including INTTC interrupt enable) (NDFMCR1) 0x0000_0302 ; <SELALS>=1, Start Auto-Load ← ; INTTC Interrupt Processing Program—— (NDFMCR1) Read and check ; Check that <ALS>=0 (end). If not, perform polling. (NDFMCR0) 0x0000_0490 ; Disable ECC ← Return to the main program — Main Program — ; ***** Reading ECC code from NDFC ***** (NDECCRD0) \rightarrow Read ; ECC code (1/3) (NDECCRD1) Read ; ECC code (2/3) (NDECCRD2) \rightarrow Read ; ECC code (3/3) ; ***** Writing Dummy data & ECC code ***** (NDFDTR) ECC code ; Write ECC code (1 byte x 10 times) (NDFDTR) 0x?? ; Write dummy data (1 byte x 6 times) ~ ; ***** Set Auto Page program***** (NDFMCR0) 0x0000_04b0 ; NDCEn pin=0, NDCLE=1, NDALE=0 ← (NDFDTR) 0x10 ; Write Command(2nd cycle of Page-Program) (NDFMCR0) 0x0000_0410 ; NDCEn pin=0, NDCLE=0, NDALE=0 ; ***** Wait till Page-Program End ***** ; wait for the page program to end. Whether or not the program has ended can be checked by two ; methods: 1) write a read status command to read the status from the NDD7 to NDD0 pins (polling) ; method), and 2) use a Ready interrupt by detection of NDR/B pin rising edge. The following describes a ; case in which the second method is used. (NDFINTC) 0x0000_0009 ; Clear/enable RDY interrupt Have the INTC enable an NDFC interrupt. (Details are omitted.) INTNDFC Interrupt Processing Program— End processing

Return to the main program

_

_

_

(4) Page Read (MLC type)

Main Program									
,									
; ***** Initialize for NDF	C ****	÷							
; condition:	8bit-bu	s, CE0, MLC, 512Byte/P	age, Reed Solomon						
;		· · · · ·							
(NDFMCR0)	←	0x0000 0010	: NDCEn pin=0. ECC-disable						
(NDFMCR1)	←	0x0000_0002	FCC= Reed-Solomon						
(NDFMCR2)	<u> </u>	0x0000 3343	NEWEn L=3clk H=3clk						
		0,0000_0040	; NDWEn $I = 4 clk H = 3 clk$						
	,	0,0000 0000							
(INDEINIC)	¢-	0x0000_0000	, ALL Interrupt Disable						
· ***** Setting Command Address to NAND-Elash *****									
, Setting Comman	iu, Auc	ITESS TO INAIND-FIASI							
		00000 0000							
	<i>—</i>		; NDCEN PIN=0, NDCLE=1, NDALE=0						
(NDFDTR)	←	0x00	; Write Command(1 [°] cycle of Page-Read)						
; ***** Reading 512Byte Valid data *****									
Have the DMAC and I	NTC SL	ipport the Autoload funct	tion of 512-byte read data. (Details are omitted.)						
			(Including INTTC interrupt enable)						
(NDFMCR1)	\leftarrow	0x0000_0102	; <selals>=0, Start Auto-Load</selals>						
(NDFMCR0)	\leftarrow	0x0000_00d0	; NDCEn pin=0, NDCLE=0, NDALE=1						
(NDFDTR)	\leftarrow	0x??	; Write Address (3,4 or 5-times)						
(NDFMCR0)	←	0x0000_00b0	; NDCEn pin=0, NDCLE=1, NDALE=0						
(NDFDTR)	\leftarrow	0x030	; Read Command(2nd cycle of Page-Read)						
(NDFMCR0)	←	0x0000_0095	; NDCEn pin=0, NDCLE=0, NDALE=0						
			; ECC Enable and Reset, <rsecgw>=0</rsecgw>						
INTTC Interrupt Pi	rocessi	ng Program ———							
(NDFMCR0)	←	0x0000_0194	; ECC-Enable, <rsecgw>=1</rsecgw>						
Return to the main pro	gram								
	-								
Main Program									
: ***** Reading Dummy	v data a	& ECC code from NAND	-Flash *****						
:									
(NDFDTR)	\rightarrow	Read	: Read ECC code (1 byte x 10 times)						
			,						
, ****** Calculation Erro	r Addre	ess and Data *****							
·	i / laare								
	,	0,0000 0000	· Clear/appha P/S calculation and interrupt						
Have the INTC enable		EC interrupt (Details ar	, clear/enable 10.5 calculation end interrupt						
	anno								
	~	0x0000_0310							
	runt Dr	ocossing Program							
	Tupt FI	ocessing Flogram							
		Dood and sheel	Check the STATE, and SEDD, flows						
	\rightarrow	Read and check	; Check the <state> and <serr> hags.</serr></state>						
Software processing			- Second and the second state of the						
It any error is fou	ina, the	error processing routine	e is executed to correct the error data.						
For details, see 3	3.11.4.	2 "Error Correction Meth	00S".						
D () () ()									
Return to the main program									

3.11.7 Example of Connection with the NAND-Flash

- Note 1: The pull-up resistor value for the NDR/B pin must be set appropriately according to the NAND Flash memory to be used and the capacity of the board (typical: 2 KΩ).
- Note 2: The WP (Write Protect) pin of the NAND Flash is not supported. When this function is needed, prepare it on an external circuit.

Figure 3.11.2 Example of Connection with the NAND-Flash

3.12 16-Bit Timers/PWM

3.12.1 General Description of Functions

The TMPA910CRA contains six channels of 16-bit timers. They operate in the following four modes:

- 1) Free-running mode
- 2) Periodic timer mode
- 3) One-shot timer mode
- 4) PWM mode

The circuit consists of three blocks, each associated with two channels. Of the three blocks, Block 1 and Block 2 support PWM (Pulse Width Modulation) output.

	Bloc	k 1	Block	(2	Block 3		
	Timer0	Timer1	Timer2	Timer3	Timer4	Timer5	
Free-Run	0	0	0	0	0	0	
Peridiodic	0	0	0	0	0	0	
One-shot	0	0	0	0	0	0	
	0	N/A	O N/A		N/A		
	PWM0OUT(PC3)	×	PWM2OUT(PC4)	×	×	×	
Interrupt source signal	INTS	[2]	INTS	[3]	INT	S[4]	

Since all blocks are of the same specifications (except for the PWM function and Interrupt source) the circuit of Block 1 only is described here.

3.12.2 Block Diagrams

Each timer block, containing two channels of timer circuits, is comprised of two programmable 16-bit free-running decrement counters. The TIMCLK clock input is used for counter operation. This clock can be selected from the internal system clock divided by two ($f_{PCLK}/2$) and fs (32.768 kHz), enabling the timer block to be controlled by a clock much slower than the system clock.

Figure 3.12.1 shows a high-level block diagram of the timer block.

Figure 3.12.1 Timer block diagram

Each timer has the same register sets of the same operation. When a value is written in the timer load register, the value is loaded and is counted down to 0 when counting is enabled.

The timer clock (TIMCLK) is generated by a prescale unit.

T0: $f_{PCLK}/2$

T16: $f_{PCLK}/2$ divided by 16, generated by a 4-bit prescaler.

T256: fPCLK/2 divided by 256, generated by an 8-bit prescaler.

Figure 3.12.2 shows a block diagram of the free-running counter.

Figure 3.12.2 Free-running counter

3.12.3 Operation Descriptions

The following descriptions are based on setting examples for Timer 0. The timers of other channels operate identically to Timer 0.

1) Free-running mode

When the timer starts counting, the counter value decrements from the initially set value. When the counter value reaches "0", an interrupt is generated.

Upon reaching "0", the counter is reloaded with the maximum value and continues decrementing if wrapping operation is enabled (Timer0Control<TIM0OSCTL>=0). The maximum value is 0xFF for the 8-bit counter and 0xFFFF for the 16-bit counter.

The following shows an example where the timer value is set to 0x0000001F.

Example of settings for free-running mode

Bits	MSB							LSB		Function
Register	[31:8]	7	6	5	4	3	2	1	0	
Timer0Control	0x000000	0	×	×	×	×	×	×	×	Stops Timer 0.
Timer0Load	0x000000	0	0	0	1	1	1	1	1	Timer 0 period: 0x0000001F
Timer0Control	0x000000	1	0	1	0	0	0	0	0	Enables Timer 0 (Starts counting).
										Selects free-running timer mode.
										Enables timer interrupts.
										Selects input clock T0.
										Selects 8-bit counter.
										Selects wrapping operation.

×: Don' t care -: No change

2) Periodic timer mode

When the timer starts counting, the counter value decrements from the initially set value. When the counter value reaches "0", an interrupt is generated.

Upon reaching "0", the counter is reloaded with the initially set value and continues decrementing if wrapping operation is enabled (Timer0Control<TIM0OSCTL>=0). Therefore, interrupts are generated at fixed intervals. The maximum value is 0xFF for the 8-bit counter and 0xFFFF for the 16-bit counter.

The following shows an example where the timer value is set to 0x0000001F.

Example of settings for periodic timer mode

Bits	MSB							LSB		Function
Register	[31:8]	7	6	5	4	3	2	1	0	
Timer0Control	0x000000	0	×	×	×	×	×	×	×	Stops Timer 0.
Timer0Load	0x000000	0	0	0	1	1	1	1	1	Timer 0 period: 0x0000001F
Timer0Control	0x000000	1	1	1	0	0	0	1	0	Enables Timer 0 (Starts counting).
										Selects periodic timer mode.
										Enables timer interrupts.
										Selects input clock T0.
										Selects 16-bit counter.
										Selects wrapping operation.

×: Don' t care -: No change

3) One-shot timer mode

In one-shot timer mode, the counter stops when the initially set value decrements to "0", generating a single interrupt. The timer can be restarted by changing the one-shot mode setting in the control register or by setting a new value to the Timer0Load (timer load value) register. The timer cannot be restarted by writing "1" to Timer0Control<TIM0EN>.

Example of settings for one-shot timer mode

Bits	MSB							LSB		Function
Register	[31:8]	7	6	5	4	3	2	1	0	
Timer0Control	0x000000	0	×	×	×	×	×	×	×	Stops Timer 0.
Timer0Load	0x000000	0	0	0	1	1	1	1	1	Timer 0 period: 0x0000001F
Timer0Control	0x000000	1	0	1	0	0	0	0	1	Enables Timer 0 (Starts counting). Selects free-running timer mode. Enable timer interrupts. Selects input clock T0. Selects 8-bit counter. Selects one-shot mode.
Timer0IntClr	×	×	×	×	×	×	×	×	×	Writing any value clears the interrupt.

 \times : Don't care -: No change

4) PWM mode

Block 1 and Block 2 are provided with two channels of the 16-bit PWM function. The two channels of PWM output are output on the PWM0OUT (PC3) and PWM2OUT (PC4) pins.

The PWM0OUT output is inverted when the value of the decrement counter matche the value set in the Timer0Compare1 register or when the counter value set in Timer0Mode<PWM Period> decrements to "0".

The Timer0Compare1 register can be set in a range of duty 0% to 100%. When the decrement counter value reaches "0", the counter resumes counting down from " 2^n-2 ".

The two channels have the same specifications and the above explanation also applies to Timer 2.

- Note: When using PWM mode, be sure to select "periodic timer mode", "16-bit counter" and "wrapping operation" in the control register.
- Example: Outputting the following PWM waveform on the PWM0OUT pin by using Timer 0 with fPCLK = 100 MHz and TIMCLK = 50 MHz

(Clock condition: high-frequency clock gear ×1/1)

(1) To realize the PWM period of 5.1 μs with T0=0.02 μs :

 $5.1 \mu s \div 0.02 \mu s = 255 = 2^n - 1$

Therefore, n=8.

(2) Since the Low level period is 4.0 μ s, the value to be set in Timer0Compare1 is calculated as follows with T0=0.02 μ s:

 $(5.1 \mu \text{s} - 4.0 \mu \text{s}) / 0.02 \mu \text{s} = 55 = 0 \text{x} 37$

Bits					LSB		В	Function	
Register	7	6	5	4	3	2	1	0	Function
Timer0Control	0	-		×	Ι	Ι			Stops Timer 0.
Timer0Mode	×	1	0	0	×	×	×	×	Selects PWM mode and sets PWM period to $2^8 - 1$.
Timer0Compare1	0	0	1	1	0	1	1	1	Sets the compare value 0x37.
Timer0CmpEn	×	×	×	×	×	×	×	1	Enables compare.
Timer0Control	1	1	1	×	0	0	1	0	Enables Timer 0 (Starts counting).
									Selects periodic timer mode.
									Enables timer interrupts.
									Selects input clock T0.
									Selects16-bit counter. (Must be 16-bit.)
									Selects wrapping operation.

×: Don' t care -: No change

PWM period Prescaler	2 ⁸ -1	2 ⁹ —1	2 ¹⁰ -1	2 ¹⁶ -1
TO	5.1 μs	10.22 μs	20.46 μs	1.31 ms
T16	81.6 μs	163.52 μs	327.36 μs	20.97 ms
T256	1.305 ms	2.62 ms	5.24 ms	335.54 ms

Table 3.12.1 PWM minimum resolutions (TIMCLK = 50 MHz)

Example: Duty settings when the counter period is 2^8-1 (255 counts)

The initial value of PWM output is always Low. Duty 0% is always Low, and duty 100% is always High.

 $Timer0Compare1 = "0x00" : Duty = 0/255 \times 100 = 0 \%$

:

Timer0Compare1 = "0x01": Duty = $1/255 \times 100 = 0.39$ %

: Timer0Compare1 = "0xFE": Duty = 254/255 × 100 = 99.6 % Timer0Compare1 = "0xFF": Duty = 255/255 × 100 = 100 %

- Although the actual count range is $2^n-2\sim 0$ (period: $2^n 1$), 2^n-1 can be set in the Timer0Compare1 regiter for duty 100%.
- When the PWM period is $2^n 1$, setting $2^n 1$ to Timer0Compare1 sets the flip-flop for PWM output to High . To start PWM output by modifying only the PWM period from this state, PWM mode must be disabled once to modify the setting.
- Although the timer operates in periodic timer mode, the value set in Timer0Load is ignored.

3.12.4 Register Descriptions

The following list shows the built-in registers and their functions:

Base address = 0xF004_0000

Register	Address	Description
Name	(base+)	Description
Timer0Load	0x0000	Timer0 Load value
Timer0Value	0x0004	The current value for Timer0
Timer0Control	0x0008	Timer0 control register
Timer0IntClr	0x000C	Timer0 interrupt clear
Timer0RIS	0x0010	Timer0 raw interrupt status
Timer0MIS	0x0014	Timer0 masked interrupt status
Timer0BGLoad	0x0018	Background load value for Timer0
Timer0Mode	0x001C	Timer0 mode register
-	0x0020	Reserved
-	0x0040	Reserved
-	0x0060	Reserved
-	0x0064	Reserved
-	0x0068	Reserved
Timer0Compare1	0x00A0	Timer0 Compare value
Timer0CmpIntClr1	0x00C0	Timer0 Compare Interrupt clear
Timer0CmpEn	0x00E0	Timer0 Compare Enable
Timer0CmpRIS	0x00E4	Timer0 Compare raw interrupt status
Timer0CmpMIS	0x00E8	Timer0 Compare masked int status
Timer0BGCmp	0x00EC	Background compare value for Timer0
-	0x00F0	Reserved
Timer1Load	0x0100	Timer1 Load value
Timer1Value	0x0104	The current value for Timer1
Timer1Control	0x0108	Timer1 control register
Timer1IntClr	0x010C	Timer1 interrupt clear
Timer1RIS	0x0110	Timer1 raw interrupt status
Timer1MIS	0x0114	Timer1 masked interrupt status
Timer1BGLoad	0x0118	Background load value for Timer1
-	0x0120	Reserved
-	0x0140	Reserved
-	0x0160	Reserved
-	0x0164	Reserved
-	0x0168	Reserved
Timer1Compare1	0x01A0	Timer1 Compare value
Timer1CmpIntClr1	0x01C0	Timer1 Compare Interrupt clear
Timer1CmpEn	0x01E0	Timer1 Compare Enable
Timer1CmpRIS	0x01E4	Timer1 Compare raw interrupt status
Timer1CmpMIS	0x01E8	Timer1 Compare masked int status

Base address = 0xF004_1000

Register	Address	Description		
Name	(base+)	Description		
Timer2Load	0x0000	Timer2 Load value		
Timer2Value	0x0004	The current value for Timer2		
Timer2Control	0x0008	Timer2 control register		
Timer2IntClr	0x000C	Timer2 interrupt clear		
Timer2RIS	0x0010	Timer2 raw interrupt status		
Timer2MIS	0x0014	Timer2 masked interrupt status		
Timer2BGLoad	0x0018	Background load value for Timer2		
Timer2Mode	0x001C	Timer2 mode register		
-	0x0020	Reserved		
-	0x0040	Reserved		
-	0x0060	Reserved		
-	0x0064	Reserved		
-	0x0068	Reserved		
Timer2Compare1	0x00A0	Timer2 Compare value		
Timer2CmpIntClr1	0x00C0	Timer2 Compare Interrupt clear		
Timer2CmpEn	0x00E0	Timer2 Compare Enable		
Timer2CmpRIS	0x00E4	Timer2 Compare raw interrupt status		
Timer2CmpMIS	0x00E8	Timer2 Compare masked int status		
Timer2BGCmp	0x00EC	Background compare value for Timer2		
:	:	:		
Timer3Load	0x0100	Timer3 Load value		
Timer3Value	0x0104	The current value for Timer3		
Timer3Control	0x0108	Timer3 control register		
Timer3IntClr	0x010C	Timer3 interrupt clear		
Timer3RIS	0x0110	Timer3 raw interrupt status		
Timer3MIS	0x0114	Timer3 masked interrupt status		
Timer3BGLoad	0x0118	Background load value for Timer3		
-	0x0120	Reserved		
-	0x0140	Reserved		
-	0x0160	Reserved		
-	0x0164	Reserved		
-	0x0168	Reserved		
Timer3Compare1	0x01A0	Timer3 Compare value		
Timer3CmpIntClr1	0x01C0	Timer3 Compare Interrupt clear		
Timer3CmpEn	0x01E0	Timer3 Compare Enable		
Timer3CmpRIS	0x01E4	Timer3 Compare raw interrupt status		
Timer3CmpMIS	0x01E8	Timer3 Compare masked interrupt status		

Base address = 0xF004_2000

Register	Address	Description		
Name	(base+)	Description		
Timer4Load	0x0000	Timer4 Load value		
Timer4Value	0x0004	The current value for Timer4		
Timer4Control	0x0008	Timer4 control register		
Timer4IntClr	0x000C	Timer4 interrupt clear		
Timer4RIS	0x0010	Timer4 raw interrupt status		
Timer4MIS	0x0014	Timer4 masked interrupt status		
Timer4BGLoad	0x0018	Background load value for Timer4		
-	0x001C	Reserved		
-	0x0020	Reserved		
-	0x0040	Reserved		
-	0x0060	Reserved		
-	0x0064	Reserved		
-	0x0068	Reserved		
Timer4Compare1	0x00A0	Timer4 Compare value		
Timer4CmpIntClr1	0x00C0	Timer4 Compare Interrupt clear		
Timer4CmpEn	0x00E0	Timer4 Compare Enable		
Timer4CmpRIS	0x00E4	Timer4 Compare raw interrupt status		
Timer4CmpMIS	0x00E8	Timer4 Compare masked int status		
Timer4BGCmp	0x00EC	Background compare value for Timer4		
••	:	:		
Timer5Load	0x0100	Timer5 Load value		
Timer5Value	0x0104	The current value for Timer5		
Timer5Control	0x0108	Timer5 control register		
Timer5IntClr	0x010C	Timer5 interrupt clear		
Timer5RIS	0x0110	Timer5 raw interrupt status		
Timer5MIS	0x0114	Timer5 masked interrupt status		
Timer5BGLoad	0x0118	Background load value for Timer5		
-	0x0120	Reserved		
-	0x0140	Reserved		
-	0x0160	Reserved		
-	0x0164	Reserved		
_	0x0168	Reserved		
Timer5Compare1	0x01A0	Timer5 Compare value		
Timer5CmpIntClr1	0x01C0	Timer5 Compare Interrupt clear		
Timer5CmpEn	0x01E0	Timer5 Compare Enable		
Timer5CmpRIS	0x01E4	Timer5 Compare raw interrupt status		
Timer5CmpMIS	0x01E8	Timer5 Compare masked interrupt status		

1. Timer Load Registers

Timer0Loa	ad			Address = (0xF004_0000) + 0x0000
	Bit	-	Reset	
Bit	Symbol	Туре	Value	Description
[31:16]	-	-	Undefined	Read undefined. Write as zero.
[15:0]	TIM0SD[15:0]	R/W	0x00	Set the interval value of Timer 0.
Timer1Loa	ıd			Address = (0xF004_0000) + 0x0100
	Bit	-	Reset	
Bit	Symbol	Туре	Value	Description
[31:16]	-	-	Undefined	Read undefined. Write as zero.
[15:0]	TIM1SD[15:0]	R/W	0x00	Set the interval value of Timer 1.
Timer2Loa	d			Address = (0xF004_1000) + 0x0000
D:4	Bit	T	Reset	Description
Bit	Symbol	Туре	Value	Description
[31:16]	-	_	Undefined	Read undefined. Write as zero.
[15:0]	TIM2SD[15:0]	R/W	0x00	Set the interval value of Timer 2.
Timer3Loa	d			Address = (0xF004_1000) + 0x0100
D:4	Bit	Туре	Reset	Description
BI	Symbol		Value	Description
[31:16]	-	_	Undefined	Read undefined. Write as zero.
[15:0]	TIM3SD[15:0]	R/W	0x00	Set the interval value of Timer 3.
Timer4Loa	d			Address = (0xF004_2000) + 0x0000
Bit	Bit Symbol	Туре	Reset Value	Description
[31:16]	-	-	Undefined	Read undefined. Write as zero.
[15:0]	TIM4SD[15:0]	R/W	0x00	Set the interval vale of Timer 4.
Timer5Loa	d		Address = (0xF004_2000) + 0x0100	
Bit	Bit Symbol	Туре	Reset Value	Description
[31:16]	-	-	Undefined	Read undefined. Write as zero.
[15:0]	TIM5SD[15:0]	R/W	0x00	Set the interval value of Timer 5.

[Explanation]

a. <TIMxSD[15:0]>

This register is used to set the timer period (counter value).

The counter is a decrement counter and the counter value can be set in a range of 0x0001-0xFFFF (setting 0x0000 is prohibited).

When the 8-bit counter is used, the upper 8 bits are ignored.

When the counter runs in periodic timer mode and wrapping operation is enabled, the value set in this register is reloaded to the counter when the counter value reaches "0".

When the counter runs in free-running mode and wrapping operation is enabled, the counter decrements from the maximum value. The counter is reloaded with the maximum value, not the value set in this register.

The value written in this register takes effect immediately on the internal timer clock regardless of the current timer period.

To reload the internal counter value when the decrement counter value reaches 0x0000, the Timer0BGLoad register described later can be used.

Reads of this register return the same value as returned from the Timer0BGLoad register.

2. Timer Data Registers

Innerova	Iue			$Address = (0xF004_0000) + 0x0004$
Bit	Bit Symbol	Туре	Reset Value	Description
[31:16]	_	_	Undefined	Read undefined. Write as zero.
[15:0]	TIM0CD[15:0]	RO	0x00	Current counter value of Timer 0
Timer1Va	lue			Address = (0xF004_0000) + 0x0104
Bit	Bit Symbol	Туре	Reset Value	Description
[31:16]	-	-	Undefined	Read undefined. Write as zero.
[15:0]	TIM1CD[15:0]	RO	0x00	Current counter value of Timer 1
Timer2Va	lue			Address = (0xF004_1000) + 0x0004
Bit	Bit Symbol	Туре	Reset Value	Description
[31:16]	-	-	Undefined	Read undefined. Write as zero.
[15:0]	TIM2CD[15:0]	RO	0x00	Current counter value of Timer 2
Timer3Va	lue		1	Address = (0xF004_2000) + 0x0104
Bit	Bit Symbol	Туре	Reset Value	Description
[31:16]	-	-	Undefined	Read undefined. Write as zero.
[15:0]	TIM3CD[15:0]	RO	0x00	Current counter value of Timer 3
Timer4Va	lue			Address = (0xF004_2000) + 0x0004
Bit	Bit Symbol	Туре	Reset Value	Description
Bit [31:16]	Bit Symbol	Туре	Reset Value Undefined	Description Read undefined. Write as zero.
Bit [31:16] [15:0]	Bit Symbol – TIM4CD[15:0]	Type - RO	Reset Value Undefined 0x00	Description Read undefined. Write as zero. Current counter value of Timer 4
Bit [31:16] [15:0] Timer5Va	Bit Symbol – TIM4CD[15:0]	Type - RO	Reset Value Undefined 0x00	Description Read undefined. Write as zero. Current counter value of Timer 4 Address = (0xF004_2000) + 0x0104
Bit [31:16] [15:0] Timer5Va Bit	Bit Symbol - TIM4CD[15:0] ilue Bit Symbol	Type - RO Type	Reset Value Undefined 0x00 Reset Value	Description Read undefined. Write as zero. Current counter value of Timer 4 Address = (0xF004_2000) + 0x0104 Description
Bit [31:16] [15:0] Timer5Va Bit [31:16]	Bit Symbol - TIM4CD[15:0] ilue Bit Symbol -	Type - RO Type	Reset Value Undefined 0x00 Reset Value Undefined	Description Read undefined. Write as zero. Current counter value of Timer 4 Address = (0xF004_2000) + 0x0104 Description Read undefined. Write as zero.

a. <TIMxCD[15:0]>

This register is used to read the current timer value.

It indicates the current value of the decrement counter.

3. Timer Control Registers

Timer0Control

Bit	Bit Symbol	Туре	Reset Value	Description
[21.0]	Cymbol		Undefined	Read undefined Write as zero
[31.0]			Ondenned	Times Q anabla bit
[7]	TIMUEN	R/W	090	
				1: Enable
[6]	TIMOMOD	R/W	0y0	Timer 0 mode setting
				0: Free-running mode
				1: Periodic timer mode
[5]	TIMOINTE	R/W	0у0	Timer 0 interrupt control
				0: Disable inerrupts
				1: Enable interrupts
[4]	_	-	Undefined	Read undefined. Write as zero.
[3:2]	TIM0PRS	R/W	0у00	Timer 0 prescaler setting
				00: No division
				01: Divide by 16
				10: Divide by 256
				11: Setting prohibited
[1]	TIM0SIZE	R/W	0у0	8-bit/16-bit counter select for Timer 0
				0: 8-bit counter
				1: 16-bit counter
[0]	TIM0OSCTL	R/W	0y0	One-shot/wrapping mode select for Timer 0
				0: Wrapping mode
				1: One-shot mode

Address = (0xF004_0000) + 0x0108

Timer1Control	Bit	Turne	Reset	Description
BI	Symbol	туре	Value	Description
[31:8]	-	-	Undefined	Read undefined. Write as zero.
[7]	TIM1EN	R/W	0y0	Timer 1 enable bit
				0: Disable
				1: Enable
[6]	TIM1MOD	R/W	0y0	Timer 1 mode setting
				0: Free-running mode
				1: Periodic timer mode
[5]	TIM1INTE	R/W	0y0	Timer 1 interrupt control
				0: Disable interrupts
				1: Enable interrupts
[4]	_	_	Undefined	Read undefined. Write as zero.
[3:2]	TIM1PRS	R/W	0y00	Timer 1 prescaler setting
				00: No division
				01: Divide by 16
				10: Divide by 256
				11: Setting prohibited
[1]	TIM1SIZE	R/W	0у0	8-bit/16-bit counter select for Timer 1
				0: 8-bit counter
				1: 16-bit counter
[0]	TIM1OSCTL	R/W	0y0	One-shot/wrapping mode select for Timer 1
				0: Wrapping mode
				1: One-shot mode

Timer2Control

 $Address = (0xF004_1000) + 0x0008$

Bit	Bit Symbol	Туре	Reset Value	Description
[31:8]	-	-	Undefined	Read undefined. Write as zero.
[7]	TIM2EN	R/W	0y0	Timer 2 enable bit
				0: Disable
				1: Enable
[6]	TIM2MOD	R/W	0y0	Timer 2 mode setting
				0: Free-running mode
				1: Periodic timer mode
[5]	TIM2INTE	R/W	0y0	Timer 2 interrupt control
				0: Disable interrupts
				1: Enable interrupts
[4]	_	_	Undefined	Read undefined. Write as zero.
[3:2]	TIM2PRS	R/W	0y00	Timer 2 prescaler setting
				00: No division
				01: Divide by 16
				10: Divide by 256
				11: Setting prohibited
[1]	TIM2SIZE	R/W	0у0	8-bit/16-bit counter select for Timer 2
				0: 8-bit counter
				1: 16-bit counter
[0]	TIM2OSCTL	R/W	0y0	One-shot/wrapping mode select for Timer 2
				0: Wrapping mode
				1: One-shot mode

Timer3Control

 $Address = (0xF004_1000) + 0x0108$

Bit	Bit Symbol	Туре	Reset Value	Description
[31:8]	-	-	Undefined	Read undefined. Write as zero.
[7]	TIM3EN	R/W	0у0	Timer 3 enable bit
				0: Disable
				1: Enable
[6]	TIM3MOD	R/W	0y0	Timer 3 mode setting
				0: Free-running mode
				1: Periodic timer mode
[5]	TIM3INTE	R/W	0y0	Timer 3 interrupt control
				0: Disable interrupts
				1: Enable interrupts
[4]	_	_	Undefined	Read undefined. Write as zero.
[3:2]	TIM3PRS	R/W	0y00	Timer 3 prescaler setting
				00: No division
				01: Divide by 16
				10: Divide by 256
				11: Setting prohibited
[1]	TIM3SIZE	R/W	0у0	8-bit/16-bit counter select for Timer 3
				0: 8-bit counter
				1: 16-bit counter
[0]	TIM3OSCTL	R/W	0y0	One-shot/wrapping mode selelct for Timer 3
				0: Wrapping mode
				1: One-shot mode

Timer4Control

 $Address = (0xF004_2000) + 0x0008$

Bit	Bit Symbol	Туре	Reset Value	Description
[31:8]	-	-	Undefined	Read undefined. Write as zero.
[7]	TIM4EN	R/W	0у0	Timer 4 enable bit
				0: Disable
				1: Enable
[6]	TIM4MOD	R/W	0y0	Timer 4 mode setting
				0: Free-running mode
				1: Periodic timer mode
[5]	TIM4INTE	R/W	0y0	Timer 4 interrupt control
				0: Disable interrupts
				1: Enable interrupts
[4]	-	-	Undefined	Read undefined. Write as zero.
[3:2]	TIM4PRS	R/W	0y00	Timer 4 prescaler setting
				00: No division
				01: Divide by 16
				10: Divide by 256
				11: Setting prohibited
[1]	TIM4SIZE	R/W	0y0	8-bit/16-bit counter select for Timer 4
				0: 8-bit counter
				1: 16-bit counter
[0]	TIM4OSCTL	R/W	0y0	One-shot/wrapping mode select for Timer 4
				0: Wrapping mode
				1: One-shot mode

Timer5Control

 $Address = (0xF004_1000) + 0x0108$

Bit	Bit Symbol	Туре	Reset Value	Description
[31:8]	-	-	Undefined	Read undefined. Write as zero.
[7]	TIM5EN	R/W	0у0	Timer 5 enable bit
				0: Disable
				1: Enable
[6]	TIM5MOD	R/W	0y0	Timer 5 mode setting
				0: Free-running mode
				1: Periodic timer mode
[5]	TIM5INTE	R/W	0y0	Timer 5 interrupt control
				0: Disable interrupts
				1: Enable interrupts
[4]	-	-	Undefined	Read undefined. Write as zero.
[3:2]	TIM5PRS	R/W	0y00	Timer 5 prescaler setting
				00: No division
				01: Divide by 16
				10: Divide by 256
				11: Setting prohibited
[1]	TIM5SIZE	R/W	0у0	8-bit/16-bit counter select for Timer 5
				0: 8-bit counter
				1: 16-bit counter
[0]	TIM5OSCTL	R/W	0y0	One-shot/wrapping mode select for Timer 5
				0: Wrapping mode
				1: One-shot mode

[Explanation]

a. <TIMxEN>

This bit is used to enable or disable timer operation.

0: Disable

1: Enable

b. <TIMxMOD>

This bit is used to switch timer operation modes.

c. <TIMxINTE>

This bit is used to control masking of timer interrupts.

d. <TIMxPRS>

This bit is used to set the prescale value for dividing the timer source clock.

e. <TIMxSIZE>

This bit is used to select the 8-bit or 16-bit counter.

f. <TIMxOSCTL>

This bit is used to select one-shot or wrapping operation.

4. Timer Interrupt Clear Registers

Timer0IntClr				Address = (0xF004_0000) + 0x000C
Bit	Bit Symbol	Туре	Reset Value	Description
[31:0]	TIM0INTCLR	WO	Undefined	Timer 0 interrupt clear
Timer1IntClr				Address = (0xF004_0000) + 0x010C
Bit	Bit Symbol	Туре	Reset Value	Description
[31:0]	TIM1INTCLR	WO	Undefined	Timer 1 interrupt clear
Timer2IntClr				Address = (0xF004_1000) + 0x000C
Bit	Bit Symbol	Туре	Reset Value	Description
[31:0]	TIM2INTCLR	WO	Undefined	Timer 2 interrupt clear
Timer3IntClr				Address = (0xF004_1000) + 0x010C
Bit	Bit Symbol	Туре	Reset Value	Description
[31:0]	TIM3INTCLR	WO	Undefined	Timer 3 interrupt clear
Timer4IntClr				Address = (0xF004_2000) + 0x000C
Bit	Bit Symbol	Туре	Reset Value	Description
[31:0]	TIM4INTCLR	WO	Undefined	Timer 4 interrupt clear
Timer5IntClr				Address = (0xF004_2000) + 0x010C
Bit	Bit Symbol	Туре	Reset Value	Description
[31:0]	TIM5INTCLR	WO	Undefined	Timer 5 interrupt clear

[Explanation]

a. <TIMxINTCLR>

This register is used to clear timer interrupts.

Writing any value in this register causes the corresponding interrupt to be cleared. (The bus widths of 8, 16 and 32 bits are supported.)

5. Timer Interrupt Raw Flag Registers

		Ī		
Rit	Bit	Type	Reset	Description
	Symbol	i ypc	Value	
[31:1]	_	-	Undefined	Read undefined. Write as zero.
[0]	TIMORIF	RO	0у0	Timer 0 interrupt flag
				0: No interrupt
				1: Interrupt requested
imer1RIS				Address = (0xF004_0000) + 0x0110
Di+	Bit	Tupo	Reset	Description
DIL	Symbol	туре	Value	Description
[31:1]	-	-	Undefined	Read undefined. Write as zero.
[0]	TIM1RIF	RO	0y0	Timer 1 interrupt flag
				0: No interrupt
				1: Interrupt requested
imer2RIS				Address = (0xF004_1000) + 0x0010
D:4	Bit	Turne	Reset	Description
Bit	Symbol	Туре	Value	Description
[31:1]	-	-	Undefined	Read undefined. Write as zero.
[0]	TIM2RIF	RO	0y0	Timer 2 interrupt flag
				0: No interrupt
				1: Interrupt requested
imer3RIS				Address = (0xF004_1000) + 0x0110
	Bit	Туре	Reset	
Bit	Symbol		Value	Description
[24.4]	Symbol		Value	Bood undefined Write on zero
[31:1]		- PO	Ordenned	Timor 2 interrupt flog
[U]	TINISKIF	RU	UyU	O: No interrupt
				1: Interrupt
mer4RIS				Address = (0xE004, 2000) + 0x0010
	Bit		Posot	
Bit	DIL	Type	Resei	Description
	Symbol		Value	
[31:1]	-	-	Undefined	Read undefined. Write as zero.
[0]	TIM4RIF	RO	0y0	Timer 4 interrupt flag
				0: No interrupt
				1: Interrupt requested
mer5RIS				Address = (0xF004_2000) + 0x0110
Bit	Bit	Туре	Reset	Description
	Symbol		Value	Description
[31:1]	-	-	Undefined	Read undefined. Write as zero.
<u> </u>	TIM5RIF	RO	0v0	Timer 5 interrupt flag
		1.0		inter o interrupt hdg

0: No interrupt 1: Interrupt requested [Explanation]

a. <TIMxRIF>

This register indicates the interrupt status of the internal counter, regardless of the interrupt enabled/disabled status specified in IMxCR<TIMxINTE>.

6. Timer Interrupt Masked Flag Registers

Timer0MIS				Address = (0xF004_0000) + 0x0014
D:4	Bit	Turne	Reset	Description
DIL	Symbol	Type	Value	Description
[31:1]	_	-	Undefined	Read undefined. Write as zero.
[0]	TIMOMIF	RO	0у0	Timer 0 interrupt flag
				0: No interrupt
				1: Interrupt requested
mer1MIS				Address = (0xF004_0000) + 0x0114
Dit	Bit	Туре	Reset	Description
DIL	Symbol		Value	Description
[31:1]	_	-	Undefined	Read undefined. Write as zero.
[0]	TIM1MIF	RO	0y0	Timer 1 interrupt flag
				0: No interrupt
				1: Interrupt requested
mer2MIS				Address = (0xF004_1000) + 0x0014
	Bit		Reset	
Bit	Symbol	Туре	Value	Description
[24.4]	Gymbol		Value	Dood undefined Write on zore
[31:1] [0]		- PO		Timor 2 interrupt flag
[0]		ĸŎ	UyU	0: No interrupt
				1: Interrupt requested
mer3MIS			1	Address = (0xF004_1000) + 0x0114
	Bit		Reset	
Bit	Ourseh al	Туре	Value	Description
	Symbol		Value	
[31:1]	_	-	Undefined	Read undefined. Write as zero.
[0]	TIM3MIF	RO	0у0	Timer 3 interrupt flag
				0: No interrupt
				1: Interrupt requested
mer4MIS				Address = (0xF004_2000) + 0x0014
D :4	Bit	T	Reset	Description
Bit	Symbol	туре	Value	Description
[31:1]	-	-	Undefined	Read undefined. Write as zero.
[0]	TIM4MIF	RO	0у0	Timer 4 interrupt flag
				0: No interrupt
				1: Interrupt requeste
mer5MIS				Address = (0xF004_2000) + 0x0114
	Bit		Reset	
Bit		Туре	1/-1	Description
_	Symbol		value	
[31:1]	-	-	Undefined	Read undefined. Write as zero.
[0]	TIM5MIF	RO	0у0	Timer 5 interrupt flag
				U: No interrupt
				1: Interrupt requested

[Explanation]

a. <TIMxMIF>

This register indicates the masked interrupt status, reflecting the interrupt enabled/disabled status specified in TIMxCR< TIMxINTE>.

(This register is always "0" when TIMxCR< TIMxINTE>=0.)

7. Timer Back Ground Counter Data Registers

Timer0BGLoad

				$Address = (0xF004_0000) + 0x0018$
Bit	Bit	Type	Reset	Description
	Symbol	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Value	2 000.10
[31:16]	-	-	Undefined	Read undefined. Write as zero.
[15:0]	TIM0BSD[15:0]	R/W	0x00	Set the interval value of the background counter for Timer 0.
Timer1BGLoad				Address = (0xF004_0000) + 0x0118
Bit	Bit Symbol	Туре	Reset Value	Description
[31:16]	-	-	Undefined	Read undefined. Write as zero.
[15:0]	TIM1BSD[15:0]	R/W	0x00	Set the interval value of the background counter for Timer 1.
imer2BGLoad				Address = (0xF004_1000) + 0x0018
Bit	Bit Symbol	Туре	Reset Value	Description
[31:16]	_	-	Undefined	Read undefined. Write as zero.
[15:0]	TIM2BSD[15:0]	R/W	0x00	Set the interval value of the background counter for Timer 2.
Timer3BGLoad				Address = (0xF004_1000) + 0x0118
Bit	Bit Symbol	Туре	Reset Value	Description
[31:16]	-	-	Undefined	Read undefined. Write as zero.
[15:0]	TIM3BSD[15:0]	R/W	0x00	Set the interval value of the background counter for Timer 3.
Fimer4BGLoad				Address = (0xF004_2000) + 0x0018
Bit	Bit Symbol	Туре	Reset Value	Description
[31:16]	-	-	Undefined	Read undefined. Write as zero.
[15:0]	TIM4BSD[15:0]	R/W	0x00	Set the interval value of the background counter for Timer 4.
Fimer5BGLoad				Address = (0xF004_2000) + 0x0118
Bit	Bit Symbol	Туре	Reset Value	Description
[31:16]	_	_	Undefined	Read undefined. Write as zero.
[15:0]	TIM5BSD[15:0]	R/W	0x00	Set the interval value of the background counter for Timer 5.

[Explanation]

a. <TIMxBSD[15:0]>

This register is used to set the value of the background counter to be reloaded into the counter when periodic timer mode is used.

This register provides an alternative means of accessing the TimerxLoad register.

Unlike a write to the TimerxLoad register, a write to the TimerxBGLoad register does not immediately set the counter to the new value. Reads from this register return the same value as returned from the TimerxLoad register.

8. Timer Mode Registers

Timer0Mode

Address = (0xF004_0000) + 0x001C

Bit	Bit Symbol	Туре	Reset Value	Description
[31:7]	_	-	Undefined	Read undefined. Write as zero.
[6]	PWM Mode	R/W	0y0	PWM mode select:
				0: PWM disabled
				1: PWM enabled
[5:4]	PWM Period	R/W	0y00	PWM mode period select:
				00: 2 ⁸ - 1
				01: 2 ⁹ - 1
				10: 2 ¹⁰ - 1
				11: 2 ¹⁶ - 1
[3:0]	-	-	Undefined	Read undefined. Write as zero.

Timer2Mode

Address = (0xF004_1000) + 0x001C

Bit	Bit Symbol	Туре	Reset Value	Description
[31:7]	-	-	Undefined	Read undefined. Write as zero.
[6]	PWM Mode	R/W	0у0	PWM mode select:
				0: PWM disabled
				1: PWM eabled
[5:4]	PWM Period	R/W	0y00	PWM mode period select:
				00: 2 ⁸ - 1
				01: 2 ⁹ - 1
				10: 2 ¹⁰ - 1
				11: 2 ¹⁶ - 1
[3:0]	-	-	Undefined	Read undefined. Write as zero.

[Explanation]

a. <PWM Mode>

This register is used to enable or disable PWM mode.

b. <PWM Period>

This register is used to specify the PWM mode period.

9. Timer Compare Value Registers

Timer0Compare1

Timer0Compare	Address = (0xF004_0000) + 0x00A0			
D:4	Bit	Turne	Reset	Description
DIL	Symbol	туре	Value	Description
[31:16]	-	-	Undefined	Read undefined. Write as zero.
[15:0]	TIM0CPD	R/W	0x00	Set the value to be compared with the counter value of Timer 0: 0x0001-0xFFFF

Timer1Compare1

 $Address = (0xF004_000) + 0x01A0$

Bit	Bit Symbol	Туре	Reset Value	Description
[31:16]	-	-	Undefined	Read undefined. Write as zero.
[15:0]	TIM1CPD	R/W	0x00	Set the value to be compared with the counter value of Timer 1: 0x0001-0xFFFF

Timer2Compare1

 $Address = (0xF004_1000) + 0x00A0$

Bit	Bit Symbol	Туре	Reset Value	Description
[31:16]	_	-	Undefined	Read undefined. Write as zero.
[15:0]	TIM2CPD	R/W	0x00	Set the value to be compared with the counter value of Timer 2: 0x0001-0xFFFF

Timer3Compare1

 $Address = (0xF004_1000) + 0x01A0$

Bit	Bit Symbol	Туре	Reset Value	Description
[31:16]	_	-	Undefined	Read undefined. Write as zero.
[15:0]	TIM3CPD	R/W	0x00	Set the value to be compared with the counter value of Timer 3: 0x0001-0xFFFF

Timer4Compare1

Address = (0xF004_2000) + 0x00A0

Bit	Bit Symbol	Туре	Reset Value	Description
[31:16]	-	-	Undefined	Read undefined. Write as zero.
[15:0]	TIM4CPD	R/W	0x00	Set the value to be compared with the counter value of Timer 4: 0x0001-0xFFFF

Timer5Compare1

Address = (0xF004_2000) + 0x01A0

Bit	Bit Symbol	Туре	Reset Value	Description
[31:16]	-	-	Undefined	Read undefined. Write as zero.
[15:0]	TIM5CPD	R/W	0x00	Set the value to be compared with the counter value of Timer 5: 0x0001-0xFFFF

[Explanation]

a. <TIMxCPD>

10. Timer Compare Interrupt Clear Registers

Timer0CmpIntC	Cir1			Address = (0xF004_0000) + 0x00C0
Bit	Bit Symbol	Туре	Reset Value	Description
[31:0]	TIM0CMINTCLR	WO	Undefined	Timer 0 compare interrupt clear
Timer1CmpIntCl	r1			Address = (0xF004_0000) + 0x01C0
Bit	Bit Symbol	Туре	Reset Value	Description
[31:0]	TIM1CMINTCLR	WO	Undefined	Timer 1 compare interrupt clear
Timer2CmpIntC	Cir1			Address = (0xF004_1000) + 0x00C0
Bit	Bit Symbol	Туре	Reset Value	Description
[31:0]	TIM2CMINTCLR	WO	Undefined	Timer 2 compare interrupt clear
Timer3CmpIntC	ilr1			Address = (0xF004_1000) + 0x01C0
Bit	Bit Symbol	Туре	Reset Value	Description
[31:0]	TIM3CMINTCLR	WO	Undefined	Timer 3 compare interrupt clear
Timer4CmpInt0	Cir1			Address = (0xF004_2000) + 0x00C0
Bit	Bit Symbol	Туре	Reset Value	Description
[31:0]	TIM4CMINTCLR	WO	Undefined	Timer 4 compare interrupt clear
Timer5CmpIntC	Cir1			Address = (0xF004_2000) + 0x01C0
Bit	Bit Symbol	Туре	Reset Value	Description
[31:0]	TIM5CMINTCLR	WO	Undefined	Timer 5 compare interrupt clear

[Explanation]

a. <TIMxCMINTCLR>

This register is used to clear timer compare interrupts.

Writing any value in this register causes the corresponding interrupt to be cleared. (The bus widths of 8, 16 and 32 bits are supported.)

11. Timer Compare Enable Registers

Timer0CmpEn				Address = (0xF004_0000) + 0x00E0
Bit	Bit Symbol	Туре	Reset Value	Description
[31:1]	-	-	Undefined	Read undefined. Write as zero.
[0]	TIM0CPE	R/W	ОуО	Timer 0 compare operation enable 0: Disable 1: Enable

Timer1CmpEn

 $Address = (0xF004_0000) + 0x01E0$

Bit	Bit Symbol	Туре	Reset Value	Description
[31:1]	-	-	Undefined	Read undefined. Write as zero.
[0]	TIM1CPE	R/W	0у0	Timer 1 compare operation enable
				0: Disable
				1: Enable

Timer2CmpEn

Address = (0xF004_1000) + 0x00E0

Bit	Bit Symbol	Туре	Reset Value	Description
[31:1]	-	-	Undefined	Read undefined. Write as zero.
[0]	TIM2CPE	R/W	0у0	Timer 2 compare operation enable 0: Disable
				1: Enable

Timer3CmpEn

 $Address = (0xF004_1000) + 0x01E0$ Bit Reset Bit Туре Description Symbol Value Undefined Read undefined. Write as zero. [31:1] **TIM3CPE** R/W 0y0 Timer 3 compare operation enable [0] 0: Disable 1: Enable

Timer4CmpEn

Address = (0xF004_2000) + 0x00E0

Bit	Bit Symbol	Туре	Reset Value	Description
[31:1]	-	-	Undefined	Read undefined. Write as zero.
[0]	TIM4CPE	R/W	0у0	Timer 4 compare operation enable
				0: Disable
				1: Enable

Timer5CmpEn

 $Address = (0xF004_2000) + 0x01E0$

Bit	Bit Symbol	Туре	Reset Value	Description
[31:1]	-	-	Undefined	Read undefined. Write as zero.
[0]	TIM5CPE	R/W	0у0	Timer 5 compare operation enable
				0: Disable
				1: Enable

[Explanation]

a. <TIMxCPE>

This register is used to enable compare operation of the timer.

It is also used to mask interrupts.

12. Timer Compare Raw Intrrupt Status Registers

Timer0CmpRIS

Timer0CmpRIS				Address = (0xF004_0000) + 0x00E4
Bit	Bit Symbol	Туре	Reset Value	Description
[31:1]	-	-	Undefined	Read undefined. Write as zero.
[0]	TIM0CRIF	RO	0у0	Timer 0 compare raw interrupt status 0: No interrupt 1: Interrupt requested

Timer1CmpRIS

 $Address = (0xF004_0000) + 0x01E4$

Bit	Bit Symbol	Туре	Reset Value	Description
[31:1]	-	-	Undefined	Read undefined. Write as zero.
[0]	TIM1CRIF	RO	0у0	Timer 1 compare raw interrupt status
				0: No interrupt
				1: Interrupt requested

Timer2CmpRIS				Address = (0xF004_1000) + 0x00E4
Bit	Bit Symbol	Туре	Reset Value	Description
[31:1]	-	-	Undefined	Read undefined. Write as zero.
[0]	TIM2CRIF	RO	0y0	Timer 2 compare raw interrupt status
				0: No interrupt
				1: Interrupt requested

Timer3CmpRIS

 $Address = (0xF004_1000) + 0x01E4$

Bit	Bit Symbol	Туре	Reset Value	Description
[31:1]	-	-	Undefined	Read undefined. Write as zero.
[0]	TIM3CRIF	RO	0у0	Timer 3 compare raw interrupt status
				0: No interrupt
				1: Interrupt requested

Timer4CmpRIS

Address = (0xF004_2000) + 0x00E4

Bit	Bit Symbol	Туре	Reset Value	Description
[31:1]	_	-	Undefined	Read undefined. Write as zero.
[0]	TIM4CRIF	RO	0у0	Timer 4 compare raw interrupt status
				0: No interrupt
				1: Interrupt requested

Timer5CmpRIS

 $Address = (0xF004_2000) + 0x01E4$

Bit	Bit Symbol	Туре	Reset Value	Description
[31:1]	-	-	Undefined	Read undefined. Write as zero.
[0]	TIM5CRIF	RO	0y0	Timer 5 compare raw interrupt status
				0: No interrupt
				1: Interrupt requested

[Explanation]

a. <TIMxCRIF>

This register indicates the raw status of the compare interrupt, regardless of the interrupt enabled/disabled status specified in TIMxCPMIS.

13. Timer Compare Masked Interrupt Status Registers

Timer0CmpMIS				Address = (0xF004_0000) + 0x00E8
Bit	Bit Symbol	Туре	Reset Value	Description
[31:1]	-	-	Undefined	Read undefined. Write as zero.
[0]	TIM0CMIF	RO	0у0	Timer 0 compare interrupt flag 0: No interrupt 1: Interrupt requested

Timer1CmpMIS

Address = (0xF004_0000) + 0x01E8

Bit	Bit Symbol	Туре	Reset Value	Description
[31:1]	-	-	Undefined	Read undefined. Write as zero.
[0]	TIM1CMIF	RO	0у0	Timer 1 compare interrupt flag
				0: No interrupt
				1: Interrupt requested

Timer2CmpMIS

Address = (0xF004_1000) + 0x00E8

Bit	Bit Symbol	Туре	Reset Value	Description
[31:1]	_	-	Undefined	Read undefined. Write as zero.
[0]	TIM2CMIF	RO	0у0	Timer 2 compare interrupt flag
				0: No interrupt
				1: Interrupt requested

Timer3CmpMIS

Address = (0xF004_1000) + 0x01E8

Bit	Bit Symbol	Туре	Reset Value	Description
[31:1]	-	-	Undefined	Read undefined. Write as zero.
[0]	TIM3CMIF	RO	0у0	Timer 3 compare interrupt flag 0: No interrupt 1: Interrupt requested

Timer4CmpMIS				Address = (0xF004_2000) + 0x00E8
Bit	Bit Symbol	Туре	Reset Value	Description
[31:1]	-	-	Undefined	Read undefined. Write as zero.
[0]	TIM4CMIF	RO	0у0	Timer 4 compare interrupt flag 0: No interrupt 1: Interrupt requested

Timer5CmpMIS

 $Address = (0xF004_2000) + 0x01E8$

Bit	Bit Symbol	Туре	Reset Value	Description
[31:1]	-	-	Undefined	Read undefined. Write as zero.
[0]	TIM5CMIF	RO	0у0	Timer 5 compare interrupt flag
				0: No interrupt
				1: Interrupt requested

[Explanation]

a. <TIMxCMIF>

This register indicates the masked status of the compare interrupt.

14. Timer Back Ground Compare Registers

Timer0BGCmp

Timer0BGCmp				Address = (0xF004_0000) + 0x00EC
Bit	Bit Symbol	Туре	Reset Value	Description
[31:16]	-	-	Undefined	Read undefined. Write as zero.
[15:0]	TIM0BGCPD	R/W	0x0000	Set the background value to be compared with the counter value of Timer 0: 0x0001-0xFFFF

Timer2BGCmp

 $Address = (0xF004_1000) + 0x00EC$

Bit	Bit Symbol	Туре	Reset Value	Description
[31:16]	-	-	Undefined	Read undefined. Write as zero.
[15:0]	TIM2BGCPD	R/W	0x0000	Set the background value to be compared with the counter value of Timer 2: 0x0001-0xFFFF

Timer4BGCmp

 $Address = (0xF004_2000) + 0x00EC$

Bit	Bit Symbol	Туре	Reset Value	Description
[31:16]	-	-	Undefined	Read undefined. Write as zero.
[15:0]	TIM4BGCPD	R/W	0x0000	Set the background value to be compared with the counter value of Timer 4: 0x0001- 0xFFFF

When the compare value to be reloaded is written in the TIMxBGCPDT register while the timer is running in periodic timer mode, the timer continues counting until the counter value reaches "0". Then, the value set in the TIMxBGCPDT register is shifted to the TIMxCPDT register.

The following requirements must be met when PWM mode is used.

 $1 < (TIMxBGCPD value) < 2^{n} - 1$

 $0 \neq$ (TIMxBGCPD value)

Do not write to the TIMxBGCPDT register when the count value is "0".

3.13 UART

This LSI contains two UART channels. The feather of each channel is showed below Table.

	Channel 0	Channel 1				
Transmit FIFO	8-bit width / 16 location deep					
Receive FIFO	12-bit width /16location deep					
Transmit/Receive	DATA bits : 5,6,7,8bit can be selected					
data format	PARITY: use / no use					
	STOP bit:1bit / 2bit					
FIFO ON/OFF	ON (FIFO mode)/					
	OFF (characters mode)					
Interrupt	(1) Interrupt factors are combined, and outp	out to interrupt controller.				
	(2) The permit of each interrupt factor is pro-	ogrammable.				
baud rate generator	Baud rate generator: generates a common transmit and receive internal clock from the UART internal reference clock input.					
	Supports baud rates of up to 6.15Mbps at f	_{PCLK} = 100MHz.				
DMA	support	Not support				
IrDA Function	(1) Max data rate: 115.2kbps(half-duplex)	Not support				
	(2) support low power mode					
Control pins	Control pins (support modem):	Support 3-wire operation				
	U0RXD	U1RXD				
	U0TXD	U1TXD				
	U0CTSn	U1CTSn				
	U0CTSn (Clear To Send)					
	U0DCDn (Data Carrier Detect)					
	U0DSRn (Data Set Ready)					
	U0RIn (Ring Indicator)					
	U0RTSn(Request To Send)					
	U0DTRn (Data Terminal Ready)					

(1) UART transmit/receive data format

	Transmit/receive data format					
START		DATA		PARITY	STOP	
	(LSB	\rightarrow	MSB)			
$\overline{\square}$		Ţ		Ţ	Ţ	
1 bit		5 to 8 bits		1 bit or none	1 to 2 bits	

(2) Receive FIFO data format

	Receive data		Framing error	Parity error	Break error	Overrun
(LSB	\rightarrow	MSB)	flag	flag	flag	error flag

Receive FIFO is stuffed from LSB. If receive data is under 8bit, upper bits are stuffed with "0".

3.13.1 Block Diagrams

Figure 3.13.1 UART channel 0 block diagram

Figure 3.13.2 UART channel 1 block diagram

3.13.1.1 Operation Description

(1) Baud rate generator

The baud rate generator contains the internal Baud16 clock circuit which controls the timing of UART Transmit and Receive, and the internal IrLPBaud16 circuit which generate the pulse width of the IrDA encoded transmit bit stream when in low-power mode.

(2) Transmit FIFO

The transmit FIFO is an 8-bit wide, 16 locations deep, FIFO memory buffer. CPU data written across the APB interface is stored in the FIFO until read out by the transmit logic. You can disable the transmit FIFO to act like a one-byte holding register.

(3) Receive FIFO

The receive FIFO is a 12-bit wide, 16 locations deep, FIFO memory buffer. Received data and corresponding error bits are stored in the receive FIFO by the receive logic until read out by the CPU across the APB interface. The receive FIFO can be disabled to act like a one-byte holding register.

(4) Transmit logic

The transmit logic performs parallel-to-serial conversion on the data read from the transmit FIFO. Control logic outputs the serial bit stream beginning with a start bit, data bits with the Least Significant Bit (LSB) first, followed by the parity bit, and then the stop bits according to the programmed configuration in control registers.

(5) Receive logic

The receive logic performs serial-to-parallel conversion on the received bit stream after a start bit has been detected. Overrun, parity, frame error checking, and line beak detection are also performed, and their status accompanies the data that is written to the receive FIFO.

(6) Interrupt generation logic

Individual maskable active HIGH interrupts are generated by the UART. A combined interrupt output is also generated as an OR function of the individual interrupt requests.

You can use the single combined interrupt with a system interrupt controller that provides another level of masking on a per-peripheral basis. This enables you to use modular device drivers that always know where to find the interrupt source control register bits.

You can also use the individual interrupt requests with a system interrupt controller that provides masking for the outputs of each peripheral. In this way, a global interrupt service routine can read the entire set of sources from one wide register in the system interrupt controller. This is attractive where the time to read from the peripheral registers is significant compared to the CPU clock speed in a real-time system.

The peripheral supports both the above methods.

(7) Interrupt timing

mode	Interrupt timing
Over run error	After receive the stop bit of Overflow data
Break error	After receive STOP bit
Parity error	After receive parity data
Frame error	After receive frame over bit
Receive timeout error	After 511 clocks (Baud16) from that Receive FIFO get data.
Transmit interrupt	After transmit the last data (MSB data).
Receive interrupt	After receive STOP bit

Note: STOP bit is the last STOP bit。 (By setting UARTLCR_H<STP2>, The number of STOP bit can be selected as 1 bit or 2 bits.)

(8) UART 0 interrupt block

(9) DMA interface

The UART provides an interface to connect to the DMA controller.

(10) IrDA SIR ENDEC functional description

The IrDA SIR ENDEC is comprised of:

- IrDA SIR transmit encoder
- IrDA SIR receive decoder

Figure 3.13.3 shows a block diagram of the IrDA SIR ENDEC.

Figure 3.13.3 IrDA SIR ENDEC block diagram

3.13.2 Register Descriptions

The following lists the UART registers and their functions:

•UART0

Base address = 0xF200_0000

Register	Address	
Name	(base+)	Description
UART0DR	0x000	Data read/write register
UART0SR/ UART0ECR	0x004	Receive status register (read)/Error clear register (write)
_	0x008-0x014	Reserved
UART0FR	0x018	Flag register (read only)
-	0x01C	Reserved
UARTOILPR	0x020	IrDA low-power counter register
UARTOIBRD	0x024	Integer baud rate divisor register
UART0FBRD	0x028	Fractional baud rate divisor register
UART0LCR_H	0x02C	Data format control register, high byte
UART0CR	0x030	Control register
UARTOIFLS	0x034	Interrupt FIFO level select register
UARTOIMSC	0x038	Interrupt mask set/clear register
UARTORIS	0x03C	Raw interrupt status register
UARTOMIS	0x040	Masked interrupt status register
UARTOICR	0x044	Interrupt clear register
UARTODMACR	0x048	DMA control register
-	0x04C-0x07C	Reserved
-	0x080-0x08C	Reserved
-	0x090-0xFCC	Reserved
-	0xFD0-0xFDC	Reserved
-	0xFE0	Reserved
-	0xFE4	Reserved
-	0xFE8	Reserved
-	0xFEC	Reserved
-	0xFF0	Reserved
-	0xFF4	Reserved
-	0xFF8	Reserved
_	0xFFC	Reserved

Note: You must disable the UART before any of the control registers are reprogrammed. When the UART is disabled in the middle of send or receive operation, it stops after the transmission of the current character is completed.

 \bullet UART1

Base address = 0xF200_1000

Register	Address	Description
Name	(base+)	Description
UART1DR	0x0000	Data read/write register
UART1SR/ UART1ECR	0x0004	Receive status register (read)/Error clear register (write)
-	0x0008-0x0014	Reserved
UART1FR	0x0018	Flag register (read only)
-	0x001C	Reserved
-	0x0020	Reserved
UART1IBRD	0x0024	Integer baud rate divisor register
UART1FBRD	0x0028	Fractional baud rate divisor register
UART1LCR_H	0x002C	Data format control register, high byte
UART1CR	0x0030	Control register
UART1IFLS	0x0034	Interrupt FIFO level select register
UART1IMSC	0x0038	Interrupt mask set/clear register
UART1RIS	0x003C	Raw interrupt status register
UART1MIS	0x0040	Masked interrupt status register
UART1ICR	0x0044	Interrupt clear register
-	0x0048	Reserved
-	0x004C-0x007C	Reserved
-	0x0080-0x008C	Reserved
-	0x0090-0x0FCC	Reserved
-	0x0FD0-0x0FDC	Reserved
-	0x0FE0	Reserved
-	0x0FE4	Reserved
-	0x0FE8	Reserved
-	0x0FEC	Reserved
-	0x0FF0	Reserved
_	0x0FF4	Reserved
-	0x0FF8	Reserved
-	0x0FFC	Reserved

Note: You must disable the UART before any of the control registers are reprogrammed. When the UART is disabled in the middle of send or receive operation, it stops after the transmission of the current character is completed.

1. UART0DR (UART 0 data register)

				Address = (0xF200_0000) + 0x0000
Bit	Bit Symbol	Туре	Reset Value	Description
[31:12]	-	-	Undefined	Read undefined. Write as zero.
[11]	OE	RO	Undefined	Overrun error 0y0: There is an empty space in the FIFO. 0y1: Overrun error flag
[10]	BE	RO	Undefined	Break error 0y0: No error detected 0y1: Error detected
[9]	PE	RO	Undefined	Parity error 0y0: No error detected 0y1: Error detected
[8]	FE	RO	Undefined	Framing error 0y0: No error detected 0y1: Error detected
[7:0]	DATA	R/W	Undefined	Read: Receive data Write: Send data

2. UART1DR (UART 1 data register)

Address = (0xF200_1000) + 0x0000

Bit	Bit Symbol	Туре	Reset Value	Description
[31:12]	-	-	Undefined	Read undefined. Write as zero.
[11]	OE	RO	Undefined	Overrun error
				0y0: There is an empty space in the FIFO. 0y1: Overrun error flag
[10]	BE	RO	Undefined	Break error
				0y0: No error detected
				0y1: Error detected
[9]	PE	RO	Undefined	Parity error
				0y0: No error detected
				0y1: Error detected
[8]	FE	RO	Undefined	Framing error
				0y0: No error detected
				0y1: Error detected
[7:0]	DATA	R/W	Undefined	Read: Receive data
				Write: Send data

[Explanation]

a. <OE>

This bit is set to "1" if data is received and the receive FIFO is already full. In this case, the received data is not stored in the FIFO and is discarded.

The bit is cleared to "0" once an empty space is made in the FIFO and a new data can be written to it.

b. <BE>

This bit is set to "1" if a break condition was detected, indicating that the receive data input was held LOW for a period longer than a full-word transmission time (defined as start, data parity, and stop bits).

c. <PE>

When this bit is set to "1", it indicates that the parity of the received data does not match the parity defined by bits 2 and 7 of the UARTLCR_H register.

d. <FE>

When this bit is set to "1", it indicates that the received data did not have a valid stop bit (a valid stop bit is 1).

3. UARTOSR (UART0 receive status register (read))

 $Address = (0xF200_0000) + 0x0004$

Bit	Bit Symbol	Туре	Reset Value	Description
[31:4]	-	-	-	Read undefined. Write as zero.
[3]	OE	RO	0у0	Overrun error: 0y0: There is an empty space in the FIFO. 0y1: Overrun error flag
[2]	BE	RO	0у0	Break error 0y0: No error detected 0y1: Error detected
[1]	PE	RO	0у0	Parity error 0y0: No error detected 0y1: Error detected
[0]	FE	RO	0у0	Framing error 0y0: No error detected 0y1: Error detected

Note: This register is also used as UART0ECR. Also refer to the description of "5.UART0ECR".

4. UART1SR (UART1 receive status register (read))

 $Address = (0xF200_1000) + 0x0004$

Bit	Bit Symbol	Туре	Reset Value	Description
[31:4]	-	-	-	Read undefined. Write as zero.
[3]	OE	RO	0у0	Overrun error:
				0y0: There is an empty space in the FIFO. 0y1: Overrun error flag
[2]	BE	RO	0y0	Break error
				0y0: No error detected
				0y1: Error detected
[1]	PE	RO	0y0	Parity error
				0y0: No error detected
				0y1: Error detected
[0]	FE	RO	0y0	Framing error
				0y0: No error detected
				0y1: Error detected

Note1: This register is also used as UART1ECR. Also refer to the description of "6.UART1ECR".

Note2: The UARTxSR/UARTxECR register is the receive status register/error clear register. Receive status can also be read from UARTxSR. If the status is read from this register, the status information for break, framing and parity corresponds to the data read from UARTxDR prior to reading UARTxSR. The status information for overrun is set immediately when an overrun condition occurs. A write to UARTxECR clears the framing, parity, break, and overrun errors. All the bits are cleared to 0 on reset.

[Explanation]

a. <OE>

This bit is set to "1" if data is received and the FIFO is already full. In this case, the received data is not stored in the FIFO and is discarded.

The bit is cleared to "0" once an empty space is made in the FIFO and new data can be written to it.

b. <BE>

This bit is set to "1" if a break condition was detected, indicating that the receive data input was held LOW for longer than a full-word transmission time (defined as start, data parity, and stop bits).

c. <PE>

When this bit is set to "1", it indicates that the parity of the received data does not match the parity defined by bits 2 and 7 of the UARTLCR_H register.

d. <FE>

When this bit is set to "1", it indicates that the received data did not have a valid stop bit (a valid stop bit is 1).

5. UART0ECR (UART0 error clear register (write)) (same I/O address as that of UART0SR)

Address = (0xF200_0000) + 0x0004

Bit	Bit Symbol	Туре	Reset Value	Description
[31:0]	_	WO	_	A write to this register clears framing, parity, break, and overrun errors. The data value has no significance. The address of this register is the same as that of the UART0SR register.

Note: This register is also used as UARTOSR. Also refer to the description of "3.UARTOSR".

6. UART1ECR (UART1 error clear register (write)) (same I/O address as that of UART1SR)

 $Address = (0xF200_{1000}) + 0x0004$

Bit	Bit Symbol	Туре	Reset Value	Description
[31:0]	-	WO	-	A write to this register clears framing, parity, break, and overrun errors. The data value has no significance. The address of this register is the same as that of the UART1SR register.

Note1: This register is also used as UART1SR. Also refer to the description of "4.UART1SR".

Note2: The receive data must be read first from UARTxDR before the error status associated with that data is read from UARTxSR. This read sequence cannot be reversed because the status register UARTxSR is updated only when a read occurs from the data register UARTxDR. However, the status information can also be obtained by reading the UARTxDR register.

7. UARTOFR (UART0 flag register)

The bits of this register are described in two tables as shown below because the meanings of the <TXFE>, <RXFF>, <TXFF>, and <RXFE> bits differ depending on the state of the <FEN> of the UART1LCR_H register.

(1) Transmit FIFO

The transmit FIFO is an 8-bit wide, 16 location deep, FIFO memory buffer. CPU data written across the APB interface is stored in the FIFO until read out by the transmit logic. You can disable the transmit FIFO to act like a one-byte holding register.

(2) Receive FIFO

The receive FIFO is a 12-bit wide, 16 location deep, FIFO memory buffer. Received data and corresponding error bits are stored in the receive FIFO by the receive logic until read out by the CPU across the APB interface. The receive FIFO can be disabled to act like a one-byte holding register.

Bit	Bit	Type	Reset	Des	cription
	Symbol	Type	Value	FIFO mode (FEN = "1")	Character mode (FEN = "0")
[31:9]	-	-	Undefined	Read undefined. Write as zero.	Read undefined. Write as zero.
[8]	RI	RO	Undefined	Ring indicator flag	Ring indicator flag
				0y1: The modem status input data is "0".	0y1: The modem status input data is "0".
[7]	TXFE	RO	0y1	Transmit FIFO empty flag	Transmit hold register empty flag
				0y1: Empty	0y1: Empty
				0y0: Not empty	0y0: Not empty
[6]	RXFF	RO	0y0	Receive FIFO full flag	Receive hold register full flag
				0y1: Full	0y1: Full
				0y0: Not full	0y0: Not full
[5]	TXFF	RO	0y0	Transmit FIFO full flag	Transmit hold register full flag
				0y1: Full	0y1: Full
l				0y0: Not full	0y0: Not full
[4]	RXFE	RO	0y1	Receive FIFO empty flag	Receive hold register empty flag
				0y1: Empty	0y1: Empty
l				0y0: Not empty	0y0: Not empty
[3]	BUSY	RO	0y0	Busy flag	Busy flag:
				0y1: The UART is transmitting data. (Busy)	0y1: The UART is transmitting data. (Busy)
				0y0: The UART has stopped transmitting data.	0y0: The UART has stopped transmitting data.
[2]	DCD	RO	Undefined	Data carrier detect flag	Data carrier detect flag
				0y1: Modem status input = "0"	0y1: Modem status input = "0"
[1]	DSR	RO	Undefined	Data set ready flag	Data set ready flag
				0y1: Modem status input = "0"	0y1: Modem status input = "0"
[0]	CTS	RO	Undefined	Clear To Send flag	Clear To Send flag
				0y1: Modem status input = "0"	0y1: Modem status input = "0"

Address = (0xF200_0000) + 0x0018

Address = (0xE200, 1000) + 0x0018

8. UART1FR (UART1 flag register)

Di+	Bit	Turo	Reset	Desc	cription
DIL	Symbol	туре	Value	FIFO mode (FEN = "1")	Character mode (FEN = "0")
[31:8]	-	-	Undefined	Read undefined. Write as zero.	Read undefined. Write as zero.
[7]	TXFE	RO	0y1	Transmit FIFO empty flag	Transmit hold register empty flag
				0y1: Empty	0y1: Empty
				0y0: Not empty	0y0: Not empty
[6]	RXFF	RO	0у0	Receive FIFO full flag	Receive hold register full flag
				0y1: Full	0y1: Full
				0y0: Not full	0y0: Not full
[5]	TXFF	RO	0у0	Transmit FIFO full flag	Transmit hold register full flag
				0y1: Full	0y1: Full
				0y0: Not full	0y0: Not full
[4]	RXFE	RO	0y1	Receive FIFO full flag	Receive hold register empty flag
				0y1: Empty	0y1: Empty
				0y0: Not empty	0y0: Not empty
[3]	BUSY	RO	0у0	Busy flag	Busy flag
				0y1: The UART is transmitting	0y1: The UART is transmitting
				data. (Busy)	data. (Busy)
				0y0: The UART has stopped transmitting data.	0y0: The UART has stopped transmitting data.
[2:1]	-	-	Undefined	Read undefined. Write as zero.	Read undefined. Write as zero.
[0]	CTS	RO	Undefined	Clear To Send flag	Clear To Send flag
				0y1: Modem status input = "0"	0y1 : Modem status input = "0"

[Explanation]

a. <RI>

Ring indicator (nUART1RI): This bit is set to "1" when the modem status input is "0".

b. <BUSY>

This bit is set to "1" when the UART is transmitting data. This bit remains set until the complete data, including all the stop bits, has been sent from the shift register.

c. <BCD>

Data carrier detect (U0DCDn): This bit is set to "1" when the modem status input is "0".

d. <DSR>

UART data set ready (U0DSRn): This bit is set to "1" when the modem status input is "0".

e. <CTS>

Clear to send (U0CTSn): This bit is set to "1" when the modem status input is "0".

9. UARTOILPR (UARTO IrDA low-power counter register)

				Address = (0xF200_0000) + 0x0020	
Bit	Bit	Туре	Reset	Description	
	Symbol	туре	Value	Description	
[31:8]	-	-	Undefined	Read undefined. Write as zero.	
[7:0]	ILPDVSR	R/W	0x00	IrDA low-power divisor:	
				0x01 to 0xff	

[Explanation]

a. <ILPDVSR>

Low-power divisor (ILPDVSR) = $(f_{UARTCLK} / f_{IrLPBaud16})$

"0" is an illegal value. If a "0" value is programmed, IrLPBaud16 pulses are not generated.

The UARTOILPR register is the IrDA low-power counter register. This is an 8-bit read/write register that stores the low-power counter divisor value used to generate the IrLPBaud16 signal by dividing down of UARTCLK. All the bits are cleared to "0" when reset.

10. UART0IBRD(UART0 integer baud rate divisor register)

 $Address = (0xF200_0000) + 0x0024$

Bit	Bit Symbol	Туре	Reset Value	Description
[31:16]	-	-	Undefined	Read undefined. Write as zero.
[15:0]	BAUD DIVINT	R/W	0x0000	Integer part of baud rate divisor: 0x0001 to 0xffff

11. UART1IBRD(UART1 integer baud rate divisor register)

 $Address = (0xF200_{1000}) + 0x0024$

Bit	Bit Symbol	Туре	Reset Value	Description
[31:16]	-	-	Undefined	Read undefined. Write as zero.
[15:0]	BAUD DIVINT	R/W	0x0000	Integer part of baud rate divisor:
				0x0001 to 0xffff

[Explanation]

a. <BAUD DIVINT>

This register, when put together with the fractional baud rate divisor described next, provides the baud rate divisor BAUDDIV.

Note: To update the contents of UARTIBRD internally, the write to UARTLCR_H must always be executed last. For details, refer to the description of UARTLCR_H.

12. UART0FBRD(UART0 fractional baud rate divisor register)

Bit	Bit Symbol	Туре	Reset Value	Description	
[31:6]	_	-	Undefined	Read undefined. Write as zero.	
[5:0]	BAUDDIVFRAC	R/W	0x0000	Fractional part of baud rate divisor: 0x01 to 0x3f	

13. UART1FBRD(UART1 fractional baud rate divisor register)

Address = (0xF200_1000) + 0x0028

Address = (0xF200, 0000) + 0x0028

Bit	Bit Symbol	Туре	Reset Value	Description	
[31:6]	-	-	Undefined	Read undefined. Write as zero.	
[5:0]	BAUDDIVFRAC	R/W	0x0000	Fractional part of baud rate divisor:	
				0x01 to 0x3f	

[Explanation]

a. <BAUDDIVFRAC>

The baud rate divisor is calculated as follows:

Baud rate divisor BAUDDIV = $(f_{UARTCLK})/(16 \times baud rate)$

where FUARTCLK is the UART reference clock frequency.

The BAUDDIV is comprised of the integer value (BAUD DIVINT) and the fractional value (BAUD DIVFRAC).

Note: To update the contents of UARTFBRD internally, the write to UARTLCR_H must always be executed last. For details, refer to the description of UARTLCR_H.

Example: Calculating the divisor value

When the required baud rate is **230400** and fuartclk = **4MHz**:

Baud rate divisor = $(4 \times 10^6)/(16 \times 230400)$ = 1.085

Therefore, BRDI = 1 and BRDF = 0.085

Therefore, fractional part is $((0.085 \times 64) + 0.5) = 5.94$.

The integral part of this, 0x5, should be set as the fractional baud rate divisor value.

Generated baud rate divisor = 1 + 5/64 = 1.078

Generated baud rate divisor = $(4 \times 10^6)/(16 \times 1.078) = 231911$

Error = $(231911 - 230400)/230400 \times 100 = 0.656\%$

The maximum error using a 6-bit UARTFBRD register = $1/64 \times 100 = 1.56\%$

This error occurs when m=1, and it is cumulative over 64 clock ticks.

Typical baud rate setting examples

$f_{\text{UARTCLK}} = 100 MHz$

Programmed divisor (integer)	Programmed divisor (fraction)	Required bit rate (bps)	Generated bit rate (bps)	Error (%)
0x1	0x1	—	6153846 (fastest)	—
0xD	0x24	460800	460829.493	0.0064
0x1B	0x8	230400	230414.747	0.0064
0x36	0x10	115200	115207.373	0.0064
0x51	0x18	76800	76804.916	0.0064
0x6C	0x20	57600	57603.687	0.0064
0xA2	0x31	38400	38398.771	-0.0032
0x145	0x21	19200	19200.307	0.0016
0x1B2	0x2	14400	14399.885	-0.0008
0x28B	0x3	9600	9599.923	-0.0008
0xA2C	0xB	2400	2399.995	-0.0002
0x1458	0x15	1200	1200.001	0.0001
0xDDF2	0xC	110	109.99999	-1.00E-05

$f_{UARTCLK} = 96MHz$

Programmed divisor (integer)	Programmed divisor (fraction)	Required bit rate (bps)	Generated bit rate (bps)	Error (%)
0x1	0x1	—	5907692 (fastest)	—
0xD	0x1	460800	460984.394	0.0400
0x1A	0x3	230400	230353.929	-0.0200
0x34	0x5	115200	115211.521	0.0100
0x4E	0x8	76800	76800.000	0
0x68	0xB	57600	57597.120	-0.0050
0x9C	0x10	38400	38400.000	0
0x138	0x20	19200	19200.000	0
0x1A0	0x2B	14400	14399.820	-0.0012
0x271	0x1	9600	9599.760	-0.0025
0x9C4	0x1	2400	2399.985	-0.0006
0x1388	0x1	1200	1199.996	-0.0003
0xD511	0x1D	110	110.000	2.60E-06

$f_{\rm UARTCLK} = 25 MHz$

Programmed divisor (integer)	Programmed divisor (fraction)	Required bit rate (bps)	Generated bit rate (bps)	Error (%)
0x1	0x1		1538461(fastest)	
0x3	0x19	460800	460829.493	0.0064
0x6	0x32	230400	230414.747	0.0064
0xD	0x24	115200	115207.373	0.0064
0x14	0x16	76800	76804.916	0.0064
0x1B	0x8	57600	57603.687	0.0064
0x28	0x2C	38400	38402.458	0.0064
0x51	0x18	19200	19201.229	0.0064
0x6C	0x20	14400	14400.922	0.0064
0xA2	0x31	9600	9599.693	-0.0032
0x28B	0x3	2400	2399.981	-0.0008
0x516	0x5	1200	1200.005	0.0004
0x377C	0x23	110	110.000	-1.00E-05

14. UART0LCR_H (UART0 data format control register)

				Address = (0xF200_0000) + 0x002C
Bit	Bit Symbol	Туре	Reset Value	Description
[31:8]	-	-	Undefined	Read undefined. Write as zero.
[7]	SPS	R/W	0у0	Stick parity select: Refer to Table 3.13.1 for the truth table.
[6:5]	WLEN	R/W	0у00	Word length: 0y00: 5 bits, 0y01: 6 bits 0y10: 7 bits, 0y11: 8 bits
[4]	FEN	R/W	0у0	FIFO control 0y1: FIFO mode 0y0: Character mode
[3]	STP2	R/W	ОуО	Stop bit select 0y0: 1 stop bit 0y1: 2 stop bits
[2]	EPS	R/W	0у0	Even parity select (Refer to Table 3.13.1 for the truth table.) 0y1: Even 0y0: Odd
[1]	PEN	R/W	0у0	Parity control (Refer to Table 3.13.1 for the truth table.) 0y0: Disable 0y1: Enable
[0]	BRK	R/W	0у0	Send break 0y0: No effect 0y1: Send break

15. UART1LCR_H (UART1 data format control register)

Address = (0xF200_1000) + 0x002C

Dit	Bit	Turne	Reset	Description	
Bit	Symbol	туре	Value	Description	
[31:8]	-	-	Undefined	Read undefined. Write as zero.	
[7]	SPS	R/W	0у0	Stick parity select:	
				Refer to Table 3.13.1 for the truth table.	
[6:5]	WLEN	R/W	0y00	Word length:	
				0y00: 5 bits, 0y01: 6 bits	
				0y10: 7 bits, 0y11: 8 bits	
[4]	FEN	R/W	0у0	FIFO control	
				0y1: FIFO mode	
				0y0: Character mode	
[3]	STP2	R/W	0у0	Stop bit select	
				0y0: 1 stop bit	
				0y1: 2 stop bits	
[2]	EPS	R/W	0у0	Even parity select (Refer to Table 3.13.1 for the truth table.)	
				0y1: Even	
				0y0: Odd	
[1]	PEN	R/W	0у0	Parity control (Refer to Table 3.13.1 for the truth table.)	
				0y0: Disable	
				0y1: Enable	
[0]	BRK	R/W	0y0	Send break	
				0y0: No effect	
				0y1: Send break	

[Explanation]

a. <SPS>

When bits 1, 2, and 7 of the UARTxLCR_H register are set, the parity bit is transmitted and checked as a 0. When bits 1 and 7 are set and bit 2 is 0, the parity bit is transmitted and checked as a 1. When this bit is cleared, the stick parity is disabled. Refer to Table 3.13.1 for the truth table of SPS, EPS, and PEN bits.

b. <WLEN>

This bit indicates the number of data bits transmitted or received in a frame.

c. <FEN>

When this bit is set to "1", transmit and receive FIFO buffers are enabled (FIFO mode). When this bit is cleared to "0", the FIFOs are disabled (character mode) and they become 1-byte deep holding registers.

d. <STP2>

When this bit is set to "1", two stop bits are transmitted at the end of a frame. The receive logic does not check for the second stop bit being received.

e. <EPS>

When this bit is set to "1", even parity generation and checking are performed during transmission and reception. This function checks whether the number of 1s contained in the data bits and parity bit is even. When this bit is cleared to "0", odd parity check is performed to check whether the number of 1s is odd. This bit has no effect when parity is disabled by Parity Enable (bit 1) being cleared to "0". Refer to Table 3.13.1 for the truth table.

f. <PEN>

When this bit is set to "1", parity check and generation are enabled. Otherwise, parity is disabled and no parity bit is added to data frames. Refer to Table 3.13.1 for the truth table of SPS, EPS, and PEN bits.

g. <BRK>

When this bit is set to "1", the UARTTXD output remains LOW after the current character is transmitted. For generation of the break condition, this bit must be asserted while at least one frame is being transmitted. Even when the break condition is generated, the contents of the transmit FIFO are not affected.

Note: UARTxLCR_H, UARTxIBRD, and UARTxFBRD are updated on a single write strobe generated by a write to UARTxLCR_H. So, in order to internally update the contents of UARTxIBRD or UARTxFBRD, a write to UARTLCR_H must always be performed at the end. Therefore, the following two sequences are conceivable to update these three registers:

- UARTxIBRD write, UARTxFBRD write, and UARTxLCR_H write
- UARTxFBRD write, UARTxIBRD write, and UARTxLCR_H write

To update only UARTIBRD or UARTFBRD:

• UARTxIBRD write (or UARTxFBRD write) and UARTxLCR_H write

Table 3.13.1 is the truth table of the $\langle SPS \rangle$, $\langle EPS \rangle$ and $\langle PEN \rangle$ bits of the UARTxLCR_H register.

Parity enable(PEN)	Even parity select(EPS)	Stick parity select (SPS)	Parity bit (transmitted or checked)
0	х	х	Not transmitted or checked
1	1	0	Even parity
1	0	0	Odd parity
1	0	1	1
1	1	1	0

16. UART0CR (UART0 control register)

Bit	Bit	Туре	Reset	Description
	Symbol		Value	
[31:16]	-	-	Undefined	Read undefined. Write as zero.
[15]	CTSEn	R/W	0у0	CTS hardware flow control enable
				0y0: Disable
				0y1: Enable
[14]	RTSEn	R/W	0у0	RTS hardware flow control enable
				0y0: Disable
				0y1: Enable
[13:12]	-	-	Undefined	Read undefined. Write as zero
[11]	RTS	R/W	0у0	Complement of the UART Request To Send (nUARTRTS) modem status output
				0y0: Modem status output is "1".
				0y1: Modem status output is "0".
[10]	DTR	R/W	0у0	Complement of the UART Data Set Ready (nUARTDTR) modem status output
				0y0: Modem status output is "1".
				0y1: Modem status output is "0".
[9]	RXE	R/W	0y1	UART receive enable
				0y0: Disable
				0y1: Enable
[8]	TXE	R/W	0y1	UART transmit enable
				0y0: Disable
				0y1: Enable
[7]	-	R/W	0y0	Write as zero.
[6:3]	-	_	Undefined	Reserved
[2]	SIRLP	R/W	0у0	IrDA encoding mode select for transmitting "0"
				bits
				0y0: "0" bits are transmitted as an active high
				pulse of 3/ forn of the bit period.
				that is 3 times the period of the IrLPBaud16
				input signal.
[1]	SIREN	R/W	0у0	SIR enable
				0y0: Disable
				0y1: Enable
[0]	UARTEN	R/W	0y0	UART enable
				0y0: Disable
				0y1: Enable

Address = (0xF200_0000) + 0x0030

17. UART1CR (UART1 control register)

				Address = (0xF200_1000) + 0x0030
Bit	Bit	Туре	Reset	Description
	Symbol		Value	
[31:16]	-	-	Undefined	Read undefined. Write as zero.
[15]	CTSEn	R/W	0y0	CTS hardware flow control enable
				0y0 : Disable
				0y1 : Enable
[14:10]	-	-	Undefined	Read undefined. Write as zero.
[9]	RXE	R/W	0y1	UART receive enable
				0y0: Disable
				0y1: Enable
[8]	TXE	R/W	0y1	UART transmit enable
				0y0: Disable
				0y1: Enable
[7]	-	R/W	0y0	Write as zero.
[6:1]	-	_	Undefined	Read undefined. Write as zero.
[0]	UARTEN	R/W	0y0	UART enable
				0y0: Disable
				0y1: Enable

[Explanation]

a. <CTSEn>

When this bit is set to "1", CTS hardware flow control is enabled. Data is transmitted only after the U0CTS n signal has been asserted.

b. <RTSEn>

When this bit is set to "1", RTS hardware flow control is enabled. Data is transmitted only when there is an empty space in the receive FIFO.

c. <RTS >

This bit is the UART Request To Send (nU0RTSn) modem status output signal. When this bit is programmed to a "1", the output is "0".

d. <DTR>

This bit is the UART Data Transmit Ready (U0DTRn) modem status output signal. When this bit is programmed to a "1", the output is "0".

e. <RXE>

When this bit is set to "1", the receive circuit of the UART is enabled. Data reception occurs for either UART signals or SIR signals according to the setting of SIR Enable (bit 1). When the UART is disabled in the middle of receive operation, it completes current reception before stopping.

f. <TXE>

When this bit is set to "1", the transmit circuit of the UART is enabled. Data transmission occurs for either UART signals or SIR signals according to the setting of SIR Enable (bit 1). When the UART is disabled in the middle of transmit operation, it completes the current transmission before stopping.

g. <SIRLP>

<SIRLP> selects IrDA encoding mode. When this bit is cleared to "0", "0" bits are transmitted as an active high pulse with a width of 3/16th of the bit period. When this bit is set to "1", "0" bits are transmitted with a pulse width that is 3 times the period of the IrLPBaud16 input signal. Setting this bit can reduce power consumption but might decrease transmission distances.

h. <SIREN>

When this bit is set to "1", the IrDA circuit is enabled. To use the UART, the <UARTEN> bit must be set to "1". When the IrDA circuit is enabled, the SIROOUT and SIROIN pins are enabled. The U0TXD pin remains in the marking state (set to "1"). Signal transitions on the U0RXD pin or modem status input have no effect. When IrDA circuit is disabled, SIROOUT remains cleared to "0" (no light pulse is generated) and the SIROIN pin has no effect.

i. <UARTEN>

When this bit is set to "1", the UART is enabled. Data transmission and reception occur for either UART signals or SIR signals according to the setting of SIR Enable (bit 1). When the UART is disabled in the middle of transmit or receive operation, it completes current transmission or reception before stopping.

18. UART0IFLS (UART0 interrupt FIFO level select register)

Address = (0xF200_0000) + 0x0034

Bit	Bit	Туре	Reset	Description
	Symbol	71 -	Value	
[31:6]	_	-	Undefined	Read undefined. Write as zero.
[5:3]	RXIFLSEL	R/W	0y010	Receive interrupt FIFO level select (1 word = 12 bits):
				0y001: When the 5th word has been stored in receive FIFO
				0y010: When the 9th word has been stored in receive FIFO
				0y011: When the 13th word has been stored in receive FIFO
				0y100: When the 15th word has been stored in receive FIFO
				0y101 to 0y111: Reserved
[2:0]	TXIFLSEL	R/W	0y010	Transmit FIFO level select (1 word = 8 bits):
				0y000: When transmit FIFO has space for 2 words left
				0y001: When transmit FIFO has space for 4 words left
				0y010: When transmit FIFO has space for 8 words left
				0y011: When transmit FIFO has space for 12 words left
				0y100: When transmit FIFO has space for 14 words left
				0y101 to 0y111: Reserved

19. UART1IFLS (UART1 interrupt FIFO level select register)

 $Address = (0xF200_{1000}) + 0x0034$

Bit	Bit	Type	Reset	Description
Dit	Symbol	туре	Value	Description
[31:6]	_	-	Undefined	Read undefined. Write as zero.
[5:3]	RXIFLSEL	R/W	0y010	Receive interrupt FIFO level select (1 word = 12 bits):
				0y000: When the 3rd word has been stored in receive FIFO
				0y001: When the 5th word has been stored in receive FIFO
				0y010: When the 9th word has been stored in receive FIFO
				0y011: When the 13th word has been stored in receive FIFO
				0y100: When the 15th word has been stored in receive FIFO
				0y101 to 0y111: Reserved
[2:0]	TXIFLSEL	R/W	0y010	Transmit interrupt FIFO level select (1 word = 8 bits):
				0y000: When transmit FIFO has space for 2 words left
				0y001: When transmit FIFO has space for 4 words left
				0y010: When transmit FIFO has space for 8 words left
				0y011: When transmit FIFO has space for 12 words left
				0y100: When transmit FIFO has space for 14 words left
				0y101 to 0y111: Reserved

[Explanation]

The UARTxIFLS register is the interrupt FIFO level select register. This register is used to define the FIFO level at which UARTTXINTR and UARTRXINTR are generated.

The interrupts are generated based on a transition through a level rather than being based on the level. For example, an interrupt is generated at a point when the third word has been stored in the receive FIFO which contained two words.

20. UART0IMSC (UART0 interrupt mask set/clear register)

 $Address = (0xF200_0000) + 0x0038$

Dit	Bit	Tures	Reset	Description
BIt	Symbol	туре	Value	Description
[31:12]	_	_	Undefined	Read undefined. Write as zero.
[10]	OEIM	R/W	0y0	Overrun error interrupt mask
-			-	0y0: Clear the mask
				0y1: Set the mask
[9]	BEIM	R/W	0y0	Break error interrupt mask
				0y0: Clear the mask
				0y1: Set the mask
[8]	PEIM	R/W	0y0	Parity error interrupt mask
			-	0y0: Clear the mask
				0y1: Set the mask
[7]	FEIM	R/W	0y0	Framing error interrupt mask
			-	0y0: Clear the mask
				0y1: Set the mask
[6]	RTIM	R/W	0y0	Receive timeout interrupt mask
• -			-	0y0: Clear the mask
				0y1: Set the mask
[5]	TXIM	R/W	0y0	Transmit interrupt mask
				0y0: Clear the mask
				0y1: Set the mask
[4]	RXIM	R/W	0y0	Receive interrupt mask
			-	0y0: Clear the mask
				0y1: Set the mask
[3]	DSRMIM	R/W	0y0	U0DSRn modem interrupt mask
				0y0: Clear the mask
				0y1: Set the mask
[2]	DCDMIM	R/W	0y0	U0DCDn modem interrupt mask
				0y0: Clear the mask
				0y1: Set the mask
[1]	CTSMIM	R/W	0y0	U0CTSn modem interrupt mask
				0y0: Clear the mask
				0y1: Set the mask
[0]	RIMIM	R/W	0y0	U0RIn modem interrupt mask
				0y0: Clear the mask
				0y1: Set the mask

- UART interrupt generation block diagrams
 - (1) Block diagram of the break error (BE), parity error (PE) and framing error (PE) flags

* The interrupt request flag state changes in real time and is retained in the F/F. Each flag can be cleared by a write to the corresponding bit in the interrupt clear register.

(2) Block diagram of the overrun error (OE) flag

* The overrun error (OE) flag changes in real time, but its state is not retained. The OE flag is cleared by a read of the receive FIFO.

21. UART1IMSC (UART1 interrupt mask set/clear register)

Address = (0xF200_1000) + 0x0038

D'1	Bit	-	Reset	Description
Bit	Symbol	Туре	Value	Description
[31:12]	-	-	Undefined	Read undefined. Write as zero.
[10]	OEIM	R/W	0у0	Overrun error interrupt flag mask
				0y0: Clear the mask
				0y1: Set the mask
[9]	BEIM	R/W	0у0	Break error interrupt mask
				0y0: Clear the mask
				0y1: Set the mask
[8]	PEIM	R/W	0у0	Parity error interrupt mask
				0y0: Clear the mask
				0y1: Set the mask
[7]	FEIM	R/W	0у0	Framing error interrupt mask
				0y0: Clear the mask
				0y1: Set the mask
[6]	RTIM	R/W	0у0	Receive timeout interrupt mask
				0y0: Clear the mask
				0y1: Set the mask
[5]	TXIM	R/W	0у0	Transmit interrupt mask
				0y0: Clear the mask
				0y1: Set the mask
[4]	RXIM	R/W	0у0	Receive interrupt mask
				0y0: Clear the mask
				0y1: Set the mask
[3:2]	-	-	Undefined	Read undefined. Write as zero.
[1]	CTSMIM	R/W	0у0	U0CTSn interrupt mask
				0y0: Clear the mask
				0y1: Set the mask
[0]	-	_	Undefined	Read undefined. Write as zero.

22. UARTORIS (UART0 raw interrupt status register)

				Address = (0xF200_0000) + 0x003C
Bit	Bit Symbol	Туре	Reset Value	Description
[31:12]	-		Undefined	Read undefined. Write as zero.
[10]	OERIS	RO	0v0	Overrun error raw interrupt status
[]			- , -	0v0: No interrupt request is present.
I				0v1: Interrupt request is present.
[9]	BERIS	RO	0y0	Break error raw interrupt status
				0y0: No interrupt request is present.
I				0y1: Interrupt request is present.
[8]	PERIS	RO	0y0	Parity error raw interrupt status
				0y0: No interrupt request is present.
				0y1: Interrupt request is present.
[7]	FERIS	RO	0y0	Framing error raw interrupt status
			-	0y0: No interrupt request is present.
				0y1: Interrupt request is present.
[6]	RTRIS	RO	0y0	Receive timeout raw interrupt status
			-	0y0: No interrupt request is present.
				0y1: Interrupt request is present.
[5]	TXRIS	RO	0y0	Transmit raw interrupt status
			-	0y0: No interrupt request is present.
				0y1: Interrupt request is present.
[4]	RXRIS	RO	0y0	Receive raw interrupt status
				0y0: No interrupt request is present.0y1: Interrupt
				request is present.
[3]	DSRRMIS	RO	Undefined	U0DSRn modem raw interrupt status
				0y0: No interrupt request is present.
				0y1: Interrupt request is present.
[2]	DCDRMIS	RO	Undefined	U0DCDn modem raw interrupt status
				0y0: No interrupt request is present.
				0y1: Interrupt request is present.
[1]	CTSRMIS	RO	Undefined	U0CTSn modem raw interrupt status
				0y0: No interrupt request is present.
				0y1: Interrupt request is present.
[0]	RIRMIS	RO	Undefined	U0RIn modem raw interrupt status
				0y0: No interrupt request is present.
				0y1: Interrupt request is present.

Note: All the bits, except the modem status interrupt bits (bits 3 to 0), are cleared to "0" when reset. The modem status bits are undefined after reset.

23. UART1RIS (UART1 raw interrupt status register)

Address = (0xF200_1000) + 0x003C

Bit	Bit	Туре	Reset	Description
	Symbol		Value	
[31:12]			Undefined	Read undefined. Write as zero.
[10]	OERIS	RO	0y0	Overrun error raw interrupt status
				0y0: No interrupt request is present.
				0y1: Interrupt request is present.
[9]	BERIS	RO	0y0	Break error raw interrupt status
				0y0: No interrupt request is present.
				0y1: Interrupt request is present.
[8]	PERIS	RO	0y0	Parity error raw interrupt status
				0y0: No interrupt request is present.
				0y1: Interrupt request is present.
[7]	FERIS	RO	0y0	Framing error raw interrupt status
				0y0: No interrupt request is present.
				0y1: Interrupt request is present.
[6]	RTRIS	RO	0y0	Receive timeout raw interrupt status
				0y0: No interrupt request is present.
				0y1: Interrupt request is present.
[5]	TXRIS	RO	0y0	Transmit raw interrupt status
				0y0: No interrupt request is present.
				0y1: Interrupt request is present.
[4]	RXRIS	RO	0y0	Receive raw interrupt status
				0y0: No interrupt request is present.
				0y1: Interrupt request is present.
[3:2]	-	-	Undefined	Read undefined. Write as zero.
[1]	CTSRMIS	RO	Undefined	U0CTSn raw interrupt status
				0y0: No interrupt request is present.
				0y1: Interrupt request is present.
[0]	-	-	Undefined	Read undefined. Write as zero.

Note: All the bits, except the modem status interrupt bits (bits 3 to 0), are cleared to "0" when reset. The modem status bits are undefined after reset.

24. UARTOMIS (UART0 masked interrupt status register)

				Address = (0xF200_0000) + 0x0040
Bit	Bit	Type	Reset	Description
Dit	Symbol	Type	Value	
[31:12]	_	_	Undefined	Read undefined. Write as zero.
[10]	OEMIS	RO	0y0	Overrun error masked interrupt status
				0y0: No interrupt request is present.
				0y1: Interrupt request is present.
[9]	BEMIS	RO	0y0	Break error masked interrupt status
				0y0: No interrupt request is present.
				0y1: Interrupt request is present.
[8]	PEMIS	RO	0y0	Parity error masked interrupt status
				0y0: No interrupt request is present.
				0y1: Interrupt request is present.
[7]	FEMIS	RO	0y0	Framing error masked interrupt status
				0y0: No interrupt request is present.
				0y1: Interrupt request is present.
[6]	RTMIS	RO	0y0	Receive timeout masked interrupt status
			-	0y0: No interrupt request is present.
				0y1: Interrupt request is present.
[5]	TXMIS	RO	0y0	Transmit masked interrupt status
				0y0: No interrupt request is present.
				0y1: Interrupt request is present.
[4]	RXMIS	RO	0y0	Receive masked interrupt status
				0y0: No interrupt request is present.
				0y1: Interrupt request is present.
[3]	DSRMMIS	RO	Undefined	U0DSRn modem masked interrupt status
				0y0: No interrupt request is present.
				0y1: Interrupt request is present.
[2]	DCDMMIS	RO	Undefined	U0DCDn modem masked interrupt status
				0y0: No interrupt request is present.
				0y1: Interrupt request is present.
[1]	CTSMMIS	RO	Undefined	U0CTSn modem masked interrupt status
				0y0: No interrupt request is present.
				0y1: Interrupt request is present.
[0]	RIMMIS	RO	Undefined	U0RIn modem masked interrupt status
				0y0: No interrupt request is present.
				0v1: Interrupt request is present.

Note: All the bits, except the modem status interrupt bits (bits 3 to 0), are cleared to "0" when reset. The modem status bits are undefined after reset.

25. UART1MIS (UART1 masked interrupt status register)

Address = (0xF200_1000) + 0x0040

D:4	Bit	Turne	Reset	Description
Ы	Symbol	туре	Value	Description
[31:12]		-	Undefined	Read undefined. Write as zero.
[10]	OEMIS	RO	0y0	Overrun error masked interrupt status
				0y0: No interrupt request is present.
				0y1: Interrupt request is present.
[9]	BEMIS	RO	0y0	Break error masked interrupt status
				0y0: No interrupt request is present.
				0y1: Interrupt request is present.
[8]	PEMIS	RO	0y0	Parity error masked interrupt status
				0y0: No interrupt request is present.
				0y1: Interrupt request is present.
[7]	FEMIS	RO	0y0	Framing error masked interrupt status
-				0y0: No interrupt request is present.
				0y1: Interrupt request is present.
[6]	RTMIS	RO	0y0	Receive timeout masked interrupt status
				0y0: No interrupt request is present.
				0y1: Interrupt request is present.
[5]	TXMIS	RO	0y0	Transmit masked interrupt status
				0y0: No interrupt request is present.
				0y1: Interrupt request is present.
[4]	RXMIS	RO	0y0	Receive masked interrupt status
				0y0: No interrupt request is present.
				0y1: Interrupt request is present.
[3:2]	-	-	Undefined	Read undefined. Write as zero.
[1]	CTSMMIS	RO	Undefined	U0CTSn masked interrupt status
				0y0: No interrupt request is present.
				0y1: Interrupt request is present.
[0]	_	-	Undefined	Read undefined. Write as zero.

26. UARTOICR (UART0 interrupt clear register)

				Address = (0xF200_0000) + 0x0044
	Bit	Τ_	Reset	
Bit	Symbol	Туре	Value	Description
[31:12]	-	-	Undefined	Read undefined. Write as zero.
[10]	OEIC	WO	Undefined	Overrun error interrupt clear
				0y0: Do nothing.
				0y1: Clear the interrupt.
[9]	BEIC	WO	Undefined	Break error interrupt clear
				0y0: Do nothing.
				0y1: Clear the interrupt.
[8]	PEIC	WO	Undefined	Parity error interrupt clear
				0y0: Do nothing.
				0y1: Clear the interrupt.
[7]	FEIC	WO	Undefined	Framing error interrupt clear
				0y0: Do nothing.
			<u> </u>	0y1: Clear the interrupt.
[6]	RTIC	WO	Undefined	Receive timeout interrupt clear
				0y0: Do nothing.
l				0y1: Clear the interrupt.
[5]	TXIC	WO	Undefined	Transmit interrupt clear
				0y0: Do nothing.
				0y1: Clear the interrupt.
[4]	RXIC	WO	Undefined	Receive interrupt clear
1				0y0: Do nothing.
l				0y1: Clear the interrupt.
[3]	DSRMIC	WO	Undefined	U0DSRn modem interrupt clear
				0y0: Do nothing.
l				0y1: Clear the interrupt.
[2]	DCDMIC	WO	Undefined	U0DCDn modem interrupt clear
				0y0: Do nothing.
				0y1: Clear the interrupt.
[1]	CTSMIC	WO	Undefined	U0CTSn modem interrupt clear
l				0y0: Do nothing.
l				0y1: Clear the interrupt.
[0]	RIMIC	WO	Undefined	U0RIn modem interrupt clear
1				0y0: Do nothing.
				0y1: Clear the interrupt.

Note: The UARTOICR register is a write-only interrupt clear register. When a bit of this register is set to "1", the associated interrupt is cleared. A write of "0" to any bit of this register is invalid.

TMPA910CRA- 634

27. UART1ICR (UART1 interrupt clear register)

				Address = (0xF200_1000) + 0x0044
Bit	Bit Symbol	Туре	Reset Value	Description
[31:12]	-	-	Undefined	Read undefined. Write as zero.
[10]	OEIC	WO	Undefined	Overrun error interrupt clear
				0y0: Do nothing.
				0y1: Clear the interrupt.
[9]	BEIC	WO	Undefined	Break error interrupt clear
				0y0: Do nothing.
				0y1: Clear the interrupt.
[8]	PEIC	WO	Undefined	Parity error interrupt clear
				0y0: Do nothing.
				0y1: Clear the interrupt.
[7]	FEIC	WO	Undefined	Framing error interrupt clear
i				0y0: Do nothing.
l				0y1: Clear the interrupt.
[6]	RTIC	WO	Undefined	Receive timeout interrupt clear
1				0y0: Do nothing.
l				0y1: Clear the interrupt.
[5]	TXIC	WO	Undefined	Transmit interrupt clear
				0y0: Do nothing.
l				0y1: Clear the interrupt.
[4]	RXIC	WO	Undefined	Receive interrupt clear
1				0y0: Do nothing.
l				0y1: Clear the interrupt.
[3:2]	_	<u> </u>	Undefined	Read undefined. Write as zero.
[1]	CTSMIC	WO	Undefined	U0CTSn interrupt clear
				0y0: Do nothing.
1				0y1: Clear the interrupt.
[0]	_	_	Undefined	Read undefined. Write as zero.

Note: The UART1ICR register is a write-only interrupt clear register. When a bit of this register is set to "1", the associated interrupt is cleared. A write of "0" to any bit of this register is invalid.

28. UARTODMACR (UARTO DMA control register)

				Address = (0xF200_0000) + 0x0048
Bit	Bit Symbol	Туре	Reset Value	Description
[31:3]	-	-	-	Read undefined. Write as zero.
[2]	DMAONERR	R/W	0y0	DMA on error
				0y1: Available
				0y0: Not available
[1]	TXDMAE	R/W	0y0	Transmit FIFO DMA enable
				0y0: Disable
				0y1: Enable
[0]	RXDMAE	R/W	0y0	Receive FFO DMA enable
				0y0: Disable
				0y1: Enable

Note: For example, if 19 characters have to be received and the watermark level is programmed to be four, then the DMA controller transfers four bursts of four characters and three single transfers to complete the stream.

[Explanation]

a. <DMAONERR>

When this bit is set to "1", the DMA receive request output UARTxRXDMASREQ or UARTxRXDMABREQ is disabled on assertion of a UART error interrupt.

3.14 l²C

3.14.1 Overview

This module operates in I²C bus mode compliant with the typical I²C bus standard (Philips specifications). (*1)

The main features are as follows:

- Contains two channels (Ch0 and Ch1).
- Allows selection between master and slave.
- Allows selection between transmitter and receiver.
- Supports multiple masters (arbitration, clock synchronization recognition).
- Supports standard mode and fast mode (fastest baud rate in master mode: 89.91 kHz and 357.14 KHz, respectively, at f_{PCLK} = 100 MHz)
- Supports the addressing format of 7 bits only.
- Supports transfer data sizes of 1 to 8 bits.
- Provides one transfer (transmit or receive) complete interrupt (level-sensitive).
- Can enable or disable interrupts. (Interrupt source for I²C ch0: INTS[6], Interrupt source for I²C ch1: INTS[7])

This module also supports Toshiba's proprietary data format called "free data format".

(*1) Compliant with the I2C bus standard (Philips specifications) in fast communication mode except those shown below.

Note: This module does not support some of the features in the l^2C bus standard.

I ² C bus feature	I ² C specifications	This IP
Standard mode (up to 100 kHz)	Required	Supported
Fast mode (up to 400 kHz)	Required	Supported
High-speed mode (up to 3.4 Mbps)	Required	Not supported
7 -bit addressing	Required	Supported
10-bit addressing	Required	Not supported
START byte	Required	Not supported
Noise canceler	Required	Supported (digital)
Slope control	Required	Not supported
I/O at power off	Required	Not supported
Schmitt (VIH/VIL)	VDDx0.3 / VDDx0.7	Supported
Output current at VOL=0.4V, VDD>2V	3 mA	Supported

3.14.1.1 I²C Bus Mode

The $\rm I^2C$ bus is connected to devices via the I2C0DA and I2C0CL pins and can communicate with multiple devices.

Figure 3.14.1 Device connections

This module operates as a master or slave device on the I^2C bus. The master device drives the serial clock line (SCL) of the bus, sends 8-bit addresses, and sends or receives data of 1 to 8 bits. The slave device sends 8-bit addresses and sends or receives serial data of 1 to 8 bits in synchronization with the serial clock on the bus.

The device that operates as a receiver can output an acknowledge signal after reception of serial data and the device that operates as a transmitter can receive that acknowledge signal, regardless of whether the device is a master or slave. The master device can output a clock for the acknowledge signal.

In multimaster mode in which multiple masters exist on the same bus, serial clock synchronization and arbitration lost to maintain consistency of serial data are supported.

3.14.2 Data Formats for I²C Bus Mode

The data formats for $I^{2}\mathrm{C}$ bus mode are shown below.

3.14.2.1 Addressing Format

(b) Addressing format (with restart)

Figure 3.14.2 Data Format for I²C Bus Mode

3.14.2.2 Free Data Format

The free data format is for communication between one master and one slave. In the free data format, slave addresses and direction bits are processed as data.

(a) Free data format (for transferring data from a master device to a slave device)

Figure 3.14.3 Free data format for I²C bus mode

3.14.3 Block Diagram

Figure 3.14.4 I²C channel 0

3.14.4 Operational Descriptions

3.14.4.1 Data Transfer Procedure in I²C Bus Mode

1. Device Initialization

After checking that the I2C0DA and I2C0CL pins are high (bus free), set I2C0CR2<I2CM> to "1" to enable I²C.

Next, set I2C0CR1<ACK> to "1", I2C0CR1<NOACK> to "0" and I2C0CR1<BC> to "000" to enable acknowledge operation, slave address match detection and general call detection, and to set the data length to 8 bits. Set t_{HIGH} and t_{LOW} in I2C0CR1<SCK>.

Then, set the slave address in I2C0AR <SA> and set I2C0AR <ALS> to "0" to select the addressing format.

Finally, set I2C0CR2<MST>, I2C0CR2<TRX> and I2C0CR2<BB>to "0", I2C0CR2<PIN> to "1" and I2C0CR2<SWRES[1:0]> to "00" to configure the device as a slave receiver.

Note: The initialization of I²C must be completed within a certain period of time in which no start condition is generated by any device after all the devices connected to the bus have been initialized. If this constraint is not observed, another device may start a transfer before the initialization of I²C has been completed and data may not be received properly.

Programming example: Initializing the device

CHK _ PORT:	r1 ←	(GPIOCDATA)	; Check whether the external pins are high.
	CMP	r1, #0xC0	
	BNE	CHK _ PORT	
	(I2C0CR2) ←	0x18	; Enable I ² C.
	(I2C0CR1) ←	0x16	; Enable acknowledge operation and set I2C0CR1 <sck>="110".</sck>
	(I2C0AR) ←	0xA0	; Set the slave address to 1010000 and select addressing format.
	(I2C0CR2) ←	0x18	; Select slave receiver mode.

2. Start Condition and Slave Address Generation

Check that the bus is free (I2C0SR<BB>="0").

Set I2C0CR1<ACK> to "1" and write the slave address and direction bit to be transmitted to I2C0DBR. Writing "1" to I2C0CR2<MST>, I2C0CR2<TRX>, I2C0CR2<BB> and I2C0CR2<PIN> causes a start condition, the slave address and direction bit to be sent out on the bus. After a start condition is generated, it takes the thigh period for the I2C0CL pin to fall.

Then, an I2CINT0 interrupt request is generated on the falling edge of the 9th clock of I2C0CL and I2C0SR<PIN> is cleared to "0". While I2C0SR<PIN> is "0", I2C0CL is pulled low. Only when the acknowledge signal is returned from the slave device, I2C0SR<TRX> is changed by hardware according to the direction bit upon generation of an I2CINT0 interrupt request.

Note 1: Before writing a slave address to I2C0DBR, make sure that the bus is free by software.

Note 2: After a slave address is written and before a start condition is generated, another master may initiate transfer operation. Therefore, after writing a slave address to I2C0DBR, check a bus free state again by software within 98.0 µs (the shortest transfer time in standard mode according to the I²C bus standard) or 23.7µs (the shortest transfer time in fast mode according to the I²C bus standard). A start condition should be generated only after a bus free state is confirmed.

· Check that the bus is free.

Programming example: Generating a start condition

CHK_BB: r1 ← AND CMP BNE (I2C0DBR) ← (I2C0CR2) ←

← (I2C0SR) r1, #0x20 r1, #0x00 CHK_BB DDBR) ← 0xCB DCR2) ← 0xF8

; Set the slave address to 0x65 and direction bit to "1". ; Set I2C0CR2<MST>,<TRX>,<BB>,<PIN> to "1".

Figure 3.14.5 Start condition and slave address generation

3. 1-Word Data Transfer

Check I2C0SR<MST> in the interrupt routine after a 1-word data transfer is completed, and determine whether master or slave mode is selected.

(1) When I2C0SR<MST>="1" (Master mode)

Check I2C0SR<TRX> to determine whether transmitter or receiver mode is selected.

a. When I2C0SR<TRX>="1" (Transmitter mode)

Check the acknowledge status from the receiver with the I2C0SR<LRB> flag. When I2C0SR<LRB> is "0", the receiver is requesting the next data. Write the data to be transmitted to I2C0DBR.

If it is necessary to change the transfer data size, change I2C0CR1<BC>, set I2C0CR1<ACK> to "1", and then write the data to be transmitted to I2C0DBR.

After the transmit data is written, I2C0SR<PIN> is set to "1" and serial clocks are generated to transmit the data from I2C0DA.

After the transmission is completed, an I2CINTO interrupt request is generated. I2C0SR<PIN> is cleared to "0" and I2C0CL is pulled low. If more than one word of data needs to be transferred, repeat the procedure by checking I2C0SR<LRB>.

When I2COSR<LRB> is "1", the receiver is not requesting the next data, so a stop condition should be generated to terminate the data transfer.

Figure 3.14.6 When I2C0CR1<BC>="000" and I2C0CR1<ACK>="1"

b. When I2C0SR<TRX> ="0" (Receiver mode)

Writing dummy data (0x00) to I2C0DBR or setting I2C0CR2<PIN> to "1" causes clocks for 1-word transfer and acknowledge to be output.

After an I2CINT0 interrupt request is generated to indicate the end of receive operation, read the received data from I2C0DBR.

If it is necessary to change the receive data size, change I2C0CR1<BC>, set I2C0CR1<ACK> to "1" and then write dummy data (0x00) to I2C0DBR or set I2C0CR2<PIN> to "1".

(The data that is read immediately after slave address transmission is undefined.)

Figure 3.14.7 When I2C0CR1<BC> = "000" and I2C0CR1<ACK> = "1"

c. When I2C0SR<TRX>="0" (when receiving the last word)

The last word of the transfer is determined by pseudo communication without acknowledge. The flow of this operation is explained below.

To make the transmitter terminate transmission, perform the following operations before the last data bit is received:

- 1. Read the received data from I2C0DBR.
- 2. Clear I2C0CR1<ACK> to "0" and set I2C0CR1<BC> to "000".
- 3. Write dummy data (0x00) to I2C0DBR to set I2C0CR2<PIN> to "1".

After I2C0CR2<PIN> is set to "1", 1-word transfer with no acknowledge operation is performed. After 1-word transfer is completed, perform the following operations:

- 1. Read the received data from I2C0DBR.
- 2. Clear I2C0CR1<ACK> to "0" and set I2C0CR1<BC> to "001" (negative acknowledge).
- 3. Write dummy data (0x00) to I2C0DBR to set I2C0CR2<PIN> to "1".

When I2C0CR2<PIN> is set to "1", 1-bit transfer is performed. Since the master is acting as a receiver, the SDA line on the bus remains high. The transmitter receives this high-level signal as the negative acknowledge signal. The receiver can thus indicate the transmitter that the data transmission is completed. After 1-bit data is received and an interrupt request is generated, generate a stop condition to terminate the data transfer.

Figure 3.14.8 Terminating data transmission in master receiver mode

(2) When I2C0SR<MST>="0" (Slave mode)

The following explains normal slave mode operations and the operations to be performed when I^2C changes to slave mode after losing arbitration on the bus.

In slave mode, an I2CINT0 interrupt request is generated by the following conditions:

- When I2C0CR1<NOACK> is "0", after the acknowledge signal is output to indicate that the received slave address has matched the slave address set in I2C0AR<SA>
- When I2C0CR1<NOACK> is "0", after the acknowledge signal is output to indicate that a general call has been received
- When data transfer is completed after a matched slave address or general call is received.

I²C changes to slave mode if it loses arbitration while operating in master mode. After completion of the word transfer in which arbitration lost occurred, an I2CINT0 interrupt request is generated. Table 3.14.1 shows the I2CINT0 and I2C0SR<PIN> operations when arbitration lost occurs.

TENTATIVE

Table 3.14.1 I2CINT0 interrupt request and I2C0SR<PIN> operations after arbitration lost

	When arbitration lost occurs during	When arbitration lost occurs during transmission of				
	transmission of slave address as master	data as master transmitter				
INTI2CINT0	An INTECONTO interrupt request is concreted ofter the surrent word of data has been transferred					
interrupt request	An initizonito menupi request is generated after the current word of data has been transferred					
I2C0SR <pin></pin>	I2C0SR <pin> is cleared to "0".</pin>					

When an I2CINT0 interrupt request occurs, I2C0SR<PIN> is reset to "0", and I2C0CL is pulled low. Either writing data to I2C0DBR or setting I2C0CR2<PIN> to "1" releases I2C0CL after the tLow period.

Check I2COSR<AL>, I2COSR<TRX>, I2COSR<AAS> and I2COSR<ADO>, and implement required operations, as shown in Table 3.14.2.

I2C0SR	I2C0SR	I2C0SR	I2C0SR	Condition	Operation	
<trx></trx>	<al></al>	<aas></aas>	<ad0></ad0>	Condition	Operation	
	1	1	0	The device loses arbitration during slave address transmission, and receives a slave address with direction bit set to "1" from another master.	Set the number of bits in 1 word to I2C0CR1 <bc> and write the data to be</bc>	
		1	0	In slave receiver mode, the device receives a slave address with direction bit set to "1" from the master.	transmitted to I2C0DBR.	
1	1 0 0 0 0		0	In slave transmitter mode, the device completes the transmission of 1-word data.	Check I2C0SR <lrb>. If it is set to "1", the receiver is not requesting the next data, so set I2C0CR2<pin> to "1". Then, clear I2C0CR2<trx> to "0" to release the bus. If I2C0SR<lrb> ="0", the receiver is requesting the next data, so set the number of bits in 1 word in I2C0CR1<bc> and write the data to be transmitted to I2C0DBR.</bc></lrb></trx></pin></lrb>	
1		1	1/0	The device loses arbitration during slave address transmission, and receives a slave address with direction bit set to "0" from another master or receives a general call.	Write dummy data (0x00) to I2C0DBR to set I2C0SR <pin> to "1", or write "1" to I2C0CR2<pin>.</pin></pin>	
	0	0	The device loses arbitration when transmitting a slave address or data, and completes transferring the current word of data.	The device is set as a slave. Clear I2C0SR <al> to "0" and write dummy data (0x00) to I2C0DBR to set I2C0SR<pin> to "1".</pin></al>		
-	0	1	1/0	In slave receiver mode, the device receives a slave address with direction bit set to "0" from another master or receives a general call.	Write dummy data (0x00) to I2C0DBR to set I2C0SR <pin> to "1", or write "1" to I2C0CR2<pin>.</pin></pin>	
		0	1/0	In slave receiver mode, the device completes the receipt of 1-word data.	Set the number of bits in 1 word to I2C0CR1 <bc>, read the received data from I2C0DBR and write dummy data (0x00).</bc>	

Table 3.14.2 Operations in slave mode

Note: In slave mode, if I2C0AR<SA> is set to "0x00" and a START byte (0x01) of the I²C bus standard is received, a slave address match is detected and I2C0SR<TRX> is set to "1". Do not set I2C0AR<SA> to "0x00".

4. Stop Condition Generation

When I2C0SR<BB> is "1", writing "1" to I2C0CR2<MST>, I2C0CR2<TRX>, I2C0CR2<PIN> and "0" to I2C0CR2<BB> initiates the sequence for generating a stop condition on the bus. Do not change the contents of I2C0CR2<MST>, I2C0CR2<TRX>, I2C0CR2<BB> and I2C0CR2<PIN> until a stop condition is generated on the bus.

If the I2C0CL line is pulled low by another device when the sequence for generating a stop condition is started, a stop condition will be generated after the I2C0CL line is released.

It takes the $t_{\rm HIGH}$ period for a stop condition to be generated after the I2C0CL line is released.

Programming example: Generating a stop condition

Figure 3.14.9 Stop condition generation

5. Restart Procedure

Restart is used to change the direction of data transfer without the master device terminating data transfer to the slave device. The restart procedure is explained below.

First, write "0" to I2C0CR2<MST>, I2C0CR2<TRX>, I2C0CR2<BB> and "1" to I2C0CR2<PIN>. The I2C0DA line remains high and the I2C0CL line is released. Since this is not a stop condition, the bus remains busy for other devices.

Next, check I2C0SR<BB> until it is cleared to "0" to make sure that the I2C0CL line is released.

Then, check I2C0SR<LRB> until it becomes "1" to make sure that the I2C0CL line is not pulled low by another device.

After making sure that the bus is free by these steps, generate a start condition as explained earlier in "2. Start Condition and Slave Address Generation".

In order to satisfy the setup time requirement for restart, it is necessary to insert, by software, a wait period of 4.7 μs or longer in the case of standard mode and 0.6 μs or longer in the case of fast mode.

Note: When the master device is operating as a receiver, it is necessary to terminate the data transfer from the slave transmitter before the restart procedure can be started. To do so, the master device makes the slave device receive the negative acknowledge signal (high). Therefore, I2C0SR<LRB> is set to "1" before the restart procedure is started. The SCL line level cannot be determined by checking I2C0SR<LRB>="1" in the restart procedure. The state of the I2C0CL line shold be checked by reading the port.

	(I2C0CR2)	←	0x18	; Set I2C0CR2 <mst>,<trx>,<bb> to "0" and I2C0CR2<pin> to "1".</pin></bb></trx></mst>
CHK _ BB:	r1 AND CMP BNE	<i>←</i>	(I2C0SR) r1, #0x20 r1, #0x00 CHK _ BB	; Wait until I2C0SR <bb> is cleared to "0".</bb>
CHK _ LRB:	r1 AND CMP BNE	÷	(I2C0SR) r1, #0x01 r1, #0x01 CHK _ LRB	; Wait until I2C0SR <lrb> becomes "1".</lrb>
			•	; Wait by software
	(I2C0CR2)	←	0xF8	; Set I2C0CR2 <mst>,<trx>,<bb>,<pin> to "1"</pin></bb></trx></mst>

Programming example: Generating a restart condition

Note: When <MST>="0", do not write "0" to <MST>. (Restart cannot be performed.)

3.14.5 Register Descriptions

The I²C registers are listed below.

Base address =0xF007_0000

Register Name	Address (base+)	Description		
I2C0CR1	0x0000	I ² C0 Control Register 1		
I2C0DBR	0x0004	l ² C0 Data Buffer Register		
I2C0AR	0x0008	l ² C0 (Slave) Address Register		
I2C0CR2	0,40000	I ² C0 Control Register 2		
I2C0SR	0x0000	l ² C0 Status Register		
I2C0PRS	0x0010	I ² C0 Prescaler Clock Set Register		
I2C0IE	0x0014	I ² C0 Interrupt Enable Register		
I2C0IR	0x0018	l ² C0 Interrupt Register		

Base address =0xF007_1000

Register Name	Address (base+)	Description			
I2C1CR1	0x0000	I ² C1 Control Register 1			
I2C1DBR	0x0004	I ² C1 Data Buffer Register			
I2C1AR	0x0008	I ² C1 (Slave) Address Register			
I2C1CR2	0.0000	I ² C1 Control Register 2			
I2C1SR	0x000C	l ² C1 Status Register			
I2C1PRS	0x0010	I ² C1 Prescaler Clock Set Register			
I2C1IE	0x0014	I ² C1 Interrupt Enable Register			
I2C1IR	0x0018	l ² C1 Interrupt Register			

Note: This module contains two channels of the identical structure. Therefore, the registers of channel 0 only are described.

1. I2C0CR1 (I²C0 Control Register 1)

Address = (0xF007_0000) + 0x0000

Bit	Bit Symbol	Туре	Reset Value		Description
[31:8]	-	-	Undefined	Read undefined.	Write as zero.
[7:5]	BC[2:0]	R/W	0y000	Number of transf	er bits
				000: 8 bits	100: 4 bits
				001: 1 bit	101: 5 bits
				010: 2 bits	110: 6 bits
				011: 3 bits	111: 7 bits
[4]	ACK	R/W	0у0	Acknowledge clo	ock generation and recognition
				0: Disable	
				1: Enable	
[3]	NOACK	R/W	0у0	Slave address m detection	atch detection and general call
				0: Enable	
				1: Disable	
[2:0]	SCK[2:0]	R/W	0y000	Serial clock frequ	Jency
				000: n=0	100: n=4
				001: n=1	101: n=5
				010: n=2	110: n=6
				011: n=3	111: n=7

[Explanation]

a. <BC[2:0]>

These bits select the number of transfer bits.

000: 8 bits	100: 4 bits
001: 1 bit	101: 5 bits
010: 2 bits	110: 6 bits
011: 3 bits	111: 7 bits

b. <ACK>

This bit specifies whether to disable or enable acknowledge clock generation and recognition.

0: Disable

1: Enable

c. <NOACK>

This bit specifies whether to enable or disable the slave address match detection and general call detection when this module is a slave.

0: Enable

1: Disable

When I2C0AR<ALS>="1", this bit has no meaning.

When <NOACK>="0", the slave address match detection and general call detection are enabled. When a slave address match or general call is detected, the slave pulls the SDA line low during the 9th (acknowledge) clock output from the master to return an acknowledge signal.

Setting <NOACK>="1" disables the slave address match detection and general call detection. When a slave address match or general call is detected, the slave releases (holds high) the SDA line during the 9th (acknowledge) clock output from the master to return no acknowledge signal.

d. <SCK[2:0]>

These bits are used to set the rate of serial clock to be output from the master.

The prescaler clock divided according to I2C0PRS<PRSCK[4:0]> is used as the reference clock for serial clock generation. The prescaler clock is further divided according to I2C0CR1<SCK[2:0]> to generate the serial clock. The default setting of the prescaler clock is "divide by 1" (= f_{PCLK}).

Note: Refer to "6. I2C0PRS (I2C0 Prescaler Clock Set Register)" and "3.14.6.3 Serial Clock".

Writes to this register must be done before a start condition is generated or after a stop condition is generated or between the instant when an address or data transfer interrupt occurs and the instant when the internal interrupt is released. Do not write to this register during address or data transfer.

2. I2C0DBR (I²C0 Data Buffer Register)

Bit	Bit Symbol	Туре	Reset	Description
			Value	Description
[31:8]	-	-	Undefined	Read undefined. Write as zero.
[7:0]	DB[7:0]	RO	0x00	Read: Receive data is read (Note)

Address = (0xF007_0000) + 0x0004

Address = (0xE007, 0000) + 0x0004

Bit	Bit Symbol	Туре	Reset Value	Description
[31:8]	-	-	Undefined	Read undefined. Write as zero.
[7:0]	DB[7:0]	WO	0x00	Write: Transmit data is written (Note)

Note: This register is initialized only after a hardware reset. It is not initialized by a software reset. (The most recent data is retained.)

[Explanation]

a. <DB[7:0]>

These bits are used to store data for serial transfer.

When this module is a transmitter, the data to be transmitted is written into DB[7:0] aligned on the left side.

When this module is a receiver, the received data is stored into DB[7:0] aligned on the right side.

When the master needs to transmit a slave address, the transfer target address is written to I2C0DBR<DB[7:1]> and the transfer direction is specified in I2C0DBR<DB[0]> as follows:

 $0: Master/transmitter {---} Slave/receiver$

1: Master/receiver-Slave/transmitter

When all the bits in the I2C0DBR register are written as "0", a general call can be sent out on the bus.

In both transmitter and receiver modes, a write to the I2C0DBR register releases the internal interrupt after the current transfer and initiates the next transfer.

Although I2C0DBR is provided as a transmit/receive buffer, it should be used as a dedicated transmit buffer in transmit mode and as a dedicated receive buffer in receive mode. This register should be accessed on a transfer-by-transfer basis.

Note: In receive mode, if data is written to I2C0DBR before the received data is read out, the received data will be corrupted.

3. I2C0AR (I²C0 (Slave) Address Register)

Address = (0xF007_0000) + 0x0008

Bit	Bit Symbol	Туре	Reset Value	Description
[31:8]	-	-	Undefined	Read undefined. Write as zero.
[7:1]	SA[6:0]	R/W	0y000000	Set the slave address.
[0]	ALS	R/W	0у0	Address recognition enable/disable 0: Enable (I ² C bus mode) 1: Disable (Free data format)

[Explanation]

a. <SA[6:0]>

These bits are used to set the slave device address (7 bits) when this module is a slave.

When slave address recognition is enabled in I2COAR<ALS>, the data transfer operation to be performed is determined by the 7-bit address (plus one direction bit) that the master sends immediately after a start condition.

b. $<\!\!\mathrm{ALS}\!>$

This bit is used to enable or disable slave address recognition.

0: Enable (I²C bus mode)

1: Disable (Free data format)

When this module is a slave, this bit specifies whether or not to recognize the 8-bit data that the master sends immediately after a start condition as a 7-bit address plus one direction bit.

When $\langle ALS \rangle = "0"$, I² C bus mode is selected. When $\langle ALS \rangle = "0"$, transfer operation is performed based on the free data format.

When <ALS>="0", the device compares the 7-bit address sent from the master against the slave address set in I2C0AR<SA[6:0]>. If the 7-bit address matches the slave address, the device uses the direction bit to determine whether to act as a transmitter or receiver. At this time, if I2C0CR<NOACK>="0", the device pulls the SDA line low during the 9th (acknowledge) clock output from the master. Thereafter, the device continues to perform transmit or receive operation as a slave until a stop condition or a start condition by the restart procedure appears on the bus. If the 7-bit address does not match the slave address, the device continues to leave the SDA line high and does not participate in transfer operation until a stop condition or a start condition by the restart procedure appears on the bus. If the 7-bit address plus one direction bit sent from the master are all 0s (indicating a general call) and I2C0CR<NOACK>="0", the device returns an acknowledge signal and acts as a slave receiver regardless of the slave address set in I2C0AR<SA[6:0]>. When I2C0CR<NOACK>="1", the device does not return any acknowledge signal nor operate as a slave device even if the 7-bit address matches the slave address or a general call is detected.

When <ALS>="1", the device receives the 7-bit address plus one direction bit sent from the master as data and pulls the SDA line low during the 9th (acknowledge) clock output from the master. Thereafter the device continues to perform receive operation as a slave until a stop condition or a start condition by the restart procedure appears on the bus (free format operation). In this case, the I2C0CR<NOACK> value has no effect.

Writes to this register must be done before a start condition is generated or after a stop condition is generated. Writes cannot be performed during transfer.

4. I2C0CR2 (I²C0 Control Register 2) (Write Only)

Address = (0xF007_0000) + 0x000C

Bit	Bit Symbol	Туре	Reset Value	Description
[31:8]	-	-	Undefined	Read undefined. Write as zero.
[7]	MST	WO	0y0	Selects master or slave mode.
				0: Slave
				1: Master
[6]	TRX	WO	0y0	Selects transmit or receive operation.
				0: Receiver
				1: Transmitter
[5]	ВВ	WO	0у0	Selects whether to generate a start or stop condition.
				0: Generate a stop condition.
				1: Generate a start condition.
[4]	PIN	WO	0y1	Service request clear
				0: No effect
				1: Clear service request
[3]	I2CM	WO	0y0	I ² C operation control
				0: Disable
				1: Enable
[2]	-	-	Undefined	Read undefined. Write as zero.
[1:0]	SWRES[1:0]	WO	0y00	Software reset
				A software reset is generated by writing "10" and then "01" to these bits.

[Explanation]

a. <MST>

This bit selects master or slave mode.

0: Slave

1: Master

Note: Refer to "3.14.6.3 Serial CLock".

b. <TRX>

This bit selects transmitter or receiver mode.

0: Receiver

1: Transmitter

Note: Refer to "3.14.6.3 Serial Clock".

c. <BB>

This bit is used to generate a start or stop condition.

0: Generate a stop condition.

1: Generate a start condition.

Note: Refer to "3.14.6.3 Serial Clock".

d. <PIN>

This bit is used to clear a service request for I2C communication.

0: Invalid

1: Clear service request

Note: Refer to "3.14.6.3 Serial Clock".

e. <I2CM>

This bit enables or disables I^2C operation.

0: Disable

1: Enable

The <I2CM> bit cannot be cleared to "0" to disable I²C operation while transfer operation is being performed. Bofore clearing this bit, make sure that transfer operation is completely stopped by reading the status register.

f. <SWRES[1:0]>

Writing "10" and then "01" to these bits generates a software reset (reset width = one f_{PCLK} clock pulse).

If a software reset occurs, the SCL and SDA lines are forcefully released (driven high) to abort any ongoing transfer operation. All the settings except I2C0CR2<I2CM> are initialized. (I2C0DBR is not initialized.)

When generating a software reset, be sure to write "0" to I2C0CR2[7:4].

5. I2C0SR (I²C0 Status Register) (Read Only)

Address = (0xF007_0000) + 0x000C

Bit	Bit Symbol	Туре	Reset Value	Description
[31:8]	-	_	Undefined	Read undefined. Write as zero.
[7]	MST	RO	0y0	Master/slave selection state monitor
				0: Slave
				1: Master
[6]	TRX	RO	0y0	Transmit/receive selection state monitor
				0: Receiver
				1: Transmitter
[5]	BB	RO	0y0	Bus state monitor
				0: The bus is free.
				1: The bus is busy.
[4]	PIN	RO	0y1	Service request state and SCL line state monitor
				0: Service request present, SCL line = low
				1: No service request, SCL line = free
[3]	AL	RO	0y0	Arbitration lost detection monitor
				0: Invalid
				1: Detected
[2]	AAS	RO	0y0	Slave address match detection monitor
				0: Invalid
				1: Detected
[1]	AD0	RO	0y0	General call detection monitor
				0: Invalid
				1: Detected
[0]	LRB	RO	0y0	Last received bit monitor
				0: The bit received last is 0.
				1: The bit received last is 1.

[Explanation]

a. <MST>

This bit monitors whether master or slave mode is selected.

0: Slave

1: Master

b. <TRX>

This bit monitors whether transmitter or receiver mode is selected.

0: Receiver

1: Transmitter

c. <BB>

This bit monitors the bus status.

0: The bus is free.

1: The bus is busy.

This bit is set to "1" after a start condition is detected on the bus. It is cleared to "0" on detection of a stop condition. When the device is operating as a slave, this bit is set to "1" to monitor the generation of a stop condition even if the device is not selected by the master and is not involved in transfer operation.

While this bit is set to "1", the start condition cannot be generated.

d. <PIN>

This bit monitors the service request state and SCL state.

0: Service request present, SCL line = low

1: No service request, SCL line = free

e. $<\!\!AL\!>$

This bit monitors the detection of arbitration lost.

0: Invalid

1: Detected

f. $\langle AAS \rangle$

This bit monitors the detection of a slave address match.

0: Invalid

1: Detected

When the device is operating as a slave, this bit is set to "1" if the slave address sent from the master matches the slave address set in I2C0AR<SA[6:0]>. This bit is then cleared to "0" after the internal interrupt is released and remains "0" until a stop condition or a start condition by the restart procedure appears on the bus and it is again set to "1" by a slave address match in address transfer after that start condition.

g. <AD0>

This bit monitors the detection of a general call.

0: Invalid

1: Detected

This bit is set to "1" on detection of a general call (the SDA line is held low during address transfer after a start condition) and remains set until a stop condition or a start condition by the restart procedure appears on the bus. I2COSR<AAS> is also set to "1" on detection of a general call. However, this bit is cleared to "0" at the next data transfer as described earlier.

h. <LRB>

This bit monitors the last received bit.

0: The bit received last is "0".

1: The bit received last is "1".

When acknowledge operation is enabled, this bit can be used to check whether or not the receiver has output an acknowledge signal (low) by reading the bit in the interrupt routine after the transfer. This monitor is effective regardless of whether the device is set as a transmitter or receiver.

Note: Rerer to "3.14.6.15 Register Values after a Software Reset ".

6. I2C0PRS (I²C0 Prescaler Clock Set Register)

Address = (0xF007_0000) + 0x0010

Bit	Bit Symbol	Туре	Reset Value	Description
[31:5]	-	-	Undefined	Read undefined. Write as zero.
[4:0]	PRSCK[4:0]	R/W	0y00001	Prescaler clock frequency for generating the serial clock 00000: p = Divide by 32 00001: p = Divide by 1 2 11111: p = Divide by 31

[Explanation]

a. <PRSCK[4:0]>

These bits are used to select the prescaler clock frequency for generating the serial clock. 00000: p = Divide by 32

00001: p = Divide by 1

) }

11111: p = Divide by 31

Note: Refer to "1. I2C0CR1 (I2C0 Control Register 1)" and "3.14.6.3 Serial Clock".

7. I2C0IE (I²C0 Interrupt Enable Register)

 $Address = (0xF007_0000) + 0x0014$

Bit	Bit Symbol	Туре	Reset Value	Description
[31:1]	-	-	Undefined	Read undefined. Write as zero.
[0]	IE	R/W	0y0	I ² C interrupts
				0: Disable
				1: Enable

[Explanation]

a. <IE>

This bit is used to enable or disable I^2C interrupts.

0: Disable

1: Enable

8. I2C0IR (I²C0 Interrupt Register)

Address = (0xF007_0000) + 0x0018

Bit	Bit Symbol	Туре	Reset Value	Description
[31:1]	_	_	Undefined	Read undefined. Write as zero.
[0]	IS/IC	R/W	0у0	 (Read) Indicates I²C interrupt status (before being disabled). 0: No interrupt 1: Interrupt generated (Write) Clears the I²C interrupt. 0: No effect
				1: Clear

[Explanation]

a. <IS/IC>

(Read)

This bit indicates the I²C interrupt status prior to masking by I2C0IE<IE>.

0: No interrupt

1: Interrupt generated

(Write)

This bit is used to clear the $I^2 C$ interrupt.

0: No effect

1: Clear

Writing "1" to this bit clears the I^2C interrupt output (I2CINT0).

Writing "0" has no effect.

3.14.6 Functions

3.14.6.1 Slave Address Match Detection and General Call Detection

For a slave device, the following setting is made for slave address match detection and general call detection.

I2C0CR1<NOACK> enables or disables the slave address match detection and general call detection in slave mode.

Clearing I2C0CR1<NOACK> to "0" enables the slave address match detection and general call detection.

Setting I2C0CR1<NOACK> to "1" disables the slave address match detection and general call detection. The slave device ignores slave addresses and general calls sent from the master and returns no acknowledgement. I2CINT0 interrupt requests are not generated.

In master mode, I2C0CR1<NOACK> is ignored and has no effect on operation.

Note: If I2C0CR1<NOACK> is cleared to "0" during data transfer in slave mode, it remains "1" and an acknowledge signal is returned for the transferred data.

3.14.6.2 Number of Clocks for Data Transfer and Acknowledge Operation

(1) Number of clocks for data transfer

The number of clocks for data transfer is set through I2C0CR1<BC> and I2C0CR1<ACK>.

Setting I2C0CR1<ACK> to "1" enables acknowledge operation. The master device generates clocks for the number of data bits to be transferred, and then generates an acknowledge clock and an I2CINTO interrupt request. The slave device counts clocks for the number of data bits, and then counts an acknowledge clock and generates an I2CINTO interrupt request.

Clearing I2C0CR1<ACK> to "0" disables acknowledge operation. The master device generates clocks for the number of data bits to be transferred, and then generates an I2CINT0 interrupt request. The slave device counts clocks for the number of data bits, and then generates an I2CINT0 interrupt request.

When acknowledge operation is enabled in receiver mode, the device pulls I2C0DA low during the acknowledge clock period from the master to request the transfer of the next word. Conversely, by holding I2C0DA high during the acknowledge clock period from the master, the receiver device can indicate that it is not requesting the next word.

During address transmission (before a start condition is generated), both the master and slave must be configured for 8-bit transfer with acknowledge enabled.

Figure 3.14.11 Number of clocks for data transfer according to I2C0CR1<BC> and I2C0CR1<ACK>

Table 3.14.3 shows the relationship between the number of clocks for data transfer and the I2C0CR1<BC> and I2C0CR1<ACK> settings.

	Acknowledge operation (I2C0CR1 <ack>)</ack>					
	0: Di	sabled	1: Er	1: Enabled		
BC[2:0]	Data length	Number of clocks	Data length	Number of clocks		
000	8	8	8	9		
001	1	1	1	2		
010	2	2	2	3		
011	3	3	3	4		
100	4	4	4	5		
101	5	5	5	6		
110	6	6	6	7		
111	7	7	7	8		

I2C0CR1<BC> is cleared to "000" by a start condition. This means that the slave address and direction bit are always transferred as 8-bit data. At other times, <BC> retains the set value.

Note: A slave address must be transmitted/received with I2C0CR1<ACK> set to "1". If I2C0CR1<ACK> is cleared, the slave address match detection and direction bit detection cannot be performed properly.

(2) Acknowledge output

When acknowledge operation is enabled, I2C0DA changes during the acknowledge clock period as explained below.

Master mode

The master transmitter releases I2C0DA during the acknowledge clock period to receive the acknowledge signal from the slave receiver.

The master receiver pulls I2C0DA low during the acknowledge clock period and to generate the acknowledge signal.

• Slave mode

When the received slave address matches the slave address set in I2COAR<SA> or when a general call is received, the slave pulls I2C0DA low during the acknowledge clock period to generate the acknowledge signal.

In data transfer after a slave address match or a general call, the slave transmitter releases I2C0DA during the acknowledge clock period to receive the acknowledge signal from the master receiver. The slave receiver pulls I2C0DA low during the acknowledge clock period to generate the acknowledge signal.

Table 3.14.4 shows the I2C0CL and I2C0DA states when acknowledge operation is enabled.

Note: When acknowledge operation is disabled, no acknowledge clock is generated or counted and no acknowledge signal is output.

Ta	Table 3.14.4 I2C0CL and I2C0DA states when acknowledge is enabled						
Mode	Pin	Condition	Transmitter	Receiver			
Master	I2C0CL	-	Adds the acknowledge clock pulse.	Adds the acknowledge clock pulse.			
	I2C0DA	-	Releases the pin to receive the acknowledge signal.	Pulls the pin low as the acknowledge signal.			
Slave	I2C0CL	-	Counts the acknowledge clock pulse.	Counts the acknowledge clock pulse.			
	I2C0DA	When a slave address match is detected or a general call is received.	-	Pulls the pin low as the acknowledge signal.			
		During transfer after a slave address match is detected or a general call is received	Releases the pin to receive the acknowledge signal.	Pulls the pin low as the acknowledge signal.			

able 3.14.4 I2C0CL and I2C0DA states when acknowledge is enabl	ed

3.14.6.3 Serial Clock

(1) Clock source

I2C0CR1<SCK> is used to set the high and low periods of the serial clock to be output in master mode.

SCK	t _{HIGH} (i / Tprsck)	t _{LOW} (j / Tprsck)
301	i	j
000:	8	12
001:	10	14
010:	14	18
011:	22	26
100:	38	42
101:	70	74
110:	134	138
111:	262	266

$$\begin{split} t_{HIGH} &= (i/Tprsck) \\ t_{LOW} &= (j/Tprsck) \\ fscl &= 1/(t_{HIGH} + t_{LOW}) \end{split}$$

Figure 3.14.12 I2CxCL output

Note: The t_{HIGH} period may differ from the specified value if the rising edge becomes blunt depending on the combination of bus load capacitance and pull-up resistor. If the clock synchronization function for synchronizing clocks from multiple clocks is used, the actual clock period may differ from the specified setting.

In master mode, the hold time when a start condition is generated and the setup time when a stop condition is generated are defined as $t_{HIGH}[s]$.

When I2C0CR2<PIN> is set to "1" in slave mode, the time to the release of I2C0CL is defined as $t_{LOW}[s]$.

In both master and slave modes, the high level period must be 4/PCLK[s] or longer and the low level period must be 5/PCLK[s] or longer for externally input serial clocks, regardless of the I2C0CR1<SCK> setting.

Figure 3.14.13 SCLK input

TENTATIVE

The serial clock rate to be output from the master is set through I2C0CR1<SCK[2:0]> and I2C0PRS<PRSCK[4:0]>. The prescaler clock which is divided according to I2C0PRS<PRSCK[4:0]> is used as the reference clock for generating the serial clock. The prescaler clock is further divided according to I2C0CR1<SCK[2:0]> and used as the serial clock. The default setting of the prescaler clock is "divide by 1 (=PCLK)".

<Serial transfer rate>

The serial clock rate (Fscl) is determined by prescaler setting value "p" (I2C0PRS <PRSCK[4:0]>, p=1-32) and serial clock setting value "n" (2C0CR1<SCK[2:0]>, n=0-7) based on the operating frequency (PCLK) as follows:

Serial clock rate Fscl(KHz) =
$$\frac{PCLK(MHz)}{p \times (2^{n+2} + 16)} \times 1000$$

Note: The allowed range of prescaler setting value "p" (I2C0PRS<PRSCK[4:0]>) varies depending on the operating frequency (PCLK) and must satisfy the following condition:

50 ns < Prescaler clock width Tprsck (ns) \leq 150ns

Note: Setting the prescaler clock width out of this range is prohibited in both master and slave modes.

The serial clock rate may not be constant due to the clock synchronization function.

		PRSCK [4:0]=(p)				
SCK[2:0]=(n)			0y00001 (divide by 1)	0y01101 (divide by 13)	0y00000 (divide by 32)	
		(Ratio to PCLK)				
0	0	0	20	260	640	
0	0	1	24	312	768	
0	1	0	32	416	1024	
0	1	1	48	624	1536	
1	0	0	80	1040	2560	
1	0	1	144	1872	4608	
1	1	0	272	3536	8704	
1	1	1	528	6864	16896	

Writes to these bits must be done before a start condition is generated or after a stop condition is generated. Writes during transfer will cause unexpected operation.

<Prescaler clock width (= noise cancellation width)>

The prescaler clock width (Tprsck) (= noise cancellation width) is determined by prescaler setting value "p" (I2C0PRS<PRSCK[4:0]>, p =1-32) based on the operating frequency (PCLK) as follows:

1

(2) Clock synchronization

The I²C bus is driven by the wired AND method, and a master device that first pulls down the clock line low invalidates the clock outputs from other masters on the bus. Masters who are keeping the clock line high need to detect this situation and act as required.

 $\rm I^2C$ has a clock synchronization function to ensure proper transfer operation even when multiple masters exist on the bus.

The clock synchronization procedure is explained below using an example where two masters simultaneously exist on the bus.

Figure 3.14.14 Example of clock synchronization

As Master A pulls I2C0CL low at point "a", the SCL line of the bus becomes low. After detecting this situation, Master B resets the high level period count and pulls I2C0CL low.

Master A finishes counting the low level period at point "b" and sets I2C0CL to high. Since Master B is still holding the SCL line low, Master A does not start counting the high level period. Master A starts counting the high level period after Master B sets I2C0CL to high at point "c" and the SCL line of the bus becomes high.

Then, after counting the high level period, Master A pulls I2C0Cl low and the SCL line of the bus becomes low.

The clock operation on the bus is determined by the master device with the shortest high level period and the master device with the longest low level period among master devices connected to the bus.

3.14.6.4 Master/Slave Selection

When I2C0CR2<MST> is set to "1", I²C is configured as a master device.

When I2C0CR2<MST> is cleared to "0", it is configured as a slave device.

I2C0SR<MST> is cleared to "0" by hardware when a stop condition or arbitration lost is detected on the bus.

3.14.6.5 Transmitter/Receiver Selection

When I2C0CR2<TRX> is set to "1", I²C is configured as a transmitter. When I2C0CR2<TRX> is cleared to "0", it is configured as a receiver.

In I²C data transfer in slave mode, I2C0SR<TRX> is set to "1" by hardware if the direction bit (R/W) sent from the master is "1", and is cleared to "0" if the direction bit is "0".

In master mode, I2C0SR<TRX> is cleared to "0" by hardware, after acknowledge is returned from the slave device, if the transmitted direction bit is "1", and is set to "1" if the direction bit is "0". If no acknowledge is returned, I2C0SR<TRX> remains unchanged.

I2C0SR<TRX> is cleared to "0" by hardware when a stop condition or arbitration lost is detected on the bus. Table 3.14.5 summarizes the operation of I2C0SR<TRX> in slave and master modes.

Note: When I2C0CR1<NOACK>="1", the slave address detection and general call detection are disabled, and thus I2C0SR<TRX> remains unchanged.

Mode	Direction bit	Condition for state change	Changed <trx> state</trx>
Slave mode	"0"	When the received slave address	"0"
	"1"	matches the slave address set in I2C0AR <sa></sa>	"1"
Master mode	"0"	When the ACK signal is returned	"1"
	"1"	when the ACK signal is returned.	"0"

Table 3.14.5 I2C0SR<TRX> operation in slave and master modes

When I²C is used with the free data format, the slave address and direction bit are not recognized and bits immediately following a start condition are handled as data. Therefore, I2COSR<TRX> is not changed by hardware.

3.14.6.6 Generation of Start and Stop Conditions

When I2C0SR<BB>="0", writing "1" to I2C0CR2<MST>, I2C0CR2<TRX>, I2C0CR2<BB> and I2C0CR2<PIN> causes a start condition, the slave address written in the data buffer register and direction bit to be sent out on the bus. I2C0CR1<ACK> must be set to "1" before a start condition is generated.

Figure 3.14.15 Start condition and slave address generation

When I2C0SR<BB>="1", writing "1" to I2C0CR2<MST>, I2C0CR2<TRX>, I2C0CR2<PIN> and "0" to I2C0CR2<BB> initiates a sequence for sending out a stop condition on the bus.

At this time, if the SCL line is pulled low by another device, a stop condition is generated after the SCL line is released.

Figure 3.14.16 Stop condition generation

The bus status can be checked by reading I2C0SR<BB>. I2C0SR<BB> is set to "1" (bus busy) when a start condition is detected on the bus, and is cleared to "0" (bus free) when a stop condition is detected.

The following table shows typical setting examples according to the I2C0SR state.

Although the I2C0CR2<MST>, <TRX>, <BB> and <PIN> bits are given independent functions, they are used in typical combinations, as shown below, according to the I2C0SR setting.

I2C0SR			I2C0CR2				Operation	
[7]MST	[5]BB	[4]PIN	[7]MST	[6]TRX	[5]BB	[4]PIN	opolation	
0	0 1	0 0	1	0	0	0	0	Wait for a start condition as a slave.
0	0		1	1	1	1	Generate a start condition.	
1 1	1 1 0 1 Generate a stop con	Generate a stop condition.						
I	I	1 0	0	0	0	1	Release the internal interrupt for restart.	

When writing to these bits, be careful not to inadvertently change I2C0CR2<I2CM>.

3.14.6.7 Interrupt Service Request and Cancel

In master mode, after the number of bits specified by I2C0CR1<BC> and I2C0CR1<ACK> have been transferred, an I2CINT0 interrupt request is generated.

In slave mode, an I2CINT0 interrupt request is also generated by the following conditions in addition to the above condition:

- When I2C0CR1<NOACK> is "0", after the acknowledge signal is output to indicate that the received slave address has matched the slave address set in I2C0AR<SA>
- When I2C0CR1<NOACK> is "0", after the acknowledge signal is output to indicate that a general call has been received.
- When data transfer is completed after a matched slave address or a general call is received.

When an I2CINT0 interrupt request is generated, I2C0SR<PIN> is cleared to "0". While I2C0SR<PIN> is "0", I2C0CL is pulled low.

Writing data into I2C0DBR sets I2C0SR<PIN> to "1".

It takes the t_{LOW} period for I2C0CL to be released after I2C0SR<PIN> is set to "1". I2C0CR2<PIN> can be set to "1" by writing "1" whereas it cannot be cleared to "0" by writing "0".

3.14.6.8 I²C Bus Mode

When I2C0CR2<I2CM> is set to "1", I²C bus mode is selected.

Before enabling I²C bus mode, make sure that the I2C0DA and I2C0CL pins are high and then set I2C0CR2<I2CM> to "1". Before initializing I²C, make sure that the bus is free and then clear I2C0CR2<I2CM> to "0".

Note: When I2C0CR2<I2CM>="0", no value can be written to bits in the I2C0CR2 register other than I2C0CR2<I2CM>. Before setting I2C0CR2, write "1" to I2C0CR2<I2CM> to select I²C bus mode.

3.14.6.9 Software Reset

 $\rm I^2C$ has a software reset function. If $\rm I^2C$ locks up due to noise, etc., it can be initialized by this function.

A software reset can be generated by writing "10" and then "01" to I2C0CR2<SWRES[1:0]>.

After a software reset, I²C is initialized except the I2C0CR2<I2CM> bit and the I2C0DBR register.

3.14.6.10 Arbitration Lost Detection Monitor

Since the I²C bus allows multiple masters to exist simultaneously, the bus arbitration feature must be implemented to ensure the integrity of transferred data.

The I²C bus uses data on the SDA line for bus arbitration.

The following shows an example of the bus arbitration procedure when two master devices exist on the bus simultaneously. Master A and Master B output the same data until point "a", where Master B outputs "1" and Master A outputs "0". This causes the SDA line to be pulled low by Master A since the SDA line is driven by the wired AND method.

When the SCL line rises at point "b", the slave device captures the data on the SDA line, i.e., the data from Master A.

At this time, the data output from Master B becomes invalid. This is called "arbitration lost". Master B that lost arbitration must release I2C0DA and I2C0CL so that Master A can use the bus without any hindrance. If more than one master outputs identical data on the first word, the arbitration procedure is continued on the second word.

Figure 3.14.18 Arbitration lost

Master B compares the level of I2C0DA with the level of the SDA line on the bus on the rising edge of the SCL line. If the two levels do not match, arbitration lost is determined and I2C0SR < AL > is set to "1".

When I2COSR<AL> is set to "1", I2COSR<MST> and I2COSR<TRX> are cleared to "0", thereby selecting slave receiver mode. Thus, after I2COSR<AL> is set to "1", Master B stops clock output. After the data transfer on the bus is completed, I2COSR<PIN> is cleared to "0" and I2COCL is pulled low.

I2C0SR<AL> is cleared to "0" when data is written to or read from I2C0DBR or when data is written to I2C0CR2 .

3.14.6.11 Slave Address Match Detection Monitor

I²C bus mode (I2C0AR<ALS>="0") allows slave address match detection when slave mode is selected.

Clearing I2C0CR1<NOACK> to "0" enables the slave address match detection. When a general call is received or the slave address sent from the master matches the slave address set in I2C0AR<SA>, I2C0SR<AAS> is set to "1".

Setting I2C0CR1<NOACK> to "1" disables the slave address match detection. Even if a general call is received or the salve address sent from the master matches the slave address set in I2C0AR<SA>, I2C0SR<AAS> remains "0".

When the free data format is used (I2C0AR<ALS>="1"), I2C0SR<AAS> is set to "1" upon receipt of the first word of data. It is cleared to "0" when data is written to or read from I2C0DBR.

3.14.6.12 General Call Detection Monitor

I²C bus mode (I2C0AR<ALS>= "0") also allows the detection of a general call as well as slave address match in slave mode.

When I2C0CR1<NOACK>="0", I2C0SR<AD0> is set to "1" when a general call (8 bits received immediately after a start condition are all "0"s) is received. (At this time, I2C0SR<AAS> is also set to "1".)

Setting I2C0CR1<NOACK> to "1" disables the slave address match detection and general call detection. I2C0SR<AD0> remains "0" even if a general call is received. (At this time, I2C0SR<AAS> also remains "0".)

I2C0SR<ADO> is cleared to "0" when a start or stop condition is detected on the bus.

Figure 3.14.21 Changes in the general call detection monitor

3.14.6.13 Last Received Bit Monitor

I2COSR<LRB> stores the SDA line value captured on every rising edge of the SCL line.

When acknowledge operation is enabled, the acknowledge signal is read from I2COSR<LRB> immediately after generation of an I2CINT0 interrupt request.

Figure 3.14.22 Changes in the last received bit monitor

3.14.6.14 Setting the Slave address and Address Recognition Mode

To use I²C in I²C bus mode, clear I2C0AR<ALS> to "0" and set a slave address in I2C0AR<SA>.

To use the free data format in which slave addresses are not recognized, set I2C0AR<ALS> to "1". When I²C is used with the free data format, the slave address and direction bit are not recognized and bits immediately following a start condition are handled as data.

[Notes on Specifications]

3.14.6.15 Register Values after a Software Reset

A software reset initializes the I²C registers other than I2C0CR2<I2CM> and internal circuitry and releases the SCL and SDA lines. (Refer to "3.14.6.3 (2) Clock synchronization".)

However, depending on read timing after a software reset, <u>reading I2C0SR<LRB> may</u> return a value other than the initial value ("0").

<When a software reset releases SCL ("0" \rightarrow "1") while SDA= "1">

3.15 SSP

This LSI contains the SSP comprised of two channels.

The SSP has the following features:

	Channel 0 Channel 1				
Communication protocol	Synchronous serial communication that includes SPI : 3 types				
Operation mode	Master/ Slave mode support				
Transmit/Receive FIFOs	16-bit wide, 8 locations deep				
Transmit/Receive data size	4 to 16 bits				
Interrupt type	Transmit FIFO interrupt				
	Receive FIFO interrupt	Receive FIFO interrupt			
	Receive overrun interrupt				
	Timeout interrupt				
Baud rate generator	Bit rate = $f_{PCLK}/(CPSDVSR \times (1+SCR))$				
	SSPxCPSR <cpsdvsr> = Even value from 2 to 254</cpsdvsr>				
	SSPxCR0 <scr>= 0 to 255 Note: x=0,1</scr>				
Internal test function	Internal loopback test mode available				
Control pins	SPOCLK	SP1CLK			
	SP0FSS	SP1FSS			
	SP0DO	SP1DO			
	SPOD	SP1DI			

3.15.1 Block Diagrams

Figure 3.15.1 Block diagram of SSP channel 0

3.15.2 SSP Overview

This LSI contains the SSP comprised of two channels (channel 0 and channel 1). Since the two channels operate identically, operational descriptions are provided for channel 0 only.

The SSP is an interface for serial communication with peripheral devices that have three types of synchronous serial interfaces.

The SSP performs serial-to-parallel conversion on data received from a peripheral device. The transmit and receive paths are buffered with a 16-bit wide, 8 locations deep independent transmit FIFO and receive FIFO in transmit mode and receive mode, respectively. Serial data is transmitted on SP0DO and received on SP0DI.

The SSP contains a programmable prescaler to generate the serial output clock SPOSLK from the input clock PCLK. The SSP operating mode, frame format and size are programmed through the control registers SSPOCR0 and SSPOCR1.

Four individually maskable interrupt outputs are generated:

- An interrupt that is generated when TXFIFO is more than half empty
- An interrupt that is generated when RxFIFO is less than half full
- An interrupt that indicates that data is present in RxFIFO and has not been read before a timeout period expires.
- An interrupt that indicates that data is written to RxFIFO when it is full

If any of the above interrupts is asserted, SSPINTR output is asserted.

(1) Clock prescaler

When configured as a master, a clock prescaler comprising two serially linked free-running counters is used to provide the serial output clock SPOCLK.

This clock prescaler can be programmed, through the SSP0CPSR register, to divide PCLK by a factor of 2 to 254 in steps of two. By not using the least significant bit of the SSP0CPSR register, division by an odd number cannot be programmed.

The output of the prescaler is further divided by a factor of 1 to 256, obtained by adding one to the value programmed in the SSP0CR0 control register, to give the master output clock SP0CLK.

Bit rate = $f_{PCLK} / (CPSDVSR \times (1+SCR))$

(2) Transmit FIFO

The common transmit FIFO is a 16-bit wide, 8 locations deep, first-in, first-out memory buffer. CPU data written across the AMBA APB interface is stored in the buffer until read out by the transmit logic. When configured as a master or slave, parallel data is written into the transmit FIFO prior to serial conversion and transmission to the attached slave or master respectively, through the SP0DO pin.

(3) Receive FIFO

The common receive FIFO is a 16-bit wide, 8 locations deep, first-in, first-out memory buffer. Received data from the serial interface is stored in the buffer until read out by the CPU across the AMBA APB interface. When configured as a master or slave, serial data received through the SP0DI pin is registered prior to parallel loading into the attached slave or master receive FIFO respectively.

(4) Transmit and receive logic

When configured as a master, the clock to the attached slaves is derived from a divided down version of PCLK through the prescaler operations described previously. The master transmit logic successively reads a value from its transmit FIFO and performs parallel to serial conversion on it. Then the serial data stream and frame control signal, synchronized to SPOCLK, are output through the SPODO pin to the attached slaves. The master receive logic performs serial to parallel conversion on the incoming synchronous SPODI data stream, extracting and storing values into its receive FIFO, for subsequent reading through the APB interface.

When configured as a slave, the SPOCLK clock is provided by an attached master and used to time its transmission and reception sequences. The slave transmit logic, under control of the master clock, successively reads a value from its transmit FIFO, performs parallel to serial conversion, then output the serial data stream and frame control signal through the slave SPODO pin. The slave receive logic performs serial to parallel conversion on the incoming SPODI data stream, extracting and storing values into its receive FIFO, for subsequent reading through the APB interface.

(5) Interrupt generation logic

Four individual maskable, active HIGH interrupts are generated by the SSP. A combined interrupt output is also generated as an OR function of the individual interrupt requests. This single combined interrupt can be used with a system interrupt controller to provide another level of masking on a per-peripheral basis. This allows use of modular device drivers that always know where to find the interrupt source control register bits.

(6) Synchronizing registers and logic

The SSP supports both asynchronous and synchronous operation of the clocks, PCLK and SSPCLK. Synchronization registers and handshaking logic have been implemented, and are active at all times. This has a minimal impact on performance or area. Synchronization of control signals is performed on both directions of data flow, that is from the PCLK to the SSPCLK domain and from the SSPCLK to the PCLK domain.

3.15.3 SPP Operation

(1) Configuring the communication protocol

Following reset, the SSP logic is disabled and the communication protocol must be configured in this state. Control registers SSP0CR0 and SSP0CR1 need to be programmed to configure the peripheral as a master or slave operating under one of the following protocols:

- Motorola SPI
- Texas Instruments SSI
- National Semiconductor

The bit rate, derived from the external PCLK, requires the programming of the clock prescale register SSP0CPSR.

(2) Enabling SSP operation

You can either enable the transmit FIFO, by writing up to eight 16-bit values when the SSP is disabled, or allow the transmit FIFO service request to interrupt the CPU. Once enabled, transmission or reception of data begins on the transmit (SP0DO) and receive (SP0DI) pins.

(3) Clock ratios

The minimum frequency of PCLK is governed by the following equations, both of which have to be satisfied:

fPCLK (min) => 2 x fSPOCLK (max) [for master mode]

 $f_{PCLK}(min) \Rightarrow 12 x f_{SPOCLK}(max)$ [for slave mode].

The maximum frequency of PCLK is governed by the following equations, both of which have be satisfied:

f_{PCLK} (max) <= 254 x 256 x f_{SPOCLK} (min) [for master mode]

 $f_{PCLK}(max) \le 254 \ge 256 \ge f_{SPOCLK}(min)$ [for slave mode].

(4) Frame format

Each data frame is between 4 to 16 bits long depending on the size of data programmed, and is transmitted starting with the MSB. There are three basic frame types that can be selected:

- Texas Instruments synchronous serial
- Motorola SPI
- National Semiconductor Microwire

For all three formats, the serial clock (SPOCLK) is held LOW or inactive while the SSP is idle, and transitions at the programmed frequency only during active transmission of data. The idle state of SPOCLK is used to provide a receive timeout indication that occurs when the receive FIFO still contains data after a timeout period.

For Motorola SPI and National Semiconductor Microwire frame formats, the serial frame (SP0FSS) pin is active LOW, and is asserted (pulled down) during the entire transmission of the frame.

For Texas Instruments synchronous serial frame format, the SP0FSS pin is pulsed for one serial clock period starting at its rising edge, prior to the transmission of each frame. For this frame format, both the SSP and the off-chip slave device drive their output data on the rising edge of SP0CLK, and latch data from the other device on the falling edge.

Unlike the full-duplex transmission of the other two frame formats, the National Semiconductor Microwire format uses a special master-slave messaging technique, which operates at half-duplex. In this mode, when a frame begins, an 8-bit control message is transmitted to the off-chip slave. During this transmission, no incoming data is received by the SSP. After the message has been sent, the off-chip slave decodes it and, after waiting one serial clock after the last bit of the 8-bit control message has been sent, responds with the requested data. The returned data can be 4 to 16 bits in length, making the total frame length anywhere from 13 to 25 bits.

(a) TI frame format

TI frame format (single transfer)

TI frame format (continuous transfer)

In this mode, SPOCLK and SPOFSS are forced LOW, and the transmit data line SPODO is tri-stated whenever the SSP is idle. Once the bottom entry of the transmit FIFO contains data, SPOFSS is pulsed HIGH for one SPOCLK period. The value to be transmitted is also transferred from the transmit FIFO to the serial shift register of the transmit logic. On the next rising edge of SPOCLK, the MSB of the 4 to 16-bit data frame is shifted out on the SPODO pin. Likewise, the MSB of the received data is shifted onto the SPODI pin by the off-chip serial slave device. Both the SSP and the off-chip serial slave device then clock each data bit into their serial shifter on the falling edge of each SPOCLK. The received data is transferred from the serial shifter to the receive FIFO on the first rising edge of SPOCLK after the LSB has been latched.

(b) Motorola SPI

The Motorola SPI interface is a four-wire interface where the SP0FSS signal behaves as a slave select. The main feature of the Motorola SPI format is that the inactive state and phase of the SP0CLK signal are programmable through the <SPO> and <SPH> bits within the SSP0CR0 control register.

<SPO>: Clock polarity

When the <SPO> clock polarity control bit is LOW, it produces a steady state low value on the SPOCLK pin. If the <SPO> clock polarity control bit is HIGH, a steady state high value is placed on the SPOCLK pin when data is not being transferred.

<SPH>: Clock phase

The <SPH> control bit selects the clock edge that captures data and allows it to change state. It has the most impact on the first bit transmitted by either allowing or not allowing a clock transition before the first data capture edge. When the <SPH> phase control bit is LOW, data is captured on the first clock edge transition. If the <SPH> clock phase control bit is HIGH, data is captured on the second clock edge transition.

Motorola frame format (single transfer <SPO>=0 & <SPH>=0)

Motorola frame format (continuous transfer <SPO>=0 & <SPH>=0)

In this configuration, during idle periods:

- the SPOCLK signal is forced LOW
- + SP0FSS is forced HIGH
- the transmit data line SP0DO is arbitrarily forced LOW.

If the SSP is enabled and there is valid data within the transmit FIFO, the start of transmission is signified by the SP0FSS master signal being driven LOW. This causes slave data to be enabled onto the SP0DI input line of the master.

One half SPOCLK period later, valid master data is transferred to the SPODO pin. Now that both the master and slave data have been set, the SPOCLK master clock pin goes HIGH after one further half SPOCLK period. The data is now captured on the rising edges and be propagated on the falling edges of the SPOCLK signal. In the case of a single word transmission, after all bits of the data word have been transferred, the SPOFSS line is returned to its idle HIGH state one SPOCLK period after the last bit has been captured. However, in the case of continuous back-to-back transmissions, the SPOFSS signal must be pulsed HIGH between each data word transfer. This is because the slave select pin freezes the data in its serial peripheral register and does not allow it to be altered if the <SPH> bit is logic zero. Therefore, the master device must raise the SPOFSS pin of the slave device between each data transfer to enable the serial peripheral data write. On completion of the continuous transfer, the SPOFSS pin is returned to its idle state one SPOCLK period after the last bit has been captured. (c) Microwire frame format

Microwire frame format (single transfer)

Microwire format is very similar to SPI format, except that transmission is half-duplex instead of full-duplex, using a master-slave message passing technique. Each serial transmission begins with an 8-bit control word that is transmitted from the SSP to the off-chip slave device. During this transmission, no incoming data is received by the SSP. After the message has been sent, the off-chip slave decodes it and, after waiting one serial clock after the last bit of the 8-bit control message has been sent, responds with the required data. The returned data is 4 to 16 bits in length, making the total frame length anywhere from 13 to 25 bits. In this configuration, during the idle periods:

- the SP0CLK signal is forced LOW
- SP0FSS is forced HIGH
- the transmit data line SP0DO is arbitrarily forced LOW.

A transmission is triggered by writing a control byte to the transmit FIFO. The falling edge of SP0FSS causes the value contained in the bottom entry of the transmit FIFO to be transferred to the serial shift register of the transmit logic, and the MSB of the 8-bit control frame to be shifted out onto the SP0DO pin. SP0FSS remains LOW for the duration of the frame transmission. The SP0DI pin remains tristated during this transmission. The off-chip serial slave device latches each control bit into this serial shifter on the rising edge of each SP0CLK. After the last bit is latched by the slave device, the control byte is decoded during a one clock wait-state, and the slave responds by transmitting data back to the SSP. Each bit is driven onto the SP0DI line on the falling edge of SP0CLK. The SSP in turn latches each bit on the rising edge of SP0CLK. At the end of the frame, for single transfers, the SP0FSS signal is pulled HIGH one clock period after the last bit has been latched in the receive serial shifter, that causes the data to be transferred to the receive FIFO.

Note:

: The off-chip slave device can tristate the receive line either on the falling edge of SP0CLK after the LSB has been latched by the receive shifter, or when the SP0FSS pin goes HIGH.

Microwire frame format (continuous transfer)

For continuous transfers, data transmission begins and ends in the same manner as a single transfer. However, the SP0FSS line is always asserted (held LOW) and transmission of data occurs back to back. The control byte of the next frame follows directly after the LSB of the received data from the current frame. Each of the received values is transferred from the receive shifter on the falling edge of SP0CLK, after the LSB of the frame has been latched into the SSP.

Note (on connection examples):

The SSP does not support dynamic switching between master and slave in a system. Each example of the SSP is configured and connected either a a master or slave.

3.15.4 Description of Registers

The following lists the registers for the SSP:

SSP0 •

Base address = 0xF200_2000

Register Name	Address (base+)	Description
	(2000))	
SSP0CR0	0x0000	Control register 0
SSP0CR1	0x0004	Control register 1
SSP0DR	0x0008	Receive FIFO register (read) and transmit FIFO data register (write)
SSP0SR	0x000C	Status register
SSP0CPSR	0x0010	Clock prescale register
SSP0IMSC	0x0014	Interrupt enable/disable register
SSPORIS	0x0018	Interrupt status prior to enable gate register
SSPOMIS	0x001C	Interrupt status after enable gate register
SSP0ICR	0x0020	Interrupt clear register
-	0x0024	Reserved
_	0x0028 ~ 0xFFC	Reserved

SSP1 •

SSP1		Base address = 0xF200_3000
Register Name	Address (base+)	Description
SSP1CR0	0x0000	Control register 0
SSP1CR1	0x0004	Control register 1
SSP1DR	0x0008	Receive FIFO register (read) and transmit FIFO register (read)
SSP1SR	0x000C	Status register
SSP1CPSR	0x0010	Clock prescale register
SSP1IMSC	0x0014	Interrupt enable/disable register
SSP1RIS	0x0018	Interrupt status prior to enable gate register
SSP1MIS	0x001C	Interrupt status after enable gate register
SSP1ICR	0x0020	Interrupt clear register
-	0x0024	Reserved
_	0x0028 ~ 0xFFC	Reserved

1. SSP0CR0 (SSP0 control register 0)

	Bit		Reset	
Bit	Symbol	Туре	Value	Description
[31:16]		 	Undefined	Read undefined. Write as zero.
[15:8]	SCR	R/W	0y0	Parameter for setting the serial clock rate:
				0x00 to 0xFF
				(See [Explanation] below.)
[7]	SPH	R/W	0y0	SPCLK phase
				(Applicable to Motorola SPI frame format only. See "Motorola SPI frame format".)
[6]	SPO	R/W	0y0	SPCLK polarity
				(Applicable to Motorola SPI frame format only.
				See "Motorola SPI frame format".)
[5:4]	FRF	R/W	0y00	Frame format:
				0y00: Motorola SPI frame format
				0y01: TI synchronous serial frame format
				0y10: National Microwire frame format
				0y11: Reserved, undefined operation
[3:0]	DSS	R/W	0y0000	Data size select:
				0y0000: Reserved. Operation undefined.
				0y0001: Reserved. Operation undefined.
				0y0010: Reserved, undefined operation
				0y0011: 4-bit data
				0y0100: 5-bit data
				0y0101 : 6-bit data
				0y0110: 7-bit data
				0y0111: 8-bit data
				0y1000: 9-bit data
				0y1001: 10-bit data
				0y1010: 11-bit data
				0y1011: 12-bit data
				0y1100: 13-bit data
				0y1101: 14-bit data
				0y1110: 15-bit data
				0v1111: 16-bit data

Address = (0xF200_2000) + 0x0000

2. SSP1CR0 (SSP1 control register 0)

				Address = (0xF200_3000) + 0x0000
Bit	Bit	Туре	Reset	Description
	Symbol		Value	
[31:16]	-	-	Undefined	Read undefined. Write as zero.
[15:8]	SCR	R/W	0y0	Parameter for setting the serial clock rate:
				0x00 to 0xFF
[7]	SPH	R/W	0y0	SPCLK phase
				(Applicable to Motorola SPI frame format only. See "Motorola SPI frame format".)
[6]	SPO	R/W	0y0	SPCLK polarity
				(Applicable to Motorola SPI frame format only. See "Motorola SPI frame format".
[5:4]	FRF	R/W	0y00	Frame format:
				0y00: Motorola SPI frame format
				0y01: TI synchronous serial frame format
				0y10: National Microwire frame format
				0y11: Reserved, undefined operation
[3:0]	DSS	R/W	0y0000	Data size select:
				0y0000: Reserved, undefined operation
				0y0001: Reserved, undefined operation
				0y0010. Reserved, undermed operation
				0y0100: 5-bit data
				0v0101: 6-bit data
				0v0110: 7-bit data
				0y0111: 8-bit data
				0y1000: 9-bit data
				0y1001: 10-bit data
				0y1010: 11-bit data
				0y1011: 12-bit data
				0y1100: 13-bit data
				0y1101: 14-bit data
				0y1110: 15-bit data
				0y1111: 16-bit data

[Explanation]

a. <SCR>

The <SCR> value is used to generate the transmit and receive bit rate of the SSP.

The bit rate is:

Bit rate = $f_{PCLK} / (CPSDVSR \times (1+SCR))$

where CPSDVSR is an even value from 2 to 254, programmed through the SSPxCPSR register and SCR is a value from 0 to 255.

3. SSP0CR1 (SSP0 control register 1)

				Address = (0xF200_2000) + 0x0004
Bit	Bit Symbol	Туре	Reset Value	Description
[31:4]	-	-	Undefined	Read undefined. Write as zero.
[3]	SOD	R/W	0у0	Slave mode SP0DO output disable: 0y0: Enable 0y1: Disable
[2]	MS	R/W	0у0	Master/slave mode select: 0y0: The device is a master. 0y1: The device is a slave.
[1]	SSE	R/W	0у0	Synchronous serial port enable: 0y0: Disable 0y1: Enable
[0]	LBM	R/W	0у0	Loop back mode 0y0: Normal serial port operation enabled 0y1: Output of transmit serial shifter is connected to input of receive serial shifter internally.

4. SSP1CR1 (SSP1 control register 1)

Address = (0xF200_3000) + 0x0004

Bit	Bit Symbol	Туре	Reset Value	Description
[31:4]	-	-	Undefined	Read undefined. Write as zero.
[3]	SOD	R/W	0у0	Slave mode SP0DO output disable: 0y0: Enable 0y1: Disable
[2]	MS	R/W	0у0	Master/slave mode select: 0y0: The device is a master. 0y1: The device is a slave.
[1]	SSE	R/W	0у0	Synchronous serial port enable: 0y0: Disable 0y1: Enable
[0]	LBM	R/W	ОуО	Loopback mode 0y0: Normal serial port operation enabled 0y1: Output of transmit serial shifter is connected to input of receive serial shifter internally.

[Explanation]

a. <SOD>

Slave mode output disable. This bit is relevant only in the slave mode (<MS>=1).

5. SSP0DR (SSP0 data register)

				Address = (0xF200_2000) + 0x0008
Bit	Bit Symbol	Туре	Reset Value	Description
[31:16]	-	-	Undefined	Read undefined. Write as zero.
[15:0]	DATA	R/W	0x0000	Transmit/receive FIFO data: 0x00 to 0xFF

6. SSP1DR (SSP1 data register)

Address = (0xF200_3000) + 0x0008

Bit	Bit Symbol	Туре	Reset Value	Description
[31:16]	-	-	Undefined	Read undefined. Write as zero.
[15:0]	DATA	R/W	0x0000	Transmit/receive FIFO data:
				0x00 to 0xFF

[Explanation]

a. <DATA>

Read: Receive FIFO

Write: Transmit FIFO

You must right-justify data when the SSP is programmed for a data size that is less than 16 bits. Unused bits at the top are ignored by the transmit logic. The receive logic automatically right-justifies.

7. SSP0SR (SSP0 status register)

Bit	Bit Symbol	Туре	Reset Value	Description
[31:5]	-	-	Undefined	Read undefined. Write as zero.
[4]	BSY	RO	0y0	Busy flag:
				0y0: Idle
				0y1: Busy
[3]	RFF	RO	0y0	Receive FIFO full:
				0y0: Receive FIFO is not full.
				0y1: Receive FIFO is full.
[2]	RNE	RO	0y0	Receive FIFO empty flag:
				0y0: Receive FIFO is empty.
				0y1: Receive FIFO is not empty.
[1]	TNF	RO	0y1	Transmit FIFO full flag:
				0y0: Transmit FIFO is full.
				0y1: Transmit FIFO is not full.
[0]	TFE	RO	0y1	Transmit FIFO empty flag:
				0y0: Transmit FIFO is not empty.
				0y1: Transmit FIFO is empty.

8. SSP1SR (SSP1 status register)

Address = (0xF200_3000) + 0x000C

Address = (0xF200_2000) + 0x000C

Bit	Bit Symbol	Туре	Reset Value	Description
[31:5]	-	-	Undefined	Read undefined. Write as zero.
[4]	BSY	RO	0y0	Busy flag:
				0y0: Idle
				0y1: Busy
[3]	RFF	RO	0y0	Receive FIFO full:
				0y0: Receive FIFO is not full.
				0y1: Receive FIFO is full.
[2]	RNE	RO	0у0	Receive FIFO empty flag:
				0y0: Receive FIFO is empty.
				0y1: Receive FIFO is not empty.
[1]	TNF	RO	0y1	Transmit FIFO full flag:
				0y0: Transmit FIFO is full.
				0y1: Transmit FIFO is not full.
[0]	TFE	RO	0y1	Transmit FIFO empty flag:
				0y0: Transmit FIFO is not empty.
				0y1: Transmit FIFO is empty.

[Explanation]

a. <BSY>

This bit indicates, when set to "1" (BSY = "1"), that a frame is currently being transmitted or received or the transmit FIFO is not empty.

9. SSP0CPSR (SSP0 clock prescale register)

Address = (0xF200_2000) + 0x0010

Bit	Bit Symbol	Туре	Reset Value	Description
[31:8]	-	-	Undefined	Read undefined. Write as zero.
[7:0]	CPSDVSR	R/W	0x0000	Clock prescale divisor:
				Must be an even number from 2 to 254.

10. SSP1CPSR (SSP1 clock prescale register)

Address = (0xF200_3000) + 0x0010

Bit	Bit Symbol	Туре	Reset Value	Description
[31:8]	-	-	Undefined	Read undefined. Write as zero.
[7:0]	CPSDVSR	R/W	0x0000	Clock prescale divisor:
				Must be an even number from 2 to 254.

[Explanation]

a. <CPSDVSR>

Clock prescale divisor. Must be an even number from 2 to 254, depending on the frequency of PCLK. The least significant bit always returns "0" on reads.
11. SSP0IMSC (SSP0 interrupt enable/disable register)

				Address = (0xF200_2000) + 0x0014
Bit	Bit Symbol	Туре	Reset Value	Description
[31:4]	_	_	Undefined	Read undefined. Write as zero.
[3]	TXIM	R/W	0y0	Transmit FIFO interrupt enable:
				0y0: Disable
				0y1: Enable
[2]	RXIM	R/W	0y0	Receive FIFO interrupt enable:
				0y0: Disable
				0y1: Enable
[1]	RTIM	R/W	0y0	Receive timeout interrupt enable:
				0y0: Disable
				0y1: Enable
[0]	RORIM	R/W	0y0	Receive overrun interrupt enable:
				0y0: Disable
				0y1: Enable

[Explanation]

a. <TXIM>

 $Enables \ or \ disables \ interrupts \ that are generated \ when \ TxFIFO \ is \ half \ empty \ or \ less.$

b. <RXIM>

Enables or disables interrupts that are generated when RxFIFO is half empty or less.

c. <RTIM>

Enables or disables interrupts that are generated when the data in RxFIFO is not read out before the timeout period expires.

d. <RORIM>

Enables or disables interrupts that are generated when data is written to RxFIFO while it is full.

12. SSP1IMSC (SSP1 interrupt enable/disable register)

Address = (0xF200_3000) + 0x0014

Bit	Bit Symbol	Туре	Reset Value	Description
[31:4]	-	-	Undefined	Read undefined. Write as zero.
[3]	TXIM	R/W	0у0	Transmit FIFO interrupt enable:
				0y0: Disable
				0y1: Enable
[2]	RXIM	R/W	0y0	Receive FIFO interrupt enable:
				0y0: Disable
				0y1: Enable
[1]	RTIM	R/W	0y0	Receive timeout interrupt enable:
				0y0: Disable
				0y1: Enable
[0]	RORIM	R/W	0y0	Receive overrun interrupt enable:
				0y0: Disable
				0y1: Enable

[Explanation]

a. <TXIM>

Enables or disables interrupts that are generated when TxFIFO is half empty or less.

b. <RXIM>

Enables or disables interrupts that are generated when RxFIFO is half empty or less.

c. <RTIM>

Enables or disables interrupts that are generated when the data in RxFIFO is not read out before the timeout period expires.

d. <RORIM>

Enables or disables interrupts that are generated when data is written to RxFIFO while it is full.

13. SSP0RIS (SSP0 interrupt status prior to enable gate register)

 $Address = (0xF200_2000) + 0x0018$

Bit	Bit Symbol	Туре	Reset Value	Description	
[31:4]	-	-	Undefined	Read undefined. Write as zero.	
[3]	TXRIS	RO	0у0	Transmit interrupt status prior to enable gate: 0y0: No interrupt	
[2]	RXRIS	RO	0у0	Oy1: Interrupt requested Receive interrupt status prior to enable gate: Oy0: No interrupt Oy1: Interrupt requested	
[1]	RTRIS	RO	0у0	Receive timeout interrupt status prior to enable gate: 0y0: No interrupt 0y1: Interrupt requested	
[0]	RORRIS	RO	0у0	Receive overrun interrupt status prior to enable gate: 0y0: No interrupt 0y1: Interrupt requested	

14. SSP1RIS (SSP1 interrupt status prior to enable gate register)

Address = (0xF200_3000) + 0x0018

Bit	Bit Symbol	Туре	Reset Value	Description	
[31:4]	-	-	Undefined	Read undefined. Write as zero.	
[3]	TXRIS	RO	0у0	Transmit interrupt status prior to enable gate: 0y0: No interrupt 0y1: Interrupt requested	
[2]	RXRIS	RO	0у0	Receive interrupt status prior to enable gate: 0y0: No interrupt 0y1: Interrupt requested	
[1]	RTRIS	RO	0у0	Receive timeout interrupt status prior to enable gate: 0y0: No interrupt 0y1: Interrupt requested	
[0]	RORRIS	RO	0у0	Receive overrun interrupt status prior to enable gate: 0y0: No interrupt 0y1: Interrupt requested	

15. SSP0MIS (SSP0 interrupt status after enable gate register)

Address = (0xF200_2000) + 0x001C

Bit	Bit Symbol	Туре	Reset	Description
	Gymbol		Value	
[31:4]	-		Undefined	Read undefined. Write as zero.
[3]	TXMIS	RO	0у0	Transmit interrupt status after enable gate:
				0y0: No interrupt
	I			0y1: Interrupt requested
[2]	RXMIS	RO	0у0	Receive interrupt status after enable gate:
	1			0y0: No interrupt
	I			0y1: Interrupt requested
[1]	RTMIS	RO	0у0	Receive timeout interrupt status after enable gate:
				0y0: No interrupt
				0y1: Interrupt requested
[0]	RORMIS	RO	0y0	Receive overrun interrupt status after enable gate:
	1			0y0: No interrupt
				0y1: Interrupt requested

16. SSP1MIS (SSP1 interrupt status after enable gate register)

Address = (0xF200_3000) + 0x001C

Bit	Bit Symbol	Туре	Reset Value	Description
[31:4]	-	-	Undefined	Read undefined. Write as zero.
[3]	TXMIS	RO	0у0	Transmit interrupt status after enable gate: 0y0: No interrupt 0y1: Interrupt requested
[2]	RXMIS	RO	0у0	Receive interrupt status after enable gate: 0y0: No interrupt 0y1: Interrupt requested
[1]	RTMIS	RO	0у0	Receive timeout interrupt status after enable gate: 0y0: No interrupt 0y1: Interrupt requested
[0]	RORMIS	RO	0у0	Receive overrun interrupt status after enable gate: 0y0: No interrupt 0y1: Interrupt requested

17. SSP0ICR (SSP0 interrupt clear register)

Bit	Bit Symbol	Туре	Reset Value	Description
[31:2]	-	-	Undefined	Read undefined. Write as zero.
[1]	RTIC	WO	Undefined	Receive timeout interrupt flag clear: 0y0: No effect 0y1: Clear
[0]	RORIC	WO	Undefined	Receive overrun interrupt flag clear: 0y0: No effect 0y1 : Clear

18. SSP1ICR (SSP1 interrupt clear register)

Address = (0xF200_3000) + 0x0020

Address = (0xF200_2000) + 0x0020

Bit	Bit	Туре	Reset	Description	
Dit	Symbol		Value	Description	
[31:2]	-	-	Undefined	Read undefined. Write as zero.	
[1]	RTIC	WO	Undefined	Receive timeout interrupt flag clear: 0y0: No effect	
				0y1: Clear	
[0]	RORIC	WO	Undefined	Receive overrun interrupt flag clear:	
				0y0: No effect	
				0y1: Clear	

TENTATIVE

3.16 USB Device Controller

3.16.1	System	Overview
--------	--------	----------

- 1) Conforming to Universal Serial Bus Specification Rev.2.0*
- 2) Supports both High-Speed and Full-Speed (Low-Speed is not supported).
- 3) Supports Chirp.
- 4) USB Protocol processing
- 5) Detects SOF/USB_RESET/SUSPEND/RESUME.
- 6) Generates and checks packet IDs.
- 7) Generates and checks data synchronization bits (DATA0/DATA1/DATA2/MDATA).
- 8) Checks CRC5, generates and checks CRC16.
- 9) Supports PING.
- 10) Supports 4 transfer modes (Control/Interrupt/Bulk/Isochronous).
- 11) Supports 4 endpoints:

Control	64 bytes $\times1$ FIFO
Bulk (IN)	512 bytes $\times2$ FIFOs
Bulk (OUT)	512 bytes $\times2$ FIFOs
Interrupt (IN)	64 bytes \times 1 FIFO
	Control Bulk (IN) Bulk (OUT) Interrupt (IN)

- 12) Supports Dual Packet Mode (except for Endpoint 0).
- 13) Interrupt source signal to Interrupt controller: INTS[21]

3.16.1.1 System Structure

The USB device controller consists of the core part called UDC2 and the bus bridge part called UDC2AB which enables connection with the AHB bus.

In this section, the circuit function is outlined first. Then, section 3.16. 2 describes the configuration of the UDC2AB bus bridge, and section 3.16.3 describes the configuration of UDC2.

Figure 3.16.1 Block diagram of the USB device controller

The above diagram shows the connections required for using the USB controller contained in the TMPA910CRA.

(1) Pulling up of the DP pin

The USB specification requires that the DP pin be pulled up for Full-Speed communication. An internal pull-up resistor is provided, and no external circuit is required.

(2) Insertion of series resistance for the DP and DM pins

The USB specification requires that series resistance be inserted for each of the DP and DM pins. Internal series resistance is provided for each of these pins, and no external circuit is required.

(3) Detection of connector connection

How to detect connector connection with VBUS (5V) is explained as an example.

As shown in the connection example above, R6 and R7 for dividing resistance should be connected to the VBUS pin in such a way as to assert the interrupt pin High (3.3V) when power is connected. By detecting this interrupt by software, connector connection can be detected.

Note: If the waveform rises slowly, it is recommended to insert appropriate buffering for waveform shaping.

Recommended values: R6=60k Ω , R7=100k Ω

(VBUS consumption current in suspended state $< 500 \ \mu\text{A}$)

(4) 24-MHz clock input

The USB device controller requires a 24-MHz clock. This clock input can be implemented in two ways. One is to connect a 24-MHz resonator to the X1 and X2 pins and the other is to input a 24-MHz clock from the X1USB pin. SYSCR0<USBCLKSEL> is used to select either of these methods. In whichever case, the clock precision must be ± 100 ppm or less.

(5) Pull-down resistors on the USB host

The USB specification requires that the DP and DM pins be pulled down at the USB host end.

Recommended values: R8=15k Ω , R9=15k Ω

(6) Resistor for USB_PHY

It is necessary to connect a resistor between the REXT pin and the VSENS pin. R10 should be $12k\Omega$ (with an error within $\pm 1.0\%$).

Note: The above connections, resistor values and other information are provided as examples and their operations are not guaranteed. Please be sure to check the latest USB specification and to perform operation checks on the actual set.

3.16.2 UDC2AB AHB Bus Bridge

UDC2AB (UDC2 AHB Bridge) is the bridge circuit between Toshiba USB-Spec2.0 Device Controller (hereinafter "UDC2") and AHB. UDC2AB has the DMA controller that supports the AHB master transfer and controls transfer between the specified address on AHB and the Endpoint-FIFO (Endpoint I/F) inside UDC2.

Figure 3.16.2 UDC2AB block diagram

3.16.2.1 Functions and Features

UDC2AB has the following functions and features:

(1) Connection with UDC2

There is no specific restriction on the endpoint configuration for the UDC2 to be connected. However, the DMA controller in UDC2AB (AHB master function) can be connected with only one Rx-EP and one Tx-EP. Accesses to other endpoints (including EP0) should be made through PVCI I/F of UDC2 using the AHB slave function. Please note the EPx_FIFO register of a UDC2 endpoint in master transfer with the DMA controller cannot be accessed through PVCI I/F.

If the maximum packet size of the endpoint to be connected with the AHB master lead function will be an odd number, there will be some restrictions on the usage. See "(3)Setting the maximum packet size in Master Read transfers" for more information.

(2) AHB functions

AHB Master and AHB Slave functions are provided.

(a) AHB Master function

Specifications of the AHB Master function:

- Has two DMA channels; one each is allocated to the Rx-EP and the Tx-EP.
- Single and Burst (INCR/INCR8) transactions are supported.
- Split transaction is not supported.
- Little Endian is supported.
- Protection Control is not supported.
- Early Burst Termination is supported.
- Address width and data width are both 32 bits.
- Transaction sizes in bytes or words are supported.

The image of Endian conversion is as shown below.

	_	Little End	lian	
■WORD Data	Access HWD	ATA[31:0]	/HRDATA	[31:0] +0
Address	44	33	22	11
■BYTE A Data Address	Access HWD +3	ATA[31:0] +2	/HRDATA +1	[31:0] +0 11
[44	33		

Figure 3.16.3 Image of Endian conversion in AHB Master function

(b) AHB Slave function

Specifications of the AHB Slave function:

- Used for accessing the internal register.
- Little Endian is supported.
- Only single transactions are supported.
- Address width and data width are both 32 bits.
- Transaction sizes in bytes or words are supported.

The image of Endian conversion is as shown below.

Figure 3.16.4 Image of Endian conversion in AHB Slave function

3.16.2.2 Overall Composition

UDC2AB mainly consists of the AHB Slave function that controls the access to the UDC2AB internal registers and UDC2 registers and the AHB Master function that controls the DMA access to the UDC2 Endpoint I/F.

The AHB Master function has two built-in channels; Master Read Channel (AHB to UDC2) and Master Write Channel (UDC2 to AHB), which enable DMA transfer between the Endpoint I/F of Rx-EP and Tx-EP of UDC2. Each channel has two built-in 8-word buffers (four in total).

3.16.2.3 Clock Domain

CLK_U: 30 MHz (to be supplied by USB 2.0 PHY)

CLK_H: There is no specific restriction on design. Please consult our technical department for the actual results of clock frequency.

3.16.2.4 Terms and Presentation

Assert	: Indicates the signal is active.
Deasset	: Indicates the signal is inactive.
Word	: 32 bits
Byte	: 8 bits
UDC2	: Indicates the USB2.0 device controller to be connected to UDC2AB.
UDC2AB	: This IP: Abbreviation of UDC2-AHB-Bridge
Endpoint	: FIFO held by UDC2 for communication with the USB host. Up to 16 points can be configured. Abbreviated as "EP".
Rx-EP	: Receive endpoint. For the OUT transfer of USB transfer (USB host to USB device)
Tx-EP	: Transmit endpoint. For the IN transfer of USB transfer (USB device to USB host).
Endpoint I/F	: DMA interface dedicated to the endpoints held by UDC2.
PVCI I/F	: Common interface held by UDC2. Used for accessing the internal registers of UDC2
Master transfer	: Indicates that UDC2AB acquires the bus right to make transfer.
Target device	: Indicates the device (such as memories) to be accessed by UDC2AB with master transfer.
Master Write transfer	: Indicates the transfer with Rx-EP made by UDC2AB.
Master Read transfer	: Indicates the master transfer with Tx-EP made by UDC2AB.
Slave transfer	: Indicates the transfer made by other devices than UDC2AB targeted at UDC2AB.
USB_RESET	: Bus reset sent from the USB host. "Reset Signaling" in the USB specification.
NULL packet	: 0-length data to be transferred on USB.
PHY	: USB 2.0 PHY
Interrupt	: Indicates the UDC2ABINT_ X output signal. Descriptions like "Assert xx interruption" in this document are based on the assumption that the relevant bit of the Interrupt Enable resistor is enabled. See "3.16.2.7 Interrupt Signal (UDC2ABINT_X)" for more information.

3.16.2.5 Registers

The register map of UDC2AB consists of registers for setting UDC2AB and those for setting UDC2. When the registers for setting UDC2 are accessed, UDC2AB automatically accesses **UDC2 via PVCI I/F.** Each register has the width of 32 bits.

(1) Register map

The register map of UDC2AB is shown below.

			Base address = 0xF440_0000
	Register Name	Address (base+)	Description
	UDINTSTS	0x0000	Interrupt Status Register
	UDINTENB	0x0004	Interrupt Enable Register
	UDMWTOUT	0x0008	Master Write Timeout Register
	UDC2STSET	0x000C	UDC2 Setting Register
	UDMSTSET	0x0010	DMAC Setting Register
	DMACRDREQ	0x0014	DMAC Read Request Register
	DMACRDVL	0x0018	DMAC Read Value Register
	UDC2RDREQ	0x001C	UDC2 Read Request Register
	UDC2RDVL	0x0020	UDC2 Read Value Register
ge	Reserved	0x0024 ~ 0x0038 *4)	
rid	ARBTSET	0x003C	Arbiter Setting Register
е В	UDMWSADR	0x0040	Master Write Start Address Register
2AI	UDMWEADR	0x0044	Master Write End Address Register
ö	UDMWCADR	0x0048 *1)	Master Write Current Address Register
IJ	UDMWAHBADR	0x004C	Master Write AHB Address Register
	UDMRSADR	0x0050	Master Read Start Address Register
	UDMREADR	0x0054	Master Read End Address Register
	UDMRCADR	0x0058 *1)	Master Read Current Address Register
	UDMRAHBADR	0x005C	Master Read AHB Address Register
	Reserved	0x0060 to 0x007C	
	UDPWCTL	0x0080	Power Detect Control Register
	UDMSTSTS	0x0084	Master Status Register
	UDTOUTCNT	0x0088 *1)	Timeout Count Register
	Reserved	0x008C to 0x1FC *4)	

Table 3.16.1	UDC2AB/UDC2 register map (1/2)
--------------	--------------------------------

UDC2AB/UDC2 register map (2/2)

Base address = 0xF440_0000

	Register Name	Address (base+)	Description
	UD2ADR	0x0200	UDC2 Address-State Register
	UD2FRM	0x0204	UDC2 Frame Register
	UD2TMD	0x0208	UDC2 USB-Testmode Register
	UD2CMD	0x020C	UDC2 Command Register
	UD2BRQ	0x0210	UDC2 bRequest-bmRequestType Register
	UD2WVL	0x0214	UDC2 wValue Register
	UD2WIDX	0x0218	UDC2 wIndex Register
	UD2WLGTH	0x021C	UDC2 wLength Register
	UD2INT	0x0220	UDC2 INT Register
	UD2INTEP	0x0224	UDC2 INT_EP Register
	UD2INTEPMSK	0x0228	UDC2 INT_EP_MASK Register
	UD2INTRX0	0x022C	UDC2 INT_RX_DATA0 Register
	UD2EP0MSZ	0x0230	UDC2 EP0_MaxPacketSize Register
3)	UD2EP0STS	0x0234	UDC2 EP0_Status Register
e), *3	UD2EP0DSZ	0x0238	UDC2 EP0_Datasize Register
*	UD2EP0FIFO	0x023C	UDC2 EP0_FIFO Register
22	UD2EP1MSZ	0x0240	UDC2 EP1_MaxPacketSize Register
DQ	UD2EP1STS	0x0244	UDC2 EP1_Status Register
	UD2EP1DSZ	0x0248	UDC2 EP1_Datasize Register
	UD2EP1FIFO	0x024C	UDC2 EP1_FIFO Register
	UD2EP2MSZ	0x0250	UDC2 EP2_MaxPacketSize Register
	UD2EP2STS	0x0254	UDC2 EP2_Status Register
	UD2EP2DSZ	0x0258	UDC2 EP2_Datasize Register
	UD2EP2FIFO	0x025C	UDC2 EP2_FIFO Register
	UD2EP3MSZ	0x0260	UDC2 EP3_MaxPacketSize Register
	UD2EP3STS	0x0264	UDC2 EP3_Status Register
	UD2EP3DSZ	0x0268	UDC2 EP3_Datasize Register
	UD2EP3FIFO	0x026C	UDC2 EP3_FIFO Register
	Reserved	0x0270 to 0x032C	
	UD2INTNAK	0x0330	UDC2 INT_NAK Register
	UD2INTNAKMSK	0x0334	UDC2 INT_NAK_MASK Register
	Reserved	0x0338 to 0x03FC	

*1) Be sure to make Read accesses via DMAC Read Request Register.

*2) Be sure to make Read accesses via UDC2 Read Request Register.

*3)Though the registers of UDC2 are assigned to "+0x200" to "+0x3FC", no access should be made to the registers of endpoints not supported in the UDC2 to be connected or to any "Reserved" registers.

*4) Those shown as "Reserved" and in addresses of 0x400 to 0xFFF above are Read-only. Any writing will be ignored and "0" will be returned when attempted to read it.

(2) Register descriptions

The following subsections describe the registers in UDC2AB in detail. The descriptions of each bit have the following meanings:

(Example)

Address =(0xF440_0000)+ (0xxxxx)

	Bit	Turno	Reset	
Bit	Symbol	(Niste 2)	Value	Description
	(Note 1)	(INOLE 2)	(Note 3)	
[31:30]	-		Undefined	Read undefined. Write as zero.
[29]	mw_rerror_en	R/W	0y0,(-)	
[28]	power_detect_en	R/W	0y0,(-)	
[27:26]	-	-	Undefined	Read undefined. Write as zero.
[25]	dmac_reg_rd_en	R/W	0y0,(-)	
[24]	udc2_reg_rd_en	R/W	0y0,(-)	

Note 1: Mnemonic

Name of each bit.

Those shown as "_" are Reserved bits which cannot be written. "0" will be returned when read.

Note 2: Register properties

^	2. Register pr	openies
	RO	: Read only. Cannot be written.
	WO	: Write only. "0" will be returned when read.
	R/W	: Read/Write
	R/W1C	: Read/Write 1 Clear. These bits can be both read and written.
		When "1" is written, the corresponding bit is cleared. Writing "0" is invalid.
	R/W1S	: Read/Write 1 Set. These bits can be both read and written.
		When "1" is written, the corresponding bit is set. Writing "0" is invalid.

Note 3: Reset value

Initial values for the bit after resetting ("1" or "0"). Initial values for Hardware Reset (RST_H_X/RST_U_X) and Software Reset (Power Detect Control <pw_resetb>) are identical.

Those bits which will not be reset by Software Reset is shown with "(-)"

1. UDINTSTS (Interrupt Status register)

This register sets "1" to each corresponding bit when an interrupt source arises. The status can be cleared by writing "1" into bits [29:8]. Bits [7:0] corresponds to the output pins of UDC2 and read-only. It can be cleared by writing "1" into the appropriate bit of INT register in UDC2.

Note: For the operation of interrupt signals, refer to "3.16.2.7 Interrupt SignalInterrupt Signal (UDC2ABINT_X)".

Address = (0xF440_	_0000)+ (0x	(0000
--------------------	-------------	-------

5.4	Bit	T	Reset	Description	
Bit	Symbol	Туре	Value	Description	
[31:30]	-	-	Undefined	Read undefined. Write as zero.	
[29]	int_mw_rerror	R/W1C	0y0	Master Write Endpoint Read error	
				1: Endpoint read error occurred in Master Write	
				0: Not detected	
[28:26]	-	-	Undefined	Read undefined. Write as zero.	
[25]	int_dmac_reg_rd	R/W1C	0y0	DMAC register access complete	
				1: Register read completed	
				0: Not detected	
[24]	int_udc2_reg_rd	R/W1C	0y0	UDC2 register access complete	
				1: Register read/write completed	
				0: Not detected	
[23]	int_mr_ahberr	R/W1C	0y0	Master Read transfer error status	
				1: AHB error occurred	
				0: Not detected	
[22]	int_mr_ep_dset	R/W1C	0y0	Master Read endpoint data set status	
				1: FIFO is writable	
				0: FIFO is not writable	
[21]	int_mr_end_add	R/W1C	0y0	Master Read transfer end status	
				1: Master Read transfer finished	
				0: Not detected	
[20]	int_mw_ahberr	R/W1C	0y0	Master Write transfer error status	
				1: AHB error occurred	
				0: Not detected	
[19]	int_mw_timeout	R/W1C	0y0	Master Write transfer time-out status	
				1: Master Write transfer timed out	
				0: Not detected	
[18]	int_mw_end_add	R/W1C	0у0	Master Write transfer end status	
				1: Master Write transfer finished	
				0: Not detected	
[17]	int_mw_set_add	R/W1C	0у0	Master Write transfer address request status	
				1: Master Write transfer address request	
				0: Not detected	
[16:11]	-	-	Undefined	Read undefined. Write as zero.	
[10]	int_usb_reset_end	R/W1C	0y0	USB_RESET END	
				1: Indicates UDC2 has deasserted the usb_reset signal.	
				0: UDC2 has not deasserted the usb_reset signal after this bit	
101		DAVIO		Was cleared.	
[9]	int_usb_reset	R/W1C	0y0		
				1: Indicates UDC2 has asserted the usb_reset signal.	
				U: UDU2 has not asserted the usb_reset signal after this bit was cleared	
[8]	int guenond requires	R/M/1C	0.0	Suspend/resume interrupt statue	
[0]		10,0010	UyU	1: Status has changed	
				0: Status has not changed	
	1	1			

Bit	Bit Symbol	Туре	Reset Value	Description
[7]	int_nak	RO	0у0	UDC2_INT_NAK register
[6]	int_ep	RO	0у0	UDC2 INT_EP register
[5]	int_ep0	RO	0у0	UDC2 INT_EP0 register
[4]	int_sof	RO	0у0	UDC2 INT_SOF register
[3]	int_rx_zero	RO	0у0	UDC2 INT_RXDATA0 register
[2]	int_status	RO	0у0	UDC2 INT_STATUS register
[1]	int_status_nak	RO	0у0	UDC2 INT_STATUS_NAK register
[0]	int_setup	RO	0у0	UDC2 INT_STATUS register

[Explanation]

a. <int_mw_rerror>

Will be set to 1 when the access to the endpoint has started Master Write transfer during the setting of common bus access (bus_sel bit of EPx_Status register is 0).

1: Endpoint read error occurred in Master Write

0: Not detected

b. <int_dmac_reg_rd>

Will be set to 1 when the register access executed by the setting of DMAC Read Request register is completed and the value read to DMAC Read Value register is set.

1: Register read completed

0: Not detected

c. <int_udc2_reg_rd>

Will be set to 1 when the register access executed by the setting of UDC2 Read Request register is completed and the value read to UDC2 Read Value register is set. Also set to 1 when Write access to the internal register of UDC2 is completed.

1: Register read/write completed

0: Not detected

d. <int_mr_ahberr>

This status will be set to 1 when the AHB error has occurred during the operation of Master Read transfer.

After this interrupt has occurred, the Master Read transfer block needs to be reset by the mr_reset bit of DMAC Setting register.

- 1: AHB error occurred
- 0: Not detected

e. <int_mr_ep_dset >

Will be set to 1 when the FIFO of EP for UDC2 Tx to be used for Master Read transfer becomes writable (not full).

1: FIFO is writable

0: FIFO is not writable

f. <int_mr_end_add>

Will be set to 1 when the Master Read transfer has finished.

1: Master Read transfer finished

0: Not detected

g. <int_mw_ahberr>

This status will be set to 1 when the AHB error has occurred during the operation of Master Write transfer.

After this interrupt has occurred, the Master Write transfer block needs to be reset by the mw_reset bit of DMAC Setting register.

1: AHB error occurred

0: Not detected

h. <int_mw_timeout>

This status will be set to 1 when time-out has occurred during the operation of Master Write transfer.

1: Master Write transfer timed out

0: Not detected

i. <int_mw_end_add>

Will be set to 1 when the Master Write transfer has finished.

1: Master Write transfer finished

0: Not detected

j. <int_mw_set_add>

Will be set to 1 when the data to be sent by Master Write transfer is set to the corresponding EP of Rx while the Master Write transfer is disabled.

1: Master Write transfer address request

0: Not detected

k. <int_usb_reset_end>

Indicates whether UDC2 has deasserted the usb_reset signal. The timing in which UDC2 sets the UDC2 register to the initial value after USB_RESET is after the usb_reset signal is deasserted. To detect this timing, use this bit.

The status of the usb_reset signal can be checked using the usb_reset bit of Power Detect Control register.

1: Indicates UDC2 has deasserted the usb_reset signal.

0:UDC2 has not deasserted the usb_reset signal after this bit was cleared.

l. <int_usb_reset>

Indicates whether UDC2 has asserted the usb_reset signal. The status of the usb_reset signal can be checked using the usb_reset bit of Power Detect Control register.

1: Indicates UDC2 has asserted the usb_reset signal.

0: UDC2 has not asserted the usb_reset signal after this bit was cleared.

m. <int_suspend_resume>

Asserts 1 each time the suspend_x signal of UDC2 changes. The status can be checked using the suspend_x bit of Power Detect Control register.

1: Status has changed

0: Status has not changed

n. <int_nak>

The int_nak signal of UDC2 can be directly read. To clear it, clear the corresponding bit of INT or INT_NAK register of UDC2.

o. <int_ep>

The int_ep signal of UDC2 can be directly read. To clear it, clear the corresponding bit of INT or INT_EP register of UDC2.

p. <int_ep0>

The int_ep0 signal of UDC2 can be directly read. To clear it, clear the corresponding bit of INT register of UDC2.

q. <int_sof>

The int_sof signal of UDC2 can be directly read. To clear it, clear the corresponding bit of INT register of UDC2.

r. <int_rx_zero>

The int_zero signal of UDC2 can be directly read. To clear it, clear the corresponding bit of INT or INT_RX_ZERO register of UDC2.

s. <int_status>

The int_status signal of UDC2 can be directly read. To clear it, clear the corresponding bit of INT register of UDC2.

t. <int_status_nak>

The int_status_nak signal of UDC2 can be directly read. To clear it, clear the corresponding bit of INT register of UDC2.

u. <int_setup>

The int_setup signal of UDC2 can be directly read. To clear it, clear the corresponding bit of INT register of UDC2.

The connection between the output signals of UDC2 and bits [9] and [7:0] of this register is shown below.

Figure 3.16.5 Connection between the flag output signals and interrupt bits

TMPA910CRA- 766

2. UDINTENB (Interrupt Enable register)

By writing '0' into the corresponding bit of this register, the corresponding interrupt source of the interrupt signal (UDC2ABINT_X output signal) can be disabled. Writing '1' will enable the corresponding interrupt source.

Since the corresponding bit of Interrupt Status register will be set regardless of the enabled or disabled status of each bit, an interrupt may occur at the same time this register was enabled. If such behavior should be avoided, the corresponding bit of Interrupt Status register should be cleared in advance.

The interrupt control register corresponding to bits [7:0] of the Interrupt Status register is bits [15:8] of the INT register of UDC2, not this register. See the technical document of UDC2 for more information.

Note: For the operation of interrupt signals, refer to "3.16.2.7 Interrupt Signal (UDC2ABINT_X)".

Dit	Bit	Turne	Reset	Description
DIL	Symbol	туре	Value	Description
[31:30]	-	-	Undefined	Read undefined. Write as zero.
[29]	mw_rerror_en	R/W	0y0,(-)	Master Write endpoint read error
				1: Enable
				0: Disable
[28:26]	-	-	Undefined	Read undefined. Write as zero.
[25]	dmac_reg_rd_en	R/W	0y0,(-)	DMAC register read complete
				1: Enable
				0: Disable
[24]	udc2_reg_rd_en	R/W	0y0,(-)	UDC2 register read access complete
				1: Enable
				0: Disable
[23]	mr_ahberr_en	R/W	0y0,(-)	Master Read transfer error status interrupt enable
				1: Enable
				0: Disable
[22]	mr_ep_dset_en	R/W	0y0,(-)	Master Read endpoint data status interrupt enable
				1: Enable
				0: Disable
[21]	mr_end_add_en	R/W	0y0,(-)	Master Read transfer end status interrupt enable
				1: Enable
				0: Disable
[20]	mw_ahberr_en	R/W	0y0,(-)	Master Write transfer error status interrupt enable
				1: Enable
				0: Disable
[19]	mw_timeout_en	R/W	0y0,(-)	Master Write transfer timeout status interrupt enable
				1: Enable
				0: Disable
[18]	mw_end_add_en	R/W	0y0,(-)	Master Write transfer end status interrupt enable
				1: Enable
				0: Disable
[17]	mw_set_add_en	R/W	0y0,(-)	Master Write transfer address request status interrupt
				enable
				1: Enable
				0: Disable

Address = $(0xF440_0000)+(0x0004)$

Bit	Bit	Tvpe	Reset	Description
	Symbol	,,	Value	•
[16:11]	-	-	Undefined	Read undefined. Write as zero.
[10]	usb_reset_end_en	R/W	0y0,(-)	USB_RESET end interrupt enable
				1: Enable
				0: Disable
[9]	usb_reset_en	R/W	0y0,(-)	USB_RESET interrupt enable
				1: Enable
				0: Disable
[8]	suspend_resume_en	R/W	0y0,(-)	Suspend/resume interrupt enable
				1: Enable
				0: Disable
[7:0]	-	-	Undefined	Read undefined. Write as zero.

[Explanation]

a. <mw_rerror_en>

Controls the int_mw_rerror interrupt.

- 1: Enable
- 0: Disable
- b. <dmac_reg_rd_en >

Controls the int_dmac_reg_rd interrupt.

- 1: Enable
- 0: Disable
- c. <udc2_reg_rd_en > Controls the int_udc2_reg_rd interrupt.
 1: Enable
 0: Disable
- d. <mr_ahberr_en >

Controls the int_mr_ahberr interrupt.

- 1: Enable
- 0: Disable
- e. <mr_ep_dset_en >
 Controls the int_mr_ep_dset interrupt.
 - 1: Enable
 - 0: Disable
- f. <mr_end_add_en>

 $Controls \ the \ int_mr_end_add \ interrupt.$

- 1: Enable
- 0: Disable

- g. <mw_ahberr_en>Controls the int_mw_ahberr interrupt.1: Enable
 - 0: Disable
- h. <mw_timeout_en>
 Controls the int_mw_timeout interrupt.
 1: Enable
 0: Disable
- i. <mw_end_add_en>
 Controls the int_mw_end_add interrupt.
 1: Enable
 0: Disable
- j. <mw_set_add_en>

 $Controls \ the \ int_mw_set_add \ interrupt.$

- 1: Enable
- 0: Disable
- k. <usb_reset_end_en>
 Controls the int_usb_reset_end interrupt.
 1: Enable
 0: Disable
- l. <usb_reset_en>

 $Controls \ the \ int_usb_reset \ interrupt.$

1: Enable

0: Disable

m. <suspend_resume_en>

 $Controls \ the \ int_suspend_resume \ interrupt.$

- 1: Enable
- 0: Disable

3. UDMWTOUT (Master Write Timeout register)

This register is provided for controlling timeout during the Master Write operation.

				Address =(0xF440_0000)+ (0x0008)
Bit	Bit	Туре	Reset	Description
	Symbol		Value	Description
[31:1]	timeoutset	R/W	0xFFFFFFF	Master Write timeout timer setting register
[0]	timeout_en	R/W	0y1	Master Write timeout enable register 0 : Disable 1 : Enable

[Explanation]

a. <timeoutset>

The setting should not be changed during the Master Write transfer. Timeout occurs when the number of times CLK_U was set is counted after the data of Master Write (Rx) endpoint is exhausted.

The timeout counter comprises 32 bits of which upper 31 bits can be set by timeoutset [31:01] of this register, while the lowest bit of the counter is set to 1. As CLK_U is 30MHz, approximately 33[ns] to 143[s] can be set as a timeout value.

While PHY is being suspended (CLK_U stopped), no timeout interrupt will occur as the counter does not work.

b. <timeoutset>

Used to enable Master Write timeout. It is set to Enable by default.

The setting should not be changed during the Master Write transfer.

- 0:Disable
- 1 : Enable

4. UDC2STSET (UDC2 Setting register)

This register controls transfer operations of UDC2.

Address =(0xF440_0000)+ (0x000C)

Bit	Bit Symbol	Туре	Reset Value	Description
[31:5]	-	-	Undefined	Read undefined. Write as zero.
[4]	eopb_enable	R/W	0y1	Master Read EOP enable 1: Enable 0: Disable
[3:1]	-	-	Undefined	Read undefined. Write as zero.
[0]	tx0	R/W1S	0у0	NULL packet transmission 1: Transmits NULL packets 0: No operation

[Explanation]

a. <eopb_enable>

Used to enable Master Read EOP. It is set to Enable by default. The setting should not be changed during the Master Read transfer. If this bit is 0, the final data transfer to UDC2 will not take place when the last word is 1 byte. If the last word is 2 bytes, the final data transfer to UDC2 will take place when epx_w_eop=0. If this bit is 1, the final data transfer to UDC2 will take place when epx_w_eop=1 regardless of byte number of the last word.

Note: See "(1) Master Read transfer" for more information.

1: Master Read EOP enabled

0: Master Read EOP disabled

b. <tx0>

Used to transmit NULL packets at an endpoint connected to the Master Read operation side. Only valid when the mrepempty bit of Master Status register is '1,' otherwise this bit is ignored. It will be automatically cleared to '0' after writing. Setting '1' to this bit will assert the epx_tx0data signal of the UDC2 Endpoint-I/F and the value of 1 is retained during the transmission of NULL packets. After this bit is set, next data setting for Tx-EP should not be made until it is cleared. See "Figure 3.16.32 Flow of transmitting zero-length data from Endpoint-I/F" for more information.

- 1: Transmits NULL packets
- 0: No operation

5. UDMSTSET (DMAC Setting register)

This register controls transfers of the built-in DMAC.

Address =(0xF440_0000)+ (0x0010)

Bit	Bit	Туре	Reset	Description
	Symbol		Value	
[31:9]	-	-	Undefined	Read undefined. Write as zero.
[8]	m_burst_type	R/W	0y0,(-)	Master burst type
				1: INCR (HBURST=1h)
				0: INCR8 (HBURST=5h)
[7]	-	-	Undefined	Read undefined. Write as zero.
[6]	mr_reset	R/W1S	0y0	Master Read reset
				1: Reset
				0: No operation
[5]	mr_abort	WO	0y0	Master Read abort
				1: Abort
				0: No operation
[4]	mr_enable	R/W1S	0y0	Master Read enable
				1: Enable
				0: Disable
[3]	-	-	Undefined	Read undefined. Write as zero.
[2]	mw_reset	R/W1S	0у0	Master Write reset
				1: Reset
				0: No operation
[1]	mw_abort	WO	0y0	Master Write abort
				1: Abort
				0: No operation
[0]	mw_enable	R/W1S	0y0	Master Write enable
				1: Enable
				0: Disable

[Explanation]

a. $<m_burst_type>$

Selects the type of HBURST[2:0] when making a burst transfer in Master Write/Read transfers. The type of burst transfer made by UDC2AB is INCR8 (burst of 8 beat increment type). Accordingly, '0' (initial value) should be set in normal situation. However, in case INCR can only be used as the type of burst transfer based on the AHB specification of the system, set '1' to this bit. In that case, UDC2AB will make INCR transfer of 8 beat. Please note the number of beat in burst transfers cannot be changed. Setting of this bit should be made in the initial setting of UDC2AB. The setting should not be changed after the Master Write transfers started.

Note: UDC2AB does not make burst transfers only in Master Write transfers. It combines burst transfers and single transfers. This bit affects the execution of burst transfers only.

1:INCR (HBURST=1h) 0:INCR8 (HBURST=5h)

b. <mr_reset>

Initializes the Master Read transfer block of UDC2AB. However, as the FIFOs of endpoints are not initialized, you need to access the Command register of UDC2 to initialize the corresponding endpoint separately from this reset. This reset should be used after stopping the Master operation. This bit will be automatically cleared to '0' after being set to 1. Subsequent Master Read transfers should not be made until it is cleared.

1: Reset

0: No operation

c. <mr_abort>

Controls Master Read transfers. Master Read operations can be stopped by setting '1' to this bit. When aborted during transfers, transfer of buffers for Master Read to UDC2 is interrupted and the mr_enable bit is cleared, stopping the Master Read transfer. Aborting completes when the mr_enable bit is disabled to '0' after setting this bit to 1.

1: Abort

0: No operation

d. <mr_enable>

Controls Master Read transfers. Enabling should be made when setting the transfer address is completed. It will be automatically disabled as the master transfer finishes. Since Master Read operations cannot be disabled with this register, use the mr_abort bit if the Master Read transfer should be stopped.

1: Enable

0: Disable

e. <mw_reset>

Initializes the Master Write transfer block. However, as the FIFOs of endpoints are not initialized, you need to access the Command register of UDC2 to initialize the corresponding endpoint separately from this reset. This reset should be used after stopping the Master operation. This bit will be automatically cleared to '0' after being set to 1. Subsequent Master Write transfers should not be made until it is cleared.

1: Reset

0: No operation

f. <mw_abort>

Controls Master Write transfers. Master Write operations can be stopped by setting '1' to this bit. When aborted during transfers, transfer of buffers for Master Write from UDC2 is interrupted and the mr_enable bit is cleared, stopping the Master Write transfer. Aborting completes when the mr_enable bit is disabled to '0' after setting this bit to 1.

1: Abort

0: No operation

g. <mw_enable>

Controls Master Write transfers. Enabling should be made when setting the transfer address is completed. It will be automatically disabled as the master transfer finishes. Since Master Write operations cannot be disabled with this register, use the mr_abort bit if the Master Write transfer should be stopped.

1: Enable

0: Disable

Address -(0xF440, 0000) + (0x0014)

6. DMACRDREQ (DMAC Read Request register)

This register is used to issue read requests for reading the following registers:

- Master Read Current Address register
- Timeout Count register

The read value will be saved in the DMAC Read Value register.

Note: As accesses to this register become unavailable when the clock (=CLK_U) supply from PHY is stopped with UDC2 suspended, no access should be made. If this register is accessed when the phy_suspend bit of Power Detect Control register is set to '1,' an AHB error will be returned.

Bit	Bit	Туре	Reset	Description
	Symbol		Value	
[31]	dmardreq	R/W1S	0y0	Register read request & busy
				1: Issue read request
				0: No operation
[30]	dmardclr	R/W1S	0y0	Read request clear
				1: Issue forced clearing
				0: No operation
[29:8]	-	-	Undefined	Read undefined. Write as zero.
[7:2]	dmardadr	R/W	0y0	Read request register address(upper 6bits) select
				0x48: Read the Master Write Current Address register
				0x58: Read the Master Read Current Address register
				0x88: Read the Timeout Count register
[1:0]	-	-	Undefined	Read undefined. Write as zero.

[Explanation]

a. <dmardreq>

The bit for requesting read access to the DMAC registers. Setting this bit to '1' will make a read access to the address specified by dmardadr. When the read access is complete and the read value is stored in the DMAC Read Value register, this bit will be automatically cleared and the int_dmac_reg_rd bit of Interrupt Status register will be set to 1.

- 1: Issue read request
- 0: No operation
- b. <dmardclr>

The bit for forcibly clearing the register read access request associated with DMAC. Setting this bit to '1' will forcibly stop the register read access request by dmardreq and the value of dmardreq will be cleared to 0. After the forced clearing completes, this bit will be automatically cleared.

- 1: Issue forced clearing
- 0: No operation

c. <dmardadr>

Sets the address of the register (upper 6 bits) to be read. It should be set in combination with the dmardreq bit mentioned above. Any one of the following addresses should be set:

0x48: Read the Master Write Current Address register

0x58: Read the Master Read Current Address register

0x88: Read the Timeout Count register

7. DMACRDVL (DMAC Read Value register)

The register in which the values read via DMAC Read Request register are stored.

(Relevant registers)

- Master Write Current Address register
- Master Read Current Address register
- Timeout Count register

Address =(0xF440_0000)+ (0x0018)

Bit	Bit Symbol	Туре	Reset Value	Description
[31:0]	dmardata	RO	0x00000000	Register read data

[Explanation]

a. <dmardata>

This register stores the data requested by DMAC Read Request register. This register should not be accessed when the dmardreq bit of DMAC Read Request register is set to 1.

8. UDC2RDREQ (UDC2 Read Request register)

The register for issuing read requests when reading UDC2 registers. The read value will be saved in the UDC2 Read Value register.

Bit	Bit Symbol	Туре	Reset Value	Description
[31]	udc2rdreq	R/W1S	0у0	Register read request & busy 1: Issue read request 0: No operation
[30]	udc2rdclr	R/W1S	0у0	Read request clear 1: Issue forced clearing 0: No operation
[29:10]	-	-	Undefined	Read undefined. Write as zero.
[9:2]	udc2rdadr	R/W	0x00	The address of the UDC2 register that issues the read request
[1:0]	-	_	Undefined	Read undefined. Write as zero.

Address =(0xF440_0000)+ (0x001C)

[Explanation]

a. <udc2rdreq>

The bit for requesting read access to the UDC2 registers. Setting this bit to '1' will make a read access to the address set in the udc2rdadr bit. When the read access is complete and the read value is set to UDC2 Read Value register, this bit will be automatically cleared and the int_dmac_reg_rd bit of Interrupt Status register will be set to 1. During a write access to UDC2 registers, it works as a status bit which indicates the access being made to display the value of '1.' Subsequent accesses to UDC2 registers should not be made while this bit is set to 1.

- 1: Issue read request
- 0: No operation
- b. <udc2rdclr>

The bit for forcibly clearing the read/write access request of UDC2 registers. Setting this bit to '1' will forcibly stop the register read request/UDC2 write access by udc2rdreq and the value of udc2rdreq will be 0. After the forced clearing completes, this bit will be automatically cleared to 0. When interrupted, the read and write values during the access will not be secured.

- 1: Issue forced clearing
- 0: No operation
- c. <udc2rdadr>

Sets the address of the UDC2 register (upper 8 bits) to be read. It should be set in combination with the udc2rdreq bit mentioned above.

9. UDC2RDVL (UDC2 Read Value register)

The register in which the values read via UDC2 Read Request register are stored.

Address =(0xF440_0000)+ (0x0020)

Bit	Bit Symbol	Туре	Reset Value	Description
[31:16]	-	_	Undefined	Read undefined. Write as zero.
[15:0]	udc2rdata	RO	0x0000	Register read data

[Explanation]

a. <udc2rdata>

This register stores the data requested by UDC2 Read Request register. This register should not be accessed when the udc2rdreq bit of UDC2 Read Request register is set to 1.

10.ARBTSET (Arbiter Setting register)

The register for setting the priority when the internal arbiter accesses AHB.

Setting of this register should be changed after stopping the Master operation.

Please be sure to set the arbitration method with the following procedures: (You need to make an access three times in total.)

- (1) Write "0" into the abt_en bit to disable the arbitration circuit.
- (2) Make settings for the abtmod and abtpri_* bits.

The abtmod and abtpri_* bits cannot be set unless '0' is written into the abt_en bit in

(1). Values of the register for setting the priority should not be overlapped regardless of the value of the abtmod bit.

(3) Write "1" into the abt_en bit with the abtmod and abtpri_* bits set in (2) retained to enable the arbitration circuit.

				Address =(0xF440_0000)+ (0x003C)
Bit	Bit Symbol	Туре	Reset Value	Description
[31]	abt_en	R/W	0y1	Arbiter enable 1: Enable 0: Disable (DMA access not allowed)
[30:29]	-	_	Undefined	Read undefined. Write as zero.
[28]	abtmod	R/W	0у0	Arbiter mode 1: Fixed priority 0: Round-robin
[27:14]	-	-	Undefined	Read undefined. Write as zero.
[13:12]	abtpri_w1	R/W	0y11	Master Write 1 priority 0y00 to 0y11
[11:10]	_	-	Undefined	Read undefined. Write as zero.
[9:8]	abtpri_w0	R/W	0y10	Master Write 0 priority 0y00 to 0y11
[7:6]	-	-	Undefined	Read undefined. Write as zero.
[5:4]	abtpri_r1	R/W	0y01	Master Read 1 priority 0y00 to 0y11
[3:2]	-	_	Undefined	Read undefined. Write as zero.
[1:0]	abtpri_r0	R/W	0y00	Master Read 0 priority 0y00 to 0y11

[Explanation]

a. <abt_en>

Enables the arbiter operation when making an access between DMAC and AHB. '0' should be set to this bit when setting the abtmod and abtpri_* bits of this register. Please note that "1" cannot be set to this bit in case values set for abtpri_* overlap. Be sure to set this bit to "1" before starting a DMA access.

1: Enable

0: Disable (DMA access not allowed)

TMPA910CRA- 780

b. <abtmod>

Sets the mode of arbiter. Write access is only available when the abt_en bit is set to '0.' If "0" is set to this bit, access rights to the AHB bus will be given in a round-robin fashion regardless of the values set to each abtpri_* bit. If '1' is set to this bit, access rights to the AHB bus will be given in accordance with the access priority based on the values set to each abtpri_* bit.

1: Fixed priority

0: Round-robin

c. <abtpri_w1>

Set the priority of DMA accesses for Master Write 1 when the fixed priority mode is selected. Write access is only available when the abt_en bit is set to '0.' Priority ranges from [0] (highest) to [3] (lowest).

d. <abtpri_w0>

Set the priority of DMA accesses for Master Write 0 when the fixed priority mode is selected. Write access is only available when the abt_en bit is set to '0.' Priority ranges from [0] (highest) to [3] (lowest).

e. <abtpri_r1>

Set the priority of DMA accesses for Master Read 1 when the fixed priority mode is selected. Write access is only available when the abt_en bit is set to '0.' Priority ranges from [0] (highest) to [3] (lowest).

f. <abtpri_r0>

Set the priority of DMA accesses for Master Read 0 when the fixed priority mode is selected. Write access is only available when the abt_en bit is set to '0.' Priority ranges from [0] (highest) to [3] (lowest).

• Note:

Be sure to set different priority values for the abtpri_w1, abtpri_w0, abtpri_r1, and abtpri_r0 bits. If the same priority values are set, you will not be able to set "1" to ABT_EN.

<Relationship of DMAC and the priority area of the Arbiter Setting register>

Current UDC2AB specification supports one DMAC for Master Write (DMAC_W0) and one DMAC for Master Read (DMAC_R0). The second DMAC for Master Write (DMAC_W1) and the second DMAC for Master Read (DMAC_R1) are not supported. Accordingly, setting priority for DMAC_W1 and DMAC_R1 has virtually no meaning, but you should be sure to set different priority values for the abtpri_w1, abtpri_w0, abtpri_r1, and abtpri_r0 bits as mentioned above. There will be no problem to set values for the corresponding register areas of an unpackaged DMAC. The priority areas of Arbiter Setting register correspond with DMAC as shown below.

Figure 3.16.6 Relationship between DMAC and priority areas

11.UDMWSADR (Master Write Start Address register)

Sets the start address of Master Write transfer (UDC2 to AHB).

Address -(0xE440	0000) + 1	(0x0040)
Address = $(0xF440]$	_0000)+1	(0X0040)

Bit	Bit Symbol	Туре	Reset Value	Description
[31:0]	mwsadr	R/W	0xFFFFFFFF	Master Write start address

[Explanation]

a. <mwsadr>

Set the start address of Master Write transfer. However, as this master operation only supports address increments, values lower than the Master Write End Address register should be set.

12.UDMWEADR (Master Write End Address register)

Sets the end address of Master Write transfer (UDC2 to AHB).

Address =(0xF440_0000)+ (0x0044)

Bit	Bit Symbol	Туре	Reset Value	Description
[31:0]	mweadr	R/W	0xFFFFFFFF	Master Write end address

[Explanation]

a. <mweadr>

Set the end address of Master Write transfer. However, as this master only supports address increments, values above the Master Write Start Address register should be set.

13.UDMWCADR (Master Write Current Address register)

Displays the address to which transfers from endpoints to the Master Write buffers have been currently completed in Master Write transfers (UDC2 to AHB).

This register cannot be read by directly specifying the address. In order to read it, set a value to the DMAC Read Request register and then read the value from the DMAC Read Value register.

Bit	Bit Symbol	Туре	Reset Value	Description
[31:0]	mwcadr	RO	0x00000000	Master Write current address

[Explanation]

a. <mwcadr>

Displays the addresses to which transfers from endpoints to the Master Write buffers have been currently completed in Master Write transfers. This can be used in case a timeout interrupt has occurred or an error occurred during the transfer process. This address is incremented at the point when the data is set from the endpoint to the Master Write buffer, while the data will reside inside the target device of the Master Write buffer during the Master Write transfer process until the address is displayed.

14.UDMWAHBADR (Master Write AHB Address register)

Displays the address where the transfer to the target device has completed in Master Write transfer (UDC2 to AHB).

In some DMA transfers, accesses are made on a byte basis depending on the conditions. Please note that the address to be saved is the word border even when accessing by byte.

Address =(0xF440_0000)+ (0x004C)

Bit	Bit Symbol	Туре	Reset Value	Description
[31:0]	mwahbadr	RO	0xFFFFFFFF	Master Write AHB address

[Explanation]

a. <mwahbadr>

Displays the address where the transfer to the target device has completed in Master Write transfer. This can be used in case a timeout interrupt has occurred or an error occurred during the transfer process. This address is incremented at the point when the data is set to the target device, while the data will reside inside the target device during the Master Write transfer process until the address is displayed.

15.UDMRSADR (Master Read Start Address register)

Sets the start address of Master Read transfer (AHB to UDC2).

Bit	Bit Symbol	Туре	Reset Value	Description
[31:0]	mrsadr	R/W	0xFFFFFFFF	Master Read start address

[Explanation]

a. <mrsadr>

Set the start address of Master Read transfer. However, as this master only supports address increments, values lower than the Master Read End Address register should be set.

16.UDMREADR (Master Read End Address register)

Sets the end address of Master Read transfer (AHB to UDC2).

Address =(0xF440_0000)+ (0x0054)

Bit	Bit Symbol	Туре	Reset Value	Description
[31:0]	Mreadr	R/W	0xFFFFFFFF	Master Read end address

[Explanation]

a. <Mreadr>

Set the end address of Master Read transfer. However, as this master only supports address increments, values above the Master Read Start Address register should be set.

17.UDMRCADR (Master Read Current Address register)

Displays the address where the transfer from the target device to the endpoint has completed in Master Read transfer (AHB to UDC2).

This register cannot be read by directly specifying the address. In order to read it, set a value to the DMAC Read Request register and then read the value from the DMAC Read Value register.

Bit	Bit Symbol	Туре	Reset Value	Description
[31:0]	mrcadr	RO	0x00000000	Master Read current address

[Explanation]

a. <mrcadr>

Displays the address to which transfers from the target device to the endpoint have been currently completed in Master Read transfers. This address is incremented at the point when the data is set from the Master Read buffer to the endpoint, while the data will reside inside the FIFO for the endpoint during the Master Read transfer process until the address is displayed.

18. UDMRAHBADR (Master Read AHB Address register)

Displays the address where the transfer from the target device to UDC2AB has completed in Master Read transfer (AHB to UDC2).

In some DMA transfers, accesses are made on a byte basis depending on the conditions. The address to be saved is the word border when accessing by byte.

Address =(0xF440_0000)+ (0x005C)

Bit	Bit Symbol	Туре	Reset Value	Description
[31:0]	mrahbadr	RO	0xFFFFFFFF	Master read AHB address

[Explanation]

a. <mrahbadr>

Displays the address where the transfer from the target device to UDC2AB has completed in Master Read transfer. This address is incremented at the point when the data is set from the target device, while the data will reside inside the buffer or the FIFO for the endpoint during the Master Read transfer process until the address is displayed.

19.UDPWCTL (Power Detect Control register)

Controls UDC2AB when reset/suspended.

Address =(0xF440_0000)+ (0x0080)

Bit	Bit	Type	Reset	Description
Dit	Symbol	ishe	Value	Description
[31:8]	-	Undefined	-	Read undefined. Write as zero.
[7]	wakeup_en	R/W	0y0,(-)	Wakeup enable
				1: Assert the WAKEUP_X signal
				0: Do not assert the WAKEUP_X signal
[6]	phy_remote_wkup	R/W1S	0y0,(-)	Remote wakeup
				1: Wakeup
				0: No operation
[5]	phy_resetb	R/W	0y1,(-)	PHY reset
				1: Reset deasserted
				0: Reset asserted
[4]	suspend_x	RO	0y1	Suspend
				1: Not suspended (suspend_x=1)
				0: Suspended (suspend_x=0)
[3]	phy_suspend	R/W	0y0,(-)	PHY suspend
				1: Suspended
				0: Not suspended
[2]	pw_detect	RO	0y0,(-)	USB bus power detect (See Note)
				1: USB bus connected (VBUSPOWER=1)
				0: USB bus disconnected (VBUSPOWER=0)
[1]	pw_resetb	R/W	0y1,(-)	Power reset
				1: Reset deasserted
				0: Reset asserted
[0]	usb_reset	RO	0y0	USB_RESET
				1: usb_reset=1
				0: usb_reset=0

Note: While UDC2AB originally has the function to assert the int_powerdetect interrupt when VBUS is detected, it is not supported for this LSI. Power Detect Control<pw_detect> always indicates '0'.

[Explanation]

a. <wakeup_en>

Set this bit to '1' if you want the system (AHB end) to sleep to stop CLK_H when the USB is suspended. If this bit is set to 1, the WAKEUP_X signal will be asserted to 0 asynchronously when the suspended status is cancelled (suspend_x=1) or the system is disconnected, making it available for resuming the system.

Note: WAKEUP_X = ~((suspend_x | ~VBUSPOWER) & wakeup_en)

See also "(4) Signal operations when suspended and resumed (disconnected)" for more information on using this bit.

- 1: Assert the WAKEUP_X signal
- 0: Do not assert the WAKEUP_X signal

b. <phy_remote_wkup>

This bit is used to perform the remote wakeup function of USB. Setting this bit to '1' makes it possible to assert the udc2_wakeup output signal (wakeup input pin of UDC2) to 1. However, since setting this bit to '1' while no suspension is detected by UDC2 (when suspend_x=1) will be ignored (not to be set to 1), be sure to set it only when suspension is detected. It will be automatically cleared to '0' when resuming the USB is completed (when suspend_x is deasserted). See also "(4) Signal operations when suspended and resumed (disconnected)" for more information on using this bit.

1: Wakeup

0: No operation

c. <phy_resetb>

Setting this bit to '0' will make the PHYRESET output signal asserted to '1.' The PHYRESET signal can be used to reset PHY. Since this bit will not be automatically released, be sure to clear it to '1' after the specified reset time of PHY.

- 1: Reset deasserted
- 0: Reset asserted
- d. <suspend_x>

Detects the suspend signal (a value of the suspend_x signal from UDC2 synchronized).

1: Unsuspended (suspend_x=1)

0: Suspended (suspend_x=0)

e. <phy_suspend>

Setting this bit to '1' will make the PHYSUSPEND output signal asserted to '0' (CLK_H synchronization). It can be used as a pin for suspending PHY. Setting this bit to '1' makes the UDC2 register and DMAC Read Request register not accessible. It will be automatically cleared to '0' when resumed (when suspend_x of UDC2 is deasserted). See also "(4) Signal operations when suspended and resumed (disconnected)" for more information on using this bit.

- 1: Suspended
- 0: Unsuspended
- f. <pw_detect>

Indicates the status of the VBUSPOWER input pin.

- 1: USB bus connected (VBUSPOWER=1)
- 0: USB bus disconnected (VBUSPOWER=0)
- Note: While UDC2AB originally has the function to assert the int_powerdetect interrupt when VBUS is detected, it is not supported for this LSI. Power Detect Controlpw_detect> always indicates '0'.

g. <pw_resetb>

Software reset for UDC2AB. (See "3.16.2.6 Reset" for details.). Setting this bit to '0' will make the PW_RESETB output pin asserted to 0. Resetting should be made while the master operation is stopped. Since this bit will not be automatically released, be sure to clear it.

1: Reset deasserted

0: Reset asserted

h. <usb_reset>

The value of the usb_reset signal from UDC2 synchronized.

 $1: usb_reset=1$

0: usb_reset=0

20.UDMSTSTS (Master Status register)

This is a status register of UDC2AB.

Address =(0xF440_0000)+ (0x0084)

Bit	Bit Symbol	Туре	Reset Value	Description
[31:5]	-	-	Undefined Read undefined. Write as zero.	
[4]	mrepempty	RO	0y0,(-)	Master Read endpoint empty
				1: Indicates the endpoint is empty.
				0: Indicates the endpoint contains some data.
[3]	mrbfemp	RO	0y1	Master Read buffer empty
				1: Indicates the buffer for the Master Read DMA is empty.
				0: Indicates the buffer for the Master Read DMA contains some data.
[2]	mwbfemp	RO	0y1	Master Write buffer empty
				1: Indicates the buffer for the Master Write DMA is empty.
				0: Indicates the buffer for the Master Write DMA contains some data.
[1]	mrepdset	RO	0y0,(-)	Master Read endpoint DATASET
				1: There is no space to transfer data in the endpoint.
				0: Data can be transferred into the endpoint.
[0]	mwepdset	RO	0y0,(-)	Master Write endpoint DATASET
				1: There is some data to be read in the endpoint.
				0: No data exists in the endpoint.

[Explanation]

a. <mrepempty>

This is a register that indicates the endpoint for UDC2Rx is empty. Ensure that this bit is set to "1" when sending a NULL packet using the tx0 bit of UDC2 Setting register. (This bit is the eptx_empty input signal with CLK_H synchronization.) See section "(a), Figure 3.16.32 Flow of transmitting zero-length data from Endpoint-I/F in the technical document of UDC2 for more information.

1: Indicates the endpoint is empty.

0: Indicates the endpoint contains some data.

b. <mrbfemp>

Indicates whether or not the buffer for the Master Read DMA in UDC2AB is empty.

1: Indicates the buffer for the Master Read DMA is empty.

0: Indicates the buffer for the Master Read DMA contains some data.

c. <mwbfemp>

Indicates whether or not the buffer for the Master Write DMA in UDC2AB is empty.

1: Indicates the buffer for the Master Write DMA is empty.

0: Indicates the buffer for the Master Write DMA contains some data.

d. <mrepdset>

This bit will be set to '1' when the data to be transmitted is set to the Tx-EP of UDC2 by Master Read DMA transfer, making no room to write in the endpoint. It will turn to '0' when the data is transferred from UDC2 by the IN-Token from the host. While this bit is set to 0, DMA transfers to the endpoint can be made. (This bit is the eptx_dataset input signal with CLK_H synchronization.)

1: There is no space to transfer data in the endpoint.

0: Data can be transferred into the endpoint.

e. <mwepdset>

This bit will be set to "1" when the data received is set to the Rx-EP of UDC2. It will turn to "0" when the entire data was read by the DMA for Master Write. (This bit is the eprx_dataset input signal with CLK_H synchronization.)

1: There is some data to be read in the endpoint.

0: No data exists in the endpoint.

21. UDTOUTCNT (Timerout Count register)

This is a register to read the timeout count value. (for debugging)

This register cannot be read by directly specifying the address. In order to read it, set a value to the DMAC Read Request register and then read the value from the DMAC Read Value register.

Address =(0xF440_0000)+ (0x0088)

Bit	Bit Symbol	Туре	Reset Value	Description
[31:0]	tmoutcnt	RO	0x00000000	Timeout count

[Explanation]

a. <tmoutcnt>

This is used for debugging. Values of the timer can be read when the timeout_en bit of Master Write Timeout register is enabled. It will be decremented each time CLK_U is counted after the endpoint for Master Write (Rx-EP) becomes empty.

22. UDC2 (UDC2 register) (0x0200 to 0x03FC)

The internal register of UDC2 (16 bits) can be accessed by making an access to the offset address+0x200-0x3FC. AHB data bus of UDC2AB has 32 bits, of which bits 15-0 correspond with the UDC2 data bus. Bits 31-16 are reserved bits and read-only (read value: 0). Make a WORD (32-bit) access for both write and read. (However, a BYTE (8-bit) access may be made for Write accesses to the EPx_FIFO register. Details will be discussed later.)

It will take some time to complete an access for both write and read (accessing period to UDC2). Be sure to begin subsequent accesses after the previous UDC2 register access is completed, using the int_udc2_reg_rd interrupt. (You can also use the udc2rdreq bit of UDC2 Read Request register to confirm the access status when reading.)

• Write access

When making a write access to the UDC2 register, write it directly in the relevant address.

• Read access

When making a read access to the UDC2 register, use UDC2 Read Request and UDC2 Read Value registers.

First, you set the address to access to the UDC2 Read Request register and then read the data from the UDC2 Read Value register for reading. You cannot read the data directly from the address shown in the address map.

• EPx_FIFO register

When making a write access to the EPx_FIFO register, a lower 1-byte access may be required in UDC2 PVCI I/F. In such a case, make a BYTE access to the lower 1 byte for UDC2AB. (Corresponding to HSWDATA[7:0] in Little Endian operation, and to HSWDATA[31:24] in Big Endian operation.)

If a lower 1-byte access is required when making a read access, make an access via UDC2 Read Request register as usual and read the data from UDC2 Read Value register. In that case, the access to UDC2 Read Value register can be either by Word or Byte.

For more information, see "4.2.2 Common Bus Access to EP0_FIFO/EPx_FIFO register" in the technical document of UDC2.

• Reserved registers in UDC2

Do not make any access to registers of endpoints not supported by UDC2 to be connected and to "Reserved" registers. (In case those registers are accessed, the access from UDC2AB to UDC2 itself will take place. It will be a Dummy write to UDC2 in case of write accesses. In case of read accesses, the read data from UDC2 (udc2_rdata) will be an indefinite value and the indefinite value will be set to the UDC2 Read Value register.)

• Accesses when UDC2 is suspended

When UDC2 is in the suspended status, register accesses to UDC2 become unavailable if the clock (=CLK_U) supply from PHY is stopped. Make no register accesses to UDC2 in such cases. If the UDC2 register is accessed when the phy_suspend bit of Power Detect Control register is set to '1,' an AHB error will be returned.

Address =(0xF440_0000)+ (0x0200-0x03FC)

Bit	Bit Symbol	Туре	Reset Value	Description
[31:16]	-	-	Undefined	Read undefined. Write as zero.
[15:0]	udc2_data	-	-	UDC2 data register
				Refer to the technical document of UDC2 for more information on the data values.

Access flow diagram for UDC2 register is shown below.

Figure 3.16.7 Read access flow for UDC2 register

Figure 3.16.8 Write access flow for UDC2 register

3.16.2.6 Reset

UDC2AB supports software reset by the Power Detect Control register<pw_resetb>. It also supports master channel reset (mr_reset/mw_reset bit of DMAC Setting register) for DMAC master transfers.

• Software reset (Power Detect Control register<pw_resetb>)

Some bits of each register are initialized by hardware reset but not initialized by software reset with the values retained. As details are provided in the descriptions of each register, refer to "3.16.2.5 Registers".

When the USB bus power is detected, make software reset as initialization is needed.

• Master channel reset (mr_reset/mw_reset bit of DMAC Setting register)

While the mw_reset bit is provided for the Master Write transfer block and the mr_reset bit for the Master Read transfer block, only the relevant master blocks are initialized and the UDC2AB register will not be initialized. For more information on using each reset, see "5. UDMSTSET (DMAC Setting register)."

3.16.2.7 Interrupt Signal (UDC2ABINT_X)

The interrupt output signal of UDC2AB (UDC2ABINT_X) consists of interrupts generated by UDC2 and interrupts generated from other sources. Once the interrupt condition is met, UDC2AB sets the corresponding bit of its internal Interrupt Status register. When that bit is set, UDC2ABINT_X will be asserted if the relevant bit of Interrupt Enable register has been set to "Enable."

When the relevant bit of Interrupt Enable register has been set to "Disable," 1 will be set to the corresponding bit of Interrupt Status register while UDC2ABINT_X will not be asserted. When the relevant bit of Interrupt Enable register is set to "Enable" with Interrupt Status register set, UDC2ABINT_X will be asserted immediately after the setting is made.

Initial values for Interrupt Enable register are all "0" (Disable).

The image of the aforementioned description is shown in the figure below.

3.16.2.8 Overall Operation Sequence

The overall operation sequence of UDC2AB is as follows:

1. Set the interrupt signal

In the Interrupt Enable register, set the required bit of the interrupt source to "Enable."

See "Interrupt Signal (UDC2ABINT_X)" for more information.

- 2. Detect the USB bus power supply (connect) and initialize See "USB Bus Power Detecting Sequence" for more information.
- 3. USB enumeration response

See "USB Device Response" in the UDC2 technical document for more information.

4a. Master Read transfer

Make a Master Read transfer corresponding to the receiving request from the USB host.

See "(1) Master Read transfer" for more information.

4b.Master Write transfer

Make a Master Write transfer corresponding to the sending request from the USB host.

See "(4) Master Write transfer" for more information.

5. USB bus power supply disconnection

It may be possible that USB bus power supply is disconnected at any timing. See "USB Bus Power Detecting Sequence" for more information.

Figure 3.16.10 Overall operation sequence

3.16.2.9 Master Transfer Operation

This section describes the master transfer operation of UDC2AB.

When you start a master transfer, be sure to set the transfer setting of the relevant endpoint of UDC2 (bit14-bus_sel of UDC2 EPx_Status register) to the direct access mode. It is prohibited to start DMAC when it is set to "Common bus access."

- (1) Master Read transfer
 - EOP enable mode

Master Read transfers when UDC2 Setting register <eopb_enable> is set to '1' (Master Read EOP enable) are described here. Master Read operations will be as follows:

- 1. Set Master Read Start Address and Master Read End Address registers.
- 2. Set the bits associated to the Master Read operation of DMAC Setting register and set '1' to the mr_enable.
- 3. UDC2AB starts the data transfer to the endpoint of UDC2. UDC2 transfers the data to the IN token from the USB host.
- 4. When the Master Read transfer reaches the Master Read end address, UDC2AB asserts the int_mr_end_add interrupt.
- 5. After the handling by the software ended, return to 1.

Note 1: About short packets

If the transfer size (Master Read End Address - Master Read Start Address + 1) is not the same size as the Max packet size, the last IN transfer will be the transfer of short packets.

Example: In case Master Read transfer size: 1035 bytes, and Max packet size: 512 bytes,

Transfers will take place in:

1st time: 512 bytes \rightarrow 2nd time: 512 bytes \rightarrow 3rd time: 11 bytes

Note 2: About int_mr_end_add interrupt

The int_mr_end_add interrupt occurs when the data transfer to the UDC2 endpoint is finished. In order to confirm whether the entire data has been transferred from UDC2 to the USB host, check the mrepempty bit of Master Status register.

• EOP Disable mode

Master Read transfers when UDC2 Setting register <eopb_enable > is set to '0' (Master Read EOP disable) are described here. Master Read operations will be as follows:

- 1. Set Master Read Start Address and Master Read End Address registers.
- 2. Set the register associated to the Master Read operation of DMAC Setting register and set '1' to the mr_enable bit.
- 3. UDC2AB starts the data transfer to the endpoint of UDC2. UDC2 transfers the data to the IN token from the USB host.
- 4. When reached the Master Read end address, UDC2AB asserts the int_mr_end_add interrupt. If the FIFO of the endpoint is as full as the maximum packet size in a Master Read transfer, the data will be transferred to the IN token from the USB host. If not, the data will remain in the FIFO and will be carried over to the next transfer.
- 5. After the handling by the software ended, return to 1.
- Note: When UDC2AB is used in the EOP Disable mode, short packets will not be sent out even if the data string to be sent has been transferred. EOP Disable mode should be used only in case the size of the data string is a multiple of the maximum packet size.

The mode can be used if the total size of data string is a multiple of the maximum packet size. For example, the following transfer may be allowed:

Example:

- Size of the first Master Read transfer: 1000 bytes
- Size of the second Master Read transfer: 24 bytes (Total of first and second transfers = 1024 bytes)
- Maximum packet size: 512 bytes
- A transfer of 512 bytes will be made twice for the IN transfer.

(2) Aborting of Master Read transfers

You can abort Master Read transfers with the following operation:

- 1. Use UDC2 Command register to set the status of the relevant endpoint to Disabled (EP_Disable). (If aborted without making the endpoint disabled, unintended data may be sent to the USB host.)
- 2. In order to stop the Master Read transfer, set '1' (Abort) to DMAC Setting register.< mr_abort >
- 3. In order to confirm that the transfer is aborted, check that the mr_enable bit of DMAC Setting register was disabled to '0.' Subsequent operations should not be made while the mr_enable bit is '1.'

(Information on the address where the transfer ended when aborted can be confirmed with Master Read Current Address and Master Read AHB Address registers.)

- 4. In order to initialize the Master Read transfer block, set '1' (Reset) to DMAC Setting register<mr_reset>
- 5. Use the Command register (EP_FIFO_Clear) to initialize the FIFO for the relevant endpoint.
- 6. Use the Command register (EP_Enable) to enable the relevant endpoint.

(3) Setting the maximum packet size in Master Read transfers

If the maximum packet size of the endpoint to be connected with the Master Read function of UDC2AB will be an odd number, there will be following restrictions to which you should pay attention:

- Even if the maximum packet size of the endpoint should be handled as an odd number, the setting of the max_pkt bit of UDC2 EPx_MaxPacketSize register should be an even number.
- Note: Refer to the "Technical Document of UDC2 Appendix(Appendix B)" for more information on this setting.
 - Set the eopb_enable bit of UDC2 Setting register '1' (Master Read EOP enable).
 - Make the transfer size to be specified for one Master Read transfer (Master Read End Address Master Read Start Address + 1) not exceed the maximum packet size of an odd number.

(Example) A setting satisfying the above conditions:

- Set the maximum packet size of the endpoint (value to pass to the USB host) to be 63 bytes.
- Make the setting of the max_pkt bit of UDC2 EPx_MaxPacketSize register to be 64 bytes.
- Keep the transfer size to be specified for one Master Read transfer to 63 bytes or less.

- (4) Master Write transfer
 - Master Write transfer sequence

The operation of Master Write transfers are discussed here. Master Write operations will be as follows:

- 1. Set Master Write Start Address and Master Write End Address registers.
- 2. Set the bits associated to the Master Write operation of DMAC Setting register and set '1' to the mw_enable bit.
- 3. UDC2AB makes a Master Write transfer to the data in the endpoint received from the USB host.
- 4. Since the int_mw_end_add interrupt will be asserted when the writing ended to reach the Master Write End Address (with no timeout processed), you should make necessary arrangement with the software. UDC2 will return to '1' after receiving the correct packet.

Note: UDC2AB will assert the int_mw_set_add interrupt when the packet is received normally from the USB host with the mw_enable bit of DMAC Setting register disabled.

(5) Timeout

Master Write transfers would not finish if the OUT transfer from the USB host should stagnate before reaching the Master Write End Address during the transfer. In order to cope with such circumstances, you can set the timeout function.

When this timeout function is used, all data stored in the buffer in UDC2AB at the point of timeout will be transferred to AHB.

Timeout can be processed with the following operation:

1. Make an access to the Master Write Timeout register before starting a Master Write transfer and set timeoutset (timeout time) to make timeout_en enabled (1).

2. Start the Master Write transfer in accordance with the instruction in the preceding section.

3. When the timeout has occurred, the int_mw_timeout interrupt will be asserted. (The int_mw_end_add interrupt will not be asserted.) In that case, the Master Write transfer is not completed to reach the Master Write End Address. UDC2AB clears the mw_enable bit of DMAC Setting register to '0.'

4. In Master Write Current Address register, the address to which the transfer has completed to the AHB end can be confirmed.

Please note that the timeout counter advances during the Master Write transfer with the timeout function enabled, but the counter will be reset to the preset value when the OUT transfer from the USB host to the relevant endpoint is received and begin recounting (see the figure below). It means that the time until timeout is "from the point when the last transfer from the USB host to the relevant endpoint has occurred during the Master Write transfer to the preset time," rather than "from the point when the Master Write transfer has begun to the preset time."

If you do not use the timeout function, be sure to set the timeout_en bit of Master Write Timeout register to 'Disable (0)' before starting the Master Write transfer. In that case, the transfer will not finish until reaching the preset Master Write End Address.

Figure 3.16.11 Example of MW timeout count

(6) Aborting of Master Write transfers

You can abort Master Write transfers with the following operation:

- 1. Use UDC2 Command register to set the status of the relevant endpoint to Disable (EP_Disable).
- 2. In order to stop the Master Write transfer, set '1' (Abort) to the mw_abort bit of DMAC Setting register.
- 3. In order to confirm the transfer is aborted, check the mw_enable bit of DMAC Setting register was disabled to '0.' Subsequent operations should not be made while the mw_enable bit is '1.'(Information on the address where the transfer ended when aborted can be confirmed with Master Write Current Address and Master Write AHB Address registers.)
- 4. In order to initialize the Master Write transfer block, set '1' (Reset) to the mw_reset bit of DMAC Setting register.
- 5. Use Command register (EP_FIFO_Clear) to initialize the FIFO for the relevant endpoint.
- 6. Use UDC2 Command register to set the status of the relevant endpoint to Enable (EP_Enable).

3.16.2.10 USB Power Management Control

In USB, operations related to power management including detection of USB bus power supply, suspending and resuming are also prescribed in addition to normal packet transfers. This section discusses about how to control those operations. Below is a connection diagram of signals related to power management control.

Note: Be sure to see the USB2.0 Specification for details of operations.

*UTMI: USB2.0 Transceiver Macrocell Interface

Figure 3.16.12 Connection diagram of control signals

3.16.2.11 USB Bus Power Detecting Sequence

(1) Connect

This section describes the sequence when detecting the power supply. After detecting the bus power from the USB host (VBUS), initialize UDC2AB and UDC2 with the following procedures:

- 1. Use the pw_resetb bit of Power Detect Control register to make software reset. (The pw_resetb bit is not automatically released and should be cleared by software.)
- 2. Make an access to UDC2AB and UDC2 registers to make necessary initial settings.
- 3. Use UDC2 Command register to issue the USB Ready command. UDC2 notifies the USB host of the connection via PHY. This condition enables UDC2 to accept USB_RESET from the USB host.
- 4. Once USB_RESET from the USB host is detected, UDC2 initialize the registers inside UDC2 and enumeration with the USB host becomes available. When USB_RESET is detected, the int_usb_reset/int_usb_reset_end interrupt occurs.
 - Note: While UDC2AB originally has the function to assert the int_powerdetect interrupt when VBUS is detected, it is not supported for this LSI. Power Detect Control<pw_detect> always indicates '0'.

(2) Disconnect

When the USB bus power is disconnected, UDC2AB makes notification by an external interrupt. Since master transfers will not automatically stop in such circumstances, you need to make an abort process. Then use the pw_resetb bit of Power Detect Control register to make software reset.

In case the system employs the control to stop CLK_H (AHB end) while USB is suspended, no interrupt will be notified even if the power is disconnected while CLK_H is stopped. In such cases, resuming of CLK_H is required using the WAKEUP_X output signal. See "(4) Signal operations when suspended and resumed (disconnected)" for more information.

3.16.2.12 USB_RESET

USB_RESET may be received not only when the USB host is connected but also at any timing.

UDC2AB asserts the int_usb_reset/int_usb_reset_end interrupt when UDC2 has received USB_RESET and returns to the default state. At this time, master transfers will not automatically stop. Use the abort function to end the transfers. Values are initialized by USB_RESET for some registers of UDC2, while they are retained for other registers (refer to the UDC2 Technical Document for more information).

Resetting of UDC2 registers when USB_RESET is recognized should be made after the int_usb_reset_end interrupt has occurred. This is because UDC2 initializes UDC2 registers at the time it deasserts the usb_reset signal.

3.16.2.13 Suspend/Resume

(1) Shift to the suspended state

UDC2AB makes notification of detecting the suspended state of UDC2 by the int_suspend_resume interrupt and the suspend_x bit of Power Detect Control register. Since master transfers will not automatically stop in this circumstance, you should use the aborting function of each master transfer to make forcible termination if needed. In case PHY needs to be suspended (clock stop) after the necessary processes finished by software, you can set the phy_suspend bit of Power Detect Control register to make UDC2AB assert PHYSUSPEND_X which will put PHY in suspended state.

(2) Resuming from suspended state

UDC2AB makes notification of detecting the resuming state from the USB host by the int_suspend_resume interrupt and the suspend_x bit of Power Detect Control register. (In case the wakeup_en bit of Power Control register is set to be enabled when CLK_H is stopped, notification is made by the WAKEUP_X output signal.)

Since the suspend signal to PHY (PHYSUSPEND_X) is automatically asserted when resuming, controlling by software is not necessary unlike the case of suspending.

When resuming is recognized, make settings again for restarting master transfers.

(3) Remote wakeup from suspended state

When suspended, (in case PHY is in the suspended state) clocks for UDC2AB and UDC2 supplied by PHY (CLK_U) are stopped. Setting the phy_remote_wkup bit of Power Detect Control register to '1' in this state will make UDC2AB assert udc2_wakeup to UDC2 while deasserting the PHYSUSPEND_X signal. When the clock (CLK_U) output from PHY resumes after a certain period and the clock is supplied, UDC2 will automatically start the resuming operation.

(4) Signal operations when suspended and resumed (disconnected)

Based on the above descriptions, the signal operations when suspended and resumed (disconnected) are illustrated below.

Refer to "Figure 3.16.13 Operation of suspend/resume signals (when CLK_H is stopped)", "Figure 3.16.14 Operation of suspend/disconnect signals (when CLK_H is stopped)" and "Figure 3.16.15 Operation of suspend/resume signals (when CLK_H is operating)" if CLK_H should be stopped when resuming (disconnecting) from the USB host. Refer to "Figure 3.16.16 Operation of suspend/remote wakeup signals" for remote wakeup from UDC2AB.

Figure 3.16.13 Operation of suspend/resume signals (when CLK_H is stopped)

Figure 3.16.14 Operation of suspend/disconnect signals (when CLK_H is stopped)

Signal operation of Figure 3.16.13 and Figure 3.16.14:

- The function to stop and resume CLK_H by the WAKEUP_X output signal should be created outside UDC2AB.
 - $\ensuremath{\mathbb O}$ The int_suspend_resume interrupt occurs by detecting the suspended state on the USB bus.
 - [©] By the int_suspend_resume interrupt, the interrupt source is cleared by FW and the phy_suspend bit of Power Detect Control register is set to '1'.
 - ③ Setting the phy_suspend bit will assert the PHYSUSPEND_X output signal to '0' which will stop the supply of CLK_U.
 - ④ After setting the wakeup_en bit of Power Detect Control register to '1' by FW, CLK_H can be stopped.
 - © By detecting Resume on the USB bus or disconnecting (VBUS disconnected), the WAKEUP_X output signal will be asserted to '0' asynchronously.
 - © Supply of CLK_H is started by the WAKEUP_X output signal. With the supply of CLK_H, the int_suspend_resume or the int_powerdetect interrupts will occur.

(If the rise of suspend_x is detected, the PHYSUSPEND_X output signal will be automatically deasserted.)

② 2.5µs after the interrupt is asserted (time required for the signal to stabilize when VBUS is disconnected), check the pw_detect bit of the Power Detect Control register.

Depending on the external interrupt,

proceed to (8)-a: WAKEUP_X is asserted by Resume.

proceed to (8)-b: WAKEUP_X is asserted by Disconnect.

<When Resumed>

- In the source and the wakeup_en bit to deassert the WAKEUP_X output signal.
- @-a Resumes from suspended state

<When Disconnected>

- Image Strain Strain
- (9-b) Sets the pw_resetb bit of Power Detect Control register and initializes UDC2AB.

	1 2 3	3) (4	I) (5	6
suspend_x				
wakeup_en				
int_suspend_resume				
			\	
PHYSUSPEND_X				
CLK_U	նուստուսուսուսու			
CLK_H			mmmmmm	

Figure 3.16.15 Operation of suspend/resume signals (when CLK_H is operating)

- $\ensuremath{\mathbb O}$ The int_suspend_resume interrupt occurs by detecting the suspended state on the USB bus.
- [©] By the int_suspend_resume interrupt, the interrupt source is cleared and the phy_suspend bit of Power Detect Control register is set to "1" by FW.
- ③ Setting the phy_suspend bit will assert the PHYSUSPEND_X output signal which will stop the supply of CLK_U.
- ④ The int_suspend_resume interrupt occurs by detecting Resume on the USB bus.

By detecting the rise of suspend_x, the PHYSUSPEND_X output signal will be deasserted to "1."

- ^⑤ By the int_suspend_resume interrupt, the interrupt source is cleared by FW.
- © Deasserting the PHYSUSPEND_X output signal will resume the supply of CLK_U.

Figure 3.16.16 Operation of suspend/remote wakeup signals

- The int_suspend_resume interrupt occurs by detecting the suspended state on the USB bus.
- ② By the int_suspend_resume interrupt, the interrupt source is cleared and the phy_suspend bit of Power Detect Control register is set to "1" by FW.
- ③ Setting the phy_suspend bit will assert the PHYSUSPEND_X output signal to "0" which will stop the supply of CLK_U.
- When requesting remote wakeup, set the phy_remote_wkup bit of Power Detect Control register to "1." Setting the phy_remote_wkup bit will cause UDC2 to make a remote wakeup request on the USB bus. Also, suspend_x will be deasserted to "1" asynchronously.
- S Deasserting suspend_x will cause the int_suspend_resume interrupt to occur and the PHYSUSPEND_X output signal to be deasserted to "1."
- © Deasserting the PHYSUSPEND_X output signal will resume CLK_U. The phy_remote_wkup bit will be automatically cleared.
- $\ensuremath{\textcircled{O}}$ $\ensuremath{\textcircled{Clears}}$ the int_suspend_resume interrupt source.

TOSHIBA

3.16.3 Overview of UDC2

UDC2 is a core which controls connection of USB functions to the Universal Serial Bus. UDC2 automatically processes the USB protocol and its PHY-end interface can be accessed via UTMI.

UDC2 has the following functions and features:

- Conforms to Universal Serial Bus Specification Rev.2.0.
- Supports both High-Speed and Full-Speed (Low-Speed is not supported).
- Supports Chirp.
- Processes USB protocol.
- Detects SOF/USB_RESET/SUSPEND/RESUME.
- Generates and checks packet IDs.
- Generates and checks data synchronization bits (DATA0/DATA1/DATA2/MDATA).
- Checks CRC5, generates and checks CRC16.
- Supports PING.
- Supports 4 transfer modes (Control/Interrupt/Bulk/Isochronous).
- Supports up to four endpoints (number of endpoints and packet sizes can be customized).
- Supports Dual Packet Mode (except for Endpoint 0).
- Endpoints 1 to 3 can directly access FIFO (Endpoint I/F).
- Supports USB2.0 Transceiver Macrocell Interface (UTMI) (16 bits @ 30MHz).

3.16.3.1 Internal Block Structure of UDC2

The following are the block structure and outline of each block of UDC2.

Figure 3.16.17 Block diagram of UDC2

(1) SIEC (Serial Interface Engine Control) block

This block manages the protocol in USB. Its major functions are:

- Checks and generates PIDs.
- Checks and generates CRCs.
- Checks device addresses.
- Manages transfer speed (HS/FS).
- Controls PHY (transfer speed (HS/FS), mode, etc.).
- Generates test modes.

(2) IFM block

This block controls SIEC and endpoints. Its major functions are:

- Writes the received data to the relevant endpoints when received an OUT-Token.
- Reads the transmit data from the relevant endpoints when an IN-Token is received.
- Controls and manages the status of UDC2.0.

(3) PVCIIF block

This block controls reading and writing between IFM and external register access bus (PVCI). Please note that only single transfers are supported when making register accesses (burst transfers are not supported).

(4) EPO block

This block controls sending and receiving data in Control transfers. When sending or receiving data with DATA-Stage of Control transfers, you should access the FIFO in this block via PVCI-I/F.

(5) EPx block

This block controls sending and receiving data of EPx (x= 1, 2, 3). FIFO can be directly accessed via the Endpoint-I/F. The Endpoint-I/F can make burst transfers.

Please note there are two endpoints; one for sending and another for receiving. Since direction of endpoints (send/receive) will be fixed on a hardware basis.

3.16.3.2 Bus Specifications

UDC2 has three major types of interface. This section discusses about each interface.

(1) USB2.0-PHY Access (UTMI-I/F)

This is an interface used for data access with USB2.0-PHY. This interface is used to control data between UDC2 and USB2.0-PHY. Its operational specifications are:

• USB2.0-PHY status control

- Xcvr_select(Output): Controls the transceiver of USB2.0-PHY.
- Term_select(Output): Controls the end pins of USB2.0-PHY.
- Line_state[1:0](Inputs): Indicates the present status on the USB bus (DP/DM).

The content displayed will vary depending on the current mode as follows:

Mode		Full-Speed	High-Speed	High-Speed-Chirp	Invalid
Xcvr_select		1	0	0	1
Term_select		1	0	1	0
Line_state	00	SE0	Squelch	Squelch	Invalid
[1:0]	01	J	! squelch	! squelch & J-Output	Invalid
	10	К	Invalid	! squelch & K-Output	Invalid
	11	SE1	Invalid	Invalid	Invalid

- Op_mode[1:0](Outputs): Selects the operation mode of USB2.0-PHY.
- 00: Normal mode. The status when sending or receiving normal data.
- 01: Non-Driving mode. In this mode, the driver is always turned to "OFF" and no data is sent.
- 10: Bit-Stuff/NRZI-Encode prohibit mode. In this mode, raw data will be sent without either inserting bit stuff into the transmit data or making NRZI conversion. This is used for Chirp/RemoteWakeup/TestMode.
- 11: (Reserved)

• Data transmission control	
• tx_valid[1:0](Output)	 Transmit data (tx_data) valid flag. tx_data[15:0] will be valid when this flag is "11b," while tx_data [7:0] will be valid when it is "01b." UDC2 asserts this flag to "H" when starting the data transmission to USB2.0-PHY and deasserts it when the transmission is finished. "01b" needs to be set when the last transmit data is 1 byte.
• tx_data[15:0] (Outputs)	: Transmit data. The data will be valid when the tx_valid flag is asserted.
	UDC2 sets the next tx_data after ensuring tx_ready has been asserted. When the tx_ready flag is deasserted, tx_data will be retained.
• tx_ready(Input)	: When this flag is asserted to "H" with the tx_valid flag of UDC2 asserted, USB2.0-PHY is capturing the tx_data.

An example of accessing in High-Speed transmission is shown in Figure 3.16.18, and an example of accessing in Full-Speed transmission is shown in Figure 3.16.19 below.

(b) When transmitting an odd number of bytes

Figure 3.16.18 High-Speed transmission flow

- © UDC2 asserts tx_valid[1:0] in order to transmit data to PHY and sets the first transmit data (PID&Data0) to tx_data.
- © UDC2 confirms the tx_ready from USB2.0-PHY is asserted and (as tx_data(PID&Data0) has been captured in PHY) sets the next transmit data (Data1 & Data2).
- UDC2 continues to confirm the tx_ready from PHY and sets the next transmit data (Data3 & Data4).
- ④ UDC2 confirms the tx_ready is deasserted and (as tx_data(Data3 & Data4) has not been captured in PHY) retains the tx_data.
- S In the case of Figure 3.16.18(b) where an odd number of bytes are transmitted, UDC2 deasserts tx_valid[1] as it set the last transmit data.
- © UDC2 deasserts tx_valid after confirming that the tx_ready from PHY is asserted and the last transmit data has been captured.

(b) When transmitting an odd number of bytes

Figure 3.16.19 Full-Speed transmission flow

- UDC2 asserts tx_valid[1:0] in order to transmit data to PHY and sets the first transmit data (PID&Data0) to tx_data.
- © UDC2 confirms that the tx_ready from USB2.0-PHY is asserted and (as tx_data(PID&Data0) has been captured in PHY) sets the next transmit data.
- ③ In the case of Figure 3.16.19(b) where an odd number of bytes are transmitted, UDC2 deasserts tx_valid[1] as it set the last transmit data.
- (a) UDC2 deasserts tx_valid after confirming that the tx_ready from PHY is asserted and the last transmit data has been captured.

 Data recept 	tion control
• rx_valid[1:0](Input)	 Received data (rx_data) valid flag. rx_data[15:0] will be valid when this flag is "11b," while rx_data [7:0] will be valid when it is "01b." "10b" should not be set. UDC2 will capture the rx_data when this flag and rx_active are both asserted to "H." When asserting or deasserting this flag for UDC2, assert or deassert rx_valid[1] and rx_valid[0] at the same time. If the received data has odd bytes, however, set "01b" when transmitting the last data.
 rx_error(Input) 	Reception error flag. This flag will be asserted to "H" when an error (e.g. bit stuff error) is detected in the received data. To UDC2, assert rx error while asserting rx active.
•rx_data[15:0](Inputs)	 Received data. The data will be valid when the rx_valid flag is asserted. If the received data has an odd number of bytes, set rx_data [7:0] in the last data with rx_valid= "01b" set to UDC2
• rx_active(Input)	 This flag will be asserted to "H" while the received data is valid after detecting SYNC. Assert this flag when starting the transmission of received data from USB2.0-PHY to UDC2 and deassert it when the transmission is finished.

An example of accessing in High-Speed transmission is shown in Figure 3.16.20, while an example of accessing in Full-Speed transmission is shown in Figure 3.16.21 below.

(b) When receiving an odd number of bytes

Figure 3.16.20 High-Speed reception flow

- ① In order to start transfer of received data from PHY to UDC2, assert rx_active.
- \odot Set the valid data to rx_data and assert rx_valid[1:0] at the same time.
- ③ As rx_active and rx_valid[1:0] are asserted, UDC2 captures rx_data (PID, Data0) as a valid data.
- ④ PHY may deassert or assert rx_valid[1:0] (for processing the bit stuff). In that case, deasserting or asserting of rx_valid[0] and rx_valid[1] to UDC2 should be made at the same time. (Except when transferring the last rx_data as above (6).)
- S As rx_valid[1:0] is deasserted, UDC2 will not capture the rx_data.
- In the case of Figure 3.16.20(b) where an odd number of bytes are received, set the last rx_data[7:0] to UDC2 and deassert tx_valid[1] at the same time.
- \oslash Deassert <code>rx_active</code> and <code>rx_valid</code> and finish the transfer of received data to UDC2.

(b) When receiving an odd number of bytes

Figure 3.16.21 Full-Speed reception flow

- 1 In order to start transfer of received data from PHY to UDC2, assert rx_active.
- Set the valid data to rx_data and assert rx_valid[1:0]. 2
- As rx_active and rx_valid[1:0] are asserted, UDC2 captures rx_data (PID, Data0) as a valid 3 data. At this point, deassert rx_valid[1:0] until the next rx_data is ready. In that case, deasserting or asserting of rx_valid[0] and rx_valid[1] to UDC2 should be made at the same time. (Except when transferring the last rx_data as above (4).)
- In the case of Figure 3.16.21(b) where an odd number of bytes are received, set the last 4 rx_data[7:0] to UDC2 and assert tx_valid[0] only.
- (5) Deassert rx_active and finish the transfer of received data to UDC2.

(1) Common bus access (PVCI-I/F)

This is an interface used to accessing registers in the UDC2 core, EP0_FIFO, and EPx_FIFO in the common bus access mode. This interface can be used for only single read/write accesses (burst transfers are not supported).

Signals required for the interface are as follows:

• udc_val(Inputs)	:	Assert this flag to "H" when reading or writing and deassert it after receiving the udc_ack from UDC2.
		udc_adr, udc_rd, udb_be, and udc_wdata will become valid when this flag is asserted.
 udc_adr[7:1](Inputs) 	:	Specifies the address of the register to access.
 udc_rd(Input) 	:	Selects Read or Write. L: Write, H: Read
 udc_be[1:0](Inputs) 	:	Byte enable.
• When accessing the	he re	egisters in the UDC core:
1	Set ' uppe	'11b" when accessing 2 bytes, "10b" when accessing the er 1 byte, and "01b" when accessing the lower 1 byte.
• When accessing E	P0_	FIFO, and EPx_FIFO in the common bus access mode:
:	Set '	'11b" when accessing 2 bytes and "01b" when accessing 1
1	byte	
• udc_ack(Output)	:	This signal is asserted to "H" when it becomes ready to read or write the data.
• udc_wdata[15:0](Inputs)	:	Data to be written. UDC2 captures this into the register when the udc_ack is asserted.
• udc_rdata[15:0](Outputs)	:	Data to be read. UDC2 outputs the content in the register when the udc_ack is asserted.

From the next section, how to access registers in UDC2 and EPx_FIFO/EPx_FIFO is described.

(a) UDC2 register access

This section illustrates how to access registers in UDC2 other than EP0_FIFO/EPx_FIFO.

The flow of reading data is shown in Figure 3.16.22, while the flow of writing data is shown in Figure 3.16.23.

Figure 3.16.22 Data read flow

<2-Byte Read>

- $\hfill \label{eq:linear}$ $\hfill \hfill \$
- @When udc_val (udc_rd,udc_be[1:0]) is asserted, UDC2 starts asserting of udc_ack and setting of udc_rdata[15:0]. The user system retains the value of udc_val, udc_rd, udc_be, and udc_adr since asserting of udc_ack cannot be confirmed at this point.
- ③After udc_ack is asserted, the user system captures udc_rdata[15:0] which is a valid value and deasserts udc_val, udc_rd, and udc_be[1:0].

<1-Byte Read>

- $\hfill \label{eq:linear}$ $\hfill \hfill \$
- ② When udc_val (udc_rd,udc_be[0]) is asserted, UDC2 starts asserting of udc_ack and setting of udc_rdata[7:0]. The user system retains the value of udc_val, udc_rd, udc_be, and udc_adr since asserting of udc_ack cannot be confirmed at this point.
- ③ After udc_ack is asserted, the user system captures udc_rdata[7:0] which is a valid value and deasserts udc_val, udc_rd, and udc_be[0].

Note: To read udc_rdata[15:8] when accessing registers in the UDC core, udc_be should be "10b."

Figure 3.16.23 Data write flow

<2-Byte Write>

- In order to make 2-Byte Write, the user system asserts udc_val, udc_rd, and udc_be[1:0] to set a valid value to udc_adr and udc_wdata[15:0].
- ② When udc_val (udc_rd,udc_be[1:0]) is asserted, UDC2 starts capturing of udc_wdata[15:0] and asserting of udc_ack. The user system retains the value of udc_val, udc_rd, udc_be, udc_adr, and udc_wdata since asserting of udc_ack cannot be confirmed at this point.
- ③UDC2 captures udc_wdata[15:0] as a valid value. After udc_ack is asserted, the user system deasserts udc_val, udc_rd, and udc_be[1:0].

<1-Byte Write>

- \bigcirc In order to make 1-Byte Write, the user system asserts udc_val, udc_rd, and udc_be[1:0] to set a valid value to udc_adr and udc_wdata[7:0].
- ② When udc_val (udc_rd,udc_be[0]) is asserted, UDC2 starts capturing of udc_wdata[15:0] and asserting of udc_ack. The user system retains the value of udc_val, udc_rd, udc_be, udc_adr, and udc_wdata since asserting of udc_ack cannot be confirmed at this point.
- ③ UDC2 captures udc_wdata[7:0] as a valid value. After udc_ack is asserted, the user system deasserts udc_val, udc_rd, and udc_be[0].
- To write to udc_Wdata[15:8] when accessing registers in the UDC core, udc_be should be "0y10."

(b) Common bus access to the EP0_FIFO/EPx_FIFO registers (PVCI-I/F)

There are following restrictions when accessing the EP0_FIFO/EPx_FIFO registers using PVCI-I/F:

• When accessing transmit endpoints (EP0_FIFO/EPx_FIFO registers)

When you write data packets to be transmitted to the host into the EP0_FIFO/EPx_FIFO registers, write 2 bytes at a time and then the remaining 1 byte (if the total number of data is odd in bytes). When you set data smaller than the MaxPacketSize (except for Zero-Length data), set the EOP command ("EP_EOP" command in the Command register) at the end. When the EOP command or data of MaxPacketSize was set, data for one packet portion will be set to the endpoint. The EPx_FIFO register will be full when one packet portion is set if the bit15 (pkt_mode) of Epx_Status register is set to Single mode, and it will be full when two packets portion is set in the case of Dual mode. For Endpoint 0, EP0_FIFO register will be full when one packet portion is set. When the data is written and EP0_FIFO or EPx_FIFO becomes full, the bit12 (dset) of EP0_Max_PacketSize/EPx_Max_PacketSize registers will be set to "1." Subsequent data should be written after confirming that this bit has been cleared to "0."

• When accessing receive endpoints (EP0_FIFO/EPx_FIFO registers)

When reading the data packet received from the host from the EP0_FIFO/ EPx_FIFO registers, ensure that the bit12 (dset) of EP0_MaxPacketSize/ EPx_MaxPacketSize registers is set to "1" and check the number of bytes received in the EP0_DataSize/EPx_DataSize registers. Then, read 2 bytes at a time. If the size of received data is odd in bytes, data of the last byte will be output from the lower byte (udc_rdata[7:0]).

• Common to transmit/receive endpoints

Common bus access (PVCI-I/F) should not be used for endpoints for which direct access (Endpoint-I/F) is set by the EPx_Status register.

Examples of accessing when transmitting data are shown in Figure 3.16.24 and Figure 3.16.25. Examples of accessing when receiving data are shown in Figure 3.16.26 and Figure 3.16.27.

Examples for Endpoint X are provided here. Also refer to "3.16.3.6 Endpoint 0" when accessing Endpoint 0.

Figure 3.16.24 Flow of common bus access to a transmit endpoint (1)

(Example of transmitting an even number of bytes)

<Writing 6 bytes to a transmit endpoint>

- Ensure that the bit12 (dset) of EPx_MaxPacketSize register is "0" before writing the data.
 Since dset= "1" means some data exists waiting for transmission at the relevant endpoint, you should wait until dset becomes "0" before you can write.
- ©-④ Write the data to EPx_FIFO register two bytes at a time. 1-Byte Write should not be made.
- S Issue the EOP command.

(However, the EOP command should not be issued when writing MaxPacketSize.)

Figure 3.16.25 Flow of common bus access to a transmit endpoint (2)

(Example of transmitting an odd number of bytes)

<u><Writing 5 bytes to a transmit endpoint></u>

- Ensure that the bit12 (dset) of EPx_MaxPacketSize register is "0" before writing the data.
 Since dset= "1" means some data exists waiting for transmission at the relevant endpoint, you should wait until dset becomes "0" before you can write.
- ©-③ Write the data to EPx_FIFO register two bytes at a time. 1-Byte Write should not be made.
- Write one byte to EPx_FIFO register. Since only the lower byte becomes valid, set udc_be
 to "0y01" and set valid data to udc_wdata[7:0].
- S Issue the EOP command.

(However, the EOP command should not be issued when writing MaxPacketSize.)

Figure 3.16.26 Flow of common bus access to a receive endpoint (1)

(Example of receiving an even number of bytes)

<<u>Reading an even number of bytes from a receive endpoint</u>)

- ① Ensure that the bit12 (dset) of EPx_MaxPacketSize register is set to "1" before reading the data, and then access the EPx_Datasize register to confirm the size of data stored in the relevant endpoint.
- ©-④ From the EPx_FIFO register, read the data two bytes at a time for the portion of the size of data stored in the endpoint.

Figure 3.16.27 Flow of common bus access to a receive endpoint (2) (Example of receiving an odd number of bytes)

<<u>Reading an odd number of bytes from a receive endpoint></u>

- ① Ensure that the bit12 (dset) of EPx_MaxPacketSize register is set to "1" before reading the data, and then access the EPx_Datasize register to confirm the size of data stored in the relevant endpoint. As shown in (2)-(4), read the data for the portion of the size of data stored in the endpoint.
- ©-③ Read the data from EPx_FIFO register two bytes at a time.
- Read two bytes from EPx_FIFO register. The data of the last one byte will be output from the lower byte (udc_rdata[7:0]). The data of upper bytes (udc_rdata[15:8])) will be invalid.
- Note: In this case, you may make 1-Byte Read only for the last data. Since the lower byte will be the valid data, however, udc_be should be set to "01."

(2) Endpoint direct	access (Endpoint-I/F)
Direct access (E access (PVCI-I/F)	ndpoint-I/F) should not be made for endpoints to which common bus is set by EPx_Status register.
(a) Access to	transmit endpoints
This is the mode. Signals	interface used for Write access to EPx_FIFO in the direct access s required for the interface are as follows:
• epx_val(Input)	Valid signal when making a Write access. Assert this to "H" when writing data.
• epx_rd(Input)	Selects Read or Write. L: Write, H: Read Set to "L" when writing data.
• epx_ack(Output)	UDC2 captures epx_wdata into EPx_FIFO when epx_ack is asserted to "H." It will be deasserted when UDC2 is not ready to write data into EPx_FIFO or there is no space for writing in EPx_FIFO.
• epx_w_be[1:0](Inputs)	Byte enable in writing. Set "11b" when accessing 2 bytes and "01b" when accessing 1 byte.
	When making a 1-Byte Access which means writing the last data into EPx_FIFO, epx_w_eop should be asserted at the same time
• epx_w_eop(Input)	 When writing short packets (data with smaller size than MaxPacketSize of Endpoint X) into EPx_FIFO, assert this flag to "H" with the last data and deassert it after confirming epx_ack has been asserted. Note: When transmitting Zero-Length data, refer to the instructions for the "EP_TX_0DATA" command of Command register, or for trasmitting Zero-Length data using Endpoint-I/F.
• px_wdata[15:0](Inputs)	Data to be written. UDC2 captures epx_wdata into EPx_FIFO
• epx_dataset(Output)	when epx_ack is asserted. Indicates the status of FIFO of the Endpoint X. When the data of one packet portion (in the single mode) or two packets portion (in the dual mode) are set to fill the EPx_FIFO, this signal will be asserted to "H" and it will be deasserted to "L" when the data is transferred by the IN-Token from the host. Data can be written into the FIFO when this signal is "L." EPx_MaxPacketSize register has the bit similar to this flag.
• epx_tx0data(Input)	Note: Operation differs between transmitting endpoints and receiving endpoints. When trasmitting Zero-Length data, it can be set using the "EP_TX_0DATA" command of Command register, but this signal can be used when setting Zero-Length data using Endpoint-I/F. Assert this to 1 clock "H" when epx_empty is "H." Note 1: Refer to "Figure 3.16.32" when transmitting Zero-Length data using Endpoint-I/F. Note 2: Do not use this at the same time of setting Zero-Length data using Command

 • epx_empty(Output)
 "H" will be asserted when EPx_FIFO is empty and no Zero-Length data is set in the Endpoint X. Use this when you want to set Zero-Length data using Endpoint-I/F. This signal will be a valid value after setting the endpoints of Set_Configuration and Set_Interface. This is set to "L" immediately after reset_x and USB_RESET. Note: Refer to "Figure 3.16.32" when transmitting Zero-Length data using Endpoint-I/F.

Note 1: When you write data packets, make accesses for 2 bytes each and, at the last data access, make an access for the lower 1 byte (if the total number of data is odd in bytes).

Note 2: There are two types of endpoints; one for transmitting and another for receiving. Since direction of endpoints (send/receive) will be fixed on a hardware basis, please specify it at the time of development.

The flow of accessing transmit endpoints (for writing data) is shown in "Figure 3.16.28-Figure 3.16.31."

The flow of transmitting Zero-Length data using Endpoint-I/F is shown in "Figure 3.16.32."

Figure 3.16.28 Flow of accessing a transmit endpoint (1) (Example of transmitting data of MaxPacketSize × 2)

- Once it is confirmed that epx_dataset has been deasserted and there is room in the FIFO, the user system sets epx_val, epx_rd, epx_w_be, and epx_wdata.
- ② After epx_val from the user system is asserted, UDC2 starts asserting of epx_ack.
- ③ Since epx_ack is asserted, UDC2 should have captured epx_wdata. Then the user system sets the next data to write to epx_wdata.
- ④ Since epx_ack is asserted again, the user system sets the next data to write to epx_wdata.
- UDC2 deasserts epx_ack (to prepare for switching of the FIFO to write data).
 (The epx_wdata at this point has been captured in the FIFO.)
- © Since epx_ack is deasserted, the user system retains epx_wdata.
- ⑦ UDC2 (as writing to the FIFO is again possible) asserts epx_ack.
- Since epx_ack is asserted, UDC2 should have captured epx_wdata. Then the user system sets the next data to write to epx_wdata.
- Since epx_ack has been asserted and the last data has been captured, the user system deasserts epx_val,(epx_rd) and epx_w_be.
- Ince UDC2 has captured the last data and has no room for the FIFO, it has already deasserted epx_ack. It also starts asserting epx_dataset to communicate that the FIFO is not available for writing.

Figure 3.16.29 Flow of accessing a transmit endpoint (2) (Example of transmitting data smaller than MaxPacketSize)

<When writing short packets with even number size>

- $\hfill Once it is confirmed that epx_dataset has been deasserted, the user system sets epx_val, epx_rd, epx_w_be, and epx_wdata.$
- ② When writing a short packet (packet smaller than MaxPacketSize) into FIFO, the user system asserts epx_w_eop with the last data (epx_wdata). ("0y11" should be set to epx_w_be[1:0] as the size of epx_wdata is 2 bytes.)
- ③ Since epx_ack is asserted, UDC2 should have captured the last epx_wdata. Then the user system deasserts epx_w_eop together with epx_val, (epx_rd) and epx_w_be.

<When writing short packets with odd number size>

- Once it is confirmed that epx_dataset has been deasserted, the user system sets epx_val, epx_rd, epx_w_be, and epx_wdata.
- ©In order to write the last data, assert epx_w_eop. "0y01" should be set to epx_w_be[1:0] as the size of epx_wdata is 1 byte.
- ©Since epx_ack is asserted, UDC2 should have captured the last epx_wdata. Then the user system deasserts epx_w_eop together with epx_val, (epx_rd) and epx_w_be.

Figure 3.16.30 Flow of accessing a transmit endpoint (3) (Example 1 of write access interrupted by user)

- $\hfill \label{eq:linear}$ Once it is confirmed that epx_dataset has been deasserted, the user system sets epx_val, epx_rd, epx_w_be, and epx_wdata.
- ② Since the user system is unable to continue the data transfer, it deasserts epx_val.
- ③ After epx_val from the user system is deasserted, UDC2 starts deasserting of epx_ack.
 (As the epx_wdata at this point is valid, UDC2 captures the data.)
- ④ Since the user system is unable to resume the data transfer, it continues to retain epx_val. UDC2 will not capture epx_wdata as epx_ack is deasserted.
- © The user system asserts epx_val in order to resume the data transfer. To resume the transfer, epx_rd, epx_w_be, and epx_wdata also need to be set.
- [©] After epx_val from the user system is asserted, UDC2 starts asserting of epx_ack.
- \odot Since epx_ack is asserted, UDC2 should have captured epx_wdata. Then the user system sets the next data to write to epx_wdata.

<u>Another example of Write Access interrupted by the user using epx_val, similar to Figure 3.16.30. This one shows the example in which epx_ack of UDC2 is also deasserted at the same time as epx val is deasserted.</u>

- Since the user system is unable to continue the transfer, it deasserts epx_val. UDC2 also deasserts epx_ack (with such a reason as switching of internal FIFO).
- $@ \$ Since <code>epx_ack</code> is deasserted, the user system retains the value of <code>epx_wdata</code>.

Further operation should be identical to the example in "Figure 3.16.30."

The flow of transmitting Zero-Length data from Endpoint-I/F using epx_tx0data/ epx_empty is shown below.

Figure 3.16.32 Flow of transmitting zero-length data from Endpoint-I/F

In order to set Zero-Length data to Endpoint X, assert 1 clock "H" to epx_tx0data after epx_empty has been asserted. After 2 clocks from deasserting of epx_tx0data, epx_empty will be deasserted.

When the IN-Token reaches Endpoint X after the Zero-Length data was set, the Zero-Length data will be transmitted. When the transfer has normally finished, epx_empty will be asserted to "H." To resume a DMA access, confirm that epx_empty has been asserted before starting.

Note 1: Set the bit14(bus_sel) of EPx_Status register to "1" so that EPx_FIFO can be directly accessed. Note 2: Do not use this at the same time of setting Zero-Length data using Command register. (a) Access to receiving endpoints

This is the interface used for Read access to $\ensuremath{\mathrm{EPx}}\xspace$ FIFO in the direct access mode.

Signals required for the interface are as follows:

• epx_val(Input)	:	Valid signal when making a Read access. Assert this to "H" when reading data.
• epx_rd(Input)	:	Selects Read or Write. L: Write, H: Read
		Set to "H" when reading data.
• epx_ack(Output)	:	As this is asserted to "H" when UDC2 is outputting valid epx_rdata, you can read the data. It will be deasserted when there is no more data to read from the FIFO or when UDC2 is not ready to read.
• epx_r_be[1:0](Outputs)	:	Byte enable in reading. Outputs "0y11" when accessing 2 bytes and "0y01" when accessing 1 byte.
• epx_rdata[15:0](Outputs)	:	Data to be read. UDC2 outputs the valid content of the EPx_FIFO when epx_ack is asserted.
 epx_dataset(Output) 	:	Indicates the status of FIFO of Endpoint X. This is asserted when the received data are set to the EPx_FIFO, while deasserted to "L" when all the data are read from the application. Data to be read exist in the FIFO when this signal is "H." EPx_MaxPacketSize register has the bit similar to this flag.
		Note. Operation unlets between transmitting endpoints and receiving endpoints.

Note: There are two types of endpoints; one for transmitting and another for receiving. Since direction of endpoints (send/receive) will be fixed on a hardware basis, please specify it at the time of development.

The flow of accessing receive endpoints (for reading data) is shown in "Figure 3.16.33 and Figure 3.16.34."

Figure 3.16.33 Flow of accessing a receive endpoint (1) (Example of receiving an even number and an odd number of bytes)

- ① Once it is confirmed that epx_dataset has been asserted and the data exist in the FIFO, the user system asserts epx_val and epx_rd.
- ^② After epx_val from the user system is asserted, UDC2 starts asserting of epx_ack and epx_r_be and setting of received data to epx_rdata.
- ③ Since epx_ack has been asserted and epx_r_be[1:0] is "0y11," the user system captures epx_rdata[15:0] as valid values.
- \circledast The user system continues to capture <code>epx_rdata</code> as <code>epx_ack</code> and <code>epx_r_be</code> is asserted.
- ⑤ UDC2 has set the last data received at one FIFO to epx_rdata. Though the data received at another FIFO are remaining at this point, deasserting of epx_ack and epx_r_be will be started as a result of switching of FIFOs inside UDC2.

© Since UDC2 has deasserted epx_ack, no valid epx_rdata has been set.

However, the user system retains epx_val and epx_rd because $epx_dataset$ continues to be asserted.

(Here, epx_val and epx_rd may be deasserted once.)

- ⑦ After the FIFO gets ready for reading and epx_val from the user system is asserted, UDC2 starts asserting of epx_ack and epx_r_be and setting of received data to epx_rdata.
- ③ UDC2 sets "0y01" to epx_r_be[1:0] as the size of the last data in the FIFO is 1 byte. The user system captures epx_rdata[7:0] as a valid value.
- IDC2 has deasserted epx_ack and epx_r_be as no data to read remain in the FIFO.
- 0 Since <code>epx_dataset</code> is deasserted, the user system deasserts <code>epx_val</code> and <code>epx_rd</code>.

Figure 3.16.34 Flow of accessing a receive endpoint (2) (Example of read access interrupted by user)

- \odot Once it is confirmed that <code>epx_dataset</code> has been asserted and the data exist in the FIFO, the user system asserts <code>epx_val</code> and <code>epx_rd</code>.
- ② Since the user system is unable to continue the data transfer, it deasserts epx_val.
- ③ After epx_val from the user system is deasserted, UDC2 starts deasserting of epx_ack and epx_r_be.

(As the epx_rdata at this point is valid, the user system captures the data.)

- ③ Since the user system is unable to resume the data transfer, it continues to retain epx_val. Since UDC2 has deasserted epx_ack, epx_rdata is not a valid value.
- ⑤ The user system asserts epx_val and epx_rd in order to resume the data transfer.
- © After epx_val from the user system is asserted, UDC2 starts asserting of epx_ack and epx_r_be and setting of valid data to epx_rdata.
- $\ensuremath{\textcircled{O}}$ Since <code>epx_ack</code> is asserted, the user system captures <code>epx_wdata</code>.

3.16.3.3 Specifications of Flags

The UDC2 core outputs various events on USB as flags when they occur. This section discusses those flags.

(1) USB_RESET

Asserts "H" while receiving USB_RESET. Since UDC2 returns to the Default-State by receiving USB_RESET, the application also needs to return to the Default-State.

In Full-Speed operation, UDC2 asserts this flag when SE0 on the USB bus was recognized for 2.5µs or longer. In High-Speed operation, the flag is asserted when SE0 was recognized for 3ms or longer, after determining whether USB_RESET or suspended state. Then, after UDC2 has driven Chirp-K for about 1.5ms the flag will be deasserted when either one of the following states was recognized:

1. Chirp from the host (K-J-K-J-K-J) was recognized.

2. 2ms or longer has passed without recognizing Chirp from the host (K-J-K-J-K-J).

Note: While the time when the host begins Chirp and the driving time of Chirp-K and Chirp-J depend on the host, asserting period of the USB_RESET flag is around 1.74ms~3.5ms.

(2) INT_SETUP

In Control transfers, asserts "H" after receiving the Setup-Token. When this interrupt is recognized, the software should read the Setup-Data storage register (8 bytes) to make judgment of request. This interrupt will be deasserted by writing "1" into the relevant bit (bit0) of INT register. INT register should be cleared at the point the interrupt was recognized.

(3) INT_STATUS_NAK

In Control transfers, when the host proceeds to the STATUS-Stage and transmits packets while UDC2 is processing the DATA-Stage (before issuing the "Setup_Fin" command), UDC2 will return "NAK" and asserts this flag to "H." When this interrupt is recognized, the software should issue the "Setup_Fin" command from the Command register to make the STATUS-Stage of UDC2 end. This interrupt will be deasserted by writing "1" into the relevant bit (bit1) of INT register. INT register should be cleared at the point the interrupt was recognized.

(4) INT_STATUS

In Control transfers, asserts "H" after finishing the STATUS-Stage normally. This interrupt will be deasserted by writing "1" into the relevant bit (bit2) of INT register. INT register should be cleared at the point the interrupt was recognized.

(5) INT_EP0

In the DATA-Stage of Control transfers, asserts "H" when "ACK" was sent or received (when the transaction finished normally). This interrupt will be deasserted by writing "1" into the relevant bit (bit5) of INT register. INT register should be cleared at the point the interrupt was recognized.

(6) INT_EP

In endpoints other than Endpoint 0, asserts "H" when "ACK" was sent or received (when the transaction finished normally). In that case, which endpoint the transfer was made can be identified by checking INT_EP register. This interrupt will be deasserted by writing "1" into the relevant bit (bit6) of INT register, or by writing "1" into all bits set in INT_EP register. INT register should be cleared at the point the interrupt was recognized.

(7) INT_RX_ZERO

"H" is asserted when Zero-Length data is received. In Control transfers, however, "H" is asserted only when Zero-Length data is received in the DATA-Stage. It will not be asserted when Zero-Length data is received in the STATUS-Stage. Which endpoint has received the data can be identified by reading the bit[11:8] of Command register or checking INT_RX_DATA0 register. This interrupt will be deasserted by writing "1" into the relevant bit (bit3) of INT register, or by writing "1" into all bits set in INT_RX_DATA0 register. INT_RX_DATA0 register should be cleared at the point the interrupt was recognized.

(8) INT_SOF

Asserts "H" when SOF was received. This interrupt will be deasserted by writing "1" into the relevant bit (bit4) of INT register. INT register should be cleared at the point the interrupt was recognized.

SOF is a packet indicating the start of a frame (μ frame). It is transmitted from the host to devices every 1ms in the Full-Speed transfers, and every 125 μ s in the High-Speed transfers.

(9) INT_NAK

In endpoints other than Endpoint 0, asserts NAK when it is transmitted. In that case, which endpoint has transmitted the NAK can be identified by checking INT_NAK register. This interrupt will be deasserted by writing "1" into the relevant bit (bit7) of INT register, or by writing "1" into all bits set in INT_NAK register. By default, this flag will not be asserted when NAK was transmitted. Therefore, you should write "0" into the relevant endpoint of INT_NAK_MASK register to release the mask in order to use this flag.

3.16.3.4	Registers			
	UDC2 has the following re • Device Status	egisters:		
	Address-State register		Frame r	egister
	USB-Testmode register		Command register	
	Setup Data Storage			
	bRequest-bmRequestType reg	gister	wValue	register
wIndex register			wLength register	
	• Interrupt Control			
	INT register	INT_EP register		INT_EP_MASK register
INT_RX_DATA0 register		INT_NAK register	r	INT_NAK_MASK register
	• EP0 Control Status			
	EP0_MaxPacketSize register		EP0_Sta	atus register
EP0_Datasize register			EP0_FII	FO register
	• EPx Control Status			
	EPx_MaxPacketSize register		EPx_Status register	
	EPx_Datasize register		EPx_FIFO register	

Table 3.16.2. shows the register map of UDC2.

Table 3.16.2 Register map

Address =(0xF440_0000)

	Register Name	Address (base+)	Description
	UD2ADR	0x0200	UDC2 Address-State Register
	UD2FRM	0x0204	UDC2 Frame Register
	UD2TMD	0x0208	UDC2 USB-Testmode Register
	UD2CMD	0x020C	UDC2 Command Register
	UD2BRQ	0x0210	UDC2 bRequest-bmRequestType Register
	UD2WVL	0x0214	UDC2 wValue Register
	UD2WIDX	0x0218	UDC2 wIndex Register
	UD2WLGTH	0x021C	UDC2 wLength Register
	UD2INT	0x0220	UDC2 INT Register
1	UD2INTEP	0x0224	UDC2 INT_EP Register
	UD2INTEPMSK	0x0228	UDC2 INT_EP_MASK Register
3)	UD2INTRX0	0x022C	UDC2 INT_RX_DATA0 Register
:), *3	UD2EP0MSZ	0x0230	UDC2 EP0_MaxPacketSize Register
۲N *	UD2EP0STS	0x0234	UDC2 EP0_Status Register
2	UD2EP0DSZ	0x0238	UDC2 EP0_Datasize Register
DC	UD2EP0FIFO	0x023C	UDC2 EP0_FIFO Register
	UD2EP1MSZ	0x0240	UDC2 EP1_MaxPacketSize Register
	UD2EP1STS	0x0244	UDC2 EP1_Status Register
	UD2EP1DSZ	0x0248	UDC2 EP1_Datasize Register
	UD2EP1FIFO	0x024C	UDC2 EP1_FIFO Register
	UD2EP2MSZ	0x0250	UDC2 EP2_MaxPacketSize Register
	UD2EP2STS	0x0254	UDC2 EP2_Status Register
	UD2EP2DSZ	0x0258	UDC2 EP2_Datasize Register
	UD2EP2FIFO	0x025C	UDC2 EP2_FIFO Register
	Reserved	0x0260 to 0x03FC	
	UD2INTNAK	0x0330	UDC2 INT_NAK Register
	UD2INTNAKMSK	0x0334	UDC2 INT_NAK_MASK Register
	Reserved	0x0338 to 0x03FC	

The following sections describe the registers in UDC2 in detail. The descriptions of each bit have the following meanings:

(Example)

EPx_Datasize (EPx_Datasize register)

Address =(0xF440_0000)+ (0000)

Bit	Bit Symbol (Note 1)	Type (Note2)	Reset Value (Note 3)	Description
[31:11]	-	-	Undefined	Read undefined. Write as zero.
[10:0]	size[10:0]	RO	0y0000000000, (-)(-)(-)(-)(-)(-) (-)(-)(-)(-)	Indicates the number of valid data bytes stored in EPx_FIFO. In the Dual Packet mode, the number of data bytes to be accessed first will be shown.

Note 1: Bit Symbol

Name of each bit.

Those shown as a hyphen are Reserved bits which cannot be written. "0" will be returned when read.

Note 2: Register properties

RO	: Read only. Cannot be written.
----	---------------------------------

WO : Write only. "0" will be returned when read.

R/W : Read/Write

Note 3: Reset value

"Reset Value" is the initial value for the bit after resetting (1 or 0). Initial values after "USB_RESET" are shown in parentheses and those bits which will not be reset by "USB_RESET" are indicated with a hyphen.

The following subsections describe each register in detail.

- (1) Device Status Registers
- 1. UD2ADR (Address-State register)

Address =(0xF440_0000)+ (0x0200)

Dit	Bit	Tuno	Reset	Description
DIL	Symbol	туре	Value	Description
[31:16]	-	_	Undefined	Read undefined. Write as zero.
[15]	stage_err	RO	ОуО	 Indicates whether Control transfers finished normally up to the STATUS-Stage. 1: Received the Setup-Token in DATA-Stage/STATUS-Stage or "STALL" transmission. 0: Other than above conditions
[14]	ep_bi_mode	R/W	0у0, (-)	Selects whether to use the endpoint bidirectionally as a driver. Note2) 0: Single direction 1: Dual direction
[13:12]	cur_speed[1:0]	RO	0y01,(Note1)	Indicates the present transfer mode on the USB bus.00: (Reserved)01: Full-Speed10: High-Speed11: (Reserved)
[11]	Suspend	RO	0у0	Indicates whether or not UDC2 is in suspended state. 0: Normal, 1: Suspended
[10]	Configured	R/W	0у0	Sets the present device state of UDC2.
[9]	Addressed	R/W	0у0	100: Configured (to be set when the Set_config request is
[8]	Default	R/W	0y0,(1)	received) 010: Address (to be set when ConfigurationVallue=0 was specified by the Set_configuration request after the Set_address request finished normally and in the Address/Configured state) 001:Default (to be set when the DeviceAddress=0 was specified by the Set_address request in Default/Address state (this will be set by the hardware when USB_RESET is received))
[7]	-	_	Undefined	Read undefined. Write as zero.
[6:0]	dev_adr[6:0]	R/W	0y000000	Sets the device address assigned by the host.

Note1: The initial value of cur_speed[1:0] (bits [13:12]) after USB_RESET is "10b" (high-Speed) if the Chirp sequencehas been successful, and "01b" (Full-Speed) if it has failed.

Note2 : About TMPA910CRA, EP0 : single direction / dual direction . EP1, EP2 and EP3 : single direction. only

[Explanation]

a. <stage_err>

"1" will be set when the Setup-Token is received in DATA-Stage/STATUS-Stage or in the case of "STALL" transmission. When set, it will be cleared when the next Control transfer has been finished normally.

1: Received the Setup-Token in DATA-Stage/STATUS-Stage or "STALL" transmission.

0: Other than above conditions

b. <ep_bi_mode>

Setting this bit to "1" will enable an endpoint number to be used bidirectionally in USB communication. Please note that the endpoint works as two endpoints as hardware when used bidirectionally.

- 0: Single direction
- 1: Dual direction
- c. <configured>,<addressed>,<default>

Sets the present device state of UDC2. This should be set in accordance with the request received from the host. Please note that you should not set "1" to more than one bit.

- 100: Configured (to be set when the Set_config request is received)
- 010: Address (to be set when ConfigurationVallue=0 was specified by the Set_configuration request after the Set_address request finished normally and in the Address/Configured state)
- 001: Default (to be set when the DeviceAddress=0 was specified by the Set_address request in Default/Address state (this will be set by the hardware when USB_RESET is received))
- d. <dev_adr[6:0]>

The device address should be set after Set_address has finished normally (after STATUS-Stage finished normally).

Address =(0xF440_0000)+ (0x0204)

Bit	Bit	Туре	Reset	Description
	Symbol		value	
[31:16]	-	_	Undefined	Read undefined. Write as zero.
[15]	create_sof	R/W	0у0	Sets whether to generate the SOF flag internally when the
				SOF from the host is unavailable due to a bus error.
				0: Generates no flag
				1: Generates a flag
[14]	-	-	Undefined	Read undefined. Write as zero.
[13:12]	f_status[1:0]	RO	0y10,(-)(-)	Indicates the status of the frame number.
				00:before
				01:Valid
				10: Lost
[11]	-	-	Undefined	Read undefined. Write as zero.
[10:0]	frame[10:0]	RO	0y00000000000	Indicates the frame number when SOF is received.

2. UD2FRM (Frame register)

[Explanation]

a. <create_sof>

Sets whether to generate the SOF flag internally when the SOF from the host is unavailable due to a bus error. This should be set if you wish to synchronize frames by SOF in Isochronous transfers. If enabled, the internal frame time counter will operate and the SOF flag will be output even when the SOF-Token could not be received successfully.

- 0: Generates no flag
- 1: Generates a flag
- b. <f_status[1:0]>

Indicates the status of the frame number.

- 00:before: Will be set if the Micro SOF/SOF was not received when 1frame-time(HS:125us/FS:1ms) has passed after receiving the Micro SOF/SOF when Create_sof is enabled. In the Frame register, the frame number received in the last Micro SOF/SOF has been set.
- 01:Valid: Will be set when the Micro SOF/SOF was received. Indicates a valid frame number is set in the Frame register.
- 10: Lost: Indicates that the frame number maintained by the host is not synchronized with the value of Frame register. Accordingly, this will be set in the following cases:
 - 1. When the system was reset or suspended

2. If the next Micro SOF/SOF was not received when 2frame-time (HS:125x2us/FS:2ms) has passed after receiving the previous Micro SOF/SOF when Create_sof is enabled.

However, since the same frame number of Micro SOF will be sent eight times in a row in High-Speed transfers, the frame number sent from the host may seem to be synchronized with the value of Frame register even in the Lost status. Please note, however, they are not actually synchronized when considering the frame number and the number of times that frame number was sent. Also note that transition to the Lost status only happens after the system was reset or when it is suspended if Create_sof is disabled.

c. <frame[10:0]>

This will be valid when f_status is "valid." Should not be used if f_status is "before" or "lost" as correct values are not set.

3. UD2TMD (USB-Testmode register)

Address =(0xF440_0000)+ (0x0208)

Bit	Bit Symbol	Туре	Reset Value	Description
[31:13]	-	-	Undefined	Read undefined. Write as zero.
[12]	packet	RO	0y0	Indicates the test mode currently set.
[11]	se0_nak	RO	0y0	0001: test_j
[10]	test_k	RO	0у0	0010: test_k
[9]	test_j	RO	0у0	0100: se0_nak 1000: test_packet
[8]	-	_	Undefined	Read undefined. Write as zero.
[7:0]	t_sel[7:0]	R/W	0x00	Sets the test mode.

[Explanation]

Indicates the test mode currently set.

0001: test_j

0010: test_k

0100: se0_nak

1000: test_packet

b. $<t_sel[7:0]>$

Sets the test mode. Set the value of TestModeSelectors specified by Set_Feature.

Rit	Bit	Turne	Reset	Description
DIL	Symbol	туре	Value	Description
[31:16]	-	-	Undefined	Read undefined. Write as zero.
[15]	int_toggle	R/W	0у0	Makes the DATA-PID toggle when Handshake is not received in
				Interrupt-IN transfers.
				1: Toggle when not received as well
[14:12]	-	_	Undefined	Read undefined. Write as zero.
[11:8]	rx_nullpkt_ep[3:0]	RO	0y0000,	Indicates the receiving endpoint when Zero-Length data is
			(-)(-)(-)	received.
[7:4]	ep[3:0]	R/W	0y0000	Sets the endpoint where the command to be issued will be valid.
[3:0]	com[3:0]	R/W	0y0000	Sets the command to be issued for the endpoint selected in
				ep[3:0].
				0x0: (Reserved)
				0x1: Setup_Fin
				0x2: Set_DATA0
				0x4: EP_Stall
				0x5: EP_Invalid
				0x6: (Reserved)
				0x7: EP_Disable
				0x8: EP_Enable
				0x9: All_EP_Invalid
				0xA: USB_Ready
				0xB: Setup_Received
				0xC: EP_EOP
				0xD: EP_FIFO_Clear
				0xE: EP_TX_0DATA
				0xF: (Reserved)

4. UD2CMD (Command register)

Address =(0xF440_0000)+ (0x020C)

[Explanation]

a. <int_toggle>

Makes the DATA-PID toggle when Handshake is not received in Interrupt-IN transfers.

0: Do not toggle when not received

1: Toggle when not received as well

b. <rx_nullpkt_ep[3:0]>

When the "int_rx_zero" flag is asserted, read this bit to check to which endpoint it was asserted. Once Zero-Length data is received and the endpoint number is retained, the value of this register will be retained until Zero-Length data is received next time or hardware reset (reset_x=0) is made. If there is more than one endpoint of OUT direction, this bit will be renewed each time Zero-Length data is received. In that case, INT_RX_DATA0 register can be used to identify which endpoint has received the data.

c. <ep[3:0]>

Sets the endpoint where the command to be issued will be valid. (Do not specify an endpoint not existing.)

d.	<com[3:0]></com[3:0]>	
	Sets the command to b	be issued for the endpoint selected in ep[3:0].
	0x0: (Reserved)	Not to be specified.
	0x1: Setup_Fin	(Should be issued only for EP0.)
		This is a command for setting the end of DATA-Stage in Control transfers. As UDC2 continues to send back "NAK" to the STATUS-Stage until this command is issued, the command should be issued when the DATA-Stage finishes or INT_STATUS_NAK was received.
		Note:Issue this command when the stage ended or INT_STATUS_NAK was received.
	0x2: Set_DATA0 0x3: EP_Reset	 (Can be issued to EPs except EP0. Should not be issued to EP0.) A command for clearing toggling of endpoints. While toggling is automatically updated by UDC2 in normal transfers, this command should be issued if it needs to be cleared by software. (Can be issued to any EP.)
		A command for clearing the data and status of endpoints. Issue this
		command when you want to reset an endpoint in such cases as setting endpoints of Set_Configuration and Set_Interface or resetting the endpoint by Clear_Feature. This command will reset the following 5 points:
		1. Clear the bit13-12(toggle) of EP0/EPx_Status register to DATA0
		2.Clear the bit11-9(status)of EP0/EPx_Status register to Ready
		3.Clear the bit12(dset) of EP0/EPx_MaxPacketSize register and clear the EP0/EPx_Datasize register
		4.Clear the bit15(tx_0data) of EP0/EPx_MaxPacketSize register
		5.Clear the bit15(tx_0data) of EP0/EPx_MaxPacketSize register
	Ov4: FP Stall	UDC2 makes toggling control by hardware for every transfer. If this command is issued when a transfer of endpoints is in progress, toggling of the relevant endpoint will also be cleared which may cause the synchronization with the host be lost. As in the case of receiving requests as mentioned above, the command should be issued when it is possible to make synchronization with the host. (Can be issued to any EP.)
	0x4. EI _Stall	A command for setting the status of endpoints to "Stall " Issue this
		command when you want to set the status of an endpoint to "Stall" in such cases as stalling an endpoint by Set_Feature. When this command is issued, "STALL" will be always sent back for the endpoint set. However, the Stall status of EPO will be cleared when the Setup-Token is received.
		This command should not be issued for endpoints where Isochronous
		transfers are used, since transfers are made without Handshake in
		Isochronous transfers. Even if this command is issued for endpoints
		where Isochronous transfers are set (by bit[3:2]t_type of EPx_Status register). "STALL" will not be sent back.
	0x5: EP Invalid	(Can be issued to EPs except EP0. Should not be issued to EP0.)
	_	A command for setting the status of endpoints to "Invalid." Issue this command when you want to set endpoints not used to be unavailable when setting by Set_Configuration or Set_Interface. When this command is issued, the endpoints set will make no response. This command should not be issued while transfers of each endpoint are in progress.

Ore: (Bosonwod)	Not to be specified
0x7: EP_Disable	(Can be issued to EPs except EP0. Should not be issued to EP0.) A command for making an endpoint disabled. When this command is issued. "NAK" will be always sent back from the endpoint set. This
	command should not be issued for endpoints where Isochronous transfers are used, since transfers are made without Handshake in Isochronous transfers. Even if this command is issued for endpoints
	where Isochronous transfers are set (by bit[3:2]t_type of EPx_Status
0x8: EP Enable	register), "NAK" will not be sent back. (Can be issued to EPs except EP0. Should not be issued to EP0.)
	A command for making an endpoint enabled. Issue this command to
0x9:All EP Invalid	cancel the disabled status set by "EP_Disable" command. (Setting for EP is invalid)
	A command for setting the status of all endpoints other than EP0 to
	"Invalid." Issue this command when you want to apply the "EP_Invalid" command for all endpoints. Issue this command when processing Set Configuration and Set Interface like the "FP Invalid"
	command.
0xA: USB_Ready	(Should be issued only for EP0.)
	A command for making connection with the USB cable. Issue this command at the point when communication with the host has become effective after confirming the connection with the cable. Pull-Up of DP will be made only after this command is issued, and the status of cable connection will be sent to the host.
	Please note that the device state of UDC2 (bit[10:8] of Address-state
0xB:	register) will be set to "Default" when this command was issued. (Should be issued only for EP0.)
Setup_Received	A command for informing UDC2 that the SETUP-Stage of a Control
	transfer was recognized. Issue this command after accepting the INT_SETUP interrupt and the request code was recognized. As UDC2 continues to send back "NAK" to the DATA-Stage/STATUS-Stage until this command is issued, the command should be issued at the end of the INT_SETUP interrupt processing routine.
0xC: EP_EOP	(Can be issued to any EP.) A command for informing UDC2 that the transmit data has been
0xD:	written. Issue this command when transmitting data with byte size smaller than the maximum transfer bytes (FIFO capacity of the endpoint or MaxPacketSize, whichever smaller). Issuing this command will set the Dataset flag and the data will be sent back to IN-Token from the host. It should not be used when setting Zero-Length data or data of MaxPacketSize. (Can be issued to any EP.)
EP_FIFO_Clear	A command for clearing the data of an endpoint. The bit12(dset) of
	EPx_MaxPacketSize register and the EPx_Datasize register will be
	the data currently stored in the FIFO before transmitting the data to
	the host and set the latest data, for instance in Interrupt transfers. If
	this command is issued while accessing the Endpoint-I/F, the FIFO of
	command, epx val of Endpoint-I/F should be set to "0" before issuing.

0xE: EP_TX_0DATA(Can be issued to any EP.)
A command for setting Zero-Length data to an endpoint. Issue this
command when you want to transmit Zero-Length data. In the case of
transmitting Zero-Length data in Bulk-IN transfers and others to
indicate the final transfer, read EPx_Datasize register and confirm it
is '0' (no data exists in the FIFO of EPx) before setting this command.
In the case of writing data from Endpoint-I/F, set this command after
the data was written and epx_val became "0." When this command was
set, bit15(tx_0data) of EPx_MaxPacketSize register of the endpoint
will be set.Ensure that this tx_0data becomes "0" before setting the next data. In
Isochronous-IN transfers, Zero-Length data will be automatically
transmitted to the IN-Token if no data is set in the FIFO of the
endpoint. This command should not be issued in that case.0xF: (Reserved)Not to be specified.

Settings for the following commands will be suspended when issued during a USB transfer, which will be executed after the USB transfer has finished. Suspension of the command will take place for each endpoint.

0x2: Set_DATA0 0x3: EP_Reset 0x4: EP_Stall 0x5: EP_Invalid 0x7: EP_Disable 0x8: EP_Enable 0x9: All_EP_Invalid 0xD: EP_FIFO_Clear 0xE: EP_TX_0DATA

Therefore, when commands were issued successively for the same endpoint while a USB transfer is in progress, commands will be overwritten and only the one last issued will be valid. If you need to issue commands to an endpoint successively, poll Epx_Status/Epx_Datasize register to confirm that the command has become valid before issuing next ones. Also, when making an access to the Endpoint-I/F immediately after clearing the FIFO using the EP_Reset/EP_FIFO_Clear command, poll EPx_Datasize register to confirm that the command has before issuing the access to the Endpoint-I/F.

For Endpoint 0, the following commands will be invalid until the Setup_Received command is issued after receiving the Setup-Token:

0x1: Setup_Fin 0x2: Set_DATA0 0x3: EP_Reset 0x4: EP_Stall 0xC: EP_EOP 0xD: EP_FIFO_Clear 0xE: EP_TX_0DATA

TENTATIVE

When the "EP_Stall" command was set to EPx, "Stall" will be set to the bit[11:9](status) of EPx_Status register. When EP_Disable was set, "1" will be set to the bit8(disable) of EPx_Status register. When these two commands (EP_Stall and EP_Disable) were set to the same EPx and the status becomes "Stall" with disable="1," "STALL" will be transmitted in the transfer.

When the "EP_Invalid" command was set to EPx, "Invalid" will be set to the status of EPx_Status register. When the two commands (EP_Invalid and EP_Disable) were set to the same EPx and the status becomes "Invalid" with disable="1," no response will be made in the transfer.

When EPx_Status register has disable="1" and EPx_MaxPacketSize register has bit15 (tx_0data)="1," Zero-Length data will be transmitted once in the transfer. After the Zero-Length data was successfully transferred, "NAK" will be transmitted.

(2) Setup-Data Storage Registers

These registers overwrite the Setup Data they received each time after receiving a Setup Token. When the INT_SETUP interrupt has occurred, read these registers to determine the type of the request.

1. UD2BRQ (bRequest-bmRequestType register)

Address =(0xF440_0000)+ (0x0210)

Bit	Bit Symbol	Туре	Reset Value	Description
[31:16]	-	-	Undefined	Read undefined. Write as zero.
[15:8]	request[7:0]	RO	0x00	Indicates the data of the second byte received with the Setup-Token (bRequest field).
[7]	dir	RO	0у0	Indicates the data of the first byte received with the Setup-Token (bRequestType field). Direction of Control transfers 0: Control-WR transfer 1: Control-RD transfer
[6:5]	req_type[1:0]	RO	0у00	Type of requests00: Standard request01: Class request10: Vendor request11: (Reserved)
[4:0]	recipient[4:0]	RO	0y00000	Requests are received by:00000: Device00001: Interface00010: Endpoint00011: etc.00100-11111: (Reserved)

[Explanation]

a. <request[7:0]>

Indicates the data of the second byte received with the Setup-Token (bRequest field).

b. <dir>

Indicates the data of the first byte received with the Setup-Token (bRequestType field). Direction of Control transfers

- 0: Control-WR transfer
- 1: Control-RD transfer
- c. <req_type[1:0]>
 - Type of requests
 - 00: Standard request
 - 01: Class request
 - 10: Vendor request
 - 11: (Reserved)

d. <recipient[4:0]>
Requests are received by:
00000: Device
00001: Interface
00010: Endpoint
00011: etc.
00100-11111: (Reserved)

2. UD2WVL (wValue register)

Address =(0xF440_0000)+ (0x0214)

Bit	Bit Symbol	Туре	Reset Value	Description
[31:16]	-	-	Undefined	Read undefined. Write as zero.
[15:8]	value[15:8]	RO	0x00	Indicates the data of the fourth byte received with the Setup-Token (wValue(H) field).
[7:0]	value[7:0]	RO	0x00	Indicates the data of the third byte received with the Setup-Token (wValue(L) field).

[Explanation]

a. <value[15:8]>

Indicates the data of the fourth byte received with the Setup-Token (wValue(H) field).

b. <value[7:0]>

Indicates the data of the third byte received with the Setup-Token (wValue(L) field)

3. UD2WIDX (wIndex register)

Address =(0xF440_0000)+ (0x0218)

Bit	Bit Symbol	Туре	Reset Value	Description
[31:16]	-	_	Undefined	Read undefined. Write as zero.
[15:8]	index[15:8]	RO	0x00	Indicates the data of the sixth byte received with the Setup-Token (wIndex(H) field).
[7:0]	index[7:0]	RO	0x00	Indicates the data of the fifth byte received with the Setup-Token (wIndex(L) field).

[Explanation]

a. <index[15:8]>

Indicates the data of the sixth byte received with the Setup-Token (wIndex(H) field).

b. <index[7:0]>

Indicates the data of the fifth byte received with the Setup-Token (wIndex(L) field).

4. UD2WLGTH (wLength register)

Address =(0xF440_0000)+ (0x021C)

Bit	Bit Symbol	Туре	Reset Value	Description
[31:16]	-	-	Undefined	Read undefined. Write as zero.
[15:8]	length[15:8]	RO	0x00	Indicates the data of the eighth byte received with the Setup-Token (wLength(H) field).
[7:0]	length[7:0]	RO	0x00	Indicates the data of the seventh byte received with the Setup-Token (wLength(L) field).

[Explanation]

a. <length[15:8]>

Indicates the data of the eighth byte received with the Setup-Token (wLength(H) field).

b. < length[7:0] >

Indicates the data of the seventh byte received with the Setup-Token (wLength(L) field).

(3) Interrupt Control registers

1. UD2INT (INT register)

Address =(0xF440_0000)+ (0x0220)

Bit	Bit	Type	Reset	Description
Dit	Symbol	турс	Value	Description
[31:16]	-	-	Undefined	Read undefined. Write as zero.
[15]	m_nak	R/W	0y0	Sets whether or not to output "i_nak(bit7)" to the INT_NAK pin.
				0: Enable (output) 1: Disable (no output)
[14]	m_ep	R/W	0у0	Sets whether or not to output "i_ep(bit6)" to the INT_EP pin. 0: Enable (output) 1: Disable (no output)
[13]	m_ep0	R/W	0у0	Sets whether or not to output "i_ep0(bit5)" to the INT_EP0 pin. 0: Enable (output) 1: Disable (no output)
[12]	m_sof	R/W	0у0	Sets whether or not to output "i_sof(bit4)" to the INT_SOF pin.
[11]	m_rx_data0	R/W	0у0	Sets whether or not to output "i_rx_data0(bit3)" to the INT_RX_ZERO pin. 0: Enable (output) 1: Disable (no output)
[10]	m_status	R/W	0у0	Sets whether or not to output "i_status(bit2)" to the INT_STATUS pin. 0: Enable (output) 1: Disable (no output)
[9]	m_status_nak	R/W	ОуО	Sets whether or not to output "i_status_nak(bit1)" to the INT_STATUS_NAK pin. 0: Enable (output) 1: Disable (no output)
[8]	m_setup	R/W	0у0	Sets whether or not to output "i_setup(bit0)" to the INT_SETUP pin. 0: Enable (output) 1: Disable (no output)
[7]	i_nak	R/W	0y0	This will be set to "1" when NAK is transmitted by EPs except EP0.
[6]	i_ep	R/W	0у0	This will be set to "1" when transfers to EPs other than EP0 have successfully finished
[5]	i_ep0	R/W	0у0	This will be set to "1" when the transfer to EP0 has successfully finished.
[4]	i_sof	R/W	0у0	This will be set to "1" when the SOF-token is received or after 1 frame-time was counted in the create sof mode.
[3]	i_rx_data0	R/W	0y0	This will be set to "1" when Zero-Length data is received.
[2]	i_status	R/W	0у0	This will be set to "1" when the STATUS-Stage has successfully finished in Control transfers at EP0.
[1]	i_status_nak	R/W	0y0	This will be set to "1" when the packet of STATUS-Stage is received in the Control-RD transfers at EP0.
[0]	i_setup	R/W	0у0	This will be set to "1" when the Setup-token was received in Control transfers at EP0.

Note: The lower byte (bits7-0) will be cleared by writing "1" to the relevant bits.

[Explanation]

a. <i_nak>

This will be set to "1" when NAK is transmitted by EPs except EP0.

(EPs to which you wish to output the INT_NAK flag can be selected using INT_NAK_MASK register). Writing "1" to this bit will make each bit of INT_NAK register cleared to "0."

b. <i_ep>

This will be set to "1" when transfers to EPs other than EP0 have successfully finished

(EPs to which you wish to output the flag can be selected using INT_EP_MASK register). Writing "1" to this bit will make each bit of INT_EP register cleared to "0."

c. <i_rx_data0>

This will be set to "1" when Zero-Length data is received. (EPs to which you wish to output the flag can be selected using INT_EP_MASK register). Writing "1" to this bit will make each bit of INT_RX_DATA0 register cleared to "0." This will not be set to "1" when Zero-Length data is received in the STATUS-Stage of Control-RD transfers.

d. <i_status>

This will be set to "1" when the STATUS-Stage has successfully finished in Control transfers at EPO. (This will be set to "1" when Zero-Length data is received in the STATUS-Stage and successfully finished in Control-RD transfers, and when Zero-Length data is transmitted in the STATUS-Stage and successfully finished in Control-WR transfers.)

e. <i_status_nak>

This will be set to "1" when the packet of STATUS-Stage is received in the Control-RD transfers at EP0. When this bit was set which means the DATA-Stage has finished, set the "Setup-Fin" command by the Command register to make the stage of UDC2 proceed to the STATUS-Stage. When receiving the data having the size of an integral multiple of MaxPacketSize (64 bytes: High-Speed) in the DATA-Stage of Control-WR transfers, Zero-Length data may be received to indicate the end of the DATA-Stage. After that, as the end of the DATA-Stage can be recognized by this i_status_nak when receiving the In-token in the STATUS-Stage, make UDC2 proceed to the STATUS-Stage.

Bit	Bit Symbol	Туре	Reset Value	Description
[31:16]	-	-	Undefined	Read undefined. Write as zero.
[15]	Reserved	R/W	0y0	Flags to indicate the transmitting/receiving status of EPs (except
[14]	Reserved	R/W	0y0	for EP0)
[13]	Reserved	R/W	0у0	0: No data transmitted/received
[12]	Reserved	R/W	0y0	1: Some data transmitted/received
[11]	Reserved	R/W	0y0	
[10]	Reserved	R/W	0y0	
[9]	Reserved	R/W	0y0	
[8]	Reserved	R/W	0y0	
[7]	Reserved	R/W	0y0	
[6]	Reserved	R/W	0y0	
[5]	Reserved	R/W	0y0	
[4]	Reserved	R/W	0y0	
[3]	i_ep3	R/W	0y0	
[2]	i_ep2	R/W	0y0	
[1]	i_ep1	R/W	0y0	
[0]	-	-	Undefined	Read undefined. Write as zero.

2. UD2INTEP (INT_EP register)

Address =(0xF440_0000)+ (0x0224)

Note: Will be cleared by writing "1" to the relevant bits.

[Explanation]

a. <i_ep[3:1]>

Flags to indicate the transmitting/receiving status of EPs (except for EP0)

The relevant bit will be set to "1" when the transfer to EPs other than EP0 has successfully finished. (EPs to which you wish to output the int_ep flag can be selected using INT_EP_MASK register.)

0: No data transmitted/received

1: Some data transmitted/received

3. UD2INTEPMSK (INT_EP_MASK register)

Address =(0xF440_0000)+ (0x0228)

Bit	Bit Symbol	Туре	Reset Value	Description
[31:16]	_	_	Undefined	Read undefined. Write as zero.
[15]	Reserved	R/W	0y0	Mask control of flag output
[14]	Reserved	R/W	0y0	0: Enable (output)
[13]	Reserved	R/W	0y0	1: Disable (no output)
[12]	Reserved	R/W	0y0	
[11]	Reserved	R/W	0y0	
[10]	Reserved	R/W	0y0	
[9]	Reserved	R/W	0y0	
[8]	Reserved	R/W	0y0	
[7]	Reserved	R/W	0y0	
[6]	Reserved	R/W	0y0	
[5]	Reserved	R/W	0y0	
[4]	Reserved	R/W	0y0	
[3]	m_ep3	R/W	0y0	
[2]	m_ep2	R/W	0y0	
[1]	m_ep1	R/W	0y0	
[0]	m_ep0	R/W	0y0	

Note: Will be cleared by writing "1" to the relevant bits.

[Explanation]

a. <m_ep[3:0]>

Mask control of flag output

Sets whether or not to output flags of INT_EP and INT_RX_DATA0 registers to the int_ep pin and the int_rx_zero pin respectively. When an EP is masked, each bit of INT_EP register will be set when the transfer of the relevant EP has successfully finished, but the int_ep pin will not be asserted. Similarly, when an EP is masked, each bit of INT_RX_DATA0 register will be set when Zero-Length data is received at the relevant EP, but the int_rx_zero pin will not be asserted. However, bit0 is only valid for INT_RX_DATA0 register.

Please note that bit0 is set to "1" by default. If you want to output the reception of Zero-Length data by Endpoint0 to the int_rx_zero pin, set "0."

0: Enable (output)

1: Disable (no output)

An example of using i_ep/INT_EP/INT_EP_MASK is provided below for Endpoints 1to 3.

1. When using Endpoint 1 and Endpoint 2 with DMA (Endpoint I/F) and using only Endpoint3 via PVCI-I/F

After initialization, set "1" to the bit1 and 2 of INT_EP_MASK register to mask them. Interrupt responses to EP3 will be identical whether bit3 of INT_EP register or bit6 of INT register is used. It may be better to use INT register alone in terms of efficiency since checking only one register will do. Use INT register for interrupt responses.

INT	bit6:	Used as the interrupt source of EP3. This bit is also used when
		clearing.
	bit14:	Used as the mask of the interrupt source of EP3.
INT_EP	bit1:	Should be ignored.
	bit2:	Should be ignored.
	bit3:	Should be ignored.
INT_EP_MASK	bit1:	Set "1" to mask the bit.
	bit2:	Set "1" to mask the bit.
	bit3:	Should be left as "0" without making any change.

2. When you have more than one EPX to be controlled by PVCI-I/F in addition to EP0

The following descriptions are based on the assumption that EP2 and EP3 are controlled by PVCI I/F, while EP1 uses DMA.

After initialization, set "1" to INT_EP_MASK register of the EP to be used with DMA to mask it. When making interrupt responses for more than one EPs, be sure to use INT_EP register. Ignore i_ep of INT register and be sure to enable "0" for m_ep.

Do not clear the source using i_ep of INT register. After the interrupt has occurred, you need to check INT and INT_EP registers to determine the source. When clearing the source, use each source bit of INT_EP interrupt to clear it.

INT	bit6:	Should be ignored. Do not clear the source using this bit.
	bit14:	Should be left as "0" without making any change.
INT_EP	bit1:	Should be ignored.
	bit2:	Used as the interrupt source of EP2. This bit is also used when clearing.
	bit3:	Used as the interrupt source of EP3. This bit is also used when clearing.
INT_EP_MASK	bit1:	Set "1" to mask the bit.
	bit2:	Used as the mask of the interrupt source of EP2.
	bit3:	Used as the mask of the interrupt source of EP3.

4. UD2INTRX0 (INT_RX_DATA0 register)

Address =(0xF440_0000)+ (0x022C)

Bit	Bit Symbol	Туре	Reset Value	Description
[31:16]	-	_	Undefined	Read undefined. Write as zero.
[15]	Reserved	R/W	0y0	Flags for indicating Zero-Length data received at EP
[14]	Reserved	R/W	0y0	0: No Zero-Length data received
[13]	Reserved	R/W	0y0	1: Zero-Length data received
[12]	Reserved	R/W	0y0	
[11]	Reserved	R/W	0y0	
[10]	Reserved	R/W	0y0	
[9]	Reserved	R/W	0y0	
[8]	Reserved	R/W	0y0	
[7]	Reserved	R/W	0y0	
[6]	Reserved	R/W	0y0	
[5]	Reserved	R/W	0y0	
[4]	Reserved	R/W	0y0	
[3]	rx_d0_ep3	R/W	0y0	
[2]	rx_d0_ep2	R/W	0y0	
[1]	rx_d0_ep1	R/W	0y0	
[0]	rx_d0_ep0	R/W	0y0	

Note: Will be cleared by writing "1" to the relevant bits.

[Explanation]

a. <rx_d0_ep[3:0]>

Flags for indicating Zero-Length data received at EP

The relevant bit will be set to "1" when EPs have received Zero-Length data. (EPs to which you wish to output the int_rx_zero flag can be selected using INT_EP_MASK register.)

For bit0 (Endpoint0), it will be set to "1" only when Zero-Length data is received in the DATA-Stage while processing the request. Since it will not be set when Zero-Length data is received in the STATUS-Stage, use the int_status flag.

0: No Zero-Length data received

1: Zero-Length data received

Bit	Bit Symbol	Туре	Reset Value	Description
[31:16]	-	_	Undefined	Read undefined. Write as zero.
[15]	Reserved	R/W	0y0	Flags to indicate the status of transmitting NAK at EPs
[14]	Reserved	R/W	0y0	(except for EP0)
[13]	Reserved	R/W	0y0	
[12]	Reserved	R/W	0y0	0: No NAK transmitted
[11]	Reserved	R/W	0y0	
[10]	Reserved	R/W	0у0	
[9]	Reserved	R/W	0у0	
[8]	Reserved	R/W	0у0	
[7]	Reserved	R/W	0у0	
[6]	Reserved	R/W	0y0	
[5]	Reserved	R/W	0y0	
[4]	Reserved	R/W	0y0	
[3]	i_ep3	R/W	0y0	
[2]	i_ep2	R/W	0y0	
[1]	i_ep1	R/W	0y0	
[0]	-	-	Undefined	Read undefined. Write as zero.

5. UD2INTNAK (INT_NAK register)

Address =(0xF440_0000)+ (0x0330)

Note: Will be cleared by writing "1" to the relevant bits.

[Explanation]

a. <i_ep[15:1]>

Flags to indicate the status of transmitting NAK at EPs (except for EP0)

The relevant bit will be set to "1" when NAK is transmitted by EPs other than EP0. (EPs to which you wish to output the INT_NAK flag can be selected using INT_NAK_MASK register.)

0: No NAK transmitted

1: NAK transmitted

6. UD2INTNAKMSK (INT_NAK_MASK register)

Address =(0xF440_0000)+ (0x0334)

Bit	Bit Symbol	Туре	Reset Value	Description
[31:16]	-	_	Undefined	Read undefined. Write as zero.
[15]	Reserved	R/W	0y0	Mask control of flag output
[14]	Reserved	R/W	0y0	0: Enable (output)
[13]	Reserved	R/W	0y0	1: Disable (no output)
[12]	Reserved	R/W	0y0	
[11]	Reserved	R/W	0y0	
[10]	Reserved	R/W	0y0	
[9]	Reserved	R/W	0y0	
[8]	Reserved	R/W	0y0	
[7]	Reserved	R/W	0y0	
[6]	Reserved	R/W	0y0	
[5]	Reserved	R/W	0y0	
[4]	Reserved	R/W	0y0	
[3]	m_ep3	R/W	0y0	
[2]	m_ep2	R/W	0y0	
[1]	m_ep1	R/W	0y0	
[0]	-	-	Undefined	Read undefined. Write as zero.

Note: Will be cleared by writing "1" to the relevant bits.

[Explanation]

a. <m_ep[3:1]>

 $Mask\ control\ of\ flag\ output$

Sets whether or not to output flags of INT_NAK register to the int_nak pin respectively. When EPs are masked, each bit of INT_NAK register will be set when NAK is transmitted in the transfer of the relevant EP, but the int_nak pin will not be asserted. Please note that the default value of m_ep3~m_ep1 is "1" and no int_nak interrupt will occur unless the mask bit of this register is cleared.

0: Enable (output)

1: Disable (no output)

- (4) EP0 Control/Status Registers
- 1. UD2EP0MSZ (EP0_MaxPacketSize register)

Address =(0xF440_0000)+ (0x0230)

Bit	Bit Symbol	Туре	Reset Value	Description
[31:16]	-	-	Undefined	Read undefined. Write as zero.
[15]	tx_0data	RO	0у0	When the "EP_TX_0DATA" command is issued to EP0 by Command register, this bit will be set to "1" which will be cleared to "0" after the Zero-Length data has been transmitted.
[14:13]	-	-	Undefined	Read undefined. Write as zero.
[12]	dset	R/W	0у0,(-)	Indicates the status of EP0_FIFO. It will be cleared to '0' when the Setup-Token is received. 0: No valid data exists 1: Valid data exists
[11:7]	-	-	Undefined	Read undefined. Write as zero.
[6:0]	max_pkt[6:0]	R/W	0y1000000, (-)(-)(-)(-)(-)(-)(-)	Sets MaxPacketSize of EP0.

[Explanation]

a. <tx_0data>

When the "EP_TX_0DATA" command is issued to EP0 by Command register, this bit will be set to "1" which will be cleared to "0" after the Zero-Length data has been transmitted.

b. <dset>

Indicates the status of EP0_FIFO. It will be cleared to '0' when the Setup-Token is received.

0: No valid data exists

1: Valid data exists

c. <max_pkt[6:0]>

Sets MaxPacketSize of EP0.

2. UD2EP0STS (EP0_ Status register)

Address =(0xF440_0000)+ (0x0234)

Bit	Bit Symbol	Туре	Reset Value	Description
[31:16]	-	-	Undefined	Read undefined. Write as zero.
[15]	ep0_mask	RO	0у0	0: Data can be written to EP0_FIFO. 1: No data can be written to EP0_FIFO.
[14]	-	-	Undefined	Read undefined. Write as zero.
[13:12]	toggle[1:0]	RO	0у00	Indicates the present toggle value of EP0.00: DATA001: DATA110: (Reserved)11: (Reserved)
[11:9]	status[2:0]	RO	0у000	Indicates the present status of EP0. It will be cleared to "Ready" when the Setup-Token is received. 000: Ready 001: Busy 010: Error 011: Stall 100-111: (Reserved)
[8:0]	-	-	Undefined	Read undefined. Write as zero.

[Explanation]

a. <ep0_mask>

Will be set to "1" after the Setup-Token is received. Will be cleared to "0" when the "Setup_Received" command is issued. No data will be written into the EP0_FIFO while this bit is "1."

0: Data can be written into EP0_FIFO

1: No data can be written into EP0_FIFO

b. <toggle[1:0]>

Indicates the present toggle value of EP0

- 00: DATA0
- 01: DATA1
- 10: (Reserved)
- 11: (Reserved)
- c. <status[2:0]>

Indicates the present status of EP0. It will be cleared to "Ready" when the Setup-Token is received.

000: Ready (Indicates the status is normal)

- 001: Busy (To be set when returned "NAK" in the STATUS-Stage)
- 010: Error (To be set in case of CRC error in the received data, as well as when timeout has occurred after transmission of the data)
- 011: Stall (Returns "STALL" when data longer than the Length was requested in Control-RD transfers and the status will be set. It will be also set when "EP0-STALL" was issued by Command register.)
- 100-111: (Reserved)

3. UD2EP0DSZ (EP0_Datasize register)

Address =(0xF440_0000)+ (0x0238)

Bit	Bit Symbol	Туре	Reset Value	Description
[31:7]	-	_	Undefined	Read undefined. Write as zero.
[6:0]	size[6:0]	RO	0y0000000, (-)(-)(-)(-)(-)(-)(-)	Indicates the number of valid data bytes stored in EP0_FIFO. It will be cleared to when the Setup-Token is received.

[Explanation]

a. <size[6:0]>

Indicates the number of valid data bytes stored in EP0_FIFO. It will be cleared to when the Setup-Token is received.

4. UD2EP0FIFO (EP0_FIFO register)

Address =(0xF440_0000)+ (0x023C)

Bit	Bit Symbol	Туре	Reset Value	Description
[31:16]	-	_	Undefined	Read undefined. Write as zero.
[15:0]	data[15:0]	R/W	Undefined	Used for accessing data from PVCI-I/F to EP0.

[Explanation]

a. <data[15:0]>

Used for accessing data from PVCI-I/F to EP0.

For the method of accessing this register, see "(b)Common bus access to the EP0_FIFO/EPx_FIFO registers (PVCI-I/F)", "(1) Control-RD transfer", and "(3) Control-WR transfer (with DATA-Stage)."

The data stored in this register will be cleared when the request is received (when the INT_SETUP interrupt is asserted).

(5) EP1 Control/Status Registers

1. UD2EP1MSZ (EP1_MaxPacketSize register)

Address =(0xF440_0000)+ (0x0240)

Bit	Bit Symbol	Туре	Reset Value	Description
[31:16]	-	_	Undefined	Read undefined. Write as zero.
[15]	tx_0data	RO	ОуО	When the "EP1_TX_0DATA" command is issued to EP1 by Command register or Zero-Length data has been set at Endpoint-I/F, this bit will be set to "1." It will be cleared to "0" after the Zero-Length data has been transmitted.
[14:13]	-	-	Undefined	Read undefined. Write as zero.
[12]	dset	RO	Note1),Note2)	Indicates the status of EP1_FIFO. 0: No valid data exists 1: Valid data exists
[11]	-	-	Undefined	Read undefined. Write as zero.
[10:0]	max_pkt[10:0]	R/W	0y0000000000 (-)(-)(-)(-)(-)(-) (-)(-)(-)(-)(-)	Sets MaxPacketSize of EP1. Note: See UDC2 Appendix.B for more information.

Note 1: The initial value of dset (bit12) after reset_x is "1" when the Epx is a transmit endpoint, while it is "0" when the Epx is a receive endpoint.

Note 2: The initial value of dset (bit12) after USB_RESET is "1" when the Epx is a transmit endpoint, while it is "Retain" when the Epx is a receive endpoint.

Note 3: Since the register structure is identical for all EPs through EP1 and EP3, only EP1 is described here. Addresses of registers for EP2 can be confirmed in the register map.

[Explanation]

a. <max_pkt[10:0]>

Sets MaxPacketSize of EP1.

Set this when configuring the endpoint when Set_Configuration and Set_Interface are received.

Set an even number for a transmit endpoint. On USB, when MaxPacketSize of a transmit endpoint is an odd number, set an even number to max_pkt and make the odd number of accesses to the endpoint. (For instance, set 1024 to max_pkt when the MaxPacketSize should be 1023 bytes.)

Note: For details, refer to UDC2 Appendix.B.

2. UD2EP1STS (EP1_Status register)

Address =(0xF440_0000)+ (0x0244)

	Bit	-	Reset	
Bit	Symbol	Туре	Value	Description
[31:16]	-	-	Undefined	Read undefined. Write as zero.
[15]	pkt_mode	R/W	0у0	Selects the packet mode of EP1. 0: Single mode 1: Dual mode
[14]	bus_sel	R/W	0у0	Selects the bus to access to the FIFO of EP1. 0: Common bus access 1: Direct access
[13:12]	toggle[1:0]	RO	0у00	Indicates the present toggle value of EPx.00: DATA001: DATA110: DATA211: MDATA
[11:9]	status[2:0]	RO	0y111	Indicates the present status of EP1. By issuing EP_Reset from Command register, the status will be "Ready." 000: Ready 001: (Reserved) 010: Error 011: Stall 100-110: (Reserved) 111: Invalid
[8]	disable	RO	0у0	Indicates whether transfers are allowed for EP1. 0: Allowed 1: Not Allowed
[7]	dir	R/W	0у0	Sets the direction of transfers for this endpoint. 0: OUT(Host-to-device) 1: IN(Device-to-host)
[6:4]	-	-	Undefined	Read undefined. Write as zero.
[3:2]	t_type[1:0]	R/W	0y00	Sets the transfer mode for this endpoint.00: Control01: Isochronous10: Bulk11: Interrupt
[1:0]	num_mf[1:0]	R/W	0у00	When the Isochronous transfer is selected, set how many timesthe transfer should be made in µ frames.00: 1-transaction01: 2-transaction10: 3-transaction11: (Reserved)

Note 1: Setting for this register should be made when configuring the endpoint when Set_Configuration and Set_Interface are received.

Note 2: Since the register structure is identical for EP1, EP2, EP3, only EP1 is described here.

Addresses of registers for EP2, EP3 can be confirmed in the register map.

For EP1 which is fixed for IN $% \left({{{\rm{Transfers}},\,dir}\left({an \, be set to }^{\rm "1"} \right)} \right)$ only.

For EP2 which is fixed for OUT transfers, dir can be set to "0" only.

For EP3 which is fixed for IN $% \left({{\rm Transfers,\,dir\,\,can\,\,be\,\,set\,\,to\,\,"1"}} \right)$ only.

[Explanation]

a. <pkt_mode>

Selects the packet mode of EP1. Selecting the Dual mode makes it possible to retain two pieces of packet data for the EPx.

- 0: Single mode
- 1: Dual mode
- b. <status[2:0]>

Indicates the present status of EP1. By issuing EP_Reset from Command register, the status will be "Ready."

000: Ready (Indicates the status is normal)

- 001: (Reserved)
- 010: Error (To be set in case a receive error occurred in the data packet, or when timeout has occurred after transmission. However, it will not be set when "Stall" or "Invalid" has been set.)

011: Stall (To be set when "EP-Stall" was issued by Command register.)

- 100-110: (Reserved)
- 111: Invalid (Indicates this endpoint is invalid)
- c. <disable>

Indicates whether transfers are allowed for EP1. If "Not Allowed," "NAK" will be always returned for the Token sent to this endpoint.

- 0: Allowed
- 1: Not Allowed

d. <dir>

Sets the direction of transfers for this endpoint.

- 0: OUT (Host-to-device)
- 1: IN (Device-to-host)

Note 1: EP1 is fixed for IN transfers. Be sure to set to "1".

Note 2: EP2 is fixed for OUT transfers. Be sure to set to "0". EP3 is fixed for IN transfers. Be sure to set to "1".

3. UD2EP1DSZ (EP1_Datasize register)

Address =(0xF440_0000)+ (0x0248)

Bit	Bit Symbol	Туре	Reset Value	Description
[31:11]	-	_	Undefined	Read undefined. Write as zero.
[10:0]	size[10:0]	RO	Oy0000000000, (-)(-)(-)(-)(-)(-) (-)(-)(-)(-)(-)	Indicates the number of valid data bytes stored in EP1_FIFO. In the Dual Packet mode, the number of data bytes to be accessed first will be shown.

Note: Since the register structure is identical for EP1 and EP3, only EP1 is described here.

Addresses of registers for EP2 can be confirmed in the register map.

[Explanation]

a. <size[10:0]>

Indicates the number of valid data bytes stored in EP1_FIFO. In the Dual Packet mode, the number of data bytes to be accessed first will be shown.

4. UD2EP1FIFO (EP1_FIFO register)

Address =(0xF440_0000)+ (0x024C)

Bit	Bit Symbol	Туре	Reset Value	Description
[31:16]	-	_	Undefined	Read undefined. Write as zero.
[15:0]	data[15:0]	_	Undefined	Used for accessing data from PVCI-I/F to EPx.

Note: Since the register structure is identical for EP1 and EP3, only EP1 is described here.

Addresses of registers for EP2 can be confirmed in the register map.

[Explanation]

a. <data[15:0]>

Used for accessing data from PVCI-I/F to EPx.

For the method of accessing this register, see "(b)Common bus access to the EP0_FIFO/EPx_FIFO registers (PVCI-I/F)".

3.16.3.5 USB Device Response

UDC2 initializes the inside of UDC2 and sets various registers when hardware reset is detected, USB_RESET is detected, and an enumeration response is made. This section discusses the operations of UDC2 in each status as well as how to control them externally.

(1) When hardware reset is detected

Be sure to reset hardware for UDC2 after the power-on operation. After the hardware reset, UDC2 initializes internal registers and all endpoints are in the invalid status, which means the device itself is "Disconnected."

In order to make the status of UDC2 to "Default," issue the "USB_Ready" command. Issuing this command will put UDC2 in the "Full-Speed" mode, enable the Pull-Up resistance of DP and notify the host of "Connect."

In this status, only the USB_RESET signal is accepted from the host.

(2) When USB_RESET is detected

UDC2 initializes internal registers when Bus Reset (USB_RESET) is detected on the USB signal, putting the device in the "Default" status. In this status only Endpoint0 gets "Ready" enabling enumeration with the host.

The mode of UDC2 will be "HS-Chirp" and Chirp operation with the host will start. When Chirp from the host is normally received, the mode of UDC2 turns to High-Speed (HS) and subsequent transfers between the hosts will be made in the HS mode. If Chirp from the host is not received, subsequent transfers between the hosts will be made in the Full-Speed (FS) mode.

The current transfer mode can be judged by reading the bit[13:12] of Address-state register.

(3) When "Set_address" request is received

By setting "010b" to the bit[10:8] and the received address value to the bit[6:0] of Address-state register after receiving the "Set_address" request, UDC2 will be in the "Addressed" status. Setting for this register should be made after the Control transfer has successfully finished (after the STATUS-Stage has ended).

Transfers to endpoints other than Endpoint0 cannot be made in this status.

(4) When "Set_configuration" and "Set_interface" requests are received

By setting "0y100" to the bit[10:8] of Address-state register after receiving the "Set_configuration" and "Set_interface" requests, UDC2 will be in the "Configured" status.

In the "Configured" status, you can make transfers to the endpoint to which status settings have been made.

In order to make the endpoint "Ready," the following settings should be made:

- Set the maximum packet size to Epx_MaxPacketSize register
- Set the transfer mode to Epx_Status register
- Issue the EP_Reset command to Command register

Endpoints will be available for transmitting and receiving data after these settings have been made.

Figure 3.16.35 shows the "Device State Diagram".

Figure 3.16.35 Device state diagram

- 3.16.3.6 Flow of Control in Transfers of Endpoints
 - Endpoint 0

Endpoint 0 supports Control transfers and used to make enumeration and other device control operations. Please note that Endpoint 0 can be used in the single packet mode only.

Control transfers consist of the following three stages:

SETUP-Stage DATA-Stage STATUS-Stage

The types of transfer are categorized into the following major types:

- Control-RD transfer
- Control-WR transfer (without DATA-Stage)
- Control-WR transfer (with DATA-Stage)

UDC2 makes control of those three stages by hardware. Flows in each type of transfer are described below.

(1) Control-RD transfer

The flow of control in Control-RD transfers is shown below.

Figure 3.16.36 Flow of control in Control-RD transfer

The following description is based on the assumption that the bit12 (dset) of EP0_MaxPacketSize register is set to "EP0_DATASET flag".

1. SETUP-Stage

UDC2 asserts the INT_SETUP flag when it has received the Setup-Token. This flag can be cleared by writing "1" into the bit0 (i_setup) of INT register. In case flags are combined externally, read the INT register to confirm which flag is asserted and write "1" into the relevant bit.

Then read Setup-Data storing registers (bRequest-bmRequestType, wValue, wIndex, and wLength registers) to determine the request.

Finally, issue the "Setup_Received" command to inform UDC2 that the SETUP-Stage has finished. Since UDC2 does not allow writing data into the Endpoint0-FIFO before this command is issued, it will keep returning "NAK" to the IN-Token from the host until the command is issued.

2. DATA-Stage

Write the data to be transmitted to the IN-Token into the EnpointO-FIFO. If the byte size of the data to send is larger than the MaxPacketSize, divide them into groups of MaxPacketSize before writing. When the number of data reached the MaxPacketSize, the EPO_DATASET flag is asserted.

When the data have been transmitted to the IN-Token from the host with no problem, UDC2 deasserts the EP0_DATASET flag and asserts INT_EP0. Any data remaining to be transmitted should be written into the Endpoint0-FIFO.

If the size of the data to be written is smaller than the MaxPacketSize, issue the "EP_EOP" command to EP0 to inform UDC2 that it is a short packet. With this command, UDC2 recognizes the end of the packet and transmits the short packet data.

Finally, issue the "Setup_Fin" command to inform UDC2 that the DATA-Stage has finished.

3. STATUS-Stage

When the "Setup_Fin" command is issued, UDC2 will automatically make Handshake for the Status-Stage. When the Status-Stage finished with no problem, the INT_STATUS flag is asserted. When received a packet of STATUS-Stage from the host before the "Setup_Fin" command is issued, UDC2 will return "NAK" and asserts the INT_STATUS_NAK flag. Therefore, if this flag is asserted, be sure to issue the "Setup_Fin" command.

The flow of control in Control-WR transfer (without DATA-Stage) is shown below.

Figure 3.16.37 Flow of control in control-WR transfers (without DATA-stage)

1. SETUP-Stage

To be processed in the same way as in the SETUP-Stage described in (1).

2. STATUS-Stage

After issuing the "Setup_Received" command, make register accesses to UDC2 based on each request. Issue the "Setup_Fin" command when all the register accesses to UDC2 have finished. Subsequent processes are basically the same as the STATUS-Stage described in (1). UDC2 will keep on returning "NAK" until the "Setup_Fin" command is issued.

Note: While register accesses required for each request are made to UDC2 between 'Issuing the "Setup_Received" command' and 'Issuing the "Setup_Fin" command', register accesses are needed after the end of STATUS-Stage in some cases such as Set Address request and Set Feature(TEST_MODE). Processes required for the standard requests are described in (5).

(3) Control-WR transfer (with DATA-Stage)

The flow of control in Control-WR transfer (with DATA-Stage) is shown below.

Figure 3.16.38 Flow of control in control-WR transfers (with DATA-stage)

1. SETUP-Stage

To be processed in the same way as in the SETUP-Stage described in (1).

2. DATA-Stage

When the data is received from the host with no problem, UDC2 asserts the EP0_DATASET flag and asserts the INT_EP0 flag. When this flag is asserted, read the data from EP0_FIFO after confirming the received data size in the EP0_Datasize register, or read the data from EP0_FIFO polling the EP0_DATASET flag.

When the byte size of received data has been read, UDC2 deasserts the EP0_DATASET flag.

3. STATUS-Stage

To be processed in the same way as in the STATUS-Stage described in (1).

Note: Figure 3.16.38 shows the flow in High-Speed transfers. In Full-Speed transfers, the "PING" packet shown in the figure is not issued. Also, the "NYET" packet is replaced by the "ACK" packet.

(4) Example of using the INT_STATUS_NAK flag

When processing requests without DATA-Stage, the INT_STATUS_NAK flag may get asserted by receiving STATUS-Stage from the host before clearing the INT_SETUP flag after it has been asserted, especially in High-Speed transfers. In case such multiple interrupts should be avoided as much as possible, you can use a method to mask the INT_STATUS_NAK flag for request having no DATA-Stage. In such case, basically set "1" to "m_status_nak" of INT register, while "0" should be set only when requests having DATA-Stage are received. (An example for Control-RD transfers is provided below.)

1. SETUP-Stage

After the INT_SETUP flag was asserted, clear the bit0 (i_setup) of INT register. If the bit1 (i_status_nak) is set to "1," it should be also cleared.

Then, if the request was judged to have DATA-Stage by reading Setup-Data storing registers, set the bit9 (m_status_nak) of INT register to "0." Then issue the "Setup_Received" command.

2. DATA-Stage \rightarrow STATUS-Stage

When the INT_STATUS_NAK flag was asserted, the device should also proceed to the STATUS-Stage. Clear the bit1 (i_status_nak) of INT register and then issue the "Setup_Fin" command. Also, set "1" to the bit9 (m_status_nak) of INT register in order to get ready for subsequent transfers.

(5) Processing when standard requests are received

Examples of making register accesses to UDC when standard requests are received are provided below. Descriptions of each request are basically provided for each state of the device (Default, Address, and Configured).

For the information on register accesses common to each request, see (1) and 0, (3).

You should note, however, descriptions provided below do not include the entire details of standard requests in USB2.0. Since methods to access registers may vary depending on each user's usage, be sure to refer to the USB2.0 specifications. Your should also refer to the USB2.0 specifications for "Recipient," "Descriptor Types," "Standard Feature Selectors," "Test Mode Selectors" and other terms appear in the descriptions below.

- Standard requests for " (1). Control-RD transfers"
 - Get Status Get Descriptor Get Configuration
 - Get Interface Synch Frame
- Standard requests for " (2). Control-WR transfer (without DATA-Stage) "
 - Clear Feature Set Feature Set Address
 - Set Configuration Set Interface
- Standard requests for " (3). Control-WR transfer (with DATA-Stage)
 - Set Descriptor

Note 1: Descriptions with double underlines refer to register accessed to UDC2.

Note 2: Writing accesses to Command register are described in the following manner for simplicity: (Example 1) When writing 0h to bit7-4(ep) and "4h" to bit3-0(com) of Command register \rightarrow Issue the EP-Stall command to EP0

(Example 2) When writing the relevant endpoint to bit7-4(ep) and "5h" to bit3-0(com) of Command register \rightarrow Issue the EP-Invalid command to the relevant endpoint

(a) Get Status request

To this request, the status of the specified recipient is returned.

BmRequestType	BRequest	wValue	wIndex	wLength	Data
10000000B 10000001B 10000010B	GET_STATUS	Zero	Zero Interface Endpoint	Two	Device, Interface, or Endpoint Status

• Common to all states:

If the Endpoint/Interface specified by wIndex does not exist, issue the EP-Stall command to EP0.

• Default state:

Nothing is specified for the operation of devices by the USB2.0 specifications.

• Address state:		
• Recipient=Device	:	Write the information on the device (Figure 3.16.40) to EP0_FIFO register.
Recipient=InterfaceRecipient=Endpoint	:	Issue the EP-Stall command to EP0. If wIndex=0(EP0), write the information on
		Endpoint 0 (Figure 3.16.42) to EP0_FIFO register.
		If wIndex≠0(EPx), issue the EP-Stall command to EP0.
• Configured state:		
• Recipient=Device	:	Write the information on the device (Figure
-		3.16.40) to EP0_FIFO register.
• Recipient=Interface	:	If the interface specified by wIndex exists, write the information on the interface (Figure 3.16.41) to EP0_FIFO register.
D · · · D I · ·		

• Recipient=Endpoint : If the endpoint specified by wIndex exists, write the information on the relevant endpoint (Figure 3.16.42) to EP0_FIFO register.

D7	D6	D5	D4	D3	D2	D1	D0
0	0	0	0	0	0	Remote Wakeup	Self Powered
D15	D14	D13	D12	D11	D10	D9	D8
0	0	0	0	0	0	0	0

Figure 3.16.40 Information on the device to be returned by GetStatus request

:

:

 $\boldsymbol{\cdot} \operatorname{SelfPowerd(D0)}$

• RemoteWakeup(D1)

"0" indicates the bus power while "1" indicates the self power.

"0" indicates the remote wakeup function is disabled while "1" indicates it is enabled.

D7	D6	D5	D4	D3	D2	D1	D0
0	0	0	0	0	0	0	0
D15	D14	D12	D12	D11	D10	00	20
015	D14	013	DIZ	ווט	DIU	D9	Do

Figure 3.16.41 Information on the interface to be returned by GetStatus request

• Please note that all bits are "0".

D7	D6	D5	D4	D3	D2	D1	D0
0	0	0	0	0	0	0	Halt
D15	D14	D13	D12	D11	D10	D9	D8
0	0	0	0	0	0	0	0

Figure 3.16.42 Information on the endpoint to be returned by GetStatus request

• Halt(D0): If this bit is "1," it indicates that the relevant endpoint is in the "Halt" state.

(b) Clear Feature request

To this request, particular functions are cleared or disabled.

bmRequestType	bRequest	wValue	wIndex	wLength	Data
00000000B 00000001B 00000010B	CLEAR_FEATURE	Feature Selector	Zero Interface Endpoint	Zero	None

• Common to all states:

If Feature Selector (wValue) which cannot be cleared (disabled) or does not exist is specified, issue the EP-Stall command to EP0.

If the Endpoint/Interface specified by wIndex does not exist, issue the EP-Stall command to EP0.

• Default state:

Nothing is specified for the operation of devices by the USB2.0 specifications.

• Address state:		
Recipient=Device	:	If wValue=1, disable the DEVICE_REMOTE_WAKEUP function at the user's end. No register access to UDC2 is required.
Recipient=Interface	:	Issue the EP-Stall command to EP0.
• Recipient=Endpoint	:	If wIndex \neq 0(EPx), issue the EP-Stall command to EP0.
		If wValue=0 and wIndex=0(EP0), clear the Halt state of Endpoint0 but no register access to UDC2 is required.
• Configured state:		
Recipient=Device	:	If wValue=1, disable the DEVICE_REMOTE_WAKEUP function at the user's end. No register access to UDC2 is required.
 Recipient=Interface 	:	Issue the EP-Stall command to EP0. (Note)
• Recipient=Endpoint	:	If wValue=0 and wIndex≠0(EPx), issue the EP-Reset command to relevant endpoint. If wValue=0 and wIndex=0(EP0), clear the Halt state of Endpoint0 but no register access to UDC2 is required.

Note: Endpoint0 is to be stalled based on the interpretation of the USB2.0 specifications that "No Feature Selector exists for Interface" here. For more information, see the USB Specification.

(c) Set Feature request

To this request, particular functions are set or enabled.

bmRequestType	bRequest	wValue	wIndex		wLength	Data
00000000B 00000001B	SET_FEATURE	Feature Selector	Zero Interface	Test Selector	Zero	None
0000010B			Endpoint			

• Common to all states:

When Recipient=Device and **wValue**=2 are specified in a device supporting High-Speed, write the value of TestSelector (upper byte of **wIndex**) to the bit7-0(t_sel) of USB-testmode register within 3ms after the STATUS-Stage has ended.

If, however, an invalid value (other than test_j, test_k, se0_nak, and test_packet) is specified for the TestSelector value, issue the EP-Stall command to EP0.

- Note: When using a vendor-specific TestSelector other than standard ones, the appropriate operation should be made.
 - If Feature Selector (**wValue**) which cannot be set (enabled) or does not exist is specified, issue the EP-Stall command to EP0.
 - If the Endpoint/Interface specified by the lower byte of **wIndex** does not exist, issue the EP-Stall command to EP0.
 - Default state:

Nothing is specified for the operation of devices by the USB2.0 specifications except for the abovementioned TEST_MODE.

• Address state:

Recipient=Device	:	If wValue= 1, enable the DEVICE_REMOTE_WAKEUP function at the user's end. No register access to UDC2 is required.
 Recipient=Interface Recipient=Endpoint	: :	Issue the EP-Stall command to EP0. If the lower byte of wIndex $\neq 0$ (EPx), issue the EP-Stall command to EP0
		If wValue= 0 and the lower byte of wIndex=0(EP0), make Endpoint0 halt. (Note 2)
Configured state:		
\cdot Recipient=Device	:	If wValue= 1, enable the DEVICE_REMOTE_WAKEUP function at the user's end. No register access to UDC2 is required.
• Recipient=Interface	:	Issue the EP-Stall command to EP0. (Note 1)
• Recipient=Endpoint	:	If wValue=0 and the lower byte of wIndex≠0(EPx), issue the EP-Stall command to the relevant endpoint. If wValue=0 and the lower byte of wIndex=0(EP0), make Endpoint0 halt. (Note 2)

- Note 1: Endpoint0 is to be stalled based on the interpretation of the USB specifications that "No Feature Selector exists for Interface" here. For more information, see the USB specifications.
- Note 2: USB2.0 specifications include such description that "Performing the Halt function for Endpoint0 is neither necessary nor recommended." Accordingly, it can be interpreted that it is not necessary to set UDC2 to the Stall state in this case.

In order to actually make Endpoint 0 be in the Halt state, users have to manage the "Halt state."

Then, when a request is received in the "Halt state" such processes as to issue the EP-Stall command to EP0 in DATA-Stage/STATUS-Stage will be required. (Even if Endpoint0 is set to the Stall state, UDC2 will cancel the Stall state when the Setup-Token is received and will return "ACK.")

As such, the process when SetFeature/ClearFeature is received for Endpoint 0 varies depending on user's usage.

(d) Set Address request

To this request, device addresses are set.

bmRequestType	bRequest	wValue	wIndex	wLength	Data
0000000B	SET_ADDRESS	Device Address	Zero	Zero	None

For this request, make register accesses shown below within 2ms after the STATUS-Stage has ended.

(The device address should not be changed before the Setup_Fin command is issued.)

• Default state:

When wValue=0

Keeps the default state. No register access to UDC2 is required.

When wValue≠0

Set wValue to bit6-0(dev_adr) and "010b" to bit10-8(Device_State) of Address-State register. UDC2 will be put in the address state.

• Address state:

When wValue=0

Set "00h" to bit6-0(dev_adr) and "001b" to bit10-8(Device_State) of Address-State register. UDC2 will be put in the Default state.

<u>When wValue≠0</u>

Set wValue to bit6-0(dev_adr) of Address-State register.

UDC2 will be set to the new device address.

• Configured state: Nothing is specified for the operation of devices by the USB2.0 specification.

(e) Get Descriptor request

To this request, the specified descriptor is returned.

bmRequestType	bRequest	wValue	wIndex	wLength	Data
1000000B	GET_DESCRIPTOR	Descriptor Type and	Zero or	Descriptor	Descriptor
		Descriptor Index	Language ID	Length	

- Common to all states:
 - Write the descriptor information specified by wValue to EP0_FIFO register for the byte size specified by wLength. If the byte size to write is larger than the MaxPacketSize of Endpoint0, you need to divide the data to write it several times (see (1) Control-RD transfers for more information). (If the length of the descriptor is longer than wLength, write the information for wLength bytes from the beginning of the descriptor. If the length of the descriptor is shorter than wLength, write the full information for the descriptor.)
 - If the descriptor specified by wValue is not supported by the user, issue the EP-Stall command to EP0.

(f) Set Descriptor request

To this request, the descriptor is updated or added.

bmRequestType	bRequest	wValue	wIndex	wLength	Data
0000000B	SET_DESCRIPTOR	Descriptor Type and Descriptor Index	Language ID or zero	Descriptor Length	Descriptor

• Common to all states:

When this request is not supported, issue the EP-Stall command to EP0.

• Default state:

Nothing is specified for the operation of devices by the USB2.0 specifications.

• Address state & Configured state:

Read the information on the descriptor received by UDC2 from EP0_FIFO register.

(g) Get Configuration request

To this request, the Configuration value of the current device is returned.

bmRequestType	bRequest	wValue	wIndex	wLength	Data
1000000B	GET_CONFIGURATION	Zero	Zero	One	Configuration Value

• Default state:

Nothing is specified for the operation of devices by the USB2.0 specifications.

• Address state:

Write "00h" to EPx_FIFO register [7:0]. As this is not configured, "0" should be returned.

• Configured state:

Write the current Configuration value to EP0_FIFO register.

Since this has been configured, values other than ${\bf 0}$ should be returned.

(h) Set Configuration request

To this request, device configuration is set.

bmRequestType	bRequest	wValue	wIndex	wLength	Data
0000000B	SET_CONFIGURATION	Configuration Value	Zero	Zero	None

• Default state:

Nothing is specified for the operation of devices by the USB2.0 specifications.

• Address state:

When wValue=0

- Keeps the address state. No register access to UDC2 is required.

When wValue ≠0 and the wValue is a Configuration value matching the descriptor

• Set "100b" to bit10-8(Device_State) of Address-State register.

<For endpoints to use>

• Set MaxPacketSize to bit10-0(max_pkt) of EPx_MaxPacketSize register.

• Set respective values to bit15(pkt_mode), bit14(bus_sel), bit7(dir), bit3-2(t_type), and bit1-0(num_mf) of EPx_Status register.

 $\cdot\,$ Issue the EP-Reset command to the relevant endpoints.

When wValue ≠0 and the wValue is a Configuration value not matching the descriptor

- Issue the EP-Stall command to EP0.
- Configured state:

When wValue=0

- Set "010b" to bit10-8 (Device_State) of Address-State register.
- Issue the All-EP-Invalid command.

When wValue ≠0 and it is a Configuration value matching the descriptor

- <For endpoints to use>
- Set MaxPacketSize to bit10-0(max_pkt) of EPx_MaxPacketSize register.
- Set respective values to bit15(pkt_mode), bit14(bus_sel), bit7(dir), bit3-2(t_type), and bit1-0(num_mf) of EPx_Status register.
- Issue the EP-Reset command to the relevant endpoints.

<For endpoints to become unused>

• Issue the EP-Invalid command to the relevant endpoints.

When wValue ≠0 and the wValue is a Configuration value not matching the descriptor

• Issue the EP-Stall command to EP0.

(i) Get Interface request

To this request, the AlternateSetting value set by the specified interface is returned.

bmRequestType	bRequest	wValue	wIndex	wLength	Data
1000001B	GET_INTERFACE	Zero	Interface	One	Alternate Setting

• Common to all states:

If the interface specified by wIndex does not exist, issue the EP-Stall command to EP0.

• Default state:

Nothing is specified for the operation of devices by the USB2.0 specifications.

• Address state:

Issue the EP-Stall command to EP0.

• Configured state:

Write the current AlternateSetting value of the interface specified by wIndex to EP0_FIFO register [7:0].

(j) Set Interface request

To this request, the AlternateSetting value of the specified interface is set.

bmRequestType	bRequest	wValue	wIndex	wLength	Data
0000001B	SET_INTERFACE	Alternate Setting	Interface	Zero	None

• Common to all states:

If the interface specified by wIndex does not exist or the AlternateSetting specified by wValue does not exist, issue the EP-Stall command to EP0.

• Default state:

Nothing is specified for the operation of devices by the USB2.0 specifications.

• Address state:

Issue the EP-Stall command to EP0.

• Configured state:

<For the endpoints to use in AlternateSetting of the specified interface>

- + Set MaxPacketSize to bit10-0(max_pkt) of EPx_MaxPacketSize register.
- Set respective values to bit15(pkt_mode), bit14(bus_sel), bit7(dir), bit3-2(t_type), and bit1-0(num_mf) of EPx_Status register.
- Issue the EP-Reset command to the relevant endpoints.

<For endpoints to become unused>

• Issue the EP-Invalid command to the relevant endpoints.

TOSHIBA

(j) Synch Frame request

To this request, the Synch Frame of the endpoint is returned.

bmRequestType	bRequest	wValue	wIndex	wLength	Data
10000010B	SYNCH_FRAME	Zero	Endpoint	Two	Frame Number

• Common to all states:

If this request is not supported by the endpoint specified by wIndex, issue the EP-Stall command to EP0.

• Default state:

Nothing is specified for the operation of devices by the USB2.0 specifications.

• Address state:

Issue the EP-Stall command to EP0.

• Configured state:

Write the FrameNumber of the endpoint specified by wIndex to EP0_FIFO register.

• Endpoints other than Endpoint 0

Endpoints other than Endpoint 0 support Bulk (send/receive), Interrupt (send/receive), and Isochronous (send/receive) transfers and are used to transmit and receive data. They also support the Dual Packet mode which enables high-speed data communication.

3.16.3.7 Suspend/Resume States

UDC2 enters into a suspended state based on the signal condition from the host. It also returns from the suspended state by resuming operation by the host or UDC2. Shifting between the states is described below.

(1) Shift to the suspended state

Though the host issues SOF with given intervals (HS: 125uS, FS: 1mS) in the normal state, it will stop issuing this SOF to the device when it tries to make the device suspended and the data on the USB signal line will be unchanged keeping the idle state. UDC2 is always monitoring the "line_state" from PHY and makes judgment of whether it is in the suspended state or USB_RESET when the idle state is detected for 3mS or longer. If judged to be in the suspended state, it will assert "suspend_x" to "L" and enter in the suspended state.

Please note <u>accesses to registers will be unavailable</u> while UDC2 is suspended, since supply of CLK from PHY will stop.

(2) Resuming from suspended state

Resuming from the suspended state can be made in two ways; by outputting a resuming state from the host and by way of remote wakeup from UDC2 (outputting a resuming state).

Resuming process in each case is described below.

(3) Resuming by an output from the host

When a resuming state is output by the host, UDC2 deasserts "suspend_x" to "H" to declare resuming from the suspended state.

(4) Resuming by way of remote wakeup from UDC2

The remote wakeup function may not be supported by some applications, and it needs to be permitted by the USB host at the time of bus enumeration. Your should not assert "wakeup" unless permitted by the system.

If permitted by the system, asserting the "wakeup" pin will make UDC2 output a resuming state to the host to start resuming. Please note that the clock supply from PHY is stopped when UDC2 is suspended, so you should keep asserting the clock until it resumes. The remote wakeup should be operated after 2ms or more has passed after suspend_x was asserted to "L".

3.16.4 USB-Spec2.0 Device Controller Appendix

3.16.4.1 Appendix A System Power Management

In USB, operations related to the enumeration and power control signals (DP/DM signals) for reset and suspend from the host are also prescribed, in addition to normal transfer operations. This Appendix provides information about the specifications of USB2.0 PHY to be connected and clock control on the system level required for processes related to the DP/DM signals. For details of each process, please be sure to check the USB Specification Revision 2.0, PHY Specification, and the UTMI Specification Version 1.05.

- Contents -

1.	. Coni 1.1 1.2	nect/Disconnect Operations Connect Operation Disconnect Operation
2	. Rese	et Operation *1
	2.1	When Operating in HS Mode after Reset
	2.2	When Operating in FS Mode after Reset
	2.3	Notes on Reset Operation
3	. Susp	pend Operation *2
	3.1	Suspend Operation in HS Mode
	3.2	Suspend Operation in FS Mode
	3.3	Notes on Suspend Operation
4	. Resi	ume Operation *3
	4.1	Resume Operation by the Host
	4.2	Resume Operation by the Device (Remote Wakeup)
	4.3	Notes on Resume Operation

*1) Reset: The operation of the DP/DM signals for initializing the USB device (hereafter called "the device") from the USB host (hereafter called "the host"). After reset, enumeration is performed and then normal transfer operations such as Bulk transfers begin. Upon being connected, the device is always reset. The device also needs to support reset operation at any other arbitrary timing. During the reset period, Chirp operation is performed to determine whether the device operates in High-Speed (HS) or Full-Speed (FS) mode.

*2) Suspend: If no bus activity on the DP/DM lines including SOF is initiated by the host for 3 ms or longer, the device needs to be put in the suspend mode to reduce power consumption. In this case, the device is required to perform certain operations such as stopping the clock.

*3) Resume: The operation of the DP/DM signals for resuming normal operation from the suspend mode. Resume operation can be initiated either by the host or the device. Resume operation from the device is called "remote wakeup".

1. Connect/Disconnect Operations

1.1 Connect Operation

Figure A.1.1 Connect operation timing

• TO: Vbus detection

When Vbus is detected, a system reset (reset_x input) should be applied to UDC2. xcvr_select is HIGH and term_select is LOW.

• T1: Device connect (no later than 100 ms after T0) *4) <u>*4) Based on the USB2.0 Specification.</u>

The device must enable DP pull-up no later than 100 ms after Vbus detection (T0) to notify the host of the connected state. Therefore, when Vbus is detected and the device is ready to communicate with the host, the system should access the Command register in UDC2 to set the USB_Ready command. When USB_Ready is accepted, UDC2 drives term_select HIGH. This makes USB2.0 PHY enable DP pull-up.

• T2 · · · USB reset start (more than 100 ms after T1)

1.2 Disconnect Operation

When a disconnected state is detected, it is recommended to apply a system reset to UDC2.

2. Reset Operation *1

- * The "reset" here refers to the "reset signaling" defined in the USB 2.0 Specification, not the system reset (reset_x) to UDC2.
- 2.1 When Operating in HS Mode after Reset

Figure A.2 Reset operation timing (HS mode after Chirp)

• TO: Reset start

Upon recognizing SE0 from the host, UDC2 starts counting to recognize the reset.

- T1: Reset recognition (more than 2.5 μs after T0) When UDC2 detects SE0 for more than approximately 68 μs after T0, it recognizes the reset from the host and drives usb_reset HIGH. At the same time, UTMI starts the device Chirp-K operation.
- T2 : HS operation start (approximately 1.74 ms to 2 ms after T1) When the host supports HS mode, UDC2 detects Chirp-KJ from the host and drives usb_reset LOW within 1.74 ms to 2 ms after T1. (The period in which rsb_reset remains HIGH depends on the host.) From this point, UDC2 operates in HS mode.
- T3 : Reset end (more than 10 ms after T0)

After completion of Chirp-KJ from the host and SE0, the packet (SOF) is transmitted. This is the end of reset operation. The reset period from the host lasts a minimum of 10 ms.

2.2 When Operating in FS Mode after Reset

Figure A.3 Reset operation timing (FS mode after Chirp)

• T0: Reset start

Upon recognizing SE0 from the host, UDC2 starts counting to recognize the reset.

- T1: Reset recognition (more than 2.5 µs after T0) When UDC2 detects SE0 for more than approximately 68 µs after T0, it recognizes the reset from the host and drives usb_reset HIGH. At the same time, UTMI starts the device Chirp-K operation.
- T2: Device Chirp-K complete (more than 1.0 ms after T1) UDC2 completes the device Chirp-K operation approximately 1.5 ms after T1.
- T3: FS operation start (1.0 ms to 2.5 ms after T2) When the host supports FS mode, the host chirp-KJ operation is not performed. If no host Chirp-KJ is detected in approximately 2 ms after T2, UDC2 initiates FS mode. At this point, usb_reset is driven LOW. The period in which usb_reset remains HIGH is approximately 3.5 ms.
- T4: Reset end (more than 10 ms after T0) When SE0 from the host finishes and the device enters an idle state, it indicates the end of reset operation. The reset period from the host lasts a minimum of 10 ms.

2.3 Notes on Reset Operation

* Initialization of registers after reset

When the reset from the host is completed (when usb_reset changes from HIGH to LOW), all the internal registers of UDC2 are initialized. (For the initial value of each register, refer to the technical documentation of UDC2.)

Note that registers that are set while usb_reset is HIGH are also initialized. Therefore, the UDC2 registers should be set after the reset period is completed.

*DMA transfer (Endpoint-I/F access) after reset

When a reset from the host occurs during DMA transfer, the DPx_Status register is initialized and the bus access mode is set to "common bus access". Therefore, DMA transfer cannot be continued properly. When a reset occurs, the DMA controller must also be initialized.

In the enumeration operation after reset, configure each endpoint and then initialize the endpoints by setting the EP_Reset command in the Command register.

3. Suspend Operation *2

3.1 Suspend Operation in HS Mode

Figure A.4 Suspend operation timing in HS mode

• T0: End of bus activity

When the end of bus activity from the host (the end of packet) is detected, UDC2 starts counting to recognize suspend/reset.

• T1: Transition to FS mode (3.0 ms to 3.125 ms after T0)

When SE0 is detected for more than 3 ms after T0, UDC2 enters FS mode and drives xcvr_select and term_select HIGH. (This makes USB2.0 PHY enable DP pull-up.) At this point, UDC2 cannot determine whether the host is initiating suspend or reset operation.

- T2: Recognition of suspend (100 µs to 875 µs after T1)
 When the "J" state is detected on the DP/DM line in approximately 100µs after T1, UDC2 recognizes suspend and drives suspend_x LOW. When the line state does not change to "J" and remains "SE0", UDC2 prepares for reset instead of suspend. In this case, refer to "2. Reset Operation".
- T3: Remote wakeup start enable (5 ms after T0) Resume operation from the device (remote wakeup) is enabled 5 ms after T0. For details, refer to "4-2 Resume Operation from the Device (Remote Wakeup)".
- T4: Transition to suspend state (10 ms after T0)

The device must enter the suspend state no later than 10 ms after T0. Processes required of the device system to enter the suspend state, such as stopping the clock supply from USB2.0 PHY, must be performed during this period.

3.2 Suspend Operation in FS Mode

Figure A.5 Suspend operation timing in FS mode

- T0: End of bus activity When the end of bus activity from the host (the end of packet) is detected, UDC2 starts counting to recognize suspend.
- T1: Recognition of suspend (3 ms after T0) When the "FS-J" is detected for more than 3 ms after T0, UDC2 recognizes suspend and drives suspend_x LOW.
- T2: Remote wakeup start enable (5 ms after T0) Resume operation from the device (remote wakeup) is enabled 5 ms after T0. For details, refer to "<u>4-2</u>. <u>Resume Operation from the Device (Remote Wakeup).</u>
- T3: Transition to suspend state (10 ms after T0) The device must enter the suspend state no later than 10 ms after T0. Processes required of the device system to enter the suspend state, such as stopping the clock supply from USB2.0 PHY, must be performed during this period.

3.3 Notes on Suspend Operation

*Clock control in suspend operation

When the SuspendM input (UTMI) to USB2.0 PHY is enabled at suspend, the clock supply from PHY to UDC2 is stopped. If UDC2 needs to use the clock from PHY after suspend_x becomes LOW, supend_x should not be directly connected to PHY. The SuspendM input to PHY should be enabled after the system determines that the clock supply from PHY can be stopped.

(When the clock input (30 MHz) to UDC2 is stopped, the internal registers of UDC2 cannot be accessed across PVCI-I/F and Endpoint-I/F.)

* USB2.0 PHY clock control

The SuspendM input (UTMI) to USB2.0 PHY should not be directly connected to the suspend_x output of UDC2. It should be controlled by the system. As explained earlier, suspend_x of UDC2 is activated by communication with the USB host. Therefore, if the USB host is not connected, suspend_x retains the hardware reset value of HIGH. At this time, if suspend_x and SuspendM are directly connected, the clock supply from USB2.0 PHY is not stopped and system power consumption cannot be saved.

* Internal registers during the suspend state

During the suspend state, UDC2 retains the internal register values, the contents of FIFOs, and the state of each flag. These values and states are also retained after the suspend state is exited by resume operation.

4. Resume Operation *3

4.1 Resume Operation by the Host

Figure A.6 Resume operation timing by the host

- T0: suspend_x output of UDC2 = LOW
- T1: Start of host resume (No timing specifications) The host starts resume operation ("FS-K") at arbitrary timing to wake up the device from the suspend state. At this point, UDC2 sets suspend_x to HIGH. (Even if the clock input to UDC2 is stopped, suspend_x becomes HIGH.) After checking that suspend_x = HIGH, disable the SuspendM (UTMI) input to PHY to resume the clock output from USB2.0 PHY.
- T2: Resuming of clock supply from USB2.0 PHY (Depends on the PHY specifications.)
- T3: End of host resume (more than 20 ms after T1)

The host resume operation ("FS-K") lasts for more than 20 ms, and completes after "SE0". UDC2 resumes operating at the same speed (HS/FS) as before the suspend state was entered.

4.2 Resume Operation by the Device (Remote Wakeup)

Figure A.7 Remote wakeup operation timing

- T0: suspend_x output of UDC2 = LOW
- T1: Remote wakeup start enable (more than 2 ms after T0)
- The device can be brought out of the suspend state by using the wakeup input of UDC2. This is called remote wakeup. Note that the USB specification prohibits remote wakeup for 5 ms after start of the suspend state. The wakeup signal should be set to HIGH a minimum of 2 ms after T0 as 3 ms have already elapsed from the start of suspend operation to T0.
- T2: Wakeup input to UDC2 = HIGH (after T1)

Set the wakeup signal to HIGH. No timing requirements are specified for this operation. At this point, UDC2 sets suspend_x to HIGH. (Even if the clock input to UDC2 is stopped, suspend_x becomes HIGH.) Because UDC2 requires the clock input to start resume operation ("FS-K"), the SuspendM (UTMI) input to USB2.0 PHY should be disabled. Then, keep wakeup at HIGH until clock supply is resumed.

• T3: Start of device resume (Depends on the PHY specifications.) When the clock input from PHY to UDC2 is resumed, UDC2 starts the device resume ("FS2-K"). The device resume period is approximately 2 ms. After confirming the device resume, the host starts the host resume operation.

- T4: End of host resume (more than 20 ms after T3) The host resume operation ("FS-K") lasts for more than 20 ms, and completes after "SE0". UDC2 resumes operating at the same speed (HS/FS) as before the suspend state was entered.
 - 4.3 Notes on Resume Operation

Restriction on use of remote wakeup

To support remote wakeup as the device system, the device must notify the host in the Configuration descriptor that the remote wakeup function is enabled. Even if remote wakeup is supported, it is disabled by default. Remote wakeup can only be used after it is enabled by a request from the host. Use of remote wakeup using the wakeup input is allowed only when these conditions are satisfied. When using this function, be sure to refer to Chapter 9 of the USB 2.0 Specification which offers detailed description.

4.3.1.1 Appendix B About Setting an Odd Number of Bytes as MaxPacketSize

1) Setting an odd number in the EPx_MaxPacketSize register

The USB specification allows MaxPacketSize (hereafter referred to as MPS) of each endpoint to be set as either an odd or even number of bytes for Isochronous and Interrupt transfers. (For Control and Bulk transfers, only an even number can be set.)

In UDC2, MPS is set through max_pkt (bits[10:0]) of the EPx_MaxPacketSize register. The endpoint FIFOs of UDC2 only support even numbers of bytes. It is therefore recommended that MSP be set as an even number of bytes as a general rule.

If you want to set an odd number of bytes as MPS, you may set an odd number in max_pkt, subject to the restrictions shown in Table 4-1 according to the endpoint bus access method used. In the case of endpoint direct access, an odd number cannot be set in max_pkt for a transmit endpoint. In this case, an even number should be set in max_pkt and write accesses to the endpoint FIFO should be controlled to implement an odd number of maximum write bytes. (For example, when MPS = 1023 bytes, max_pkt should be set to 1024 bytes.)

Table 4-1 Restrictions on the setting of max_pkt

	Receive endpoint	Transmit endpoint
Common bus access (PVCI-I/F)	An odd or even number can be set.	An odd or even number can be set.
Endpoint direct access (Endpoint-I/F)	An odd or even number can be set.	Only an even number can be set.

Based on the above, the following pages describe how to set an odd number of bytes as MPS for each bus access method.

(1) Receive endpoint & common bus access

Either an odd or even number of bytes can be set in max_pkt. The access method is the same for both cases. For details, refer to the description of "Common bus access (PVCI/I/F)" of UDC2.

(2) Transmit endpoint & common bus access

Either an odd or even number of bytes can be set in max_pkt. For the basic access method, refer to the description of "Common bus access (PVCI-I/F)" of UDC2.

However, the following points must be observed in making common bus accesses for writing the maximum number of bytes with max_pkt = odd number.

The following shows an example in which max_pkt = 5 and the maximum number of bytes (5 bytes) are to be written.

- In the last access (5th byte), make sure that udc_be = "01b".
- Do not issue the EP-EOP command in the Command register.

Figure B.1 MPS write access with max_pkt = odd number (common bus access)

(3) Receive endpoint & endpoint direct access

Either an odd or even number can be set in max_pkt. The access method is the same for both cases. For details, refer to "4.3.2 Accessing Receive Endpoints" in the technical documentation of UDC2.

(4) Transmit endpoint & endpoint direct access

Only an even number of bytes can be set in max_pkt. For the basic access method, refer to "4.3.1 Accessing Transmit Endpoints" in the technical documentation of UDC2.

To use an odd number of bytes as MPS for a transmit endpoint, the following settings are required.

(Example: MPS=1023)

- Set max_pkt = 1024.
- The maximum number of bytes that can be written to the endpoint is 1023 bytes.
- (It is not allowed to write the 1024th byte.)
- \cdot "wMaxPacketSize" of the Endpoint descriptor to be managed by firmware should be set
- to 1023. (This is the value to be sent to the USB host by the GetDescriptor request.)

The following shows an example in which max_pkt = 1024 and the maximum number of bytes (1023 bytes) are to be written.

• In the last access (1023rd byte), make sure that epx_w_be = "01b".

3.16.4.3 Appendix C Isochronous Transfers

In Isochronous transfers, the isochronism of data is critical and transfers occur per frame. Therefore, accesses to an endpoint (FIFO) using Isochronous transfers require a certain level of performance (speed). In UDC2, the access method to each endpoint can be selected from PVCI-I/F and Endpoint-I/F. The FIFO configuration can be selected from Single mode and Dual mode. However, for an endpoint using Isochronous transfers, it is recommended to use Endpoint-IF and Dual mode.

(1) Accessing an endpoint using Isochronous transfers

The maximum data payload size is 1024 bytes in HS mode and 1023 bytes in FS mode. To transfer 1024 bytes using Dual mode, 2048 bytes of RAM are required.

Transfers are performed per microframe (125 μ s) in HS mode and per frame (1 ms) in FS mode. In HS mode, up to three transactions can be made in one microframe. (Information such as the payload size and the number of transactions must be set in the relevant UDC2 register. This information must also be managed by software as the Endpoint descriptor information to be sent to the host.)

The following shows an example of endpoint access in which three transactions are made in one microframe in HS mode. Figure C.1 shows OUT transfers and Figure C.2 shows IN transfers.

Figure C.1 Isochronous OUT transfers in HS mode (3 transactions)

Figure C.2 Isochronous IN transfers in HS mode (3 transactions)

(2) Restrictions on command usage when using Isochronous transfers

Compared to other transfers, Isochronous transfers have certain restrictions on handshake, toggle, the number of transactions in a frame, etc., limiting the types of commands that can be used. As a general rule, commands must not be issued to endpoints during Isochronous transfers. While a request is being processed, the EP_Reset or EP_Invalid command may be used as necessary.

(When using PVCI-I/F as the endpoint access method, use the EP_EOP command.)

(About this Appendix)

- For descriptions concerning the USP Specification, be sure to check the USB Specification (revision 2.0).
- For PVCI-I/F, Endpoint-I/F and other specifications of UDC2, refer to the technical documentation of UDC2.

3.17 I²S (Inter-IC Sound)

The TMPA910CRA contains a serial input/output circuit compliant with the I²S format.

By connecting an external audio LSI, such as an AD converter or DA converter, the I²S interface can support the implementation of a digital audio system.

The I²S of this LSI has the following characteristics:

		Transmit master mode			
		Transmit slave mode			
	Receive master mode				
Modes	Receive slave mode	—			
	Full-duplex r	master mode			
	Full-duplex	slave mode			
	Clock through mode				
Channel	Channel 0	Channel 1			
Transmit/Receive	Receive only	Transmit only			
	(1) I ² S format-compliant				
	(2) Stereo/monaural				
Data formats	(3) MSB first/LSB first selectable				
	(4) Left-justified supported (synchronous to WS, no delay)				
	I2SSCLK (I ² S external source clock input)				
	(1) I2S0SCLK (clock input/output)	(1) I2S1SCLK (clock input/output)			
Pins used	(2) I2S0DATI (data input)	(2) I2S1DATO (data output)			
	(3) I2SOWS (word select input/output)	(3) I2S1WS (word select input/output)			
	(4) I2S0MCLK (master clock output)	(4) I2S1MCLK (master clock output)			
	(1) I2SWS can be set to 1/256, 1/384 or 1/512 of the master clock.				
Clocks	(2) Either an external clock or the internal clock (X1) can be selected as the source clock.				
	(3) The master clock can be generated by dividing down the source clock to 1, 1/2 or 1/4.				
FIFO buffer	2 × 8 words	2 × 8 words			
Data length	16 bits only	16 bits only			
	FIFO overflow interrupt	FIFO overflow interrupt			
Interrupts	FIFO underflow interrupt	FIFO underflow interrupt			

Table 3.17.1 I²S operation characteristics

3.17.1 Block diagram

3.17.2 Operation Mode Descriptions

The I²S circuit contains two channels: Channel 0 (receive only) and Channel 1 (transmit only). Each channel can be controlled and operated independently.

The following pages explain the $\mathrm{I}^2\mathrm{S}$ operation modes.

3.17.2.1 Mode Example 1

(Receive Master, Transmit Master, <I2SSCLK> = "0", <MCLKSEL0> = "0", <MCLKSEL1> = "0", <COMMON> = "0", <I2SRx_MASTER> = "1", <I2STx_MASTER> = "1")

- Receive: The receive logic (Ch0) is set as a master. Receive operations are performed in synchronization with I2S0WS and I2S0SCLK that are output from the receive logic.
- Transmit: The transmit logic (Ch1) is set as a master. Transmit operations are performed in synchronization with I2S1WS and I2S1SCLK that are output from the transmit logic.

3.17.2.2 Mode Example 2

(Receive Slave, Transmit Slave, <I2SSCLK> = "1", <MCLKSEL0> = "1", <MCLKSEL1> = "1", <COMMON> = "0", <I2SRx_MASTER> = "0", <I2STx_MASTER> = "0")

- Receive: The receive logic (Ch0) is set as a slave. Receive operations are performed in synchronization with I2S0WS and I2S0SCLK that are output from another master.
- Transmit:The transmit logic (Ch1) is set as a slave. Transmit operations are performed in synchronization with I2S1WS and I2S1SCLK that are output from another master.

3.17.2.3 Mode Example 3

(Full-duplex Master, <I2SSCLK> = "0", <MCLKSEL0> = "0", <COMMON> = "1", <I2SRx_MASTER> = "1")

The receive logic (Ch0) is set as a master. Transmit and receive operations are performed with the transmit logic (Ch1) synchronized to I2S0WS and I2S0SCLK that are output from the receive logic.

3.17.2.4 Mode Example 4

(Full-Duplex Slave, <I2SSCLK> = "1", <MCLKSEL1> = "1", <COMMON> = "1", <I2SRx_MASTER> = "0")

The receive logic (Ch0) is set as a slave. Transmit and receive operations are performed with the transmit logic (Ch1) synchronized to I2SOWS and I2SOSCLK that are output from another master.

3.17.3 Operation Description

3.17.3.1 I²S Output format

(I2STCON<I2STx_DELAYOFF>= 0y0, Delay from WS)

Write to FIFO	2×8word			8word	8word	
Read to FIFO	1(word)		7 	8 1 		
I2SnWS pin			3 →←	7 →	16	- 1 -
I2SnSCLK pin	MNC					
I2S1DATO pin		IQCIQC/				
Request DMAC of I ² S						

General timing Diagram

Detailed Timing Diagram

3.17.4 Register Descriptions

The I^2S registers are listed below.

Base address = 0xF204_0000

Register Address		Deserver
Name	(base+)	Description
I2STCON	0x0000	Tx Control Register
I2STSLVON	0x0004	Tx I ² S Slave WS/SCK Control Register
I2STFCLR	0x0008	Tx FIFO Clear Register
I2STMS	0x000C	Tx Master/Slave Select Register
I2STMCON	0x0010	Tx Master WS/SCK Period Register
I2STMSTP	0x0014	Tx Master Stop Register
I2STDMA1	0x0018	Tx DMA Ready Register
_	0x001C	Reserved
I2SRCON	0x0020	Rx Control Register
I2SRSLVON	0x0024	Rx I ² S Slave WS/SCK Control Register
I2SFRFCLR	0x0028	Rx FIFO Clear Register
I2SRMS	0x002C	Rx Master/Slave Select Register
I2SRMCON	0x0030	Rx Master WS/SCK Period Register
I2SRMSTP	0x0034	Rx Master Stop Register
I2SRDMA1	0x0038	Rx DMA Ready Register
_	0x003C	Reserved
I2SCOMMON	0x0044	Common WS/SCK and Loop Setting Register
I2STST	0x0048	I ² S Tx Status Register
I2SRST	0x004C	I ² S Rx Status Register
I2SINT	0x0050	I ² S Interrupt Register
I2SINTMSK	0x0054	I ² S Interrupt Mask Register

Base address = 0xF204_1000

Register	Address	Description		
Name	(base+)	Description		
I2STDAT	0x0000	Transmit FIFO Window DMA Target		

Base address = 0xF204_2000

Register	Address	Description		
Name	(base+)	Description		
I2SRDAT	0x0000	Receive FIFO Window DMA Target		

1. I2STCON (Tx Control Register)

Address = (0xF204_0000) + 0x0000

Bit	Bit Symbol	Туре	Reset Value	Description
[31:14]	_	_	Undefined	Read undefined. Write as zero.
[13:12]	I2STx_RLCH_CUT	R/W	0y00	Stereo/Monaural output setting
				00: Stereo setting (both channel output)
				01: Monaural setting (Right-side channel output)
				10: Monaural setting (Left-side channel output)
				11:Don't setting
[11:9]	-		Undefined	Read undefined. Write as zero.
[8]	I2STx_BITCNV	R/W	0y0	MSB sign bit inversion
				0: Not inverted
				1: Inverted
[7:4]	_	-	Undefined	Read undefined. Write as zero.
[3]	I2STx_UNDERFLOW	R/W	0у0	Data output at FIFO underflow
				0: "0" is output.
				1: The current data is held.
[2]	I2STx_MSBINV	R/W	0у0	LSB/MSB first 0: MSB first
				1: LSB first
[1]	I2STx_WSINV	R/W	0y0	WS channel definition inversion
				0: WS= "1" (RCH), WS= "0" (LCH)
				1: WS channel definition inverted
				WS= "0" (RCH), WS= "1" (LCH)
[0]	I2STx_DELAYOFF	R/W	0y0	Relation ship between Data output timing and
				WS 0: Delay of 1CLOCK from WS1: No delay
				from WS

[Explanation]

a. <I2STx_RLCH_CUT>

Stereo/monaural (Right-side channel output, Leftt-side channel output) output setting. 00: Stereo setting (both channel output)

01: Monaural setting (Right-side channel output)

10: Monaural setting (Left-side channel output)

11:Don't setting

b. <I2STx_BITCNV>

Specifies whether to invert the MSB (sign bit).

0: Not inverted

1: Inverted

TOSHIBA

- c. <I2STx_UNDERFLOW>
 Selects the data to be output when an underflow occurs in the FIFO.
 0: "0" is output.
 1: The current data is hold.
 - 1: The current data is held.
- d. <I2STx_MSBINV>
 Selection from LSB/MSB first.
 0: MSB first
 1: LSB first
- e. <I2STx_WSINV>
 Specifies whether to invert the channel definition of WS.
 0: WS= "1" (RCH), WS= "0" (LCH)
 1: WS channel definition inverted
 WS= "0" (RCH), WS= "1" (LCH)
- f. <I2STx_DELAYOFF>

Selects Relation ship between Data output timing and WS.

- 0 : Delay of 1CLOCK from WS
- $1:\ensuremath{\mathsf{No}}$ delay from WS

2. I2SRCON (Rx Control Register)

Address = (0xF204_0000) + 0x0020

Bit	Bit Symbol	Туре	Reset Value	Description
[31:14]	_	_	Undefined	Read undefined. Write as zero.
[13:12]	I2SRx_RCH_CUT	R/W	0у00	Stereo/Monaural output setting 00: Stereo setting (both channel output) 01: Monaural setting (Right-side channel output) 10: Monaural setting (Left-side channel output) 11:Don't setting
[11:9]	-	-	Undefined	Read undefined. Write as zero.
[8]	I2SRx_BITCNV	R/W	0у0	MSB (sign bit) inversion 0: Not inverted 1: Inverted
[7:3]	-	-	Undefined	Read undefined. Write as zero.
[2]	I2SRx_MSBINV	R/W	0у0	LSB/MSB first 0: MSB first 1: LSB first
[1]	I2SRx_WSINV	R/W	0у0	WS channel definition inversion 0: WS= "1" (RCH), WS= "0" (LCH) 1: WS channel definition inverted WS= "0" (RCH), WS= "1" (LCH)
[0]	I2SRx_DELAYOFF	R/W	ОуО	Relation ship between Data output timing and WS 0: Delay of 1CLOCK from WS 1: No delay from WS

[Explanation]

a. <I2SRx_RLCH_CUT>

Stereo/monaural (Right-side channel output, leftt-side channel output) output setting. 00: Stereo setting (both channel output)

01: Monaural setting (Right-side channel output)

10: Monaural setting (Left-side channel output)

11:Don't setting

b. <I2SRx_BITCNV>

Specifies whether to invert the MSB (sign bit).

0: Not inverted

1: Inverted

- c. <I2SRx_UNDERFLOW>
 Selects the data to be output when an underflow occurs in the FIFO.
 0: "0" is output.
 1: The current data is held.
- d. <I2SRx_MSBINV>
 Selection from LSB/MSB first.
 0: MSB first
 1: LSB first
- e. <I2SRx_WSINV>
 Specifies whether to invert the channel definition of WS.
 0: WS = "1" (RCH), WS = "1" (LCH)
 1: WS channel definition inverted
 WS = "0" (RCH), WS = "1" (LCH)
- f. <I2SRx_DELAYOFF>
 Selects Relation ship between Data output timing and WS.
 0: Delay of 1CLOCK from WS
 - $1 \stackrel{.}{\cdot}$ No delay from WS

3. I2STSLVON (Tx I²S Slave Control Register)

Address = (0xF204_0000) + 0x0004

Bit	Bit Symbol	Туре	Reset Value	Description
[31:1]	_	-	Undefined	Read undefined. Write as zero.
[0]	I2STx_SLAVE	R/W	0у0	Read the FIFO for transfer
				0: OFF
				1: ON (FIFO read enabled)

[Explanation]

a. <I2STx_SLAVE>

The setting of this bit is effective only when SCK and WS are active; it is not guaranteed at other times.

When this bit is set ("0" \rightarrow "1"), the internal status (I2STxSTATUS) changes as follows:

 $\mathrm{SBY} \ (\mathrm{standby}) \rightarrow \mathrm{PRE}_\mathrm{ACT} \rightarrow \mathrm{ACT}$

In the ACT state, the data stored in the FIFO is output.

When this bit is cleared ("1" \rightarrow "0"), the internal status (I2STxSTATUS) changes as follows:

 $\text{ACT} \rightarrow \text{PRE_SBY} \rightarrow \text{SBY}$

In the SBY state, no data is output from the FIFO even when it contains data.

4. I2SRSLVON (Rx I²S Slave Control Register)

Address = (0xF204_0000) + 0x0024

Bit	Bit Symbol	Туре	Reset Value	Description
[31:1]	_	-	Undefined	Read undefined. Write as zero.
[0]	I2SRx_SLAVE	R/W	0у0	Write the FIFO for receiver 0: OFF
				1: ON (FIFO write enabled)

[Explanation]

a. <I2SRx_SLAVE>

The setting of this bit is effective only when SCK and WS are active; it is not guaranteed at other times.

When this bit is set ("0" \rightarrow "1"), the internal status (I2SRxSTATUS) changes as follows: SBY (standby) \rightarrow PRE_ACT \rightarrow ACT

In the ACT state, data is captured into the FIFO.

When this bit is cleared ("1" \rightarrow "0"), the internal status (I2SRxSTATUS) changes as follows:

 $\text{ACT} \rightarrow \text{PRE}_\text{SBY} \rightarrow \text{SBY}$

In the SBY state, no data is captured into the FIFO even when input data is present.

5. I2STFCLR (Tx FIFO Pointer Clear Register)

Address = (0xF204_0000) + 0x0008

Bit	Bit Symbol	Туре	Reset Value	Description
[31:1]	_	-	Undefined	Read undefined. Write as zero.
[0]	I2STx_FIFOCLR	R/W	0у0	FIFO Pointer clear
				0 : No effect
				1 : FIFO Pointer clear

[Explanation]

a. <I2STx_FIFOCLR>

Do not clear the FIFO during DMA transfer as it may destroy the transmit data. This bit is always read as "0".

6. I2SFRFCLR (Rx FIFO Pointer Clear Register)

Address = (0xF204_0000) + 0x0028

Bit	Bit Symbol	Туре	Reset Value	Description
[31:1]	_	-	Undefined	Read undefined. Write as zero.
[0]	I2SRx_FIFOCLR	R/W	0у0	FIFO Pointer clear
				0: No effect
				1: FIFO Pointer clear

[Explanation]

a. <I2SRx_FIFOCLR>

Do not clear the FIFO during DMA transfer as it may destroy the receive data. This bit is always read as "0".

7. I2STMS (Tx Master/Slave Select Register)

 $Address = (0xF204_0000) + 0x000C$

Bit	Bit Symbol	Туре	Reset Value	Description
[31:1]	_	-	Undefined	Read undefined. Write as zero.
[0]	I2STx_MASTER	R/W	0у0	Master/slave select
				0: Slave
				1: Master (Internally generated I2S1WS and
				I2S1SCLK are output to an external device.)

[Explanation]

a. <I2STx_MASTER>

Selects between transmit master and transmit slave.

When I2SCOMMON<COMMON> is set to "1", full-duplex mode is enabled and the setting of this register has no effect.

8. I2SRMS (Rx Master/Slave Register)

 $Address = (0xF204_0000) + 0x002C$

Bit	Bit Symbol	Туре	Reset Value	Description
[31:1]	_	-	Undefined	Read undefined. Write as zero.
[0]	I2SRx_MASTER	R/W	0у0	Master/slave select
				0: Slave
				1: Master (Internally generated I2S0WS and
				I2S0SCLK are output to an external device.)

[Explanation]

a. <I2SRx_MASTER>

Selects between receive master and receive slave.

When I2SCOMMON<COMMON> is set to "1", this bit selects between full-duplex master and full-duplex slave.

9. I2STMCON (Tx Master I2S1WS/I2S1SCLK Period Register)

Address = (0xF204_0000) + 0x0010

Bit	Bit Symbol	Туре	Reset Value	Description
[31:4]	_	-	Undefined	Read undefined. Write as zero.
[3:2]	I2STx_WS_DIV[1:0]	R/W	0у0	Ratio source clock to I2S1MCLK
				01: 1/2
				10: 1/4
				11: Do not set
[1:0]	I2STx_SCLK_DIV[1:0]	R/W	0y0	Ratio I2S1MCLK to I2S1SCLK00: 1/8
				01: 1/12
				10: 1/16
				11: Do not set

[Explanation]

a. $<I2STx_WS_DIV[1:0]>, <I2STx_SCLK_DIV[1:0]>$

When I2SCOMMON<COMMON> is set to "1", full-duplex mode is enabled and the settings in this register have no effect.

10. I2SRMCON (Rx Master WS/SCK Period Register)

 $Address = (0xF204_0000) + 0x0030$

Bit	Bit Symbol	Туре	Reset Value	Description
[31:4]	_	-	Undefined	Read undefined. Write as zero.
[3:2]	I2SRx_WS_DIV[1:0]	R/W	ОуО	Ratio source clock to I2S0MCLK 00: 1/1 01: 1/2 10: 1/4 11: Do not set
[1:0]	I2SRx_SCLK_DIV[1:0]	R/W	ОуО	Ratio I2S0MCLK to I2S0SCLK 00: 1/8 01: 1/12 10: 1/16 11: Do not set

[Explanation]

a. <I2SRx_WS_DIV[1:0]>, <I2SRx_SCLK_DIV[1:0]>
 When I2SCOMMON<COMMON> is set to "1", full-duplex mode is enabled.

I2STMCON I2STx_WS_DIV[1:0] or I2SRMCON I2SRx_WS_DIV[1:0]	Ratio of I2S0MCLK to source clock	Ratio of I2S0SCLK to source clock	I2STMCON I2STx_SCLK_DIV[1:0] or I2SRMCON I2SRx_SCLK_DIV[1:0]	Ratio of I2S0WS to source clock
00: (1/1)	1/1	1/8	00: (1/256)	1/256
01: (1/2)	1/2	1/16	00: (1/256)	1/512
10: (1/4)	1/4	1/32	00: (1/256)	1/1024
00: (1/1)	1/1	1/12	01: (1/384)	1/384
01: (1/2)	1/2	1/24	01: (1/384)	1/768
10: (1/4)	1/4	1/48	01: (1/384)	1/1536
00: (1/1)	1/1	1/16	10: (1/512)	1/512
01: (1/2)	1/2	1/32	10: (1/512)	1/1024
10: (1/4)	1/4	1/64	10: (1/512)	1/2048

Table 3.17.2 Clock setting table

Source clock I2SSCLK frequency	I2STMCON I2STx_WS_DIV[1:0] or I2SRMCON I2SRx_WS_DIV[1:0]	I2S0MCLK frequency (Ratio to source clock)	I2S0SCLK frequency (Ratio to source clock)	I2STMCON I2STx_SCLK_DIV[1:0] or I2SRMCON I2SRx_SCLK_DIV[1:0]	I2S0WS frequency (Ratio to source clock)
	00: (1/1)	8.192 MHz (1/1)	1024 kHz (1/8)	00: (1/256)	32 kHz (1/256)
8.192 MHz	01: (1/2)	4.096 MHz (1/2)	512 kHz (1/16)	00: (1/256)	16 kHz (1/512)
	10: (1/4)	2.048 MHz (1/4)	256 kHz (1/32)	00: (1/256)	8 kHz (1/1024)
	00: (1/1)	12.288 MHz (1/1)	1024 kHz (1/12)	01: (1/384)	32 kHz (1/384)
12.288 MHz	01: (1/2)	6.144 MHz (1/2)	512 kHz (1/24)	01: (1/384)	16 kHz (1/768)
	10: (1/4)	3.072 MHz (1/4)	256 kHz (1/48)	01: (1/384)	8 kHz (1/1536)
	00: (1/1)	16.384 MHz (1/1)	1024 kHz (1/16)	10: (1/512)	32kHz (1/512)
16.384 MHz	01: (1/2)	8.192 MHz (1/2)	512 kHz (1/32)	10: (1/512)	16 kHz (1/1024)
	10: (1/4)	4.096 MHz (1/4)	256 kHz (1/64)	10: (1/512)	8 kHz (1/2048)

Table 3.17.3 Audio sampling setting examples based on 32 kHz

Table 3.17.4 Audio sampling setting examples based on 48 kHz

Source clock I2SSCLK frequency	2STMCON I2STx_WS_DIV[1:0] or I2SRMCON I2SRx_WS_DIV[1:0]	I2S0MCLK frequency (Ratio to source clock)	I2S0SCLK frequency (Ratio to source clock)	I2STMCON I2STx_SCLKS_DIV[1:0] or I2SRMCON I2SRx_SCLKS_DIV[1:0]	I2S0WS frequency (Ratio to source clock)
	00: (1/1)	12.288 MHz (1/1)	1536 kHz (1/8)	00: (1/256)	48 kHz (1/256)
12.288 MHz	01: (1/2)	6.144 MHz (1/2)	768 kHz (1/16)	00: (1/256)	24 kHz (1/512)
	10: (1/4)	3.072 MHz (1/4)	384 kHz (1/32)	00: (1/256)	12 kHz (1/1024)
	00: (1/1)	18.432 MHz (1/1)	1536 kHz (1/12)	01: (1/384)	48 kHz (1/384)
18.432 MHz	01: (1/2)	9.216 MHz (1/2)	768 kHz (1/24)	01: (1/384)	24 kHz (1/768)
	10: (1/4)	4.608 MHz (1/4)	384 kHz (1/48)	01: (1/384)	12 kHz (1/1536)
	00: (1/1)	24.576 MHz (1/1)	1536 kHz (1/16)	10: (1/512)	48 kHz (1/512)
24.576 MHz	01: (1/2)	12.288 MHz (1/2)	768 kHz (1/32)	10: (1/512)	24 kHz (1/1024)
	10: (1/4)	6.144 MHz (1/4)	384 kHz (1/64)	10: (1/512)	12 kHz (1/2048)

11. I2STMSTP (Tx Master Stop Register)

Address = (0xF204_0000) + 0x0014

Bit	Bit Symbol	Туре	Reset Value	Description
[31:1]	_	-	Undefined	Read undefined. Write as zero.
[0]	I2STx_MSTOP	R/W	0у0	I2STx master stop: 0: Do not stop I2S1WS/I2S1SCLK 1: Stop I2S1WS/I2S1SCLK (I2S1WS/I2S1SCLK= "0")

[Explanation]

a. <I2STx_MSTP>

This bit is used to stop (= "0") I2S1WS and I2S1SCLK from the master.

Before setting this register, make sure that I2STx is in the SBY state. Operation is not guaranteed in other cases.

The default setting is not to stop I2S1WS and I2S1SCLK. Therefore, after master-related settings are made, I2S1WS and I2S1SCLK are immediately output.

When I2SCOMMON<COMMON> is set to "1", full-duplex mode is enabled and the setting of this register has no effect.

12. I2SRMSTP (Rx Master Stop Register) (I²S Slave ;SBY(Standby) register)

Address = (0xF204_0000) + 0x0034

Bit	Bit Symbol	Туре	Reset Value	Description
[31:1]	-	-	Undefined	Read undefined. Write as zero.
[0]	I2SRx_MSTOP	R/W	0у0	I2SRx master stop:
				0: Do not stop I2S0WS/I2S0SCLK
				1: Stop I2S0WS/I2S0SCLK
				(I2S0WS/I2S0SCLK= "0")

[Explanation]

a. <I2SRx_MSTP>

This bit is used to stop (= "0") I2S0WS and I2S0SCLK from the master. It is not normally used.

Before setting this register, make sure that I2STx is in the SBY state. Operation is not guaranteed in other cases.

The default setting is not to stop I2S0WS and I2S0SCLK. Therefore, after master-related settings are made, I2S0WS and I2S0SCLK are immediately output.

13. I2STDMA1 (Tx DMA Ready Register)

Address = (0xF204_0000) + 0x0018

Bit	Bit Symbol	Туре	Reset Value	Description
[31:1]	_	-	Undefined	Read undefined. Write as zero.
[0]	I2STx_DMAREADY1	R/W	0у0	I2STx DMA ready:
				0: Not ready
				1: Ready

[Explanation]

a. <I2STx_DMAREADY1>

This register indicates the DMA ready state to the hardware logic.

When the DMA ready state is reached, this register should be set to "1" by software. Then, the hardware logic monitors the FIFO and starts DMA transfer.

Note: Do not set this register when it is already set.

14. I2SRDMA1 (Rx DMA Ready Register)

 $Address = (0xF204_0000) + 0x0038$

Bit	Bit Symbol	Туре	Reset Value	Description
[31:1]	_	-	Undefined	Read undefined. Write as zero.
[0]	I2SRx_DMAREADY1	R/W	0у0	I2SRx DMA ready:
				0: Not ready
				1: Ready

[Explanation]

a. <I2SRx_DMAREADY1>

This register indicates the DMA ready state to the hardware logic.

When the DMA ready state is reached, this register should be set to "1" by software. Then, the hardware logic monitors the FIFO and starts DMA transfer.

Note: Do not set this register when it is already set.

15. I2SCOMMON (COMMONWS/SCK (0: Tx/Rx Separate 1:Rx Only(Tx=Rx)) and Loop Setting Register)

Address = (0xF204_0000) + 0x0044

Bit	Bit Symbol	Туре	Reset Value	Description
[31:5]	-	-	Undefined	Read undefined. Write as zero.
[4]	MCLKSEL0	WO	0у0	Master clock to be output from the receive logic: 0: Audio source clock 1: Divided-down audio source clock
[3]	MCLKSEL1	WO	0у0	Master clock to be output from the transmit logic: 0: Audio source clock 1: Divided-down audio source clock
[2]	I2SSCLK	WO	0у0	Audio source clock: 0: PLLCG clock (X1) 1: External clock
[1]	LOOP	R/W	0у0	Loop setting 0: Loop disabled 1: Loop enabled
[0]	COMMON	R/W	0у0	Common or separate SCK/WS for Tx and Rx: 0: Separate 1: Common

[Explanation]

a. <MCLKSEL0>

Selects the master clock to be output from the receive logic.

0: Audio source clock

1: Divided-down audio source clock

b. <MCLKSEL1>

Selects the master clock to be output from the transmit logic.

0: Audio source clock

1: Divided-down audio source clock

c. <I2SSCLK>

Selects the audio source clock to be used. 0: PLLCG clock (X1)

- 1: External clock
- d. <LOOP>

Specifies loop setting.

- 0: Loop disabled
- 1: Loop enabled
- a. <COMMON>

When this bit is set to "1", the SCK and WS input signals of I2SRx are also used by I2STx. In this case, the settings made for the transmit master have no effect.

16. I2STST (I²S Tx Status Register)

 $Address = (0xF204_0000) + 0x0048$

Bit	Bit Symbol	Туре	Reset Value	Description
[31:4]	_	-	Undefined	Read undefined. Write as zero.
[3:2]	I2STx_STATUS[1:0]	RO	0у00	FIFO status according to I ² S slave (SCK/WS): 00: SBY 01: PreACT 10: PreSBY 11: ACT
[1]	I2STx_FIFOFULL	RO	0у0	FIFO full status: 0: Not full 1: Full
[0]	I2STx_FIFOEMPTY	RO	0y1	FIFO empty status: 0: Not empty 1: Empty

[Explanation]

- a. <I2STx_STATUS[1:0]>
 Indicates the FIFO status according to the I2S slave (SCK/WS) operation.
 00: SBY
 01: PreACT
 10: PreSBY
 11: ACT
 b. <I2STx_FIFOFULL>
- o. <12STx_FIFOFULL>
 Indicates the FIFO full status.
 0: Not full
 1: Full
- c. <I2STx_FIFOEMPTY>
 Indicates the FIFO empty status.
 0: Not empty
 1: Empty

17. I2SRST (I²S Rx Status Register)

 $Address = (0xF204_0000) + 0x004C$

Bit	Bit Symbol	Туре	Reset Value	Description
[31:4]	_	-	Undefined	Read undefined. Write as zero.
[3:2]	I2SRx_STATUS[1:0]	RO	0у00	FIFO write status according to I ² S salve (SCK/WS) input: 00: SBY 01: PreACT 10: PreSBY 11: ACT
[1]	I2SRx_FIFOFULL	RO	0у0	FIFO full status: 0: Not full 1: Full
[0]	I2SRx_FIFOEMPTY	RO	0y1	FIFO empty status: 0: Not empty 1: Empty

[Explanation]

- a. <I2SRx_STATUS [1:0]>
 Indicates the FIFO write status according to the I²S slave (SCK/WS) input.
 00: SBY
 01: PreACT
 10: PreSBY
 11: ACT
- b. <I2SRx_FIFOFULL>
 Indicates the FIFO full status.
 0: Not full
 1: Full
- c. <I2SRx_FIFOEMPTY>
 Indicates the FIFO empty status.
 0: Not empty
 1: Empty

18. I2SINT (I²S Interrupt Register)

 $Address = (0xF204_0000) + 0x0050$

Bit	Bit Symbol	Туре	Reset Value	Description
[31:4]	_	-	Undefined	Read undefined. Write as zero.
[3]	I2SRx_OVERFLOW_INT	R/W	ОуО	Rx FIFO overflow interrupt: 0: No interrupt 1: Interrupt generated
[2]	I2SRx_UNDERFLOW_INT	R/W	0у0	Rx FIFO underflow interrupt: 0: No interrupt 1: Interrupt generated
[1]	I2STx_OVERFLOW_INT	R/W	ОуО	Tx FIFO overflow interrupt: 0: No interrupt 1: Interrupt generated
[0]	I2STx_UNDERFLOW_INT	R/W	0y0	Tx FIFO underflow interrupt: 0: No interrupt 1: Interrupt generated

[Explanation]

a. <I2SRx_OVERFLOW_INT>, <I2SRx_UNDERFLOW_INT>, <I2STx_OVERFLOW_INT>, <I2STx_UNDERFLOW_INT>

This register indicates the interrupt status of each interrupt source. To monitor the FIFO error status by using each interrupt source, the corresponding bit of the interrupt mask register (I2SINTMSK) must be cleared.

When an interrupt is generated from one of these sources, the interrupt controller generates an I2SINT interrupt. The interrupt source can be identified by monitoring each interrupt source bit of the I2SINT register.

Each bit of this register is cleared to "0" by writing "1".

19. I2SINTMSK (I²S Interrupt Mask Register)

 $Address = (0xF204_0000) + 0x0054$

Bit	Bit Symbol	Туре	Reset Value	Description
[31:4]	_	-	Undefined	Read undefined. Write as zero.
[3]	I2SRx_OVERFLOW_INTMS	R/W	0y1	Rx FIFO overflow interrupt mask: 0: Do not mask 1: Mask
[2]	I2SRx_UNDERFLOW_INTM	R/W	0y1	Rx FIFO underflow interrupt mask: 0: Do not mask 1: Mask
[1]	I2STx_OVERFLOW_INTMS	R/W	0y1	Tx FIFO overflow interrupt mask: 0: Do not mask 1: Mask
[0]	I2STx_UNDERFLOW_INTM	R/W	0y1	Tx FIFO underflow interrupt mask : 0: Do not mask 1: Mask

[Explanation]

- a. <I2SRx_OVERFLOW_INTMS>
 Enables or disables the Rx FIFO overflow interrupt mask.
 0: Do not mask
 1: Mask
- b. <I2SRx_FIFOFULL>

Enables or disables the Rx FIFO underflow interrupt mask. 0: Do not mask 1: Mask

c. <I2SRx_FIFOEMPTY>

Enables or disables the Tx FIFO overflow interrupt mask.

0: Do not mask

1: Mask

d. <I2SRx_FIFOFULL>

Enables or disables the Tx FIFO underflow interrupt mask. 0: Do not mask 1: Mask

20. I2STDAT (Transmit FIFO Window)

 $Address = (0xF204_1000) + 0x0000$

Bit	Bit Symbol	Туре	Reset Value	Description
[31:16]	Left[15:0]	R/W	0x0000	I2STx left audio data [15:0]
[15:0]	Right[15:0]	R/W	0x0000	I2STx right audio data [15:0]

[Explanation]

a. <Left[15:0]>, <Right[15:0]>

Audio data is written from high-level memory into this block by the DMAC (= master).

Stereo audio data is set simultaneously with upper data as left channel data and lower data as right channel data. Data can be written to any address in a range of 0xF2041000 to 0xF2041FFF, and is sequentially stored in the FIFO as it is written. This register does not support read operations (always returns "0").

21. I2SRDAT (Receive FIFO Window)

Address = (0xF204_2000) + 0x0000

Bit	Bit Symbol	Туре	Reset Value	Description
[31:16]	Left[15:0]	RO	0x0000	I2SRx left audio data [15:0]
[15:0]	Right[15:0]	RO	0x0000	I2SRx right audio data [15:0]

[Explanation]

a. <Left[15:0]>, <Right[15:0]>

Audio data is read from this block to high-level memory by the DMAC (= master). Stereo audio data is input simultaneously with upper data as left channel data and lower data as right channel data. Data can be read from any address in a range of 0xF2042000 to 0xF2042FFF, and is sequentially read out from the FIFO. This register is read-only.

3.17.5 Setting example

1) Setting example of Transmission master and Receive slave

	I2SCOMMON I2STCON I2SRCON I2SRMS I2STMS GPIOMFR1	1 1 1 1 1 1	0x00000004 0x00000000 0x00000000 0x00000000	; write 0x00000004 to Register ; Rx is slave ; Tx is master
	GPIOLFR1 0xf8004000	↓ ↓ ↓	0x000000FF 0x0000FFFF	; Set transfer data
	0xf800403c	←	0xFFFF0000	; End of set data : Use DMA scatter gather link
	0xf8004040 0xf8004044 0xf8004048 0xf800404c	1 1 1 1	0xf8004020 I2STDAT 0xf8004050 0x04492008	; source address ; destination address ; next address ; Set DMAC control register
i2sr_act	DMACConfiguration DMACC0SrcAddr DMACC0DestAddr DMACC0Control DMACC0Configuration I2SRSLVON I2SRST LDR r1,=0xc AND r0,r0,r1 LDR r2,=0xc CMP r0 r2	1 1 1 1 1 1	0x00000001 I2SRDAT 0xf8008000 0x08492008 0x00001017 0x00000001	; Set Rx DMAC ; I2S internal clock on ; check I2S Active
	BNE i2sr_act I2SRDMA1	←	0x00000001	;I2S DMA Ready
	DMACConfiguration DMACC1SrcAddr DMACC1DestAddr DMACC1Control DMACC1Configuration I2STSLVON	1 1 1 1 1 1	0x00000001 0xf8004000 I2STDAT 0x04492008 0x00000a81 0x00000001	; Set Tx DMAC ; I2S internal clock on
i2st_act	I2SRST LDR r1,=0xc AND r0,r0,r1 LDR r2,=0xc CMP r0,r2 BNE i22t_act	→	r0	; check I2S Active
finish_DMA	I2STDMA1 DMACC0Control	\rightarrow	0x00000001 r0	;I2S DMA Ready ; check the End of Rx DMAC
	CMP r0,#0x0 BNE finish_DMA I2STDMA1 I2SRDMA1 I2STSLVON I2SRSLVON	1 1 1 1	0x00000000 0x00000000 0x00000000 0x000000	; DMA Clear ; internal clock off
i2s_stop_t	I2STST LDR r1,=0xc AND r0,r0,r1 LDR r1,=0x0 CMP r0,r1 BNE i2s_stop_t	\rightarrow	rO	; check I2S Tx standby
i2s_stop_r	I2SRST LDR r1,=0xc AND r0,r0,r1 LDR r1,=0x0 CMP r0,r1 BNE i2s stop r	→	rO	; check I2S Rx standby
	I2STFCLR I2SFRFCLR	Ţ	0x00000001 0x00000001	; clear Tx FIFO ; clear Rx FIFO

3.18 SD Host Controller

3.18.1 Function Overview

Functions and charactrisctic of SD Host Controller are shown as follows.

- 1) Data transmission/reception in frame units
- 2) Error check:CRC7(for commands), CRC16(for Data)
- 3) Synchronous method: bit synchronous by SDCLK
- 4) SD Memory/IO Card Interface: COMMAND(1line),Data/INT(4line)
- 5) Multiple port support: 2 card
- 6) 512byte data buffer: 256words×16bits×2
- 7) Card detect support (SDCxCD or SDCxDAT3)
- 8) Data write protect support
- 9) Detected below Status error

SDbuffer underflow/overflow

timeout (response, other), END, CRC, CMD

- 10) Recognizes the various response frame formats through the register settings
- 11) The SD_CLK cycle division ratio can be set from $f_{PCLK}\!/2$ to $f_{PCLK}\!/512$
- 12) The transfer data length can be either be set from 1byte to 512byte
- 13) Sector counter for multiple Read/Write operation

Note: All control registers and Data access, are supported only 16bit-bus width.(Not support 32-bit bus access)

X About the detail specification of this circuit, The special contract is necessary to get it. In detail, please contact business man of Toshiba.

3.19 LCD Controller (LCDC)

3.19.1 Overview

This LSI incorporates a color-capable LCD controller (CLCDC). The CLCDC has the following characteristics:

Type of LCD driver		TFT	STN	
Displayable colors		~ 256 colors	2,4,16,256,3375 colors	
(Palet	te color change available)	ļ!		
Displa	ayable colors	~ 16.77 million colors	3,375 colors	
(Pale	te color change unavailable)			
Bit pe	r Pixel	1/2/4/8/16/24 bit	1/2/4/8/16 bit	
(Data	quantity per pixel)	1/2/4/0/10/24 Dit		
Numb pixels	er of available horizontal	16x(PPL + 1)dot: PPL values take integers of 0 to 63 only. (Note)		
Number of available vertical lines		1 to 1,024 (integer)*		
Transfer-destination data bus width (LCD driver)		Max. 24 bits	8 bit	
Type of LCD panel		Active matrix Dual/single panel mode		
Buffe	for display data receive	32 bit ×16 word × 2		
Timin	g adjustment function	Can program the front/back porch timings of vertical/horizontal sync signals.		
Displa	ay palette	256 entries, 16-bit palette RAM		
Data	type	Little endian support		
	Terminals LD23 to LD0	Data buses for LCD driver		
nal	LCLAC terminal	Enable data "Enable" signal	AC bias signal (frame signal)	
srmi	LCLLP terminal	Horizontal sync signal	Horizontal sync pulse	
on te	LCLFP terminal	Vertical sync signal	Vertical sync pulse	
ECLCP terminal		Clock for LCDD data latch		
nne	LCLLE terminal	Line end signal	Not used basically	
O LCLPOWER terminal		LCD panel power control signal (Note: Not supported by this LSI)		

Note: In the display size, limitations occur depending on display colors and operation clocks. Refer to the chapter on "Cautions" for details.

As the standard, it is reference as follows.

LCD type	Displayable Maximum dot number
TFT 24bit Color	Approximately 175000dot (around 480×320)
TFT 16bit Color	Approximately 350000dot (around 640×480)
TFT 8bit Color	Approximately 500000dot (around 800×600)
TFT 4bit Color	No particular limitations
TFT 2bit Color	No particular limitations
STN 15bit Color	Approximately 350000dot (around 640×480)
STN 8bit Color	Approximately 700000dot (around 960×640)
STN 4bit Color	No particular limitations
STN 2bit Color	No particular limitations
STN 1bit Color(Monochrome)	No particular limitations

3.19.2 Function

Figure 3.19.1 shows the schematic block diagram of the CLCDC.

Figure 3.19.1 LCDC Block Diagram

The description of each block is shown in the next and following pages:

3.19.2.1 AMBA_AHB Slave Interface

The CPU reads and writes control registers and the palette RAM to control the CLCDC. The following shows the functions supported by the CLCDC_AMBA_AHB slave interface.

- Standard write/read AMBA_AHB access
- DMA access is available for INCR4 and INCR8, and undefined word bursts only.

3.19.2.2 AMBA_AHB Master Interface

The AMBA_AHB master interface reads display data from a selected slave (memory) and transfer it to CLCDC_DMA_FIFO. The master interface can be directly connected to the AMBA AHB system bus or the AMBA_AHB port of the memory controller.

3.19.2.3 DMA FIFO and Related Control Logics

The FIFO's input port is connected to the interface; and the output port is connected to the pixel serializer.

In order to match the single/dual panel LCD types, display data read from the display RAM is buffered into the two DMA FIFOs that can control the data individually.

32 words of FIFO can be used. By the WATERMARK register setting, the FIFO requests data at the point when free space of 4 words or more, or 8 words or more occurs.

If LCD data is output with the FIFO empty, an underflow condition results, which asserts an interrupt signal.
3.19.2.4 Pixel Serializer

This block reads LCD data of 32-bit width from the DMA FIFO's output port and converts it into 24-, 16-, 8-, 4-, 2-, or 1-bit data according to the operation mode.

In the dual panel mode, data is divided into the higher DMA FIFO (16 words) and the lower DMA FIFO (16 words) and read alternately.

Data converted into a suitable size is used as color/gray level values in the palette RAM or output directly without bypassing the palette.

hnn		DMA FIFO output bit														
ppb	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
1	P31	P30	P29	P28	P27	P26	P25	P24	P23	P22	P21	P20	P19	P18	P17	P16
•	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	Р	15	P	14	P	P13 P12		P	P11 P10		F	9	P8			
2	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0
4	P7				P6			P5				P4				
4	3	2	1	0	3	2	1	0	3	2	1	0	3	2	1	0
Q				F	°3				P2							
0	7	6	5	4	3	2	1	0	7	6	5	4	3	2	1	0
16								P	'1							
10	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
24								F	0							
24	-	-	-	-	-	-	-	-	23	22	21	20	19	18	17	16

Table 3.19.2 LBLP: DMA FIFO output bits 31 to 16

Table3.19.3 LBLP: DMA FIFO output bits 15 to 0

boo							DMA F	FIFO o	utput l	oit						
phh	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
1	P15	P14	P13	P12	P11	P10	P9	P8	P7	P6	P5	P4	P3	P2	P1	P0
'	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2	P	7	P	6	P	25	P	4	P	3	Р	2	Р	1	P	0
2	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0
4		P	' 3		P2			P1			P0					
4	3	2	1	0	3	2	1	0	3	2	1	0	3	2	1	0
0		P1							P0							
0	7	6	5	4	3	2	1	0	7	6	5	4	3	2	1	0
16								P0								
10	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
24								P0								
24	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

3.19.2.5 RAM Palette

A palette of 16 bits \times 256 entries is incorporated.

Figure 3.19.2 Palette RAM

Pixel data is replaced into data of in-palette 16 bits and then output.

(Pixel data is converted into 256-entry in-palette addresses temporarily and then replaced into pixel data stored in corresponding addresses.)

One word (32 bits) of palette RAM data equals to two pixels of data. Therefore, the lowest-order bit of pixel data is used to select either the higher 16 bits or lower 16 bits of the palette RAM.

Example) If 0x00 pixel data is input in 8 bpp, the data is replaced into the lower 16-bit data for an address of 0xF420_0200.

If 0xFF pixel data is input in 8 bpp, the data is replaced into the higher 16-bit data for an address of 0xF420_03FC.

A palette structured with R:5 bits, G:5 bits, and B:5 bits is structured with a dual port RAM of 128×32 bits. Therefore, two-pixel entry into the palette can be written in 1 word.

LCD Palette

Address = (0xF420_0000) + ((0x0200) to (0x03FC))

Dit	Bit	Tuno	Reset	Description
Dit	Symbol	туре	Value	Description
[31]	Ι	RW	0y0	Brightness(unused)
[30:26]	B[4:0]	RW	0y00000	Blue palette data setting
[25:21]	G[4:0]	RW	0y00000	Green palette data setting
[20:16]	R[4:0]	-	0y00000	Red palette data
[15]	Ι	RW	0y0	Brightness(unused)
[14:10]	B[4:0]	RW	0y00000	Blue palette data setting
[9:5]	G[4:0]	RW	0y00000	Green palette data setting
[4:0]	R[4:0]	RW	0y00000	Red palette data

In the monochrome STN mode, only red palette R [4:1] is used (bit0 not used).

In the STN color mode, red, green, and blue bits [4:1] are used (bit0 not used). To support the BGR data system, this red and blue pixel data can be swapped using the control register bit.

In the 16 / 24 bpp TFT mode, palettes are bypassed so that the pixel serializer's output can be directly used as TFT panel data.

A RAM palette supports 256 entries x 16 bits at maximum. Therefore, TFT and color STN palettes can support up to 8-bpp data.

3.19.2.6 Gray Scaler

The gray algorithm supports monochrome display 15 gray scale levels.

For STN color display, three color components (red, green, and blue) are processed for gray scale level concurrently, allowing 3,375 ($15 \times 15 \times 15$) colors to be usable.

3.19.2.7 Higher-/Lower-Order Panel Formatter

Divides higher and lower pixel data for using Dual Panel.

RGB pixel data is shifted in to each of the unique registers per bit and concurrently to be configured in proper bit positions.

TOSHIBA

3.19.2.8 Panel Clock Generator

Can set the frequency division rate of data transfer clock (LCLCP) used in the internal clock (HCLK) and LCDC. The LCLCP clock can be programmed in the range of HCLK/2 to HCLK/1025 according to the data rate of the LCD panel.

Note that setting the clock frequency division has the following conditions: The built-in RAM area in the display RAM

Following Table show the condition of Clock divider setting

Passive (STN) liquid

	Display condition		Pata of			
		LCD	Single/Dual			
Display type	View RAM	bus width	panel	HCLK and CLCP		
			Single	HCLK/3 > CLCP		
		4bit bus	Dual	HCLK/6 > CLCP		
	built-in RAM	a t 11 1	Single	HCLK/3 > CLCP		
		8bit bus	Dual	HCLK/6 > CLCP		
			Single	HCLK/3 > CLCP		
		4bit bus	Dual	HCLK/6 > CLCP		
	External SDR SDRAM (16bit bus)	a t 11 1	Single	HCLK/3 > CLCP		
		8bit bus	Dual	HCLK/6 > CLCP		
		Al-Maria	Single	HCLK/3 > CLCP		
	External SDR SDRAM	4bit bus	Dual	HCLK/6 > CLCP		
	(32bit bus)	01.11	Single	HCLK/3 > CLCP		
monochrome		8bit bus	Dual	HCLK/6 > CLCP		
(1bpp)			Single	HCLK/3 > CLCP		
	External DDR SDRAM	4bit bus	Dual	HCLK/6 > CLCP		
	(16bit bus)		Single	HCLK/3 > CLCP		
		8bit bus	Dual	HCLK/6 > CLCP		
			Single			
		4bit bus	Dual	depend on the access cycle of		
	External SRAM (16bit bus)	a t 11 1	Single			
		8bit bus	Dual			
			Single	SRAM		
		4bit bus	Dual	-		
	External SRAM (32bit bus)	a t 11 1	Single	-		
		8bit bus	Dual	-		
			Single	HCLK/3 > CLCP		
		4bit bus	Dual	HCLK/6 > CLCP		
	built-in RAM		Single	HCLK/3 > CLCP		
		8bit bus	Dual	HCLK/6 > CLCP		
			Single	HCLK/3 > CLCP		
	External SDR SDRAM	4bit bus	Dual	HCLK/6 > CLCP		
	(16bit bus)	01.11	Single	HCLK/3 > CLCP		
		8bit bus	Dual	HCLK/6 > CLCP		
			Single	HCLK/3 > CLCP		
	External SDR SDRAM	4bit bus	Dual	HCLK/6 > CLCP		
	(32bit bus)	01.11	Single	HCLK/3 > CLCP		
gray		8DIT DUS	Dual	HCLK/6 > CLCP		
COIOF			Single	HCLK/3 > CLCP		
(~150pp)	External DDR SDRAM	4bit bus	Dual	HCLK/6 > CLCP		
	(16bit bus)		Single	HCLK/3 > CLCP		
		8bit bus	Dual	HCLK/6 > CLCP		
			Single			
	Externel ODAM (40b)(base)	4DIT DUS	Dual			
	External SRAM (16bit bus)	OL: L	Single			
		Spit Dus	Dual	depend on the access cycle of SRAM		
			Single			
		4DIT DUS	Dual			
	External SRAM (32bit bus)	ot it t	Single			
			Dual			

Active liquid (TFT)

	Display condition								
Display		LCD	Single/Dual	HCLK and CLCP					
type		bus width	panel						
	built-in RAM			HCLK ≥ CLCP					
	External SDR SDRAM (16bit bus)			HCLK/6 > CLCP					
color	External SDR SDRAM (32bit bus)	16bit bus	Single	HCLK/3 > CLCP					
(16bpp)	External DDR SDRAM (16bit bus)		Single	HCLK/3 > CLCP					
	External SRAM (16bit bus)			depend on the access cycle of					
	External SRAM (32bit bus)			SRAM					
	built-in RAM			HCLK ≥ CLCP					
	External SDR SDRAM (16bit bus)			HCLK/10 > CLCP					
color	External SDR SDRAM (32bit bus)	24bit buo	Single	HCLK/5 > CLCP					
(24bpp)	External DDR SDRAM (16bit bus)	24bit bus	Single	HCLK/5 > CLCP					
	External SRAM (16bit bus)			depend on the access cycle of					
	External SRAM (32bit bus)			SRAM					

3.19.2.9 Timing Controller

The main function of the timing controller block is to adjust horizontal/vertical timings.

3.19.2.10 Creating Interrupts

The CLCDC generates four types of interrupts that are maskable individually and one type of joint interrupt.

3.19.3 Description of Registers

The following lists the SFRs:

Table3.19.4 List of registers

Register Address Name (base+)		Description			
LCDTiming0	0x000	Horizontal control			
LCDTiming1	0x004	Vertical control			
LCDTiming2	0x008	Clock/signal polarity control			
LCDTiming3	0x00c	Line end control			
LCDUPBASE 0x010		Higher-order panel frame base address			
LCDLPBASE 0x014		Lower-order panel frame base address			
LCDIMSC 0x018 I		Interrupt Mask Set/Clear Register (Enable)			
LCDControl	0x01c	LCD Control register			
LCDRIS	0x020	Raw Interrupt Status Register			
LCDMIS	0x024	Masked Interrupt Status Register			
LCDICR	0x028	Interrupt Clear Register			
LCDUPCURR	0x02c	Upper Panel Current Address Value Registers			
LCDLPCURR	0x030	Lower Panel Current Address Value Registers			
LCDPalette	0x200-0x3fc	Color Palette Register			

1. LCDTiming0 (Horizontal-direction control register)

LCDTiming0 is the register to control the following:

- Horizontal sync pulse width (HSW)
- Horizontal front porch (HFP) period
- Horizontal back porch (HBP) period
- Number of pixels per line (PPL)

Address = (0xF420_0000) + (0x0000)

Bit	Bit Symbol	Туре	Reset Value	Description
[31:24]	HBP	RW	0x00	Value set for horizontal back porch width
				0x00 to 0xFF
[23:16]	HFP	RW	0x00	Value set for horizontal front porch width
				(LCLCP period number of actual horizontal front porch width: HFP+1)
				0x00 to 0xFF
[15:8]	HSW	RW	0x00	Horizontal sync pulse width
				(LCLCP period number of actual horizontal sync pulse width: HSW+1)
				0x00 to 0xFF
[7:2]	PPL	RW	0y000000	Value set for pixels per line
				(Actual number of pixels per line = $16 \times (PPL + 1)$)
				0y000000 to 0y11111
[1:0]	-	-	Undefined	Read undefined. Write as zero.

[Explanation]

a. <HBP>

Horizontal back porch refers to the number of LCLCP periods from the CLLP rising/falling (selectable) edge to the active data start. HBP is used to specify the number of pixel clock periods inserted at the start point of each line or pixel line. After the line clock of the previous line is de asserted, the number of pixel clocks until the start of the next display line is counted using the value in the HBP. HBP can generate a delay of 1 to 256 pixel clock cycles.

b. <HFP>

Horizontal front porch refers to the number of LCLCP periods from the active data end to the LCLLP falling/rising (selectable) edge. Before an LCD line clock is pulsed, HFP sets a pixel clock interval at the end of each line or pixel line. After a complete pixel line is sent to the LCD driver, the number of pixel clocks until the assertion of line clock is counted using the value in the HFP. HFP can generate a period of 1 to 256 pixel clock cycles.

c. $\langle HSW \rangle$

Horizontal sync pulse width refers to the width of LCLLP signal in the LCLCP period. HSW specifies the line clock pulse width in the passive mode or the horizontal sync pulse in the active mode.

d. <PPL>

PPL specifies the number of pixels in the screen's each line or a line. PPL is a 6-bit value representing 16 to 1024 PPL. PPL controls the quantity of data transferred from the DMA FIFO to the gray scaler.

• Limitations on horizontal timing

DMA requests new data at the start point of horizontal display line. Until DMA transfer and data are conveyed to the FIFO path of the LCD interface, certain amount of time is taken. Due to a delay in this data path, limitations are imposed on the minimum values usable for the horizontal porch width in the STN mode. The minimum values are HSW = 2, HBP = 2.

For single panel mode:

- HSW = 3
- HBP = 5
- HFP = 5
- Panel clock divisor (PCD) = 1(HCLK/3)

Dual panel mode:

- HSW = 3
- HBP = 5
- HFP = 5
- PCD = 5(HCLK/7)

Setting enough time at the start point of line (Example: HSW = 6, HBP = 10) prevents data from being corrupted even during PCD = 4 (minimum value).

The figure below shows the operation mode setting (LCLLP: Low Active, CLAC: High active, Data drive timing: LCLCP \downarrow) as an example:

Figure 3.19.3 Basic operation of horizontal control

Note: For CPL, divide PPL by 1 (TFT), 4 or 8 (monochrome STN), or (2 + 2/3) (color STN) to set the division value.

2. LCDTiming1 (Vertical direction control register)

LCDTiming1 is the register to control the following:

- Number of lines per panel (LPP)
- Vertical sync pulse width (VSW)
- Vertical front porch (VFP) period
- Vertical back porch (VBP) period

Address = (0xF420_0000) + (0x0004)

Bit	Bit	Type	Reset	Description			
	Symbol	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Value				
[31:24]	VBP	RW	0x00	Setting the number of vertical front porch lines			
				0x00 to 0xff			
[23:16]	VFP	RW	0x00	Setting the number of vertical back porch lines			
				0x00 to 0xff			
[15:10]	VSW	RW	0y000000	Setting the number of vertical sync pulse lines			
				(Actual number of vertical sync pulse lines = VSW+1)			
				0y000000 to 0y111111			
[9:0]	LPP	RW	0y0000000000	Setting the number of lines per panel			
				(Actual number of lines per panel = LPP +1)			
				0y0000000000 to 0y111111111			

The figure below shows the operation mode setting (LCLFP: Low Active) as an example:

Figure 3.19.4 Basic operation of horizontal control

[Explanation]

a. <VBP>

Vertical back porch refers to the number of non-active lines during frame start after vertical sync period. This 8-bit VBP field is used to specify the number of line clocks inserted at the start point of each frame. VBP generates 0 to 255 surplus line clock cycles.

b. <VFP>

Vertical front porch refers to the number of non-active lines during frame end before vertical sync period. In Passive display, if 0 is not programmed, contrast is reduced. VFP generates 0 to 255 line clock cycles.

c. <VSW>

Vertical sync pulse width refers to the number of horizontal sync lines. In Passive STN LCD, small values (such as programming 0) need to be set. Setting greater values reduces contrast in STN LCD more.

d. <LPP>

The number of lines per panel refers to the number of active lines per screen. The LPP field specifies the total number of lines or rows on the LCD panel being controlled. The 10 bits retained by LPP can specify 1 to 1024 lines. For dual panel display, this register programs the number of lines for each of the higher-order and lower-order panels.

3. LCDTiming2 (Clock/signal polarity control register)

LCDTiming2 is the read/write register to control the CLCDC timing.

 $Address = (0xF420_0000) + (0x0008)$

	Bit	T	Reset	Decembric
Bit	Symbol	туре	Value	Description
[31:27]	PCD_HI	RW	0y00000	Value set for the higher 5 bits of panel clock frequency division
				(Upper five bits of Panel Clock Divisor)
				0y00000 to 0y11111
[26]	BCD	RW	0y0	Bypass pixel clock divider
				(by pass pixel clock devider)
				0: Divides clock frequency.
				1: Does not divide clock frequency.
[25:16]	CPL	RW	0y0000000000	Number of clocks per line
				0y000000000 to 0y111111111
[15]	-	-	Undefined	Read undefined. Write as zero.
[14]	IOE	RW	0y0	Invert output enable
				0 : LCLAC output HIGH active in TFT mode
				1 : LCLAC output LOW active in TFT mode
[13]	IPC	RW	0y0	Data drive timing for LCD data line
				(Invert panel clock)
				0 : LCLCP rising edge
				1 : LCLCP falling edge
[12]	HIS	RW	0y0	Invert horizontal synchronization
				0 : LCLLP pin HIGH active
				1 : LCLLP pin LOW active
[11]	IVS	RW	0y0	Invert vertical synchronization
				0 : LCLFP pin HIGH active
				1 : LCLFP pin LOW active
[10:6]	ACB	RW	0y00000	AC bias pin frequency
				(Actual C bias pin frequency = ACB +1)
				0y00000 to 0y11111
[5]	-	-	Undefined	Read undefined. Write as zero.
[4:0]	PCD_LO	RW	0y00000	Value set for the lower 5 bits of panel clock frequency division
				(Lower five bits of Panel Clock Divisor)
				0y00000 to 0y11111

[Explanation]

a. <PCD_HI>

Combining PCD_HI (higher 5 bits) and PCD_LO (lower 5 bits) described later serves as the frequency division setting PCD for 10-bit panel clock. This is used to perform a frequency division on the LCD panel clock frequency LCLCP from the HCLK frequency. LCLCP = HCLK/(PCD+2).

For monochrome STN display that uses 4-bit or 8-bit interfaces, this panel clock is the factor of 4 and 8 that act on actual individual pixel clock rates. In color STN display, because (2 + 2/3) pixels per 1 LCLCP cycle is output, the panel clock is 0.375 times more. For TFT display, the pixel clock divider can be bypassed by setting the LCDTiming2[26] BCD bit.

b. <BCD>

Bypass pixel clock divider. Setting 1 in this bit bypasses the pixel clock divider logic (LCLCP = HCLK). This bit is used for TFT display mainly.

c. <CPL>

Number of clocks per line. This bit specifies the actual number of LCLCP clocks for each line to the LCD panel. This value is obtained by dividing PPL by 1 (TFT), 4 or 8 (monochrome STN), or (2 + 2/3) (color STN) and then subtracting 1 from the division solution. To allow the LCD controller to function properly, this field needs to be programmed properly in addition to PPL.

d. <IOE>

Invert output enable. The invert output enable (IOE) bit is used to select the active polarity for output enable signal in the TFT mode. In this mode, the LCLAC pin is used as the enable that reports to the LCD panel for the timing of when valid display data becomes usable. In the active display mode, when LCLAC is active, data is driven to LCD data lines with the programmed LCLCP edge.

e. <IPC>

Invert panel clock. The IPC bit is used to select the panel clock edge for driving pixel data to LCD data lines.

f. <IHS>

Invert horizontal sync. The invert HSync (IHS) bit is used to invert the polarity of LCLLP signal used for the timing of driving data.

g. <IVS>

Invert vertical sync. The invert VSync (IVS) bit is used to invert the polarity of LCLFP signal.

h. <ACB>

AC bias pin frequency. AC bias pin frequency can be applied to STN display only. In STN display, in order to prevent damages due to the accumulation of DC electrical charge, the pixel voltage polarity needs to be inverted periodically. This bit is to specify the number of line clocks between AC bias pin (LCLAC) toggles. If CLCDC operates in the TFT mode and if the LCLAC pin is used as data enable signal, this bit has no action.

i. <PCD_LO>

The lower 5 bits of the value set for panel clock frequency division setting (10 bits)

Note: Due to a delay in data path, there are limitations on the minimum values usable for the panel clock divider in the STN mode.

- Single panel color mode: PCD = 1(LCLCP = HCLK/3)
- Dual panel color mode: PCD = 4(LCLCP = HCLK/6)
- Single panel monochrome 4-bit interface mode: PCD = 2(LCLCP = HCLK/4)
- Dual panel monochrome 4-bit interface mode: PCD = 6(LCLCP = HCLK/8)
- Single panel monochrome 8-bit interface mode: PCD = 6(LCLCP = HCLK/8)
- Dual panel monochrome 8-bit interface mode: PCD = 14(LCLCP = HCLK/16)

4. LCDTiming3 (Line end control register)

Address = (0xF420_0000) + (0x000C)

Bit	Bit Symbol	Туре	Reset Value	Description
[31:17]	-	-	Undefined	Read undefined. Write as zero.
[16]	LEE	RW	0x00	Enable for Line end signal CLLE 0y0 : Disable (Held at LOW) 0y1 : Enable
[15:7]	-	-	Undefined	Read undefined. Write as zero.
[6:0]	LED	RW	0y000000	Delay value for CLLE output (Actual CLLE output delay value = LED +1) 0y000000 to 0y111111

[Explanation]

a. <LEE>

After this signal is enabled, CLLE outputs a positive pulse of 4-HCLK period after the end of each line.

If the line end signal is disabled, this signal is held at LOW at all times.

b. <LED>

Sets the delay value for CLLE output.

5. LCDUPBASE (Higher-order panel frame base address register)

This is the color LCD DMA base address register.

$Address = (0xF420_0000) + (0x0010)$

Bit	Bit Symbol	Туре	Reset Value	Description
[31:2]	LCDUPBASE	-	0x00000000	Register to set color LCD DMA base addresses. 0x00000000 to 0xffffffff
[1:0]	-	-	Undefined	Read undefined. Write as zero.

6. LCDLPBASE (Lower-order panel frame base address register)

 $Address = (0xF420_0000) + (0x0014)$

Bit	Bit Symbol	Туре	Reset Value	Description
[31:2]	LCDLPBASE	_	0x00000000	Register to set color LCD DMA base addresses. 0x00000000 to 0xffffffff
[1:0]	_	=	Undefined	Read undefined. Write as zero.

LCDUPBASE and LCDLPBASE are used to program frame buffer base addresses.

LCDUPBase is used for the following:

- TFT display
- Single panel STN display
- Higher-order panel of dual panel STN display

LCDLPBase is used for the lower-order panel of dual panel STN display.

Programmers need to initialize LCDUPBase (and LCDLPBase of dual panel) before enabling CLCDC.

7. LCDIMSC (Interrupt Mask Set/Clear Register (Enable) register)

 $Address = (0xF420_0000) + (0x0018)$

Bit	Bit Symbol	Туре	Reset Value	Description
[4]	MBERRINTRENB	RW	0y0	AHB master error interrupt enable
				0y0 : Disable
				0y1 : Enable
[3]	VCOMPINTRENB	RW	0y0	Vertical comparison interrupt enable
				0y0 : Disable
				0y1 : Enable
[2]	LNBUINTRENB	RW	0y0	Next base update interrupt enable
				0y0 : Disable
				0y1 : Enable
[1]	FUFINTRENB	RW	0y0	FIFO underflow interrupt enable
				0y0 : Disable
				0y1 : Enable
[0]	_	-	Undefined	Read undefined. Write as zero.

LCDIMSC is the interrupt enable register. Setting the bits in this register passes the corresponding values in the original interrupt LCDRIS bit to the LCDMIS register.

8. LCDControl (LCD Control register)

Address = (0xF420_0000) + (0x001C)

Bit		Type	Reset	Description
DR	Symbol	турс	Value	Description
[31:17]	-	-	Undefined	Read undefined. Write as zero.
[16]	WATERMARK	RW	0y0	LCD DMA FIFO watermark level
				0y0 :Requests DMA when space of 4 words or more occurs in either of the two FIFOs.
				0y1 :Requests DMA when space of 8 words or more occurs in either of the two FIFOs.
[15:14]	-	-	Undefined	Read undefined. Write as zero.
[13:12]	LcdVComp	RW	0y00	Interrupt occurrence timing
				0y00 : At vertical sync start
				0y01 : At back porch start
				0y10 : At display data start
				0y11 : At front porch start
[11]	-	-	Undefined	Read undefined. Write as "1".
[10]	BEPO	RW	0у0	Big endian pixel array in byte
				0y0 : Little endian array in byte
				0y1 : Big endian pixel array in byte
[9]	BEBO	RW	0y0	Big endian byte array
				0y0 : Little endian byte array
				0y1 : Big endian byte array
[8]	BGR	RW	0у0	BGR system selected RGB
				0y0 : RGB normal output
				0y1 : BGR red/blue swap
[7]	LcdDual	RW	0у0	STN panel select
				0y0 : Single panel LCD
				0y1 : Dual panel LCD
[6]	LcdMono8	RW	0y0	Selects the monochrome STN LCD parallel bit.
				0y0 : 4-bit interface for monochrome LCD
				0y1 : 8-bit interface for monochrome LCD
[5]	LcdTFT	RW	0y0	Selects the panel used for LCD.
				0y0 : STN panel
				0y1 : TFT panel
[4]	LcdBW	RW	0у0	Selects monochrome or color for STN LCD.
				0y0 : Color
				0y1 : Monochrome
[3:1]	LcdBpp	RW	0y000	Number of LCD bits per pixel:
				0y000 = 1 bpp
				0y001 = 2 bpp
				0y010 = 4 bpp
				0y011 = 8 bpp
				0y100 = 16 bpp
				Uy101 = 24 bpp (IFI panel only)
1				Uy110 = Reserved
	_			Uy111 = Keserved
[0]	LcdEn	RW	0y0	LCD controller enable:
	1	1		UV1: Enable

[Explanation]

- a. <WATERMARK>
- b. <LcdVComp>
- c. <LcdPwr> LCD power Enable
- d. <BEPO>

The BEPO bit, which selects the little/big endian pixel system in 1- / 2- / 4-bpp display modes, does not act on 8-bpp and 16-bpp pixel systems. Refer to "Pixel Serializer" for data types.

- e. <BEBO>
- f. <BGR>
- g. <LcdDual>
- h. <LcdMono8>

This shows that monochrome LCD uses the 8-bit interface. This bit controls which of 4-bit or 8-bit parallel interface is used for monochrome STN LCD. In other modes, 0 needs to be programmed.

i. <Lcd TFT>

0y0 = Shows that LCD is STN display using the gray scaler. 0y1 = Shows that LCD is TFT using no gray scaler.

j. <LcdBW>

This shows that STN LCD is monochrome (black and white). 0y0 = Shows that STN LCD is color. 0y1 = Shows that STN LCD is monochrome. This bit has no meaning in the TFT mode.

- k. <Lcd Bpp>
- l. <LcdEn>

0y0 = The LCD signals LCLLP, LCLCP, LCLFP, LCLAC, and LCLLE are disabled (Held at LOW).

0y1 = The LCD signals LCLLP, LCLCP, LCLFP, LCLAC, and LCLLE are enabled (active).

Note: After other mode settings of LCDC have been completely prepared, set LcdEn to "1."

9. Raw Interrupt Status Register LCDRIS

Address = (0xF420_0000) + (0x0020)

Bit	Bit Symbol	Туре	Reset Value	Description
[4]	MBERROR	R	0у0	Request for AMBA AHB master bus error interrupt
				0y0 : No
				0y1 : Yes
[3]	Vcomp	R	0y0	Request for vertical comparison interrupt
				0у0 : No
				0y1 : Yes
[2]	LNBU	R	0y0	Request for LCD next address base update interrupt
				0у0 : No
				0y1 : Yes
[1]	FUF	R	0y0	Request for FIFO underflow interrupt
				0у0 : No
				0y1 : Yes
[0]	_	-	Undefined	Read undefined. Write as zero.

[Explanation]

a. <MBERROR >

AMBA AHB master bus error status. This is set if the AMBA AHB master detects a bus error response from a slave.

b. <Vcomp>

Vertical comparison. This is set if any one of the four vertical areas selected from the LCDControl [13:12] register reaches the timing.

c. <LNBU>

LCD next address base update. This depends on the mode and is set when the current base address register is updated by the net address register properly.

d. <FUF>

FIFO underflow. This is set if either higher- or lower-order DMA FIFO is read and accessed when it is empty, which is the condition of triggering the underflow condition.

10. LCDMIS (Masked Interrupt Status Register)

LCDMIS is a read-only register. This register serves as the logical AND for each bit of the LCDRIS register and the LCDIMSC (Enable) register. The logical ORs of all interrupts are given to the system interrupt controller.

Bit	Bit Symbol	Туре	Reset Value	Description
[4]	MBERRORINTR	R	0y0	AMBA AHB master bus error status bit
				0y0 : Clear
				0y1 : Interrupt requested
[3]	VCOMPINTR	R	0y0	Vertical comparison interrupt status bit
				0y0 : Clear
				0y1 : Interrupt requested
[2]	LNBUINTR	R	0y0	LCD next address base update status bit
				0y0 : Clear
				0y1 : Interrupt requested
[1]	FUFINTR	R	0y0	FIFO underflow status bit
				0y0 : Clear
				0y1 : Interrupt requested
[0]	_	-	Undefined	Read undefined. Write as zero.

11. LCDICR (Interrupt Clear Register)

Address = (0xF420_0000) + (0x0028)

Bit	Bit Symbol	Туре	Reset Value	Description
[4]	Clear W		0у0	Clears AMBA AHB master bus error interrupt request flags
WIDERKOK				0y0 : No change 0y1 : Clear
[3]	Clear Vcomp	W	0y0	Clears vertical comparison interrupt request flags.
			-	0y0 : No change
				0y1 : Clear
[2]	Clear LNBU	W	0y0	Clears LCD next address base update interrupt request flags.
				0y0 : No change
				0y1 : Clear
[1]	Clear FUF	W	0y0	Clears FIFO underflow interrupt request flags.
				0y0 : No change
				0y1 : Clear
[0]	-	-	Undefined	Read undefined. Write as zero.

Address = (0xF420_0000) + (0x0024)

TENTATIVE

12. LCDUPCURR (Upper Panel Current Address Value Registers)

				Address = (0xF420_0000) + (0x002C)
Bit Symbol	Turne	Reset	Description	
	Symbol	туре	Value	Description
[31:0]	LCDUPCURR	R	0x00000000	Approximate values of higher-order panel data DMA addresses

13. LCDLPCURR (Lower Panel Current Address Value Registers)

Address = (0xF420_0000) + (0x0030)

Bit	Bit Symbol	Туре	Reset Value	Description
[31:0]	LCDLPCURR	R	0x00000000	Approximate values of lower-order panel data DMA addresses

The LCDUPCURR register and the LCDLPCURR register retain the approximate values of higher- and lower-order panel data DMA addresses during read. These registers can change all the time and thus allow only rough monitoring. Be careful when using them.

14. LCDPalette (Color Palette Register)

One word (32 bits) of palette RAM data equals to two pixels of data. Therefore, the lowest-order bit of pixel data is used to select either the higher 16 bits or lower 16 bits of the palette RAM.

A palette structured with R:5 bits, G:5 bits, B:5 bits, and brightness bits is structured with a dual port RAM of 128×32 bits. Therefore, two-pixel entry into the palette can be written in 1 word.

In the TFT mode, all palette data is used; in the monochrome STN mode, only red palette R[4:1] is used (bit0 not used); in the STN color mode, red, green, and blue [4:1] are used (bit0 not used).

To support the BGR data system, this red and blue pixel data can be swapped using the control register bit.

In the 16 / 24 bpp TFT mode, palettes are by passed so that the pixel serializer's output can be directly used as TFT panel data.

A RAM palette supports 256 entries x 16 bits at maximum. Therefore, TFT and color STN palettes can support up to 8-bpp data.

Address = $(0xF420_0000) + ((0x0200) ~ (0x03FC))$

Bit	Bit	Type	Reset	Description	
	Symbol		Value	Decemption	
[31]	I	RW	0y0	Brightness(unused)	
[30:26]	B[4:0]	RW	0y00000	Blue palette data setting	
[25:21]	G[4:0]	RW	0y00000	Green palette data setting	
[20:16]	R[4:0]	RW	0y00000	Red palette data	
[15]	I	RW	0y0	Brightness(unused)	
[14:10]	B[4:0]	RW	0y00000	Blue palette data setting	
[9:5]	G[4:0]	RW	0y00000	Green palette data setting	
[4:0]	R[4:0]	RW	0y00000	Red palette data	

[Explanation]

a. <I>

Brightness bit. Using as the LSB of R, B, and B inputs to 6:6:6 TFT display, this bit can set two ways of brightness in each color. Doubling the number of colors, the data becomes 64 K.

b. <R>

For STN display, only four MSB bits (bit 4:1) are used. For monochrome display, only red palette data is used. All palette registers are arranged with the same bits.

3.19.3.1 Multiplexing LCD Panel Signals

While LCLLP, LCLAC, LCLFP, LCLCP, and LCLLE are common signals, the LCLD[23:0] bus has the eight operation modes supporting the following:

- TFT 24-bit interface
- TFT 18-bit interface
- Color STN single panel
- Color STN dual panel
- 4-bit monochrome STN single panel
- 4-bit monochrome STN dual panel
- 8-bit monochrome STN single panel
- 8-bit monochrome STN dual panel

Note:

CUSTN = Color STN dual higher-order panel data signal / Color STN single panel data signal CLSTN = Color STN dual lower-order panel data signal MUSTN = Monochrome STN dual higher-order panel data signal / Monochrome STN single panel data signal MLSTN = Monochrome STN dual lower-order panel data signal

Table 3.19.1 LCD TFT panel signal multiplexing [TFT 24bit Interface]

Color bit		Pallet &	VRAM bit allocation				
External pin	allocation	RGB-BGR	32bit bi	us RAM	16bit bus RAM		
anoodion		conversion	Address	Data bit	Address	Data bit	
-	_			D31 (dummy)		D15 (dummy)	
				D30 (dummy)		D14 (dummy)	
-	_			D29 (dummy)		D13 (dummy)	
-				D28 (dummy)		D12 (dummy)	
-	_			D27 (dummy)		D11 (dummy)	
-				D26 (dummy)		D10 (dummy)	
_	—			D25 (dummy)		D9 (dummy)	
-	—			D24 (dummy)	0	D8 (dummy)	
CLD[23]	BLUE[7]			D23	n+2	D7	
CLD[22]	BLUE[6]			D22		D6	
CLD[21]	BLUE[5]			D21	-	D5	
CLD[20]	BLUE[4]			D20		D4	
CLD[19]	BLUE[3]			D19		D3	
CLD[18}	BLUE[2]			D18		D2	
CLD[17]	BLUE[1]	Color Pallet		D17		D1	
CLD[16]	BLUE[0]	Bypass		D16		D0	
CLD[15]	GREEN[7]	RGB-GBR	n	D15		D15	
CLD[14]	GREEN[6]	Support		D14		D14	
CLD[13]	GREEN[5]			D13		D13	
CLD[12]	GREEN[4]			D12		D12	
CLD[11]	GREEN[3]			D11		D11	
CLD[10]	GREEN[2]			D10		D10	
CLD[9]	GREEN[1]			D9		D9	
CLD[8]	GREEN[0]			D8		D8	
CLD[7]	RED[7]			D7	n	D7	
CLD[6]	RED[6]			D6		D6	
CLD[5]	RED[5]			D5		D5	
CLD[4]	RED[4]			D4		D4	
CLD[3]	RED[3]			D3		D3	
CLD[2]	RED[2]			D2		D2	
CLD[1]	RED[1]			D1		D1	
CLD[0]	RED[0]			D0		D0	

Table 3.19.2 LCD TFT panel signal multiplexing [TFT 16bit Interface]

Color bit		Pallet &	VRAM bit allocation				
External pin	allocation	RGB-BGR	32bit bu	us RAM	16bit bus RAM		
		conversion	Address	Data bit	Address	Data bit	
CLD[0]	BLUE[4]			D31		D15	
CLD[17]	BLUE[3]			D30		D14	
CLD[16]	BLUE[2]			D29		D13	
CLD[15]	BLUE[1]			D28		D12	
CLD[14]	BLUE[0]			D27		D11	
CLD[13]	GREEN[5]			D26		D10	
CLD[11]	GREEN[4]			D25		D9	
CLD[10]	GREEN[3]			D24		D8	
CLD[9]	GREEN[2]			D23	n+2	D7	
CLD[8]	GREEN[1]			D22		D6	
CLD[7]	GREEN[0]			D21		D5	
CLD[5]	RED[4]			D20		D4	
CLD[4]	RED[3]			D19		D3	
CLD[3]	RED[2]			D18		D2	
CLD[2]	RED[1]	Color Pallet		D17		D1	
CLD[1]	RED[0]	Bypass		D16		D0	
CLD[0]	BLUE[4]	RGB-GBR	n	D15		D15	
CLD[17]	BLUE[3]	Not Support		D14		D14	
CLD[16]	BLUE[2]			D13		D13	
CLD[15]	BLUE[1]			D12		D12	
CLD[14]	BLUE[0]			D11		D11	
CLD[13]	GREEN[5]			D10		D10	
CLD[11]	GREEN[4]			D9		D9	
CLD[10]	GREEN[3]			D8		D8	
CLD[9]	GREEN[2]			D7		D7	
CLD[8]	GREEN[1]			D6		D6	
CLD[7]	GREEN[0]			D5		D5	
CLD[5]	RED[4]			D4		D4	
CLD[4]	RED[3]			D3		D3	
CLD[3]	RED[2]			D2		D2	
CLD[2]	RED[1]			D1		D1	
CLD[1]	RED[0]			D0		D0	

Note: In the case of using 16bitTFT, Intensity bit can't be used. And the swap of RGB and BGR isn't supported.

External	Color	Color	4-bit mono	4-bit mono	8-bit mono	8-bit mono
pin	STN	STN	STN single	STN dual	STN single	STN dual
	single	dual	panel	panel	panel	panel
	panel	panel				
CLD[23]	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved
CLD[22]	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved
CLD[21]	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved
CLD[20]	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved
CLD[19]	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved
CLD[18}	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved
CLD[17]	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved
CLD[16]	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved
CLD[15]	Reserved	CLSTN[0]	Reserved	Reserved	Reserved	MLSTN[0]
CLD[14]	Reserved	CLSTN[1]	Reserved	Reserved	Reserved	MLSTN[1]
CLD[13]	Reserved	CLSTN[2]	Reserved	Reserved	Reserved	MLSTN[2]
CLD[12]	Reserved	CLSTN[3]	Reserved	Reserved	Reserved	MLSTN[3]
CLD[11]	Reserved	CLSTN[4]	Reserved	MLSTN[0]	Reserved	MLSTN[4]
CLD[10]	Reserved	CLSTN[5]	Reserved	MLSTN[1]	Reserved	MLSTN[5]
CLD[9]	Reserved	CLSTN[6]	Reserved	MLSTN[2]	Reserved	MLSTN[6]
CLD[8]	Reserved	CLSTN[7]	Reserved	MLSTN[3]	Reserved	MLSTN[7]
CLD[7]	CUSTN[0]	CUSTN[0]	Reserved	Reserved	MUSTN[0]	MUSTN[0]
CLD[6]	CUSTN[1]	CUSTN[1]	Reserved	Reserved	MUSTN[1]	MUSTN[1]
CLD[5]	CUSTN[2]	CUSTN[2]	Reserved	Reserved	MUSTN[2]	MUSTN[2]
CLD[4]	CUSTN[3]	CUSTN[3]	Reserved	Reserved	MUSTN[3]	MUSTN[3]
CLD[3]	CUSTN[4]	CUSTN[4]	MUSTN[0]	MUSTN[0]	MUSTN[4]	MUSTN[4]
CLD[2]	CUSTN[5]	CUSTN[5]	MUSTN[1]	MUSTN[1]	MUSTN[5]	MUSTN[5]
CLD[1]	CUSTN[6]	CUSTN[6]	MUSTN[2]	MUSTN[2]	MUSTN[6]	MUSTN[6]
CLD[0]	CUSTN[7]	CUSTN[7]	MUSTN[3]	MUSTN[3]	MUSTN[7]	MUSTN[7]

Table 3.19.3 LCD STN panel signal multiplexing

3.19.4 LCD Controller Option Function (LCDCOP)

This LSI, which incorporates an LCD controller, is equipped with the following functions as option functions:

Function	Description
PR0CR register function	 The internal signal CLFP (vertical sync signal) Can be outputed from LPRG0 pin by 1 to 16 clock s(LCLCP) Delay Can output the AND signal of LCLCP and LCLAC from LCLCP pin. General-purpose port output function from LPRG0 pin
PR1CR register function	 The internal signal CLLP (horizontal sync signal) Can be outputed from LPRG1 pin by 1 to 127 clocks (LCLCP) Delay Line invert output Can output the signal inverted by 1 to 256 clocks (LCLLP) from LCLAC pin. Frame invert output Can output the signal inverted by every LCLFP from LCLAC pin. General-purpose port output function from LPRG1 pin
PR2CR register function	 The internal signal CLLP (horizontal sync signal) Can be outputed from LPRG2 pin by 1 to 255 clocks (LCLCP) Delay General-purpose port output function from LPRG2 pin

Table 3.19.5 Option function table

3.19.4.1 Block Diagrams

The block diagram of LCDC and LCDCOP is shown below:

Figure 3.19.5 LCDCOPI block diagram

3.19.4.2 Description of Operation

As an LCDC option function, additional signals of three terminals can be output.

Using this circuit broadens the range of connectable LCD drivers (LCD modules) and can omit external circuits.

First of all, as the biggest precondition, this LCDC option circuit, <u>a circuit that</u> <u>operates independently from the main unit LCDC operation</u>, may not operate normally (not output normal waveforms) depending on LCDC settings. Please use it after fully understanding operation limitations.

Note that this chapter does not describe LCDC operation. Refer to the chapter on LCDC for LCDC operation.

3.19.4.3 Basic Operation / Basic Waveforms 1 (LPRG0 control)

- (1) A signal that is generated by delaying the LCLFP signal by 1 to 16 clocks (4 bits) of LCLLP can be output from the LPRG0 pin.
- (2) The AND signal of LCLCP and LCLAC can be output from the LCLCP pin (TFT mode only).
- (3) The LPRG0 pin can be used as a general-purpose output port.

	LCLFP
	LCLLP
 nn nin nin	LCLAC
	LCLCP
 <u>m m m m m m</u>	LCLCP'
	LCLLE
<u>nm mn mn nm mn mn</u>	LD[23:0]
LCLFP'	
	LPRG 0 (LCLFP Delay)

Figure 3.19.6 Detailed timing

TOSHIBA

- 3.19.4.4 Basic Operation / Basic Waveforms 1 (LPRG1 control)
 - A signal that is generated by delaying the LCLLP signal by 1 to 127 clocks (7 bits) of LCLCP can be output from the LPRG1 pin (TFT mode only).
 - (2) An AC signal that is inverted (line inversion) every 1 to 256 clocks of LCLLP can be output from the LCLAC pin.
 - (3) An AC signal that is inverted (frame inversion) based on LCLFP can be output from the LCLAC pin.

- 3.19.4.5 Basic Operation / Basic Waveforms 2 (LPRG2 control)
 - (1) A signal that is generated by delaying the LCLLP signal by 1 to 255 clocks (8 bits) of LCLCP can be output from the LPRG2 pin (TFT mode only).

3.19.4.6 Description of Registers

The following lists the registers:

base address = 0xF00B_0000

Register Name	Address (base+)	Description
PR0CR	0x0000	LPRG 0 signal Control register
PR1CR	0x0004	LPRG 1 signal Control register
PR2CR	0x0008	LPRG 2 signal Control register

1. PR0CR (LPRG0 signal Control Register)

Address (0xF00B_0000) + (0x0000)

D:4	Bit	Туре	Reset	Description
BI	Bit Symbol		Value	
[31:28]	VERCODE	RO	0y0101	Read only
				Read data is always "0y0101"
[27:10]		<u> </u>	Undefined	Read undefined. Write as zero.
[9]	LIPC	R/W	0y0	LCLCP signal logic (Set to the same settings as LCDTiming2 [13] of LCDC.)
				0: Rising sync
				1: Falling sync
[8]	LIHS	R/W	0у0	LCLLP signal logic (Set to the same settings as
				LCDTiming2 [12] of LCDC.)
				0: High active
				1: Low active
[7]	LPR0FIX	R/W	0y0	LPRG0 signal fixed output
				0: Fixed data Disable
				1: Fixed data Enable
[6]	LPR0FIXD	R/W	0y0	LPRG0 fixed signal
				0: Fixed at Low
				1: Fixed at High
[5:2]	DLY0TIME[3:0]	R/W	0y0000	Delay time setting of LPRG0 (Number of LCLLP counts)
				0y0000 to 0y1111 (1 count to 16 counts)
[1]	TFTSTN	R/W	0y0	Output the AND signal of LCLCP and LCLAC from LCLCP pin
				0: Disable
				1: Enable
[0]	LPR0EN	R/W	0у0	LPRG0 signal Enable
				0: Invalid (Note)
				1: Signal output after processed

Note:Original LCPFP signal is delayed 3 HCLK, and output from LPRG0 pin.

2. PR1CR (LPRG 1 signal Control Register)

Address (0xF00B_0000)+ (0x0004)

Bit	Bit Symbol	Туре	Reset Value	Description
[31:20]	-	_	Undefined	Read undefined. Write as zero.
[19]	LPR1FIX	R/W	0y0	LPRG1 signal fixed output
				0y0: Fixed data Disable
				0y1: Fixed data Enable
[18]	LPR1FIXD	R/W	0y0	LPRG1 fixed signal data
				0y0: Fixed at Low
				0y1: Fixed at High
[17:10]	EN1TIME[7:0]	R/W	0x00	The invert time setting of LCLAC (Number of LCLLP counts)
				0x00 to 0xFF (1 count to 256 counts)
				Line AC output of LCLAC
[9:3]	DLY1TIME[6:0]	R/W	0x00	Delay time setting of LPRG1 (Number of LCLCP counts)
				0x01 to 0xFF (1 count to 127 counts)
				Note: 0x00 setting is prohibited
[2:1]	ALTEN[1:0]	R/W	0y00	AC signal output from LCLAC pin
				0y00 : normal LCLAC output
				0y01 : line invert output
				0y10 : Frame invert output
				0y11 : Reserve
[0]	LPR1EN	R/W	0y0	LPRG1 signal Enable
				0y0: Invalid (Note)
				0y1: Signal output after processed

Note: Original LCLLP signal is delayed 3 HCLK, and output from LPRG1 pin.

3. PR2CR (LPRG 2 signal Control Register)

Address (0xF00B_0000)+ (0x0008)

Pit	Bit	T	Reset	Decedetter	
BI	Symbol	туре	Value	Description	
[31:22]	-	-	Undefined	Read undefined. Write as zero.	
[21]	Reserve	-	Undefined	Read undefined. Write as zero.	
[20]	Reserve	-	Undefined	Read undefined. Write as zero.	
[19]	LPR2FIX	R/W	0y0	LPRG2 signal fixed output	
				0y0: Fixed data Disable	
				0y1: Fixed data Enable	
[18]	LPR2FIXD	R/W	0y0	LPRG2 fixed signal data	
				0y0: Fixed at L	
				0y1: Fixed at H	
[17]	-	-	Undefined	Read undefined. Write as zero.	
[16]	Reserve	-	Undefined	Read undefined. Write as zero.	
[15]	Reserve	-	Undefined	Read undefined. Write as one.	
[14]	Reserve	-	Undefined	Read undefined. Write as zero.	
[13]	TEST	R/W	0y0	Write as one	
[12]	Reserve	-	Undefined	Read undefined. Write as zero.	
[11]	LIVS	R/W	0y0	Set CLFP signal active phase	
				0y0:"High" is active	
				0y1:"Low" is active	
[10]	Reserve	-	Undefined	Read undefined. Write as zero.	
[9:2]	DLY2TIME7:0	R/W	0x00	Set the delay time of LPRG2 signal (LCLCP counts)	
				0x01 to 0xFF(1 count ~ 255 counts)	
				Note: 0x00 setting is prohibited	
[1]	Reserve	_	Undefined	Read undefined. Write as zero.	
[0]	LPR2EN	R/W	0y0	LPRG2 signal Enable	
				0y0: Invalid (Note)	
				0y1: Signal output after processed	

Note: Original LCLLP signal is delayed 3 HCLK, and output from LPRG2 pin.

3.19.4.7 Note in use

About LCDOP function, The below combinations are assumed, the other combinations are not coverage.

	LCDC operation condition		Case1	Case2	Case3	Case4	Case5	Case6
	Liou	l iquid display papel		mono	mono	color	color	color
	Liqu			STN	STN	TFT	TFT	STN
	LCDC display mode		TFT	TFT	STN	TFT	TFT	STN
			mode	mode	mode	mode	mode	mode
	LCD	C bypass mode	ON	OFF	OFF	ON	OFF	OFF
	LPR0EN	LPRG0 signal process ON/OFF	0	0	0	0	0	0
	TFTSTN	LCLCP&LCLAC→ LCLCP Output	ON	ON	×	×	×	×
	DLYTIME[3:0]	LPRG0 delay time setting	0	0	0	0	0	0
LPRG0	LPR0FIXD	LPRG0 general port function (fix to High or Low)	0	0	0	0	0	0
	LPR0FIX	LPRG0 general port Enable ON/OFF	0	0	0	0	0	0
	LIHS	LCLLP phase setting (suit to LCDC setting)	need setting					
LIPC		LCLCP phase setting (suit to LCDC setting)	need setting					
							i	
	LPR1EN	LPRG1 signal process ON/OFF	0	0	0	0	0	0
	ALTEN[1:0]	LCLAC AC signal setting	ON	ON	0	×	×	0
	DLYTIME[6:0]	LPRG1 delay time setting	×	×	×	×	0	×
LPRG1	EN1TIME[7:0]	LCLAC line AC time setting	0	0	0	×	×	0
	LPR1FIXD	LPRG1 general port function (fix to High or Low)	0	0	0	0	0	0
	LPRFIX	LPRG1 general port Enable ON/OFF	ON	ON	ON	ON	0	ON
	le		-				n	· · · · · · · · ·
	LPR2EN	LPRG2 signal process ON/OFF	0	0	0	0	0	0
	DLY1TIME[7:0]	LPRG2 delay time setting	×	×	×	×	0	×
LPRG2	LIVS	LCLFP signal active phase (suit to LCDC setting)	need setting	need setting	need setting	-	_	need setting
	TEST	TEST mode at "0"	1	1	0	1	0	0
	LPR2FIXD	LPRG2 general port function (fix to High or Low)	0	0	0	0	0	0
	LPR2FIX	LPRG2 general port Enable	ON	ON	ON	ON	0	ON

O: use

×: not use

-: invalid

3.20 LCD Data Process Accelerator (LCDDA)

This microcontroller incorporates the LCD Data Process Accelerator function (LCDDA) as an auxiliary function for display.

The LCDDA supports the scaler function that scales up/down display data including the filter (Bi-Cubic method) processing, and the image rotation function that rotates and mirror-inverts display data function, as well as the function of superimposing two pictures (Gray level adjustment: aBlend, Inserting picture into picture: Picture in Picture, Superimposing text: Font Draw).

The following lists the functions:

Function	Description	
Scaler function	Scale up: Can scale up to the magnification of 256/n: (n = 1 to 255).	
	Can scale up independently in horizontal/vertical directions.	
	Filtering by Bi-Cubic method is possible in scaled up images.	
	Scale down: Can scale down to the magnification of 256/(n \times m): (n = 1 to 255, m = 1 to 16).	
	Can scale down independently in horizontal/vertical directions.	
	Filtering by Bi-Cubic method is possible in scaled down images.	
Image rotation function	90° / 180° / 270° / horizontal mirror reversal / vertical mirror reversal possible	
Image Blend function	Function of superimposing two images (Picture in Picture)	
	Superimposing (α -Blend) possible adjusting the gray level of two images	
	Font Draw function for Font Data represented in binary (monochrome)	

These circuits, which operate as other circuits completely separate from the LCD controller, all use the Copy Back (write back) method. Image data is processed and the data is written into the display Ram of the LCDC. Then the LCDC displays the processed data.

Figure 3.20.1 Image of LCDDA operation (Example of Blend function)

3.20.1 Block Diagrams

The block diagram of LCDDA is shown below:

Figure 3.20.2 LCDDA block diagram

The LCDDA is mainly broken down into eight blocks:

- 1. "BC_Expander" where scaling up/down is performed using the Bi-Cubic method
- 2. "Blender" where Blend processing is performed
- 3. "Read FIFO buffer" where source data is accumulated
- 4. "Wrote FIFO buffer" where destination data is accumulated
- 5. "Transfer address control circuit" where rotation / simple scaling down processing is performed
- 6. "AHB slave block" where the access from the AHB bus to control registers is controlled
- 7. "AHB master block" where the data access to the AHB bus is controlled
- 8. "Interrupt control block" where interrupts are generated by monitoring processing completion and error occurrence

3.20.2 Description of Operation

This section describes the functions that the LCDDA has:

3.20.2.1 Scaler Function

Table 3.20.2 Scaler function

sabled.)
higher-order 8
lor numbers
CDC is 1024 \times
provided
higher-order 8 mbers are not
CDC is

3.20.2.2 Mechanism of Scaler Processing

1) Basic Configuration

The scaler function of the LCDDA can insert interpolation data of 255 points at maximum between original pixels using the Bi-Cubic method.

Interpolation data is generated using the original pixels of $4\times 4 \text{ around the area to be interpolated}.$

Figure 3.20.3 Data interpolation

In this method, image data of 256-magnification (8 bits) at maximum is calculated automatically by the H/W, from the image data of the " 4×4 point" pixels around the area to be interpolated.

The pixels of 256 points (including the original pixels) generated from the original pixels can be output at every n_Step.

Figure 3.20.4 Scaling method

(Scaling up if the Step number is 1 to 255; scaling down if 257 or more)

Figure 3.20.5 Connection with memory, and basic operation

To use the scaler function, original image data (RGB) needs to have been written into the dedicated DualPortRAM.

As described earlier, to generate interpolation data, original pixels of 4×4 are required. Therefore, the BC_Expander circuit can start generating interpolation data at the point when four lines of original image data become available.

The BC_Expander circuit of the LCDDA is connected with the 16-K-byte Dual Port RAM and the 128-bit-width bus (PortB).

This 16-K-byte Dual Port RAM, which can be used as a normal RAM, is connected to the AHB bus with the 32-bit-width bus (PortA).

In addition, this 16-K-byte Dual Port RAM is divided into 2-Kbyte \times 8 areas in which one line of original picture data is prepared. The BC_Expander circuit can start calculation at the point when four lines of data (For example, area 0 to area 3) become available. After that, every time one line of data is added (area 4), four lines of data are prepared again (area 1 to area 4) to start next calculation.

In this manner, the area is looped to perform calculation.

3.20.2.3 Correction Processing

The scaler function supports the function of correcting sampling points for scaling up/down processing. Using this function can express more natural pictures.

The correction function, if classified broadly, has two functions: the "edge data automatic addition" function and the "sampling correction" function.

1) Edge data automatic addition function

As described in the previous section, the original pixels of 4×4 around an area to be interpolated are required in the scaler function. Therefore, original pixels cannot be prepared in the pixels' edge area. Dummy data of one line before the first line and one line after the last line or of one row before the first row and one row after the last row needs to be prepared.

This function can prepare this dummy data automatically.

2) Sampling correction function

In the scaler function, scaling up/down at a magnification of $256/(N \times M)$ is possible to the number of original pixels (N = 1 to 255, M = 1 to 16).

The scaling up method, set with the equation above, creates fractions of decimal places, which creates an error because the actual sampling point is set with integer.

Therefore, the accumulated errors in the whole picture need to be corrected at an appropriate point.

This circuit supports the correction functions: The "offset function" adds an offset to the first sampling point in the X direction; and the "period correction function," when a set sampling point comes to a certain point, the point is corrected to the original picture point.

When offset function ON

Figure 3.20.6 Offset function

When period correction function OFF

Figure 3.20.7 Period correction function

Scaling up processing examples

The following describes the examples of how to establish the setting for scaling up processing including correction processing:

- Number of original pixels in the X direction: m pixel(s)
- Number of after-scaled-up pixels in the X direction: n pixel(s)

(Maximum number of interpolatable pixels) / (Number of after-scaled-up pixels) = {(m-1) \times 256} \div n

Example 1: For scaling up 128 pixels to 256 pixels $(127 \times 256) \div 256$

- = (32512) \div 256
- = 127

Example 2: For scaling up 128 pixels to 255 pixels

- $(127 \times 256) \div 255$
- = (32512) \div 255
- = 127.49...

Only integer setting is available. Since a value exceeding the sampling point cannot be set, set to 127(oct) = 7f(hex). When 255 points of data are sampled at every 127 pixels, each sampling point is as follows:

First point:	0
Second point:	127
Third point:	254
254th point:	32258
255th point:	32385
256th point:	32512

The 256th point is 32512, which, of course, exceeds the 32512 sampling points (0 to 32511). However, because the 255th point results to be far away from the original pixel point, use the correction function to allow more natural scaling up.

[Offset correction example]

Move the first sapling point to move all the sampling points to the center.

Offset half of the difference between the last sampling point (255th point) and the last generable sampling point.

 $(32512 - 32385) \div 2 = 63.5$

Set the offset value to 63(oct) = 3F(hex).

3.20.2.4 Blend Processing Function

Function	Detail	s of function	Description / Standard
BLEND function	BLEND gray level ratio		Settable in 256 levels (0 to 255) for each two SRC pictures and specifically for RGB $% \left(1,2,2,3,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,$
	FONT	Superimposing	FONT superimposing / No-FONT superimposing available
		Color conversion	Binary (monochrome) data, FONT (1) data, and data other than FONT (0) can be each converted into 24-bit color RGB on the palette.
	Supporta	ble data format	Digital RGB
			Note: YUV-format data is not supported.
	Number of	of supportable	65-K color (16 bpp)
	picture colors		16-M color (24 bpp)
			(For 24 bpp, the lower-order 24 bits of 32 bits contain valid data + the higher-order 8 bits contain dummy data.)
			Note: Monochrome, monochrome gray-level, and the color of other color numbers are not supported.
	Supportable picture size		Horizontal: Max. 1024 pixels
			Vertical: Max. 1024 pixels
			Note: The maximum display size supported by this microcontroller's LCDC is 1024 \times 1024.

Table 3.20.3 Blend function

3.20.2.5 Mechanism of BLEND Processing

The BLEND processing of the LCDDA first breaks each data of two pictures into the basis of pixels and then breaks them into the basis of RGB (8 bits each: 24 bits in total).

This broken down RGB data is each weighted on a scale of 256 (0x00/0x100 to 0xFF/0x100) to output the addition result data.

Source 0 pixel: $R_{S0:}$, $G_{S0:}$, $B_{S0:}$

Source 1 pixel: $R_{\rm S1^{:}},\,G_{\rm S1^{:}},\,B_{\rm S1^{:}}$

Weight assigned for Source 0 BLEND

LDADRSRC0< RDRSRC0[7:0]>: R_{S0RATIO}:,

LDADRSRC0< GDRSRC0[7:0]>: G_{S0RATIO}:,

LDADRSRC0< BDRSRC0[7:0]>: B_{SORATIO}:

Weight assigned for Source 1 BLEND

$$\label{eq:linear} \begin{split} LDADRSRC1 < RDRSRC1 [7:0] >: R_{S1RATIO:}, \\ LDADRSRC1 < GDRSRC1 [7:0] >: G_{S1RATIO:}, \\ LDADRSRC1 < BDRSRC1 [7:0] >: B_{S1RATIO:} \end{split}$$

Calculation method:

 $R_{DST:} = (R_{S0:} \times R_{S0RATIO}) + (R_{S1:} \times R_{S1RATIO})$ $G_{DST:} = (G_{S0:} \times G_{S0RATIO}) + (G_{S1:} \times G_{S1RATIO})$ $B_{DST:} = (B_{S0:} \times B_{S0RATIO}) + (B_{S1:} \times B_{S1RATIO})$

Thus, setting the sum of two pictures' weights (SORATIO + S1RATIO) so as not to exceed 0xFF is required.

Note: If added RGB data exceeds 0xFF, correct BLEND cannot be achieved.

Figure 3.20.8 BLEND processing

TENTATIVE

3.20.2.6 FONT Function / FONT Superimposing Function

The FONT function is the function of overwriting data defined in monochrome (binary) onto a color picture. During this processing, the following functions are supported:

Converting monochrome data into color data (Palette color change \rightarrow Select two types of colors out of 24-bit colors)

Drawing "N × M" FONT defined with serialized addresses continuously in the direction of left \rightarrow right Calculating the next FONT HOT_POINT (the address in the upper left top position) automatically

FONT data (S1) represented in monochrome binary (1/0) and background data (S0) represented in color are blended. At that time, only "1" data portions of the data represented in monochrome binary selects FONT (S1) data and only "0" data portions of the data represented in monochrome binary selects background (S0) data. Then only resulted text is displayed.

3.20.2.7 Rotation Function

Table 3 20 4	Rotation function

Function	Details of function	Description / Standard		
Rotation	Rotation angle	90° / 180° / 270° / horizontal mirror reversal / vertical mirror reversal		
function	Supportable	Digital RGB		
	data format	Note: YUV-format data is not supported.		
	Number of	65-K color (16 bpp)		
	supportable picture	16-M color (24 bpp)		
	colors	(For 24 bpp, the lower-order 24 bits of 32 bits contain valid data + the higher-order 8 bits contain dummy data.)		
		Note: Monochrome, monochrome gray-level, and the color of other color numbers are not supported.		
	Supportable picture	Horizontal: Max. 1024 pixels		
	size	Vertical: Max. 1024 pixels		
		Note: The maximum display size supported by this microcontroller's LCDC is 1024 \times		
		1024.		

3.20.2.8 Rotation Processing

To perform rotation, the rotation process calculates addresses when the LCDDA reads and copies back original pictures. A rotation shape is controlled by either incrementing (INCREMENT) or decrementing (DECREMENT) each of the transfer-destination address's start point, the X direction, and the Y direction.

Figure 3.20.9 Rotation processing

3.20.3 Operation Description of Each Mode

This section describes each operation mode of the LCDDA. Select by LDACR1<OPMODE[4:0]>.

1. NORMAL mode

This is a simple data transfer mode.

This mode is used for transfers including:

- Simple image transfer from S1 color original pictures
- Scaled-down transfer by simple thinning-out from S1 color original pictures
- Rotation transfer of image data from S1 color original pictures

Mode	Source0	Source1	BC Expander	Blender	Transfer address control circuit
Normal	Not used (Setting disabled)	Used	Not used (Setting disabled)	Not used (Setting disabled)	Used

2. Scaler mode

This mode scales up/down by controlling the operation of the BC-Expander circuit.

- Scaled-up image generation and transfer using Bi-Cubic from S1 color original pictures
- Scaled-down image generation and transfer using Bi-Cubic from S1 color original pictures
- Scaled-up image generation and rotation transfer using Bi-Cubic from S1 color original pictures
- Scaled-down image generation and rotation transfer using Bi-Cubic from S1 color original pictures

Mode	Source0	Source1	BC Expander	Blender	Transfer address control circuit
Scaler	Not used (Setting disabled)	Used	Used	Not used (Setting disabled)	Used

3. Monochrome mode

This mode transfers monochrome sources.

This mode is used such as for:

- Image transfer after converting S1 monochrome data (FONT, etc.) into color
- Scaled-down transfer by simple thinning-out after converting S1 monochrome data (FONT, etc.) into color
- Rotation transfer of image data after converting S1 monochrome data (FONT, etc.) into color

Mode	Source0	Source1	BC Expander	Blender	Transfer address control circuit
Monochrome	Not used (Setting disabled)	Used	Not used (Setting disabled)	Not used (Setting disabled)	Used

4. Monochrome invert mode

This mode inverts and transfers monochrome source data. This mode, which works almost the same as monochrome mode, changes colors and then transfers the data during conversion of monochrome \rightarrow color.

This mode is used such as for:

- Image transfer after converting S1 monochrome data (FONT, etc.) into color
- Scaled-down transfer by simple thinning-out after converting S1 monochrome data (FONT, etc.) into color
- Rotation transfer of image data after converting S1 monochrome data (FONT, etc.) into color

Mode	Source0	Source1	BC Expander	Blender	Transfer address control circuit
Invert Monochrome	Not used (Setting disabled)	Used	Not used (Setting disabled)	Not used (Setting disabled)	Used

5. BLEND mode

This mode blends two color (16 bpp/24 bpp) pictures.

- Image transfer after blending two color data of S0 and S1
- Scaled-down transfer by simple thinning-out after blending two color data of S0 and S1
- Rotation transfer of image data after blending two color data of S0 and S1

Mode	Source0	Source1	BC Expander	Blender	Transfer address control circuit
Blend	Used	Used	Not used (Setting disabled)	Used	Used

6. Monochrome BLEND mode

This mode blends two pictures of monochrome source and color (24 bpp).

- Image transfer after blending S0 color data and data in which S1 monochrome data was colorized
- Scaled-down transfer by simple thinning-out after blending S0 color data and data in which S1 monochrome data was colorized
- Rotation transfer after blending S0 color data and data in which S1 monochrome data was colorized

Mode	Source0	Source1	BC Expander	Blender	Transfer address control circuit
Monochrome Blend	Used	Used	Not used (Setting disabled)	Used	Used

7. Monochrome invert BLEND mode

This mode blends two pictures of monochrome-source invert data and color (24 bpp). This mode, which works almost the same as monochrome BLEND mode, changes colors and then transfers the data during conversion of monochrome \rightarrow color.

- Image transfer after blending S0 color data and data in which S1 monochrome data was colorized
- Scaled-down transfer by simple thinning-out after blending S0 color data and data in which S1 monochrome data was colorized
- Rotation transfer after blending S0 color data and data in which S1 monochrome data was colorized

Mode	Source0	Source1	BC Expander	Blender	Transfer address control circuit
Invert Monochrome Blend	Used	Used	Not used (Setting disabled)	Used	Used

8. FONT BLEND mode

This mode blends two pictures of monochrome-source "1" data and color (24 bpp). Only "1" data portions of (S1) image specified in monochrome is color-converted and then blended with (S0) specified in color. This mode is used to blend only the FONT portion of monochrome data into color images.

This mode is used such as for:

- Image transfer after colorizing only the "1" data portion of S1 monochrome data and then blending only the "1" data portion into S0 color data
- Scaled-down transfer by simple thinning-out after colorizing only the "1" data portion of S1 monochrome data and then blending only the "1" data portion into S0 color data
- Rotation transfer after colorizing only the "1" data portion of S1 monochrome data and then blending only the "1" data portion into S0 color data

Mode	Source0	Source1	BC Expander	Blender	Transfer address control circuit
FONT Blend	Used	Used	Not used (Setting disabled)	Used	Used

9. FONT invert BLEND mode

This mode blends two pictures of monochrome-source "0" data and color (24 bpp). Only "1" data portions of (S1) image specified in monochrome is color-converted and then blended with (S0) specified in color. This mode is used to blend only the portion other than FONT (Text's inside portion emptied) of monochrome data into color images.

- Image transfer after colorizing only the "1" data portion of S1 monochrome data and then blending only the "1" data portion into S0 color data
- Scaled-down transfer by simple thinning-out after colorizing only the "1" data portion of S1 monochrome data and then blending only the "1" data portion into S0 color data
- Rotation transfer after colorizing only the "1" data portion of S1 monochrome data and then blending only the "1" data portion into S0 color data

Mode	Source0	Source1	BC Expander	Blender	Transfer address control circuit
FONT Blend	Used	Used	Not used (Setting disabled)	Used	Used

3.20.4 Description of Registers

The following lists the SFRs:

		base address = 0xF205_0000
Register	Address	
Name	(base+)	Description
LDACR0	0x0000	LCDDA Control Register 0
LDADRSRC1	0x0004	LCDDA Density Ratio of Source 1 Picture
LDADRSRC0	0x0008	LCDDA Density Ratio of Source 0 Picture
LDAFCPSRC1	0x000C	LCDDA Replaced Font Area Color pallet of Source1
LDAEFCPSRC1	0x0010	LCDDA Replaced Except Font Area Color pallet of Source1
LDADVSRC1	0x0014	LCDDA Delta Value (Read Step) address Register of Source 1
LDACR2	0x0018	LCDDA Control Register 2
LDADXDST	0x001C	LCDDA X-Delta Value (Write Step) address Register of Destination
LDADYDST	0x0020	LCDDA Y-Delta Value (Write Step) address Register of Destination
LDASSIZE	0x0024	LCDDA Source Picture Size
LDADSIZE	0x0028	LCDDA Destination Picture Size
LDAS0AD	0x002C	LCDDA Source 0 Start Address
LDADAD	0x0030	LCDDA Destination Start Address
LDACR1	0x0034	LCDDA Control Register1
LDADVSRC0	0x0038	LCDDA Delta Value (Read Step) address Register of Source 0

The LCDDA has 14 types of registers. They are connected to the CPU with the 32-bit bus.

1. LDACR0 (LCDDA Control Register 0)

Address = (0xF205_0000) + (0x0000)

Bit	Bit	Type	Reset	Description
	Symbol	.) 0	Value	2000.19.1011
[31:22]	-	-	Undefined	Read undefined. Write as zero.
[21]	ERRINTF	RW	0у0	LCDDA processing error flag
				During READ During Write
				0: No interrupt 0: Flag clear
				1: With interrupt 1: Disabled
[20]	EINTF	RW	0у0	Scaler 1-line processing end interrupt enable
				(Enabled by scaler function)
				During READ During Write
				0: No interrupt 0: Flag clear
				1: With interrupt 1: Disabled
[19:18]	_	-	Undefined	Read undefined. Write as zero.
[17]	ERRINTM	RW	0у0	LCDDA processing error interrupt MASK
				0: Interrupt mask
				1: Interrupt enabled
[16]	EINTM	RW	0у0	LCDDA 1-picture processing end interrupt MASK
				(Enabled by scaler/Rotation function)
				0: Interrupt mask
[45]	PCENVP	DW/	0.40	Y direction lost LINE data correction (Lost dummy line
[15]	DCENTD	R V V	UyU	addition)
				0: OFF
				1: ON
[14]	AUTOHP	RW	0у0	Automatic calculation of HOT point
				0: OFF
				1: ON
[13]	DMAMD	RW	0у0	DMA select
				0: Single transfer
				1: Burst transfer
[12]	DMAEN	RW	0у0	DMA enable.
				0: OFF
[44]		DW	0.70	1: Enable
[!!]	DCENTI	RVV	UyU	addition)
				0: OFF
				1: ON
[10]	DTFMT	RW	0y1	Display color select
				0: 16-M color (32 bits = 24 bits enabled + 8bit_dummy)
				1: 65-K color (16 bits)
[9]	BCENX	RW	0y0	X-direction edge data correction (Right-left dummy row
				addition)
[0]	DOEN	D)4/	0.4	1: UN
[8]	PCEN	RW	UY1	Period correction
[7:0]	S10DB[24-24]	D\//	0×00	SPC1 nicture's front address (Higher 9 bits of 22 bits)
[1.0]	UTUR[31.24]	1744	0,00	$\sigma_{1}\sigma_{1}$ picture a none address (Figure o bits of 32 bits)

a. <S1ADR [31:22]>

Shows the front address of the memory in which original pictures (Source picture 1) processed on the LCDDA are stored. The higher 8 bits of the 32-bit address area are set.

b. <PCEN>

Controls the function of correcting periodical sampling points for using the scaler function.

0: OFF

1: ON

c. <BCENX>

Controls the function of automatically adding dummy sampling points in X-direction left/right rows for using the interpolation scaler function.

0: OFF

1: ON

d. <BCENYT>

Controls the function of automatically adding dummy sampling points in Y-direction front LINEs for using the interpolation scaler function.

0: OFF

1: ON

e. <BCENYB>

Controls the function of automatically adding dummy sampling points in Y-direction last LINEs for using the interpolation scaler function.

0: OFF

1: ON

f. <DTFMT>

Defines the format of RGB data handled by the LCDDA.

0: 16-M color (32-bit data: Valid data 24-bit + Higher-order invalid data 8 bits)

- 1: 65-K color (16-bit data)
- g. <DMAEN>

This is the signal that shows the end of processing for one picture in the LCDDA and controls the enable of DMA transfer.

0: DMA disabled

1: DMA enabled

h. <DMAMD>

Sets the DMA transfer mode of the LCDDA.

- 0: Single transfer
- 1: Burst transfer

i. <AEINTM>

Sets the mask for an interrupt that shows the end of processing for one picture in the LCDDA. This interrupt shows the end of internal processing of the LCDDA scaler function and the Rotation function. This, however, requires a caution because this interrupt does not show the end of transfer of the data accumulated in the write buffer.

0: Mask for one-picture processing interrupt

1: One-picture processing interrupt enabled

j. <LEINTM >

Sets the mask for an interrupt that shows the end of processing for one line in the LCDDA's scaler circuit. This interrupt shows the end of internal processing of the LCDDA's scaler function. This, however, requires a caution because this interrupt does not show the end of transfer of the data accumulated in the write buffer.

- 0: Mask for one-line processing interrupt
- 1: One-line processing interrupt enabled
- k. <ERRINTM >

Sets the mask for a processing error occurrence interrupt in the LCDDA circuit.

- 0: Interrupt error mask
- 1: Error interrupt enabled
- l. <AEINTF >

Shows the status of an interrupt that shows the end of processing for one picture in the LCDDA.

Note that the meanings differ between during READ and during WRITE.

During READ	During WRITE
0: No interrupt	0: Flag clear
1: With interrupt	1: Write for "1" disabled (No status change)

m. <LEINTF >

Shows the status of an interrupt that shows the end of processing for one line in the LCDDA's scaler/filter circuit.

Note that the meanings differ between during READ and during WRITE.

- During READ During WRITE
- 0: No interrupt 0: Flag clear
- 1: With interrupt 1: Write for "1" disabled (No status change)

n. <ERRINTF >

Shows the status of an interrupt that shows the occurrence of processing errors in the LCDDA circuit.

Note that the meanings differ between during READ and during WRITE.

During READ	During WRITE
-------------	--------------

0: No interrupt 0: Flag clear

1: With interrupt 1: Write for "1" disabled (No status change)

2. LDADRSRC1 (LCDDA Density Ratio of Source 1 Picture)

 $Address = (0xF205_0000) + (0x0004)$

Bit	Bit	Type Reset	Reset	Description
BR	Symbol	1990	Value	Dooription
[31:24]	_	-	Undefined	Read undefined. Write as zero.
[23:16]	BDRSRC1[7:0]	R/W	0x00	Blue data gray level adjustment in SRC1 picture (256 levels)
				0x00: Light to 0xFF: Dark
[15:8]	GDRSRC1[7:0]	R/W	0x00	Green data gray level adjustment in SRC1 picture (256 levels)
				0x00: Light to 0xFF: Dark
[7:0]	RDRSRC1[7:0]	R/W	0x00	Red data gray level adjustment in SRC1 picture (256 levels)
				0x00: Light to 0xFF: Dark

Adjust the gray level of Source 1 (foreground) picture independently for R, G, B

3. LDADRSRC0 (LCDDA Density Ratio of Source 0 Picture)

 $Address = (0xF205_0000) + (0x0008)$

Bit	Bit	Туре	Reset	Description	
Dit	Symbol	туре	Value	Description	
[31:24]	-	-	Undefined	Read undefined. Write as zero.	
[23:16]	BDRSRC0[7:0]	R/W	0x00	Blue data gray level adjustment in SRC0 picture (256 levels)	
				0x00: Light to 0xFF: Dark	
[15:8]	GDRSRC0[7:0]	R/W	0x00	Green data gray level adjustment in SRC0 picture (256 levels)	
				0x00: Light to 0xFF: Dark	
[7:0]	RDRSRC0[7:0]	R/W	0x00	Red data gray level adjustment in SRC0 picture (256 levels)	
				0x00: Light to 0xFF: Dark	

Adjust the gray level of Source 0 (background) picture independently for R, G, B.

4. LDAFCPSRC1 (LCDDA Replaced Font Area Color pallet of Source1)

Address= (0xF205_0000) + (0x000C)

Bit	Bit Symbol	Туре	Reset Value	Description
[31:24]	-	-	Undefined	Read undefined. Write as zero.
[23:16]	BFONT[7:0]	R/W	0x00	FONT area color in SRC1 picture (Blue data)
[15:8]	GFONT[7:0]	R/W	0x00	FONT area color in SRC1 picture (Green data)
[7:0]	RFONT[7:0]	R/W	0x00	FONT area color in SRC1 picture (Red data)

Set the FONT color of Source 1 (foreground) picture independently for R, G, B.

5. LDAEFCPSRC1 (LCDDA Replaced Except Font Area Color pallet of Source1)

Address= (0xF205_0000) + (0x0010)

Bit	Bit Symbol	Туре	Reset Value	Description
[31:24]	-	-	Undefined	Read undefined. Write as zero.
[23:16]	BFONT[7:0]	R/W	0x00	Area color other than FONT in SRC1 picture (Blue data)
[15:8]	GFONT[7:0]	R/W	0x00	Area color other than FONT in SRC1 picture (Green data)
[7:0]	RFONT[7:0]	R/W	0x00	Area color other than FONT in SRC1 picture (Red data)

Set the color of places other than FONT in Source 1 (foreground) independently for R, G, B.

TENTATIVE

6. LDADVSRC0 (LCDDA Delta Value (Read Step) address Register of Source 0)

Address = (0xF205_0000) + (0x0038)

Bit	Bit Symbol	Туре	Reset Value	Description
[31]	OVWEN	RW	0у0	0: SRC0 start address ≠ DST start address
				1: SRC0 start address = DST start address
[30]	INDSAEN	RW	0y0	0: SRC0 DX, DY = SRC1 DX, DY
				1: SRC0 DX, DY ≠ SRC1 DX, DY
[29:18]	-	-	Undefined Read undefined. Write as zero.	
[17:6]	DYS0[11:0]	R/W	0x000	Read Step address until the next line of SRC0 data
[5:3]	-	-	Undefined	Read undefined. Write as zero.
[2:0]	DXS0[2:0]	R/W	0y000	Horizontal Read Step address of SRC0 data

a. <DXS0[2:0]>

Used to have increment step settings in Source 0 picture differing from Source 1 picture. Not setting "1" in the INDSAEN bit disables this setting, applying the increment step settings of Source 1 picture to Source 0 picture too.

Set the Step for horizontal increment addresses for reading data from the original picture (Source picture 0) processed on the LCDDA. For 16-bpp (65-K color) data, set "010" because the step used is 2-byte step. For 32-bpp (16-M color) data, set "100."

b. <DYS0>

Used to have increment step settings in Source 0 picture differing from Source 1 picture. Not setting "1" in the INDSAEN bit disables this setting, applying the increment step settings of Source 1 picture to Source 0 picture too.

Set the Step for vertical increment addresses (during line feed) for reading data from the original picture (Source picture 0) processed on the LCDDA.

Set address step values after calculating them for each display color used.

c. <INDSAEN>

This bit is used when increment steps differ between Source 0 picture and Source 1 picture in a picture processed for BLEND on the LCDDA. Setting "1" can set the number of steps individually for each Source 0 picture and Source 1 picture.

When "0" is set, the increment step set for Source 1 picture is used for the increment step in Source 0 picture.

d. <OVWEN>

This bit is used when Source 0 picture and the destination picture are the same in a picture processed on the LCDDA. Setting "1" uses the front address setting of the destination picture into the front address of Source 0 picture too.

7. LDADVSRC1 (LCDDA Delta Value (Read Step) address Register of Source 1)

 $Address = (0xF205_0000) + (0x0014)$

Pit	Bit	Tupo	Reset	Description
DIL	Symbol	туре	Value	
[31:24]	OFSETX[7:0]	R/W	0x0000	Offset value for horizontal sampling point during scaler use
[23:18]	-	-	Undefined	Read undefined. Write as zero.
[17:6]	DYS1[11:0]	R/W	0x000	Read Step address until the next line of SRC1 data
[5:3]	-	-	Undefined	Read undefined. Write as zero.
[2:0]	DXS1[2:0]	R/W	0y000	Horizontal Read Step address of SRC1 data

a. <DXS1[2:0]>

Set the Step for horizontal increment addresses for reading data from the original picture (Source picture 1) processed on the LCDDA. For 16-bpp (65-K color) data, set "010" because the step used is 2-byte step. For 32-bpp (16-M color) data, set "100."

b. <DYS1[11:0]>

Set the Step for vertical increment addresses (during line feed) for reading data from the original picture (Source picture 1) processed on the LCDDA.

c. <OFSETX[7:0]>

Set the offset value for the horizontal pixel sampling steps in the scaler circuit. By setting a value of 0x01 to 0xFF, the set pixel point is sampled first.

8. LDACR2 (LCDDA Control Register 2)

 $Address = (0xF205_0000) + (0x0018)$

Bit	Bit Symbol	Туре	Reset Value	Description
[31:24]	OFSETY[7:0]	R/W	0x0000	Offset value for vertical sampling point during scaler use
[23:16]	-	-	Undefined	Read undefined. Write as zero.
[15:8]	HCRCT[7:0]	R/W	0x00	Horizontal period correction value
[7:0]	VCRCT[7:0]	R/W	0x00	Vertical period correction value

a. <VCRCT[7:0]>

Sets the vertical period correction values in the scaler circuit. Setting the LDACR0<PCEN> bit to "1" enables this bit. By setting a value of 0x01 to 0xFF, the set pixel point is corrected to the point one line below the original pixel.

b. <HCRCT[7:0]>

Sets the horizontal period correction values in the scaler circuit. Setting the LDACR0<PCEN> bit to "1" enables this bit. By setting a value of 0x01 to 0xFF, the set pixel point is corrected to the point one point right-side to the original pixel.

c. <OFSETY[7:0]>

Sets the offset value for the vertical pixel sampling steps in the scaler circuit. By setting a value of 0x01 to 0xFF, the set pixel point is sampled first.

9. LDADXDST (LCDDA X-Delta Value (Write Step) address Register of Destination)

Address = (0xF205_0000) + (0x001C)

Dit	Bit	Tuno	Reset	Description
DIL	Symbol	туре	Value	
[31:28]	XRRATE[3:0]	R/W	0y0000	Horizontal scale-down rate
[27:25]	-	-	Undefined	Read undefined. Write as zero.
[24]	DXDSIGN	R/W	0y0	Horizontal heading direction in DST data
[23:0]	DXDST[23:0]	R/W	0x000000	Number of horizontal steps in DST data

a. <DXDST[23:0]>

Sets horizontal destination step addresses.

In order to control addresses and accomplish the Rotation function, 24 bits are provided for step addresses. Set step addresses according to the Rotation function's rotation angle and horizontal/vertical mirror.

b. <DXDSIGN>

Sets the direction of horizontal destination step.

Set this by deciding the address's heading direction according to the Rotation function's rotation angle and horizontal/vertical mirror.

0: Plus (Increment)

1: Minus (Decrement)

c. <XRDRATE[3:0]>

Sets horizontal scale-down values.

By setting a value of 0x0 to 0xf, perform a scale down having a value of "set value + 1" as the denominator.

Example: When set to 0x2:

Results as 1/(2+1) = 1/3, scaling down to 1/3 in the horizontal direction.

10. LDADYDST (LCDDA Y-Delta Value (Write Step) address Register of Destination)

Address = (0xF205_0000) + (0x0020)

Bit	Bit	Type	Reset	Description
Dit	Symbol	туре	Value	Description
[31:28]	YRDRATE[3:0]	R/W	0y0000	Vertical scale-down rate
[27:25]	-	-	Undefined	Read undefined. Write as zero.
[24]	DYDSIGN	R/W	0у0	Vertical write direction in DST data
[23:0]	DYDST[23:0]	R/W	0x000000	Number of vertical steps in DST data

a. <DYDST[23:0]>

Sets vertical destination step addresses.

In order to control addresses and accomplish the Rotation function, 24 bits are provided for step addresses. Set step addresses according to the Rotation function's rotation angle and horizontal/vertical mirror.

b. <DYDSIGN>

Sets the direction of vertical destination step.

Set this by deciding the address's heading direction according to the Rotation function's rotation angle and horizontal/vertical mirror.

0: Plus (Increment)

1: Minus (Decrement)

c. <YRRATE[3:0]>

Sets vertical scale-down rate.

By setting a value of 0x0 to 0xf, perform a scale down having a value of "set value + 1" as the denominator.

Example: When set to 0xf, Results as 1/(15+1) = 1/16, scaling down to 1/16 in the vertical direction.

11. LDASSIZE (LCDDA Source Picture Size)

 $Address = (0xF205_0000) + (0x0024)$

Bit	Bit Symbol	Туре	Reset Value	Description
[31:24]	XEXRATE[7:0]	R/W	0x00	Horizontal scale-up rate during scaler use
[23:22]	-	-	Undefined	Read undefined. Write as zero.
[21:12]	SYSIZE[9:0]	R/W	0x000	Vertical SRC image size (Dot-basis setting)
[11:10]	-	-	Undefined Read undefined. Write as zero.	
[9:0]	SXSIZE[9:0]	R/W	0x000 Horizontal SRC image size (Dot-basis setting)	

Note1: Setting required in all functions

Note2: There are limitations of	on the horizontal image size when use	ed in the scaler function.
For 24-bit color:	(2048 bytes - 4 bytes) / 4 = 511	511 dots at maximum
For 16-bit color:	(2048 bytes - 2 bytes) / 2 = 1023	1023 dots at maximum

a. <SXSIZE[9:0]>

Sets horizontal source image sizes.

Sets an image size on a dot basis. A dot of "input size + 1" is specified for size.

Example: For 200 dots, set as 199(oct) = C7(hex).

b. <SYSIZE[9:0]>

Sets vertical source image sizes.

Sets an image size on a dot basis. A dot of "input size + 1" is specified for size. Example: For 200 dots, set as 199(oct) = C7(hex).

c. <XEXRATE[7:0]>

Sets the horizontal scale-up rate. By setting a value of 0x01 to 0xff (Setting to 0x00 disabled), perform a scale up.

Input values according to the equation below:

- Number of original pixels in the X direction: m pixel(s)
- Number of after-scaled-up pixels in the X direction: n pixel(s)

(Maximum number of interpolatable pixels) / (Number of after-scaled-up pixels) ={(m–1) × 256} ÷ n

12. LDADSIZE (LCDDA Destination Picture Size)

 $Address = (0xF205_0000) + (0x0028)$

Bit	Bit Symbol	Туре	Reset Value	Description
[31:24]	YEXRATE[7:0]	R/W	0x00	Vertical scale-up rate during scaler use
[23:10]	-	-	Undefined	Read undefined. Write as zero.
[9:0]	DXSIZE[9:0]	R/W	0x000	Horizontal DST image size (Dot-basis setting)

Note: When used in the scaler function, vertical image size settings are invalid. Because the scaler function is processed on the basis of one line, the number of processes will result as the image size in the vertical direction directly.

a. <DXSIZE[9:0]>

Sets horizontal destination image sizes.

Sets an image size on a dot basis. A dot of "input size + 1" is specified for size.

Example: For 200 dots, set as 199(oct) = C7(hex).

b. <YEXRATE[7:0]>

Sets the vertical scale-up rate. By setting a value of 0x01 to 0xff (Setting to 0x00 disabled), perform a scale up.

Input values according to the equation below:

- Number of original pixels in the Y direction: k pixel(s)
- Number of after-scaled-up pixels in the Y direction: l pixel(s)

(Maximum number of interpolatable pixels) / (Number of after-scaled-up pixels) ={(k-1) × 256} ÷ 1

13. LDAS0AD (LCDDA Source 0 Start Address)

Address = (0xF205_0000) + (0x002C)

Bit	Bit Symbol	Туре	Reset Value	Description
[31:0]	S0ADR[31:0]	R/W	0x00000000	Start address of SRC0 picture

Note: While 32-bit addresses are set, the addresses in the higher 8 bits have no internal counter. Note that the setting of start address allowing the addresses in the higher 8 bits to change in the SRC picture data area is unavailable.

(Example: If set to 0x00FFFFFF, the LCDDA accesses in the order of 0x00FFFFFF \rightarrow 0x00000000 \rightarrow 0x00000001: The addresses in the higher 8 bits cannot be incremented.)

14. LDADAD (LCDDA Destination Start Address)

Address = (0xF205_0000) + (0x0030)

Bit	Bit	Type	Reset	Description
Br	Symbol	Турс	Value	Description
[31:0]	DSADR[31:0]	R/W	0x00000000	Start address of DST picture

Note: While 32-bit addresses are set, the addresses in the higher 8 bits have no internal counter. Note that the

setting of start address allowing the addresses in the higher 8 bits to change in the DST picture data area is unavailable.

(Example: If set to 0x00FFFFFF, the LCDDA accesses in the order of 0x00FFFFFF \rightarrow 0x00000000 \rightarrow 0x00000001: The addresses in the higher 8 bits cannot be incremented.)

15. LDACR1 (LCDDA Control Register1)

 $Address = (0xF205_0000) + (0x0034)$

Bit	Bit Symbol	Туре	Reset Value	Description
[31]	SYNRST	WO	0y0	S/W reset control
[30]	LDASTART	WO	0у0	LCDDA START control
[29]	-	-	Undefined	Read undefined. Write as zero.
[27:24]	OPMODE[4:0]	R/W	0у00000	LCDDA mode setting 00000 : NORMAL mode 00001 : Scaler mode 00010 : Monochrome mode 00110 : Monochrome invert mode 10000 : BLEND mode 10010 : Monochrome BLEND mode 10110 : Monochrome invert BLEND mode 11010 : FONT BLEND mode 11110 : Invert FONT BLEND mode * Other combination of bits (functions) than the above cannot be set.
[23:0]	S1ADR[23:0]	R/W	0x000000	SRC1 picture's front address (Lower 24 bits of 32 bits)

a. <S1ADR[23:0]>

Sets the lower 24 bits for the start addresses of Source 1 picture. While 32-bit setting is required for the addresses of Source 1 picture, set the addresses in the higher 8 bits by LDACR0<S1ADR[31:24]>.

b. <LDASTART>

Controls the start of the LCDDA. 1: LCDDA start 0: Disabled

c. <SYNRST>

Controls the S/W reset. 1: Reset 0: Disabled

d. <OPMODE[4:0]>

Selects the LCDDA operation modes.

00000:	NORMAL mode				
	This is a simple data transfer mode. Used to transfer (rotation, scaling down) rectangular images with only Source 1 (S1) selected for source data (S0 settings disabled).				
00001:	Scaler mode				
	The scaler mode is accomplished by controlling the operation of the BC-Expander circuit. The concurrent use with the BLEND function and the FONT function is				
00010:	Unavailable.				
00010	This mode transfers monochrome sources. Used to transfer (rotation, scaling down) images after converting monochrome data into color data with only Source 1 (S1) selected for source data (S0 settings disabled).				
00110:	Monochrome invert mode				
	This mode inverts and transfers monochrome source data. Used to transfer (rotation, scaling down) images after inverting monochrome data to convert it into color data with only Source 1 (S1) selected for source data (S0 settings disabled).				
10000:	BLEND mode				
	This mode blends two color (16 bpp/24 bpp) pictures. Used to transfer (rotation, scaling down) images after blending them, with Source 0 (S0) and Source 1 (S1) selected for source data.				
10010:	Monochrome BLEND mode				
	This mode blends two pictures of monochrome source and color (16 bpp/24 bpp). Used to transfer (rotation, scaling down) images after blending two pictures of color data converted from a Source 1 (S1) image specified in monochrome, and Source 0 (S0) specified in color.				
10110:	Monochrome invert BLEND mode				
	This mode blends two pictures of data inverted from monochrome-source data and color (16 bpp/24 bpp). Used to transfer (rotation, scaling down) images after blending two pictures of color data converted from a Source 1 (S1) image specified in monochrome, and Source 0 (S0) specified in color.				
11010:	FONT BLEND mode				
	This mode blends two pictures of monochrome-source "1" data and color (16 bpp/24 bpp). Used to transfer (rotation, scaling down) images after blending two pictures of data in which only the "1" data portions of a Source 1 (S1) image specified in monochrome are colorized, and Source 0 (S0) specified in color. This mode is used to place monochrome FONT onto images.				
11110:	FONT invert BLEND mode				
	This mode blends two pictures of monochrome-source "0" data and color (16 bpp/24 bpp). Used to transfer (rotation, scaling down) images after blending two pictures of data in which only the "1" data portions of a Source 0 (S1) image specified in monochrome are colorized, and Source 0 (S0) specified in color. This mode is used to place monochrome FONT onto images.				

3.21 Touch Screen Interface (TSI)

An interface for 4-terminal resistor network touch-screen is built in. The TSI easily supports two procedures: touch detection and X/Y position measurement. Each procedure is performed by setting the TSI control register (TSICR0 and TSICR1) and using an internal AD converter.

3.21.1 TSI External Connection Diagram and Internal Block Diagram

Figure 3.21.1 External connection of TSI

3.21.2 SFR

The following lists the SFRs:

		base address = 0xF006_0000
Register Name	Address (base+)	Description
TSICR0	0x01F0	TSI Control Register0
TSICR1	0x01F4	TSI Control Register1

1. TSICR0 (TSI Control Register0)

Address = (0xF006_0000) + 0x01F0

Bit	Bit Symbol	Туре	Reset Value	Description
[31:8]	-	_	Undefined	Read undefined. Write as zero.
[7]	TSI7	R/W	0v0	pull-down resistor(refer to Explanation)
	-	-		0v0 : Disable
				0y1 : Enable
[6]	INGE	R/W	0y0	Input gate control of Port PD6, PD7
				0y0 : Enable
				0y1 : Disable
[5]	PTST	R	0у0	Detection condition
				0y0: No touch
				0y1: Touch
[4]	TWIEN	R/W	0у0	INTA interrupt control
				0y0 : Disable
				0y1 : Enable
[3]	PYEN	R/W	0у0	SPY
				0y0 : OFF
				0y1 : ON
[2]	PXEN	R/W	0у0	SPX
				0y0 : OFF
				0y1 : ON
[1]	MYEN	R/W	0y0	SMY
				0y0 : OFF
				0y1 : ON
[0]	MXEN	R/W	0y0	SMX
				0y0 : OFF
				0y1 : ON

Note: To avoid a flow-through current to the normal C-MOS input gate when converting analog input data by using the AD converter, TSICR0<INGE> can be controlled. If the intermediate voltage is input, cut the input signal to the C-MOS logic (PD6, PD7) by setting this bit. TSICR0<PTST> is to confirm the initial pen-touch. Note that, when the input to the C-MOS logic is blocked by TSICR0<INGE>, this bit is always "1".

[Explanation]

a. <TSI7>

PXD (Internal pull-down resistor) ON/OFF

<tsi7></tsi7>	0	1
0	OFF	OFF
1	ON	OFF

					Address = $(0xF006_0000) + 0x01F4$		
		T	Reset	Reset			
Bit Bit Symbol		туре	Value	Description			
[31:8]	-	-	Undefined	Read u	indefined. Write as zero.		
[7]	DBC7	R/W	0у0	0y0 : D	isable		
				0y1 : E	nable		
[6]	DB1024	R/W	0у0	1024	De-bounce time is set by the "(N \times		
[5]	DB256	R/W	0у0	256	64-16)/f _{PCLK} " formula.		
[4]	DB64	R/W	0у0	64	"N" is the sum of the numbers obtained		
[3]	DB8	R/W	0у0	8	when "1" is set in bit 6 to bit 0. (Note 2)		
[2]	DB4	R/W	0у0	4			
[1]	DB2	R/W	0у0	2			
[0]	DB1	R/W	0у0	1			

2. TSICR1 (TSI Control Register1)

Note 1: The debounce circuit uses the system clock. Therefore, when the clock supply to the TSI is stopped, the debouce circuit is not operational and no interrupts are generated via the debouce circuit. Since several pulses of f_{PCLK} are used to synchronize the PD6/INTA signal before it is input to the counter circuit for counting the debounce time, the actual debouce time is the above period plus an extra synchronization period.

Note 2: For example, when TSICR1 = 0x95, N = 64 + 4 + 1 =69. In this case, the debouce time is 44 μ s plus an extra synchronization period when f_{PCLK} = 100 MHz.

TOSHIBA

3.21.3 Touch Detection Procedure

The touch detection procedure includes the procedures starting from when the pen is touched onto the touch screen and until the pen-touch is detected.

Touching the screen generates the interrupt INTA and terminates this procedure. After an X/Y position measuring at INTA interrupt routine, and an X/Y position measuring procedure is terminated, return to this procedure to wait for the next touch.

When waiting for a touch with no contact, set only the SPY switch to ON and set all other three switches (SMY, SPX, SMX) to OFF. At this time, the pull-down resistor built in the PD6/INTA/PX pin is set to ON.

In this state, because the internal X- and Y-direction resistors in the touch screen are not connected, the PD6/INTA/PX pin is set to Low by the internal pull-down resistor (PXD), generating no INTA interrupt.

When a next pen-touch is given, the X- and Y-direction internal resistors in the touch screen are connected, which sets the PD6/INTA/PX pin to High and generates an INTA interrupt.

To avoid generating more than one INTA interrupt by one pen-touch, the de-bounce circuit as shown below is provided. Setting de-bounce time in the TSICR1 register ignores pulses whose time equals to or is below the set time.

The de-bounce circuit detects a rising of signal to count up a set de-bounce counter time and then captures the signal into the inside after counting. When the signal turns to "L" during counting, the counter is cleared, starting to wait for a rising edge again.

Figure 3.21.3 Timing diagram of de-bounce circuit

3.21.4 X/Y Position Measuring Procedure

During the routine of pen-touch and INTA interrupt generation, execute a pen position measuring following the procedure below:

<X-position coordinate measurement>

Make the SPX and SMX switches ON, and the SPY and SMY switches OFF. With this setting, an analog voltage that shows the X position will be input to the PD5/MY/AN5 pin. The X-position coordinate can be measured by converting this voltage into digital code using the AD converter.

<Y-position coordinate measurement>

Make the SPY and SMY switches ON, and the SPX and SMX switches OFF. With this setting, an analog voltage that shows the Y position will be input to the PD4/MX/AN4 pin. The Y-position coordinate can be measured by converting this voltage into digital code using the AD converter.

The analog voltage which is input to the AN5 and AN4 pins during the X and Y position measurement above can be determined with the ratio between the ON resistance value of the switch in the TMPA910CRA and the resistance value in the touch screen as shown in Figure 3.21.4

Therefore, even when touching an end area on the touch screen, the analog input voltage will be neither 3.3 V nor 0 V.

Note that the rate of each resistance varies. Remember to take this into consideration during designing. It is also recommended that an average taken from several AD conversions performed if required be adopted as the final correct value.

3.21.5 Flow Chart of Touch Screen Interface (TSI)

- (1) Touch detection procedure
- (2) X/Y position measuring procedure

Figure 3.21.5 Flow for TSI

The following pages explain each circuit condition (a), (b) and (c) in the flow chart above:

(a) Main routine: condition of waiting for INTA interrupt

- : Set PD6 to INTA/PX, set PD7 to PY.
- : Set interrupt level of INTA.
- : Pull-down resistor ON, SPY ON, INTA interrupt enable.
- : Enable the interrupt.

(b) INTA routine: X-position coordinate measurement (AD conversion start)

- : Set SMX, SPX to ON. Set the input gate of PD6, PD7 to OFF.
 - : Set to AN5.
 - : Start AD conversion.

(c) INT4 routine: Y-position coordinate measurement (AD conversion start)

- : Set SMY, SPY to ON. Set the input gate of PD6, PD7 to OFF.
 - Set to AN4.

:

: Start AD conversion.

3.21.6 Considerations for Using the TSI

1. Debounce circuit

The debounce circuit uses the system clock. Therefore, when the clock supply to the TSI is stopped, the debounce circuit is not operational and no interrupts are generated via the debounce circuit.

2. Port setting

In the power-cut mode, the power supply to the TSI is cut off and the debounce circuit cannot be used. However, the input from the PD6/INTA pin is directly input to the PMC, allowing the INTA interrupt to be used as a wake-up trigger.

Programming example:

BPDRINT	←	0x00000000	; write 0x00000000 to Register
			;INT status initial
BPARINT	—	0x00000000	;INT status initial
BPPRINT	—	0x00000000	;INT status initial
BSMRINT	—	0x00000000	;INT status initial
BRTRINT	—	0x00000000	;INT status initial
BPDOE	—	0x00000000	; PD6 pch OFF
BPDDATA	—	0x00000000	; PD6 Nch ON (pulldown)
BPDRELE	—	0x00000040	; PCM release Enable by INTA
	—		; and other setting before enter PCM
			; refer to PMC chapter
PMCCTL	—	0x000000C0	; Power Cut Mode ON
			; Release PCM by INTA

3. Port setting

When an intermediate voltage between 0V and AVCC3AD is converted by the AD converter, the intermediate voltage is also applied to normal C-MOS input gates due to the circuit structure.

Take measures against the flow-through current to PD6 and PD7 by setting TSICR0<INGE> = "1". When the input to the C-MOS logic is cut off, TSICR0<PTST> that indicates whether or not a pen touch is detected is always set to "1".

3.22 CMOS Image Sensor Interface (CMSI)

The interface to the CMOS image sensor is built in. The CMSI has the following features:

Number of supportable CMOS	SXGA(1280×1024), 4VGA(1280×960), VGA(640×480), QVGA(320×240), Special(320×180), OOVGA(160×120), CIE(352×288), OCIE(176×144)
Input data format	YUV and RGB (No color space conversion)
Input data sampling ratio	8-bit YUV4:2:2 (RGB8:8:8 if no color space conversion)
Pixel clock frequency	Up to 27 MHz
Color space conversion function	For an external terminal input
	YUV4:2:2
	\rightarrow RGB5:6:5/RGB8:8:8
	RGB8:8:8
	\rightarrow No conversion
	For an input from the CPU
	YUV
	\rightarrow RGB5:6:5/RGB8:8:8
Downscaling function	$4VGA \rightarrow VGA$, $QVGA$, $QQVGA$
	$VGA \rightarrow QVGA, QQVGA$
	$QVGA \rightarrow QQVGA$
Trimming function	Data can be trimmed to a desired size.

Table 3.22.1 Characteristics of CMSI

3.22.1 Block Diagrams

The block diagram of CMSI is shown below:

Figure 3.22.1 CMSI block diagram

3.22.2 Description of Operation

3.22.2.1 Description

The CMSI captures data sent from a CMOS image sensor in synchronization with the CMSPCK clock. When the downscaling or trimming function is used, only required pixel data is captured according to the specified setting. Next, when color-converting YUV422 into RGB, color space conversion is performed at the point when a pixel of YUV data has been captured, and then the converted RGB data is stored in the FIFO one after another. At the point when the FIFO contains data with a specified number of bytes, INTCMSF is output. This INTCMSF can be used as a trigger to start DMA data transfer.

The color space conversion circuit is connected to the internal data bus, enabling only the color space conversion function to be used independently when the CMSI is not used to interface a CMOS image sensor. In this case, converted RGB data is stored in the FIFO.

Note: When the CMSI is used to interface a CMOS image sensor, the relationship between CMSPCK and the system clock HCLK should be "CMSPCK x $2 \le f_{PCLK}$ ".

CMSVSY (NEG)
CMSVSY (POS)
CMSHSY (NEG)
CMSHSY (POS)
CMSHBK (POS) Line1 Line2 Line3 Line4 Line5 LineE Line2 Line3 Line4 Line5
CMSHBK (NEG) Line1 Line2 Line3 Line4 Line5 LineE Line2 Line3 Line4 Line5
CMSVSY (Example of NEG)
CMSHSY (Example of NEG)
CMSHBK (Example of POS)
CMSPCK (Example of RUE)
CMSD[7:0] (Normal) Invalid Invalid Invalid
CMSD[7:0] (Delay capture)

Basis timing

3.22.2.2 Data Capture

(When CMSVSY is set to Negative, CMSHSY is also set to Negative, and CMSPCK is set to Rise Up Edge)

When set to CMSCR<CSRST> = "0" and the start of a frame is detected on the rising edge of the CMSVSY signal (when set to Negative), the CMSI starts capturing data. As valid data, data is captured in the High period of the CMSHBK signal. Capturing is taken place in synchronization with the rising edge of the CMSPCK signal (in the case of Rise Up Edge).

The supported data format is the YUV format only. For the data sampling rate, only YUV422 is supported for external I/Fs (If no color space conversion is performed, RGB888).

3.22.2.3 Color Space Conversion Circuit

The operation of the color space conversion circuit is controlled by CMSCV<CCVM1:0>.

When $\langle CCVM1:0 \rangle = "00"$, the data from the CMOS image sensor is directly stored in the FIFO without conversion.

When $\langle CCVM1:0 \rangle = "01"$, the color space conversion circuit converts data in synchronization with data captured from the CMOS image sensor. Each time one pixel of YUV data has been captured, the color space conversion circuit automatically converts the data into RGB format.

When <CCVM1:0> = "10", the color space conversion circuit can be accessed from the CPU. In this case, the conversion-source YUV data is set in the CMSYD, CMSUD, and CMSVD registers. The trigger for starting conversion into RGB is set in CMSSCV<CSCVTRG1:0>. A write to the CMSYD/CMSUD/CMSVD register or a write of "1" to the conversion start bit (CMSSCV<CSCVST>) can start conversion. In this mode, arrange so that the data from the CMOS image sensor is not input.

When $\langle CCVM1:0 \rangle = "11"$, the color space conversion circuit can be accessed by DMA. Conversion-source YUV data is predicated to be ready for YUV of "8-bit Y + 8-bit U + 8-bit V + 8-bit Dummy." Writing 32 bits of data in the CMSSCDMA register starts conversion.

Since the S/W is started only when CMSCV<CMCVTRG[1:0]> is set to "11", a write of "1" in the conversion start bit (CMSSCV<CSCVST>) can start conversion.

By using the DMA function together, continuous writes (writing 32-bit data successively) can be given. In this mode, arrange so that the data from the CMOS image sensor is not input.

Note: To access the color space conversion circuit from the CPU, set CMSPCK, CMSHBK, CMSVSY, CMSD[7:0] to function as ports.

(1) RGB color quality adjustment

The RGB format to be used can be specified in CMSCV<CRGBM>. YUV data is converted into RGB data according to the specified conversion formula. The parameters can be adjusted by <CRYG[6:0]>, <CRVG[6:0]>, <CGYG[6:0]>, <CGYG[6:0]>, <CGUG[6:0]>, <CGUG[6:0]>, <CBYG[6:0]>, and <CYOFS[6:0]> in the CMSCVP0/CMSCVP1 register setting. The most significant bit of each register is designated as a sign bit. By setting a two's complement value (-2^6 to 2^6-1), the initial value of each parameter can be adjusted for increment and decrement. The CMSCVP0 and CMSCVP1 registers are initially set to "0".

The calculation result of each RGB data is represented as unsigned 8-bit data. If the RGB calculation result is less than 0, it is treated as 0. If 256 or larger, it is treated as 255. If the calculation in (Y+CYOFS[6:0]) is less than 0, (Y+CYOFS[6:0]) is treated as 0.

The formula can be selected from the following two types by using the CMSCV<CCVSMMS> bit.

Figure 3.22.3 RGB conversion formula

An example (Mode 1 example) of how the color space conversion circuit converts data is shown in Table 3.22.2.

At this time, the CMSCVP0 and CMSCVP1 registers are set as shown below:

```
<CRYG[6:0]> = 0x2B(43), <CRVG[6:0]> = 0x3A(58),
<CGYG[6:0]> = 0x2B(43), <CGVG[6:0]> = 0x1D(29), <CGUG[6:0]> = 0x0E(14),
<CBYG[6:0]> = 0x2B(43), <CBUG[6:0]> = 0x3D(61)
<CYOFS[6:0]> = 0x70 (-16)
```

Table 3.22.2 Example of conversion by color space conversion circuit (Mode 1)

Color	YUV	data exa	mple	RGB co color s	ponversion pace conv circuit	result in /ersion
	Y	U	V	R	G	В
White	0xEB	0x80	0x80	0xFF	0xFF	0xFF
Black	0x10	0x80	0x80	0x00	0x00	0x00
Red	0x52	0x5A	0xF0	0xFF	0x00	0x00
Green	0x90	0x36	0x22	0x00	0xFF	0x00
Blue	0x29	0xF0	0x6E	0x 00	0x00	0xFF
Yellow	0xD2	0x10	0x92	0xFF	0xFF	0x00
Cyan	0xA9	0x A6	0x10	0x00	0xFF	0xFF
Magenta	0x6B	0x CA	0xDE	0xFF	0x00	0xFF

(2) Using the color space conversion circuit from the CPU (CPU mode)

The following shows an example of converting four pixels of data from the YUV4:4:4 to RGB565 format:

Use example:

(CMSCV)	\leftarrow	0x02	;	Used by the CPU
			;	Conversion start trigger = write to CMSYD
(CMSCR)	←	0x00	;	CMOS image sensor operation status
(CMSUD)	\leftarrow	0x11	;	YUV color difference signal write
(CMSVD)	\leftarrow	0x12	;	YUV color difference signal write
(CMSYD)	\leftarrow	0x13	;	YUV brightness signal write & Conversion start first pixel
(CMSUD)	←	0x21	;	YUV color difference signal write
(CMSVD)	\leftarrow	0x22	;	YUV color difference signal write
(CMSYD)	\leftarrow	0x23	;	YUV brightness signal write & Conversion start second pixel
(CMSUD)	←	0x31	;	YUV color difference signal write
(CMSVD)	\leftarrow	0x32	;	YUV color difference signal write
(CMSYD)	←	0x33	;	YUV brightness signal write & Conversion start third pixel
(CMSUD)	←	0x41	;	YUV color difference signal write
(CMSVD)	\leftarrow	0x42	;	YUV color difference signal write
(CMSYD)	←	0x43	;	YUV brightness signal write & Conversion start fourth pixel
(CMSFPT)	\rightarrow	CPU register	;	RGB data read

Note: Before setting the CMSCR register, be sure to set the CMSCV register.

(3) Using the color space conversion circuit from the CPU (DMA mode)

The following shows an example of converting data from the YUV to RGB format using the DMA function:

In this mode, YUV data should have been ready being lined as 8 bits \times 3 + 8-bit Dummy in the order of Y, U, and V in the DMA source memory in advance.

Figure 3.22.4 YUV \rightarrow RGB888 conversion data flow image

By determining the period using tools such as Timer while considering the data amount and processing time of one DMA burst write, write YUV data successively by DMA started by Timer to perform a conversion YUV -> RGB by one clock. Each time 32 bytes or 48 bytes of RGB data has been stored in the FIFO, data read DMA is started from the FIFO.

- 3.22.2.4 Reading Data from the FIFO
 - (a) When the CMSI is used to interface a CMOS image sensor (CMSCV<CCVM1:0> = "00" or "01"

The RGB data generated by the color space conversion circuit is stored in the FIFO sequentially. INTCMSF to be used as a DMA trigger is generated when 32 bytes or more of data is stored in the FIFO in RGB565 mode (CMSCV<CRGBM>="0") and when 48 bytes or more of data is stored in the FIFO in RGB888 mode (CMSCV<CRGBM>="1"). After 32 bytes or 48 bytes of data is read from the FIFO, if the FIFO still contains 32 bytes or 48 bytes of data, INTCMSF is generated repeatedly until the valid data in the FIFO becomes less than 32 bytes or 48 bytes.

Therefore, set the DMA transfer count to 32 bytes during RGB565 mode, and to 48 bytes during RGB888 mode.

CMOS image sensor data is stored in the FIFO asynchronously to the CPU operation. Therefore, the priority of DMA should be set appropriately to prevent the FIFO from overflowing.

Reading the FIFO while valid data is stored in it corrupts the FIFO pointer. If this happens, clear the FIFO pointer by using the CMSCR<CFPCLR>.

(b) When the color space conversion circuit is used by the CPU/DMA (CMSCV<CCVM1:0> = "10" or "11")

The RGB data generated by the color space conversion circuit is stored in the FIFO sequentially. When used by the CPU also, as in the case during CMOS image sensor connection, INTCMSF is generated when 32 bytes or more of data is stored in the FIFO in RGB565 mode (CMSCV<CRGBM>="0") and when 48 bytes or more of data is stored in the FIFO in RGB888 mode (CMSCV<CRGBM>="1").

Reading the FIFO while valid data is not stored in it corrupts the FIFO pointer. If this happens, reset the FIFO pointer by using the CMSCR<CFPCLR> bit and then write new YUV data.

(c) Formats of RGB Storage into the FIFO

The formats of storage into the FIFO are shown below:

3.22.2.5 Color Space Conversion Circuit Bypassing Function for External Inputs

This mode directly inputs the RGB8:8:8 format when inputting image data from external terminals. The internal color space conversion circuit is bypassed.

The layout for FIFO buffer is shown below:

Figure 3.22.5 RGB888 no-conversion data flow image

Note: Before setting the CMSCR register, be sure to set the CMSCV register

3.22.2.6 Interrupt

The CMOS image sensor can generate two types of interrupts.

• Interrupt in synchronization with external input signals (CMOSHBK or CMSHSY)

CMSHSY synchronization when CMSCR<CINTSEL>="0" CMOSHBK synchronization when CMSCR<CINTSEL>="1"

At the point when a specified space occurs in the FIFO buffer 32 bytes when CMSCV<CRGBM>="0" 48 bytes when CMSCV<CRGBM>="1"

Since the interrupts generated by this circuit are through only one port, there are mask bits and flags for each of the two types of interrupts described above. All interrupts are issued on a level basis. Interrupt flags are cleared by a write into corresponding registers.

3.22.2.7 Downscaling Function

The original data from the CMOS image sensor can be downscaled to 1/2, 1/4 and 1/8 sizes. Downscaling is set in CMSSCTR<CSCL1:0>. Table 3.22.3 shows the relationship between each setting and the number of obtained pixels. This function is available only with 4VGA-, VGA-, QVGA-sized CMOS image sensor pixel count. Note that this function cannot be used at the same time as the trimming function.

CMOS sensor size (number of pixels)	1/2 downscaling CMSSCTR <cscl1:0> = "01"</cscl1:0>	1/4 downscaling CMSSCTR <cscl1:0> = "10"</cscl1:0>	1/8 downscaling CMSSCTR <cscl1:0> = "11"</cscl1:0>
4VGA(1280×960)	VGA (640×480)	QVGA (320×240)	QQVGA (160×120)
VGA (640×480)	QVGA (320×240)	QQVGA (160×120)	-
QVGA (320×240)	QQVGA (160×120)	-	-

Table 3.22.3 Downscaling correspondence table

The examples of data capturing when set to 1/2, 1/4, and 1/8 when using 4VGA (1280×960) are shown in Figure 3.22.6 below:

4				128	80 Pi	xels					_	<u> </u>	1:	280/2	2 Pix	els	>
LINE ₁	P ₁ P	P ₃	Ρ4	P_5	P ₆	P_7		P.	P ₁	279	Pizeo	LINE ₁ P ₁ P ₃ F	5	P ₇	P_9		P ₁₂₇₉
LINE ₂	P1 P2	P ₃	P 4	Ρ5	P_6	Ρ7		P.,	P.		P ₁₂₈₀	LINE ₃ P ₂ P ₄ F	6	P ₈	P ₁₀		P ₁₂₈₀
LINE ₃	P P ₂	P3	Ρ4	P_5	P_6	P7		P ₁₂	.78 P.		P ₁₂₈₀	LINE ₅ P ₁ P ₃ F	> 5	P7	P_9		P ₁₂₇₉
LINE ₄	P ₁ P ₂	P ₃	P_4	P ₅	P_6	Ρ7		P ₁₂	P.	270	P ₁₂₈₀	LINE ₇ P ₂ P ₄ F	° 6	P ₈	P ₁₀		P ₁₂₈₀
$LINE_5$	P ₁ P	P3	P4	P_5	P_6	P7		Ρ.	P₁	279	Piceo		° 5	P7	P ₉		P ₁₂₇₉
LINE ₆	P ₁ P ₂	P ₃	P 4	P ₅	P_6	Ρ7		P12	78 P.		P ₁₂₈₀					••••	
LINE ₇	P ₁ P ₂	P3	P_4	P ₅	P_6	P7		P ₁₂	.78 P		P ₁₂₈₀					·••.	
							••••						' 6	P ₈	P ₁₀		P ₁₂₈₀
	_				-								Af	ter s	calir	ng	
			P ₄	P5	P ₆	Pz n		P ₁₂	78		P ₁₂₈₀						
			LF4	5	F 6				70 [11	2/9	F 1280						
-												<u> </u>	12	80/4	Pixe	ls	<u> </u>
LINE ₁	P ₁ P	P3	Ρ4	P5	P ₆	P7		P.		279	P ₁₂₈₀	LINE ₁ P ₁ P ₅ F	' 9	P ₁₃	P ₁₇		P ₁₂₇₇
LINE ₂	P ₁ P ₂	. P3	Ρ4	P5	P6	P7		P	P.	279	P ₁₂₈₀	LINE ₅ P ₂ P ₆ F	'10 I	P ₁₄	P ₁₈		P ₁₂₇₈
LINE ₃	P ₁ P ₂	P ₃	Ρ4	P5	P ₆	P7		. P.	P.	275	P ₁₂₈₀	LINE ₉ P ₃ P ₇ F	11	P ₁₅	P ₁₉		P ₁₂₇₉
LINE ₄	P ₁ P ₂	P ₃	P ₄	P ₅	P ₆	P ₇		P12	P -	279	P1280	LINE ₁₃ P ₄ P ₈ F	12	P ₁₆	P ₂₀		P ₁₂₈₀
LINE ₅	P ₁ P ₂	P3	P ₄	P5	P ₆	P7		P.,	n P	279	P. ₁₂₈₀	$\blacksquare \qquad \qquad$	3 9	P ₁₃	P ₁₇		P ₁₂₇₇
LINE ₆	P ₁ P ₂	. P3	P4	P ₅	P ₆	P ₇		P.,	78 P.	279	P ₁₂₈₀						
LINE ₇	P, [P;	P3	P4	P ₅	P ₆	P7		Pu	n P		P ₁₂₈₀			-	<u> </u>	···	
							··						12	P ₁₆	P ₂₀		P ₁₂₈₀
LINE959	P, P	Pa	P4	P ₅	P.	P,		P		270	Piom						
LINE ₉₆₀	Pi Pi	. P3	Ρ4	P ₅	P ₆	P7		P		279	P ₁₂₈₀						
						•											
	P1 P	lp.	P.	p,	p.	p ,		P.	p.		P						
LINE ₂	P ₁ P	P ₃	P_4	P_5	P ₆	P7		P ₁	. Р		Pizzo	<u> </u>	12	280/8	Pixe	ls	<u> </u>
LINE ₃	P ₁ P ₂	. P3	P4	P5	Pe	P ₇		P ₁₂	P.	279	Pizai	LINE ₁ P ₁ P ₉ F	'17 I	P ₂₅	P ₃₃		P ₁₂₇₃
LINE ₄	P ₁ P ₂	P ₃	Ρ4	P5	P ₆	P7		Pu	P	275	P ₁₂₈₀	LINE ₉ P ₂ P ₆ F	'18 I	P ₂₆	P ₃₄		P ₁₂₇₄
LINE ₅	P ₁ P ₂	P3	P4	P5	P_6	P7		P.	73 P.	279	P ₁₂₈₀	LINE ₁₇ P ₃ P ₇ F	'19 	P ₂₇	P ₃₅		P ₁₂₇₅
LINE ₆	P ₁ P ₂	P ₃	P_4	P_5	P ₆	Ρ7		P.,	P	279	P ₁₂₈₀	LINE ₂₅ P ₄ P ₈ F	20 I	P ₂₈	P ₃₆		P ₁₂₇₆
LINE ₇	P, P	P3	P 4	P ₅	P ₆	P7		P	78 P.	20	Piza	LINE ₃₃ P ₅ P ₉ F	'21 I	P ₂₉	P ₃₇		P ₁₂₇₇
							••••										
	-						•	-		-						· · ·	
LINE ₉₅₉	P ₁ P ₂	P ₃	P4	P5	P ₆	P7		P	78 P	270	P. ₂₈₀	LINE ₉₅₃ P8 P16 F	24	P ₃₂	P ₄₀		P ₁₂₈₀
LINE ₉₆₀	Pi P;	IP3	P4	P5	Po	P7		P	7. P 1	279	Pizao				- 1' -	_	
		В	eror	e sca	aling	J							Afte	er so	aiing	J	

TOSHIBA

3.22.2.8 Trimming Function

The trimming function enables the CMOS image sensor data to be trimmed from a desired trimming start point to a desired size. The trimming function is enabled by setting CMSSCTR<CTREN> to "1". The start and end points are set in the CMSTS(Vertical/Horizontal) and CMSTE(Vertical/Horizontal) registers. The following shows an example of how to set the trimming function.

Note that this function cannot be used at the same time as the scaling function.

Example of trimming setting

- · CMOS sensor size (number of pixels) CIF (352×288) CMSCR1<CSIZE3:0>=0y1000
- Trimming size QVGA(320×240)

CMSTS=0x00100018 CMSTE=0x00FF0157

Figure 3.22.7 Trimming function image

3.22.3 Description of Registers

The following lists the SFRs:

		base address = 0xF202_0000
Register Name	Address (base+)	Description
CMSCR	0x000	CMOS Image Sensor Control Register
CMSCV	0x004	CMOS Image Sensor Color Space Conversion Register
CMSCVP0	0x008	CMOS Image Sensor Color Conversion Parameter Register0
CMSCVP1	0x00C	CMOS Image Sensor Color Conversion Parameter Register1
CMSYD	0x010	CMOS Image Sensor Soft Conversion Y-data Resister
CMSUD	0x014	CMOS Image Sensor Soft Conversion U-data Resister
CMSVD	0x018	CMOS Image Sensor Soft Conversion V-data Resister
CMSFPT	0x020	CMOS Image Sensor FIFO Port Read Register
CMSCSTR	0x024	CMOS Image Sensor Scaling & Trimming Control Register
CMSTS	0x030	CMOS Image Sensor Trimming Space Start Point Setting Register
CMSTE	0x034	CMOS Image Sensor Trimming Space End Point Setting Register
CMSSCDMA	0x040	CMOS Image Sensor Soft Conversion DMA YUV-Data

The CMSI has 14 types of registers. They are connected to the CPU with the 32-bit bus.

When the CMSI is used to interface a CMOS image sensor (CMSCV<CCVM1:0> = "01"), the settings of the following registers take effect after detecting the first rising edge (when selected to Negative) of the CMSVSY signal after they have been changed.

CMSCR<CSIZE3:0> bit, CMSCV<CRGBM> bit CMSRYG, CMSRUG, CMSGYG, CMSGUG, CMSGVG, CMSBYG, CMSBVG, CMSTOFS, CMSSCTR, CMSTSH, CMSTSV, CMSTEH, CMSTEV

1. CMSCR (CMOS Image Sensor Control Register)

Address =(0xF202_0000)+ (0x0000)

Bit	Bit Symbol	Туре	Reset Value	Description
[31:20]		-	Undefined	Read undefined. Write as zero.
[19]	1 -	-	Undefined	Read undefined. Write as zero.
[18]	CSFOW	R/W	0y0	FIFO Read Window "CMSFPT" switch 0: Use 4 bytes (However, the lower 24 bits are valid when set to RGB888) 1: Use 1 byte
[17]	CSINTF	RO	ОуО	CMOS sync interrupt flag During READ During WRITE 0: No interrupt 0: Interrupt flag clear 1: With interrupt 1: Invalid
[16]	CFINTF	RO	0у0	FIFO interrupt flag During READ During WRITE 0: No interrupt 0: Interrupt flag clear 1: With interrupt 1: Invalid
[15]	CSINTM	R/W	0у0	CMOS sync interrupt mask setting 0: Interrupt masked 1: Interrupt enabled
[14]	CFINTM	R/W	0у0	FIFO interrupt mask setting 0: Interrupt masked 1: Interrupt enabled
[13]	CDEDLY	R/W	0у0	Enable data delay function 0: Disable 1: Enable
[12]	CVSYPH	R/W	0у0	VSYNC signal phase 0: Negative 1: Positive
[11]	CHSYPH	R/W	0у0	HSYNC signal phase 0: Negative 1: Positive
[10]	СНВКРН	R/W	ОуО	HBK signal phase 0: Negative 1: Positive
[9]	СРСКРН	R/W	ОуО	PCK signal data capture edge select 0: Rise Up 1: Fall Down
[8]	CFOVF	R/W	ОуО	FIFO Over Write Flag During READ During WRITE 0: No overwrite 0: Flag clear 1: No overwrite 1: Disabled
[7]	CFDEF	RO	ОуО	FIFO Status Flag 0: No valid data 1: With valid data
[6]	CFPCLR	WO	0у0	FIFO pointer clear 0: Disabled 1: Clear
[5]	CINTSEL	R/W	0у0	CMOS sync interrupt generation timing setting 0: CMSVSY 1: CMSHBK
[4:1]	CSIZE3:0	R/W	0у0000	CMOS image sensor size (number of pixels) select 0000: QQVGA 0001: QVGA 0010: 320*180 0011: VGA 0100: Reserved 0101:4VGA 0110SXGA 0111: QCIF 1000: CIF 1001: Reserved 1010:Reserved 1011 ~ 111: Reserved 1010 111
[0]	CSRST	R/W	0у0	CMOS IS circuit reset 0: Disabled 1: Reset

[Explanation]

a. <CSRST>

Resets the circuitry in the CMOS image sensor.

Basically when changing internal settings, keep this bit set to "1".

- 0: During normal operation
- 1: Internal circuit initialization (When redoing circuit settings, set this bit to "1".)

b. <CSIZE3:0>

Selects the number of valid pixels of the CMOS image sensor.

- c. <CINTSEL>
 - Selects the generation timing of the external signal sync interrupt which has two types.
 - 0: Generates at CMSVSY rising edge (when set to POSITIVE)

1: Generates at CMSHBK falling edge (when set to POSITIVE)

d. <CFPCLR>

Writing "1" clears the FIFO read/write pointer. It is set to "0" when it is read.

e. <CFDEF>

This is the flag showing that the FIFO contains valid data. This bit is read-only and cannot be cleared by an instruction. Until all data in the FIFO is read or <CFPCLR>= "0" is used to reset internally, "1" is retained.

0: No valid data

1: With valid data

f. <CFOVF>

This is the flag showing that the data accumulated in the FIFO is updated before read. This bit is not cleared automatically. Clear it by writing "0".

During READ	During WRITE
0: No overwrite	0: Flag clear
1: Overwrite occurred	1: Disabled

g. <CPCKPH>

Selects the rising/falling of the data capture edge in the clock CMSPCK signal that latches data.

- 0: Rising edge
- 1: Falling edge

h. <CHBKPH>

Selects the positive/negative logic of the valid data detection signal CMSHBK.

0: Negative logic (Negative): Understands data to be valid when the signal is "0".

1: Positive logic (Positive): Understands data to be valid when the signal is "1".

i. <CHSYPH>

Selects the positive/negative logic of the horizontal sync signal CMSHSY.

- 0: Negative logic (Negative)
- 1: Positive logic (Positive)

j. <CVSYPH>

Selects the positive/negative logic of the vertical sync signal CMSVSY.

0: Negative logic (Negative)

1: Positive logic (Positive)

k. <CDEDLY>

Captures a valid signal capture point after a delay of one clock.

0: Normal

1: 1-clock delay

l. <CFINTM>

Sets the mask for FIFO interrupts.

- 0: FIFO interrupt masked
- 1: FIFO interrupt enabled

m. <CSINTM>

Sets the mask for CMOS input signal sync interrupts.

- 0: Sync interrupt masked
- 1: Sync interrupt enabled

n. <CFINTF>

Shows the state of FIFO interrupts during read; and clears interrupt flags during write.

- During READDuring WRITE0: No FIFO interrupt0: Interrupt flag clear
- 1: With FIFO interrupt 1: Disabled

o. <CSINTF>

Shows the state of CMOS input signal sync interrupts during read; and clears interrupt flags during write.

During READ	During WRITE
0: No sync interrupt	0: Interrupt flag clear
1: With sync interrupt	1: Disabled

p. <CSFOW>

Switches the windows of the FIFO buffer read registers.

- 0: 4 bytes (However, the high-order 1 byte is invalid data when RGB888)
- 1: Byte (The high-order 3 bytes are invalid data)

2. CMSCV (CMOS Image Sensor Color Space Conversion Register)

Address =(0xF202_0000)+(0x0004)

Bit	Bit Symbol	Туре	Reset Value	Description
[31:10]	-	-	Undefined	Read undefined. Write as zero.
[9]	CSCVST	WO	0у0	S/W conversion start
				0: Disabled
				1: Conversion start
[8:7]	CSCVTRG[1:0]	R/W	0у0	S/W conversion start trigger select
				(Enabled only when CCVM1 = 1 and CCVM0 = 0)
				00: Write to CMSYD 01: Write to CMSUD
				10: Write to CMSVD 11: Write of "1" to <cscvst></cscvst>
[6]	CCVSMMS	R/W	0у0	Color space conversion factor mode select
				0: Mode 1
				1: Mode 2
[5]	CRGBM	R/W	0y0	RGB mode switching and FIFO Water Mark setting
				0: In YUV to RGB565, interrupt (DMA) request at every 32 bytes
				1: In YUV to RGB888, interrupt (DMA) request at every 48 bytes
[4:3]	CCVM[1:0]	R/W	0y10	Color space conversion circuit input source
				00: Input from external terminal. No color space conversion.
				01: Input from external terminal. With color space conversion.
				10: Input from internal register. Data input: CMSYD/UD/VD
				11: Input from internal register. CMSSCDMA
[2]	DMAEN	R/W	0у0	DMA control
				0: DMA request OFF
				1: DMA request ON
[1:0]	-	-	Undefined	Read undefined. Write as zero.

Note: When changing CMSCV<CCVM1:0>, keep CMSCR<CSRST>= "1" to be set.

3. CMSCVP0 (CMOS Image Sensor Color Space Conversion Parameter Register0)

Address =(0xF202_0000)+(0x0008)

Bit	Bit Symbol	Туре	Reset Value	Description
[31]	_	-	Undefined	Read undefined. Write as zero.
[30:24]	CGVG[6:0]	R/W	0y000000	Color space conversion parameter
				V of Green Color Adjustment
[23]	-	-	Undefined	Read undefined. Write as zero.
[22:16]	CGYG[6:0]	R/W	0y000000	Color space conversion parameter
				Y of Green Color Adjustment
[15]	-	-	Undefined	Read undefined. Write as zero.
[14:8]	CRVG[6:0]	R/W	0y000000	Color space conversion parameter
				V of Red Color Adjustment
[7]	_	-	Undefined	Read undefined. Write as zero.
[6:0]	CRYG[6:0]	R/W	0y000000	Color space conversion parameter
				Y of Red Color Adjustment

4. CMSCVP1 (CMOS Image Sensor Color Space Conversion Parameter Register1)

				Address
Bit	Bit Symbol	Туре	Reset Value	Description
[31]	_	-	Undefined	Read undefined. Write as zero.
[30:24]	CYOFS[6:0]	R/W	0y000000	Color space conversion parameter Y Offset of Red/Green/Blue Color Adjustment
[23]	_	-	Undefined	Read undefined. Write as zero.
[22:16]	CBUG[6:0]	R/W	0y000000	Color space conversion parameter U of Blue Color Adjustment
[15]	_	-	Undefined	Read undefined. Write as zero.
[14:8]	CBYG[6:0]	R/W	0y000000	Color space conversion parameter Y of Blue Color Adjustment
[7]	_	-	Undefined	Read undefined. Write as zero.
[6:0]	CGUG[6:0]	R/W	0y000000	Color space conversion parameter U of Green Color Adjustment

5. CMSYD (CMOS Image Sensor Soft Conversion Y-data Register)

Address =(0xF202_0000)+(0x0010)

Bit	Bit Symbol	Туре	Reset Value	Description
[31:8]	-	-	Undefined	Read undefined. Write as zero.
[7:0]	CYD[7:0]	WO	Undefined	Software color space conversion Y data setting

Note: Although a 32-bit register, 8-bit access is also possible. Only when a write is given in the register of low-order 8 bits, color space conversion can be started.

6. CMSUD (CMOS Image Sensor Soft Conversion U-data Register)

Address =(0xF202_0000)+(0x0014)

Bit	Bit Symbol	Туре	Reset Value	Description
[31:8]	_	_	Undefined	Read undefined. Write as zero.
[7:0]	CUD[7:0]	WO	Undefined	Software color space conversion U data setting

Note: Although a 32-bit register, 8-bit access is also possible. Only when a write is given in the register of low-order 8 bits, color space conversion can be started.

7. CMSVD (CMOS Image Sensor Soft Conversion V-data Register)

Address =(0xF202_0000)+(0x0018)

Bit	Bit Symbol	Туре	Reset Value	Description
[31:8]	-	-	Undefined	Read undefined. Write as zero.
[7:0]	CVD[7:0]	WO	Undefined	Software color space conversion V data setting

Note: Although a 32-bit register, 8-bit access is also possible. Only when a write is given in the register of low-order 8 bits, color space conversion can be started.

(1) FIFO port register

Reading this register can read the data accumulated in the FIFO.

1. CMSFPT (CMOS Image Sensor FIFO Port Read Register)

Address =(0xF202_0000)+(0x0020)

Bit	Bit Symbol	Туре	Reset Value	Description
[31:0]	CFIF[31:0]	RO	Undefined	FIFO Port Read Register

(2) Downscaling / trimming setting register

This register selects downscaling sizes and sets trimming sizes.

1. CMSSCTR (CMOS Image Sensor Scaling & Trimming Control Register)

Address =(0xF202_0000)+(0x0024)

Bit	Bit Symbol	Туре	Reset Value	Description	
[31:8]	_	-	Undefined	Read undefined. Write as zero.	
[7]	_	R/W	0у0	TEST bit	
				Always write "0".	
[6:5]	-	-	Undefined	Read undefined. Write as zero.	
[4]	CTREN	R/W	0y0	Trimming Enable	
				0: Disable	
				1: Enable	
[3:2]	-	-	Undefined	Read undefined. Write as zero.	
[1:0]	CSCL[1:0]	R/W	0y00	Downscaling select	
				00: Disable(1/1)	
				01: 1/2 down scaling	
				10: 1/4 down scaling	
				11: 1/8 down scaling	

2. CMSTS (CMOS Image Sensor Trimming Space Start point Setting Register)

Address =(0xF202_0000)+(0x0030)

Bit	Bit Symbol	Туре	Reset Value	Description
[31:26]	_	_	Undefined	Read undefined. Write as zero.
[25:16]	CTSV[9:0]	R/W	0y0000000000	Trimming vertical start point setting register タ
[15:11]	-	-	Undefined	Read undefined. Write as zero.
[10:2]	CTSH[10:2]	R/W	0y00000000	Trimming horizontal start point setting register
[1:0]	CTSH[1:0]	R	0y00	Trimming horizontal start point setting register
				Since horizontal trimming is possible only at every four pixels,
				these two bits are always fixed to "0".

3. CMSTE (CMOS Image Sensor Trimming Space End point Setting Register)

Address =(0xF202_0000)+(0x0034)

Bit	Bit Symbol	Туре	Reset Value	Description	
[31:26]	-	_	Undefined	Read undefined. Write as zero.	
[25:16]	CTEV[9:0]	R/W	0y0000000000	Trimming vertical end point setting register	
[15:11]	_	-	Undefined	Read undefined. Write as zero.	
[10:2]	CTEH[10:2]	R/W	0y00000000	Trimming horizontal start point setting register	
[1:0]	CTEH[1:0]	R	0y11	Trimming horizontal start point setting register	
				Since horizontal trimming is possible only at every four pixe	
				these two bits are always fixed to "1".	

4. CMSSCDMA (CMOS Image Sensor Soft Conversion DMA YUV-Data)

Address =(0xF202_0000)+(0x0040)

Bit	Bit Symbol	Туре	Reset Value	Description
[31:24]	_	WO	Undefined	Read undefined. Write as zero.
[23:16]	CVD[7:0]	WO	Undefined	Software color space conversion V data setting
[15:8]	CUD[7:0]	WO	Undefined	Software color space conversion U data setting
[7:0]	CYD[7:0]	WO	Undefined	Software color space conversion Y data setting

3.22.4 Connection Examples

1) Example of connection with xxxx

2) Example of connection with ICMEDIA ICM205C

TOSHIBA

3.22.5 Cautions during CMSI Use

Before using the CMSI, please carefully read the following for proper use of the CMSI.

1) Relationship between CMSPCK and the system clock (f_{PCLK}) $\,$

When the CMSI is used to interface a CMOS image sensor (CMSCV<CCVM[1:0]> = "00" or "10"), make sure that the relationship between the CMSPCK input clock and the system clock (f_{PCLK}) is "CMSPCK x 2 \leq f_{PCLK} ".

2) After completing all settings, set the CMSI to the normal operation state (CMSCR<CSRST>= "0").

When changing settings, reset the CMSI first, and then set the CMSI again after completing the setting.

3) When the color space conversion circuit is accessed by the CPU

When using the CMSI color space conversion circuit while being set to the setting which allows the circuit to be accessed by the CPU (CMSCV<CCVM1:0> = "11"), CMSPCK, CMSHBK, CMSVSY, and CMSD[7:0] should be set as ports (PW0 to PW7, PV0 to PV2) in order to avoid the data from the CMOS sensor from being input.

4) The CMSI accumulates the data from a CMOS image sensor into the FIFO asynchronously with CPU operation. Therefore, decide the priority of DMA so that the FIFO will not overflow.

3.23 Real-Time Clock/Melody Alarm Generator (RTCMLD)

3.23.1 Functional Overview

The circuits include Real-Time Clock, Melody and Alarm generator block. The base clock is 32 KHz low frequent.

Each circuit function is showed below.

1) Melody:

• Can generate melody waveforms at any frequency from 4 Hz to 5461 Hz.

2) Alarm:

- Can generate eight patterns of alarm output.
- Can generate five types of fixed-interval interrupts (1 Hz, 2 Hz, 64 Hz, 512 Hz, 8192 Hz).

3) RTC:

- 32-bit counter that counts up every second
- Compare 32-bits counter value, and generate interrupt requests (Resume request to the PMC is also corresponded)

3.23.2 Block Diagram

3.23.3 Operational Description

3.23.3.1 Melody Generator

(1) Operational overview

Based on the low-speed clock (32.768 kHz), clock waveforms at any frequency from

4Hz to 5461Hz can be generated and output from the MLDALM pin(Inversion signal MLDALMn pin).

By connecting buzzer etc outside, melody sounds can easily be played.

The melody frequent is calculated as below.

XTIN = 32.768 [kHz]	
Melody output waveform	$f_{MLD}[Hz] = 32768 / (2 \times N + 4)$
Melody setting value	$N = (16384 / f_{MLD}) - 2$
Note: The value N is set through th	e MLDFRQ <mldf> register:</mldf>
N = 1-4095 (0x001-0xFFF)	
Setting N="0" is prohibi	ted.

*For the above equation, see the waveform diagram below.

(For reference: Basic tone scale setting table)

Tone	Frequency	MLDFRQ <mldf></mldf>		
scale	[Hz]	Register value: N		
С	264	0x03C		
D	297	0x035		
E	330	0x030		
F	352	0x02D		
G	396	0x027		
A	440	0x023		
В	495	0x01F		
С	528	0x01D		

Figure 3.23.1 Melody waveform

(2) Flowchart for melody setting

Note: After a write to MLDCNTCR, the read value is not updated until the written value is loaded in the XTIN synchronizing circuit. Therefore, after a write to MLDCNTCR, poll the register value until the written value is read out and then proceed to the next step. Other registers (XXXXX) to which written values are loaded in the XTIN synchronizing circuit cannot be read out. After writing to these registers, wait for 3 or more XITIN clocks (approx. 93 µs) before proceeding to the next step.

3.23.3.2 Alarm Generator

(1) Operational overview

At the frequency (4096 Hz) divided based on the low-speed clock (32.768 kHz), eight types of alarm waveforms can be generated and output from the MLDALM pin.

By connecting buzzer etc outside, alarm sounds can easily be played.

The free-running counter in the alarm generator can be used to generate five types of interval interrupts (1 Hz, 2 Hz, 64 Hz, 512 Hz, 8192 Hz).

(Alarm pattern setting table)

ALM register setting	Alarm waveform
0x00	Fixed at "0"
0x01	AL1 pattern
0x02	AL2 pattern
0x04	AL3 pattern
0x08	AL4 pattern
0x10	AL5 pattern
0x20	AL6 pattern
0x40	AL7 pattern
0x80	AL8 pattern
Others	Undefined
	(Do not set)

Example: Various alarm waveform patterns

(2) Flowchart for alarm generator setting

Note: After a write to MLDCNTCR, the read value is not updated until the written value is loaded in the XTIN synchronizing circuit. Therefore, after a write to MLDCNTCR, poll the register value until the written value is read out and then proceed to the next step. Other registers (XXXXX) to which written values are loaded in the XTIN synchronizing circuit cannot be read out. After writing to these registers, wait for 3 or more XITIN clocks (approx. 93 µs) before proceeding to the next step.

3.23.4 Real-Time Clock

(1) Operational overview

The real-time clock (32bit counter) can count every second based on the frequency (1 Hz) divided from the low-speed clock (32.768 kHz).

The current count value can be read from the RTCDATA register. Clock function can be easily realized

By comparing the count value with the value set in the RTCCOMP register, an interrupt can be generated(can also be used as the resume signal from PCM(Power Cut Mode) state) $_{\circ}$

The counter value can be changed arbitrarily by setting a value in the RTCPRST register.

To keep counting time, power supply is always turned on. Even if there is no external factor to Wakeup from PCM mode, RTC can issue a power resume request to the PMC, the operation of the 1A power supply circuit can be resumed.

(2) Flowchart for real-time clock setting

Note: After writing to each register, wait for 3 or more XTIN clocks (approx. 93 µs) before proceeding to the next step.

3.23.5 Register descriptions

The RTCMLD has the following registers:

Base address = 0xF003_0000

Register Name	Address (base+)	Description			
RTCDATA	0x0000	RTC Data Register			
RTCCOMP	0x0004	RTC Compare Register			
RTCPRST	0x0008	RTC Preset Register			
MLDALMINV	0x0100	Melody Alarm Invert Register			
MLDALMSEL	0x0104	Melody Alarm signal Select Register			
ALMCNTCR	0x0108	Alarm Counter Control Register			
ALMPATTERN	0x010C	Alarm Pattern Register			
MLDCNTCR	0x0110	Melody Counter Control Register			
MLDFRQ	0x0114	Melody Frequency Register			
RTCALMINTCTR	0x0200	RTC ALM Interrupt Control Register			
RTCALMMIS	0x0204	RTC ALM Interrupt Status Register			

1. RTCDATA (RTC Data Register)

Address = (0xF003_0000) + 0x0000

Bit	Bit	Туре	Reset	Description
	Symbol		value	
[31:0]	RTCCOUNT	RO	Undefined	32-bit counter value

[Explanation]

a. <RTCCOUNT>

Returns the RTC count value (32 bits) on read.

2. RTCCOMP (RTC Compare Register)

Address = (0xF003_0000) + 0x0004

Bit	Bit Symbol	Туре	Reset Value	Description
[31:0]	RTCCP	WO	Undefined	Value to be compared with the RTC counter

[Explanation]

a. <RTCCP>

A match between the counter value (in steps of 1 HZ) and the value in <RTCCP> generates an interrupt and power supply resume request.

3. RTCPRST (RTC Preset Register)

Address = (0xF003_0000) + 0x0008

Bit	Bit	Туре	Reset	Description
	Symbol		Value	
[31:0]	RTCPR	WO	Undefined	RTC counter preset value

[Explanation]

a. <RTCPR>

Specifies the RTC counter preset value.

4. MLDALMINV (Melody Alarm signal Invert Register)

Address = (0xF003_0000) + 0x0100

Bit	Bit Symbol	Туре	Reset Value	Description
[31:1]	-	-	Undefined	Read undefined. Write as zero.
[0]	MLALINV	WO	0у0	MLDALM output signal inversion
				0y0: Do not invert
				0y1: Invert

[Explanation]

a. <MLALINV>

Selects whether or not to invert the melody/alarm output.

5. MLDALMSEL (Melody Alarm Select Register)

Address = (0xF003_0000) + 0x0104

Bit	Bit Symbol	Туре	Reset Value	Description
[31:2]	-	-	Undefined	Read undefined. Write as zero.
[1:0]	MLALSEL	WO	0у00	Output signal select
				0y00: Stop output
				0y01: Melody
				0y10: Alarm
				0y11: Do not set

[Explanation]

a. <MLALSEL >

Selects the melody or alarm output from MLDALM pin.

6. ALMCNTCR (Alarm Counter Control Register)

 $Address = (0xF003_0000) + 0x0108$

Bit	Bit Symbol	Туре	Reset Value	Description
[31:1]	-	-	Undefined	Read undefined. Write as zero.
[0]	ALMCC	R/W	0у0	Free-running counter control
				0y0: Clear & stop
				0y1: Start

[Explanation]

a. <ALMCC>

Controls the 15-bit counter for alarm generation.

7. ALMPATERN (Alarm Pattern Register)

Address = (0xF003_0000) + 0x010C

Bit	Bit Symbol	Туре	Reset Value	Description
[31:8]	-	-	Undefined	Read undefined. Write as zero.
[7:0]	ALMPTSEL	WO	0x00	Alarm pattern setting
				(See the table below.)

[Explanation]

a. <ALMPTSEL>

Selects the alarm pattern to be output.

[Alarm pattern setting values]

ALMPTSEL setting	Alarm waveform
0x00	Fixed at "0"
0x01	AL1 pattern
0x02	AL2 pattern
0x04	AL3 pattern
0x08	AL4 pattern
0x10	AL5 pattern
0x20	AL6 pattern
0x40	AL7 pattern
0x80	AL8 pattern
Others	Undefined (Setting prohibited)

8. MLDCNTCR (Melody Counter Control Register)

Address = (0xF003_0000) + 0x0110

Bit	Bit Symbol	Туре	Reset Value	Description
[31:1]	-	-	Undefined	Read undefined. Write as zero.
[0]	MLDCC	R/W	0у0	Free-running counter control 0y0: Clear & stop 0y1: Start

[Explanation]

a. <MLDCC>

Controls the 12-bit counter for melody generation.

9. MLDFRQ (Melody Frequency Register)

Address = (0xF003 0	0000) + 0x0114
---------------------	----------------

Bit	Bit Symbol	Туре	Reset Value	Description
[31:12]	-	-	Undefined	Read undefined. Write as zero.
[11:0]	MLDF	WO	0x000	Melody output frequency setting value N: 0x001-0xFFF

[Explanation]

a. <MLDF >

Specifies the counter value (N) for Melody output frequency setting. Formula: $f_{MLD}[Hz] = 32768/(2N+4)$

10. RTCALMINTCTR (RTC ALM Interrupt Control Register)

				Address = (0xF003_0000) + 0x0200
Bit	Bit Symbol	Туре	Reset Value	Description
[31:8]			Undefined	Read undefined. Write as zero.
[7]	ALMINTCLR	WO	0у0	Alarm interrupt flag clear 0y0: No effect 0y1: Clear
[6]	RTCINTCLR	WO	0у0	RTC interrupt flag clear 0y0: No effect 0y1: Clear
[5]	AINTEN1	R/W	0у0	Alarm (1Hz) interrupt enable 0y0: Disable 0y : Enable
[4]	AINTEN2	R/W	0у0	Alarm (2Hz) interrupt enable 0y0: Disable 0y1: Enable
[3]	AINTEN64	R/W	0у0	Alarm (64Hz) interrupt enable 0y0: Disable 0y1: Enable
[2]	AINTEN512	R/W	0у0	Alarm (512Hz) interrupt enable 0y0: Disable 0y1: Enable
[1]	AINTEN8192	R/W	0y0	Alarm (8192Hz) interrupt enable 0y0: Disable 0y1: Enable
[0]	RTCINTEN	R/W	0у0	RTC interrupt enable 0y0: Disable 0y1: Enable

[Explanation]

- a. <ALMINTCLR > Clears the enabled alarm interrupt flag.
- b. <RTCINTCLR> Clears the enabled RTC interrupt flag.
- c. <AINTEN1> Enables or disables the alarm (1Hz) interrupt.
- d. <AINTEN2> Enables or disables the alarm (2Hz) interrupt.
- e. <AINTEN64> Enables or disables the alarm (64Hz) interrupt.
- f. <AINTEN512> Enables or disables the alarm (512Hz) interrupt.
- g. <AINTEN8192> Enables or disables the alarm (8192Hz) interrupt.
- h. <RTCINTEN> Enables or disables the RTC interrupt.

11. RTCALMMIS (RTC ALM Masked Interrupt Status Register)

Address = (0xF003_0000) + 0x0204

Bit	Bit Symbol	Туре	Reset Value	Description
[31:2]	-	-	Undefined	Read undefined. Write as zero.
[1]	ALMINT	RO	0у0	Alarm interrupt enabled status
				0y0: Interrupt not requested
				0y1: Interrupt requested
[0]	RTCINT	RO	0у0	RTC interrupt enabled status
				0y0: Interrupt not requested
				0y1: Interrupt requested

- Notes:
 - (1) The RTC count-up control register always counts up. The 32bit counter of RTC can't be stopped.
 - (2) After power-on, The RTCCOMP and RTCPRST registers are undefined. So The RTCCOMP and RTCPRST registers must be confined, and confirm the right data ,can be read from the RTCDATA register, then can set interrupt to Enable state,

If the RTCCOMP, RTCPRST and other RTC relation registers are undefined state, set MCU to the PCM mode. Unexpected action resume from PCM maybe happen. Please pay attention to it.

(3) The RTCDATA value is updated one second after the 1A power supply is resumed. Therefore, do not display time or use time data until one second elapses after the power supply is resumed.

3.24 Analog/Digital Converter

A 10-bit serial conversion analog/digital converter (AD converter) having six channels of analog input is built in.

Figure 3.24.1 shows the block diagram of the AD converter. The six channels of analog input pins (AN0 to AN5) are used also as input dedicated ports D (PD0 to PD5).

Note 1: To reduce the power supply current by PCM mode, the standby state may be maintained with the internal comparator still being enabled, depending on the timing. Check that the AD converter operation is in a stop before executing mode switching.

Note 2: Setting ADMOD1<DACON> = "0" while the AD converter is in a stop can reduce current consumption.

Figure 3.24.1 Block diagram of AD converter

3.24.1 Description of Registers

The following lists the AD converter related registers: Adding the base address gives the address of this product.

		base address = 0xF008_0000			
Register	Address				
Name	(base+)	Description			
ADREG0L	0x0000	A/D conversion result lower-order register 0			
ADREG0H	0x0004	A/D conversion result higher-order register 0			
ADREG1L	0x0008	A/D conversion result lower-order register 1			
ADREG1H	0x000C	A/D conversion result higher-order register 1			
ADREG2L	0x0010	A/D conversion result lower-order register 2			
ADREG2H	0x0014	A/D conversion result higher-order register 2			
ADREG3L	0x0018	A/D conversion result lower-order register 3			
ADREG3H	0x001C	A/D conversion result higher-order register 3			
ADREG4L	0x0020	A/D conversion result lower-order register 4			
ADREG4H	0x0024	A/D conversion result higher-order register 4			
ADREG5L	0x0028	A/D conversion result lower-order register 5			
ADREG5H	0x002C	A/D conversion result higher-order register 5			
_	0x0030	Reserved			
_	0x0034	Reserved			
_	0x0038	Reserved			
_	0x003C	Reserved			
ADREGSPL	0x0040	Top-priority A/D conversion result lower-order register			
ADREGSPH	0x0044	Top-priority A/D conversion result higher-order register			
ADCOMREGL	0x0048	A/D conversion result comparison lower-order register			
ADCOMREGH	0x004C	A/D conversion result comparison lower-order register			
ADMOD0	0x0050	A/D mode control register 0			
ADMOD1	0x0054	A/D mode control register 1			
ADMOD2	0x0058	A/D mode control register 2			
ADMOD3	0x005C	A/D mode control register 3			
ADMOD4	0x0060	A/D mode control register 4			
_	0x0064	Reserved			
_	0x0068	Reserved			
_	0x006C	Reserved			
ADCLK	0x0070	A/D conversion clock setting register			
ADIE	0x0074	A/D interrupt enable register			
ADIS	0x0078	A/D interrupt status register			
ADIC	0x007C	A/D interrupt clear register			
	0x0080				
	:				
	0x0FFF				

Note: Notes for Description of Registers

- R/W: Read/Write possible
- RO: Readable / Write not reflected
- WO: Writable / "0" can be read when read

3.24.1.1 Control Registers

The A/D converter is controlled by the A/D mode control registers (ADMOD0, ADMOD1, ADMOD2, ADMOD3, and ADMOD4). A/D conversion results are stored in the six registers of A/D conversion result higher-order/lower-order registers ADREG0H/L to ADREG5H/L. Top-priority conversion results are stored in ADREGSPH/L.

- ADMOD register
- 1. ADMOD0 (AD mode control register 0)

				Address = (0xF008_0000) + 0x0050
Bit	Bit Symbol	Туре	Reset Value	Description
[31:8]	-	-	Undefined	Read undefined. Write as zero.
[7]	EOCFN *1)	RO	0y0	Normal AD conversion end flag
				0: Before conversion or being converted
				1: End
[6]	ADBFN	RO	0у0	Normal AD conversion BUSY flag
				0: Conversion stop
				1: Being converted
[5]	-	RO	0у0	Always read as "0" when read.
[4]	-	R/W	0у0	Always write "0"
[3]	ITM	R/W	0у0	Specifies the A/D conversion interrupt during channel fix and repeat conversion mode.
				ITM
				0: Generates an interrupt per one conversion
				1: Generates an interrupt per four conversions
[2]	REPEAT	R/W	0у0	Specifies repeat mode.
				0: Single conversion mode
				1: Repeat conversion mode
[1]	SCAN	R/W	0y0	Specifies scan mode.
				0: Channel fix mode
				1: Channel scan mode
[0]	ADS	R/W	0y0	A/D conversion start
				0: Don't care
				1: Start Conversion
				Always read as "0" when read.

R/W : Read/Write RO : Read Only WO : Write Only

*1) As read this register, <EOCFN> is clear to "0".

[Explanation]

a. <EOCFN>

They are the normal AD conversion end flag.

- 0: Before conversion or being converted
- 1: End

b. <ADBFN>

They are the normal AD conversion BUSY flag.

- 0: Conversion stop
- 1: Being converted

c. <ITM>

Selects the A/D conversion interrupt during channel fix and repeat conversion mode.

0: Generates an interrupt per one conversion

1: Generates an interrupt per four conversions

d. <REPEAT>

Selects the repeat mode.

0: Single conversion mode

1: Repeat conversion mode

e. <SCAN >

Selects the scan mode.

0: Channel fix mode

1: Channel scan mode

f. $\langle ADS \rangle$

Selects the A/D conversion start mode.

0: Don't care

1: Start Conversion mode

Always read as "0" when read

Reset

2. ADMOD1 (AD mode control register 1)

Bit

Address = (0xF008_0000) + 0x0054
Description

Rit	Dit	Tuno	110301	Description				
Dit	Symbol	Type	Value					
[31:8]	-	-	Undefined	Read undef	ned. Write a	s zero.		
[7]	DACON	R/W	0y0	VREF applie	cation contro	I		
				0: OFF				
				1: ON				
[6]	-	RO	0у0	Always read	l as "0" when	read.		
[5]	ADSCN	R/W	0у0	Operation m	ode setting o	during cha	innel scan	
				0: 4-ch scar	1			
				0: 6-ch scar	l			
[4:3]	-	R/W	0y00	Always write	e "0".			
[2:0]	ADCH[2:0]	R/W	0у000	Analog input channel select				
				S	CAN	0		
				AD	SCN	0/1	0	1
					000	AN0	AN0	AN0
					001	AN1	AN0 to AN1	AN0 to AN1
					010	AN2	AN0 to AN2	AN0 to AN2
				ADCH	011	AN3	AN0 to AN3	AN0 to AN3
				[2:0]	100	AN4	AN4	AN0 to AN4
					101	AN5	AN4 to AN5	AN0 to AN5
					110,111		Don't set	·
						<u> </u>		

R/W : Read/Write RO : Read Only WO : Write Only

Note 1: To start AD conversion, be sure to write "1" in the ADMOD1<DACON> bit, and then wait for 3 μs, which is the time taken until the internal reference voltage is stabilized, and then write "1" in the ADMOD0<ADS> bit.
Note 2: To switch to standby mode after AD conversion end, set "0" in the ADMOD1<DACON> bit.

[Explanation]

a. <DACON>

Controls the VREF application.

0: OFF

1: ON

b. <ADSCN>

Sets the operation mode during channel scan.

0: 4-ch scan

1:6-ch scan

c. <ADCH[2:0]>

Selects analog input channels.

SCA	SCAN		1			
ADSO	ADSCN		0 1			
	000	AN0	AN0	AN0		
	001	AN1	AN0 to AN1	AN0 to AN1		
	010	AN2	AN0 to AN2	AN0 to AN2		
ADCH[2:0]	011	AN3	AN0 to AN3	AN0 to AN3		
	100	AN4	AN4	AN0 to AN4		
	101	AN5	AN4 to AN5	AN0 to AN5		
	110,111		Don't set			

3. ADMOD2 (AD mode control register 2)

Address = (0xF008_0000) + 0x0058

Bit	Bit Symbol	Туре	Reset Value	Description
[31:8]	-	-	Undefined	Read undefined. Write as zero.
[7]	EOCFHP	RO	0у0	Top-priority AD conversion end flag
				0: Before conversion or being converted
				1: End
[6]	ADBFHP	RO	0у0	Top-priority AD conversion BUSY flag
				0: Conversion stop
				1: Being converted
[5]	HPADCE	R/W	0y0	Top-priority AD conversion start
				0: Don't care
				1: Conversion start. Always read as "0" when read.
[4:3]	-	R/W	0y00	Always write "0."
[2:0]	HPADCH[2:0]	R/W	0y000	Analog input channel select during top-priority conversion
				000: AN0 010: AN2 100: AN4 110: Disable
				001: AN1 011: AN3 101: AN5 111: Disable

R/W : Read/Write RO : Read Only WO : Write Only

[Explanation]

a. <EOCFHP>

Used to set the top-priority AD conversion end flag.

0: Before conversion or being converted

1: End

b. <ADBFHP>

Used to set the top-priority AD conversion BUSY flag.

- $0: Conversion \ stop$
- 1: Being converted

c. <HPADCE>

Controls the start of top-priority AD conversion.

- 0: Don't care
- 1: Conversion start

Note: Always read as "0" when read.

d. <HPADCH[2:0]>

Analog input channel select during top-priority conversion 000: AN0 010: AN2 100: AN4 110: Disable 001: AN1 011: AN3 101: AN5 111: Disable

4. ADMOD3 (AD mode control register 3)

Address = (0xF008_0000) + 0x005C

Bit	Bit Symbol	Туре	Reset Value	Description
[31:8]	-	-	Undefined	Read undefined. Write as zero.
[7]	_	R/W	0у0	Always write "0."
[6]	_	RO	0у0	Always read as "0" when read.
[5]	ADOBIC	R/W	0у0	AD monitoring function interrupt setting
				0: Smaller than the comparison register settings
				1: Greater than the comparison register settings
[4:1]	REGS[3:0]	R/W	0у0000	Bit to select the AD conversion result storage register to be compared with the settings of the comparison register during when the AD monitoring function is enabled REGS[3:0] 0000: ADREG0 0110: Disable 0001: ADREG1 0111: Disable 0010: ADREG2 0011: ADREG3 1xxx: ADREGSP 0100: ADREG4 0101: ADREG5
[0]	ADOBSV	R/W	0y0	AD monitoring function
				1: Enable

R/W : Read/Write RO : Read Only WO : Write Only

[Explanation]

a. <ADOBIC>

Sets the AD monitoring function interrupt.

- 0: Smaller than the comparison register settings
- 1: Greater than the comparison register settings
- b. <REGS[3:0]>

Selects the AD conversion result storage register to be compared with the settings of the comparison register during when the AD monitoring function is enabled.

0000: ADREG0 0110: Disable 0001: ADREG1 0111: Disable 0010: ADREG2 0011: ADREG3 1xxx: ADREGSP 0100: ADREG4 0101: ADREG5

c. <ADOBSV>

Controls the AD monitoring function.

0: Disable

1: Enable

5. ADMOD4 (AD mode control register 4)

Address = (0xF008_0000) + 0x0060

Bit	Bit Symbol	Туре	Reset Value	Description
[31:8]	-	-	Undefined	Read undefined. Write as zero.
[7]	_	R/W	0y0	Always write "0".
[6]	_	R/W	0y0	Always write "0".
[5]	_	R/W	0y0	Always write "0".
[4]	_	R/W	0y0	Always write "0".
[3:2]	_	RO	0y00	Always read as "0" when read.
[1:0]	ADRST[1:0]	R/W	0у00	Resets the ADC software by the write of $10 \rightarrow 01$. Initializes all except the (ADCLK) register.

R/W : Read/Write RO : Read Only WO : Write Only

Note: Do not set top-priority AD conversion at the same time as normal AD conversion.

[Explanation]

a. <ADRST[1:0]>

Resets the ADC software by the write of 10 \rightarrow 01. Initializes all except the (ADCLK) register.

• AD conversion result register.

A/D conversion results are stored in the six registers of A/D conversion result higher-order/lower-order registers ADREG0H/L to ADREG5H/L. Top-priority conversion results are stored in ADREGSPH/L. Since these registers are structured the same, ADREG0 that is the conversion result storage register for the 0 channel is shown below:

1. ADREGOL (AD conversion result lower-order register 0

Address = (0xF008_0000) + 0x0040

Dit.	Bit	Tuno	Reset	Description	
Dit	Symbol	Туре	Value	Description	
[31:8]	-	_	Undefined	Read undefined. Write as zero.	
[7]	ADR01	RO	0y0	AD conversion result lower-order bit 1	
[6]	ADR00	RO	0y0	AD conversion result lower-order bit 0	
[5:2]	-	RO	0y0000	Always read as "0" when read.	
[1]	OVR0	RO	0у0	Overrun flag	
				0: No overrun occurred	
				1: Overrun occurred	
[0]	ADR0RF	RO	0у0	AD conversion result storage flag	
				0: No change result	
				1: With conversion result	

R/W : Read/Write RO : Read Only WO : Write Only

[Explanation]

a. <ADR0[1:0]>

They are AD conversion result lower-order bits 1 to 0.

b. <OVR0>

Used for the overrun flag.

- 0: No overrun occurred
- 1: Overrun occurred

c. <ADR0RF>

Used for the AD conversion result storage flag.

- 0: No change result
- 1: With conversion result
- Note : As ADREG0L to ADREG5L and ADREGSPL Registers are the same composition. Explain Register ADREG0L only, the other Registers are same as ADREG0L. About the address of ADREG1L to ADREG5L and ADREGSPL Register, please check Register Map.

2. ADREG0H (AD conversion result higher-order register 0))

				Address = (0xF008_0000) + 0x0044
Bit	Bit Symbol	Туре	Reset Value	Description
[31:8]	_	_	Undefined	Read undefined. Write as zero.
[7]	ADR09	RO	0y0	AD conversion result higher-order bit 9
[6]	ADR08	RO	0у0	AD conversion result higher-order bit 8
[5]	ADR07	RO	0у0	AD conversion result higher-order bit 7
[4]	ADR06	RO	0y0	AD conversion result higher-order bit 6
[3]	ADR05	RO	0y0	AD conversion result higher-order bit 5
[2]	ADR04	RO	0y0	AD conversion result higher-order bit 4
[1]	ADR03	RO	0y0	AD conversion result higher-order bit 3
[0]	ADR02	RO	0y0	AD conversion result higher-order bit 2

R/W : Read/Write RO : Read Only WO : Write Only

- Always read as "0" when bits 5 to 2 are read.
- Bit 0 is the AD conversion result storage flag <ADRxRF>. Set to "1" when AD conversion settings are stored. Cleared to "0" when the lower-order register (ADREGxL) is read.
- Bit 1 is the overrun flag <OVRx>. Set to "1" when conversion results are overwritten before reading the both conversion result storage registers (ADREGxH, ADREGxL). Cleared to "0" by flag read.

[Explanation]

a. <ADR0[9:2]>

They are AD conversion result higher-order bits 9 to 2.

Note : As ADREG0H to ADREG5H and ADREGSPH Registers are the same composition. Explain Register ADREG0H only, the other Registers are same as ADREG0H.

About the address of ADREG1H to ADREG5H and ADREGSPH Register, please check Register Map.

- AD conversion result comparison register
- 1. ADCOMREGL (A/D conversion result comparison lower-order register)

Address = (0xF008_0000) + 0x0048

Bit	Bit Symbol	Туре	Reset Value	Description
[31:8]	-	-	Undefined	Read undefined. Write as zero.
[7:6]	ADRCOM[1:0]	R/W	0y0	AD conversion result comparison lower-order bit 1 to 0
[5:0]	-	RO	0y00000	Always read as "0" when read.

R/W : Read/Write RO : Read Only WO : Write Only

[Explanation]

a. $\langle ADRCOM[1:0] \rangle$

They are AD conversion result comparison lower-order bits 1 to 0.

2. ADCOMREGH (A/D conversion result comparison higher-order register)

Address = (0xF008_0000) + 0x004C

Bit	Bit Symbol	Туре	Reset Value	Description
[31:8]	_	-	Undefined	Read undefined. Write as zero.
[7]	ADRCOM9	R/W	0y0	AD conversion result comparison higher-order bit 9
[6]	ADRCOM8	R/W	0y0	AD conversion result comparison higher-order bit 8
[5]	ADRCOM7	R/W	0y0	AD conversion result comparison higher-order bit 7
[4]	ADRCOM6	R/W	0y0	AD conversion result comparison higher-order bit 6
[3]	ADRCOM5	R/W	0y0	AD conversion result comparison higher-order bit 5
[2]	ADRCOM4	R/W	0y0	AD conversion result comparison higher-order bit 4
[1]	ADRCOM3	R/W	0y0	AD conversion result comparison higher-order bit 3
[0]	ADRCOM2	R/W	0y0	AD conversion result comparison higher-order bit 2

R/W : Read/Write RO : Read Only WO : Write Only

Note: When setting or changing values in this register, keep the AD monitoring function disabled (ADMOD3<ADOBSV> = "0").

[Explanation]

a. <ADRCOM[9:2]>

They are AD conversion result comparison higher-order bits 9 to 2.

- AD Conversion Clock Setting Register
- 1. ADCLK (AD conversion clock setting register)

Address = (0xF008_0000) + 0x0070

Bit	Bit Symbol	Туре	Reset Value	Description	
[31:8]	-	-	Undefined	Read undefined. Write as zero.	
[7]	-	R/W	0y1	Always write "1."	
[6:4]	-	R/W	0y000	Always write "0."	
[3]	-	RO	0y0	Always read as "0" when read.	
[2:0]	ADCLK[2:0]	R/W	0y000	AD prescaler output select	
				AD conversion 1-clock period =	
				000: PCLK	
				001: PCLK/2	
				010: PCLK/4	
				011: PCLK/8	
				1xx: PCLK/16	

R/W : Read/Write RO : ReadOnly WO : WriteOnly

Note 1: While AD conversion is executed with a clock selected in the register above, at this time, a conversion clock needs to be selected so that the AD conversion clock can be 33 MHz or less in order to meet the guaranteed accuracy.

Note 2: During AD conversion, do not switch the conversion clock.

[Explanation]

a. <ADCLK[2:0]>

Selects the AD prescaler output. AD conversion 1-clock period = 000: PCLK 001: PCLK/2 010: PCLK/4 011: PCLK/8 1xx: PCLK/16

PCLK	<adclk2:0></adclk2:0>	ADCLK	AD conversion speed
100MHz	00x		Setting disabled
	010(PCLK/4)	25MHz	1.84 µsec
96MHz	00x		Setting disabled
	010(PCLK/4)	24MHz	1.92 µsec

AD conversion speed can be determined with the following formula.

Conversion speed = $46 \times (1/ADCLK)$

Note: In the period of AD conversion, Don't change the clock of ADCLK.

- Interrupt Register
- 1. ADIE (A/D interrupt enable register)

Address = (0xF008_0000) + 0x0074

Bit	Bit Symbol	Туре	Reset Value	Description
[31:8]	_	-	Undefined	Read undefined. Write as zero.
[7:3]	_	RO	0y00000	Always read as "0" when read.
[2]	MIE	R/W	0у0	AD monitoring interrupt enable
				0: Disable
				1: Enable
[1]	HPIE	R/W	0у0	Top-priority AD conversion interrupt enable
				0: Disable
				1: Enable
[0]	NIE	R/W	0у0	Normal AD conversion interrupt enable
				0: Disable
				1: Enable

 $R/W: Read/Write \quad RO: Read \ Only \quad WO: Write \ Only$

[Explanation]

a. <MIE>

Controls the AD monitoring interrupt.

- 0: Disable
- 1: Enable
- b. <HPIE>

Controls the top-priority AD conversion interrupt.

- 0: Disable
- 1: Enable
- c. <NIE>

Controls the normal AD conversion interrupt.

0: Disable

1: Enable

2. ADIS (AD interrupt status register)

Address = (0xF008_0000) + 0x0078

Dit	Bit	Turne	Reset	Description	
DIL	Symbol	туре	Value	Description	
[31:8]	_	-	Undefined	Read undefined. Write as zero.	
[7:3]	_	RO	0y00000	Always read as "0" when read.	
[2]	MIS	RO	0у0	Status of before masking an AD monitoring interrupt	
				0: No	
				1: Interrupt occurred	
[1]	HPIS	RO	0у0	Status of before masking a top-priority AD conversion interrupt	
				0: No	
				1: Interrupt occurred	
[0]	NIS	RO	0у0	Status of before masking a normal AD conversion interrupt	
				0: No	
				1: Interrupt occurred	

R/W : Read/Write RO : Read Only WO : Write Only

[Explanation]

a. <MIS>

They are the status of before masking an AD monitoring interrupt.

0: No

1: Interrupt occurred

b. <HPIS>

They are the status of before masking a top-priority AD conversion interrupt.

0: No

1: Interrupt occurred

c. <NIS>

They are the status of before masking a normal AD conversion interrupt.

- 0: No
- 1: Interrupt occurred

3. ADIC (AD interrupt clear register)

Address = (0xF008_0000) + 0x007C

Bit	Bit Symbol	Туре	Reset Value	Description	
[31:8]	-	-	Undefined	Read undefined. Write as zero.	
[7:3]	-	RO	0y00000	Always read as "0" when read.	
[2]	MIC	WO	0у0	AD monitoring interrupt clear	
				0: -	
				1: Clear	
[1]	HPIC	WO	0у0	Top-priority AD conversion interrupt clear	
				0: –	
				1: Clear	
[0]	NIC	WO	0у0	Normal AD conversion interrupt clear	
				0: -	
				1: Clear	

 $\mathsf{R/W}: \mathsf{Read/Write} \ \mathsf{RO}: \mathsf{Read} \ \mathsf{Only} \ \mathsf{WO}: \mathsf{Write} \ \mathsf{Only}$

[Explanation]

a. <MIC>

Controls the AD monitoring interrupt.

0:-

1: Clear

b. <HPIC>

Controls the top-priority AD conversion interrupt.

- :0

1: Clear

c. <NIC>

Controls the normal AD conversion interrupt.

- :0
- 1: Clear

3.24.2 Description of Operation

3.24.2.1 Analog Reference Voltage

Apply the analog reference voltage's "H" level side to the VREFH pin and the "L" level side to the VREFL pin. Writing "0" in the ADMOD1<DACON> can turn OFF the switch for VREFH - VREFL. To start AD conversion, be sure to write "1" in the DACON, and then wait for 3 μ s, which is the time taken until the internal reference voltage is stabilized, and then write "1" in the ADMOD0<ADS> bit.

3.24.2.2 Selecting Analog Input Channels

Selecting an analog input channel depends on the operation mode of the AC converter.

(1) For normal AD conversion

When using an analog input channel in fix mode, select one channel from the AN0 to AN5 pins by setting (ADMOD0<SCAN> = "0")ADMOD1<ADCH[2:0]>.

When using an analog input channel in scan mode, select one scan mode from the six scan modes by setting (ADMOD0<SCAN> = "1")ADMOD1 <ADCH[2:0]>.

(2) For top-priority AD conversion

Select one channel from the analog input pins AN0 to AN5 by setting ADMOD2<HPADCH[2:0]>.

After reset, ADMOD0<SCAN> is initialized to "0" and ADMOD1<ADCH[2:0]> to "000". Since these settings are used for channel selection, the channel fixed input with the AN0 pin will be selected. Pins not used as analog input channels can be used as normal ports.

3.24.2.3 AD Conversion Start

The AD conversion has the two types of normal AD conversion and top-priority AD conversion.

Normal AD conversion can be started up by setting ADMOD0<ADS> to "1." Top-priority AD conversion can be started up by software by setting ADMOD2<HPADCE> to "1."

For normal AD conversion, one operation mode is selected from the four types of operation modes specified by ADMOD0<REPEAT,SCAN>. The operation mode for top-priority AD conversion is only single conversion by channel fix mode.

When normal AD conversion is started, the AD conversion BUSY flag (ADMOD0<ADBFN>) that shows the state for AD being converted is set to "1."

When top-priority AD conversion is started, the AD conversion BUSY flag (ADMOD2<ADBFHP>) that shows the state for AD being converted is set to "1."

In addition, when top-priority conversion is started during normal AD conversion, ADMOD0<ADBFN> is kept to "1."

<EOCFHP> and <EOCFN> are set to "1" after conversion is completed. This flag is cleared to "0" only when read.

Two type AD conversion can be used. during Normal AD conversion is executing, Top-priority AD conversion can be carried out first.

When ADMOD2<HPADCE> is set to "1" during normal AD conversion, top-priority AD conversion's startup, normal AD conversion being converted currently is cancelled immediately. Then, top-priority AD conversion is started, starting the AD conversion (channel fix single conversion) for the channel specified by ADMOD2<HPADCH[2:0]>. When this result is stored into ADREGSPH/L, normal AD conversion is restarted from the cancelled channel.

But during top-priority AD conversion, can't set top-conversion AD conversion again.

If top-priority AD conversion need to be set again, . have to check that top-priority AD conversion being converted currently is end (AD conversion End flag: ADMOD<ADBFHP>). Then top-priority conversion AD conversion can be started.

TENTATIVE

3.24.2.4 AD Conversion Modes and AD Conversion End Interrupt

For AD conversion, the following four operation modes are provided: For normal AD conversion, selection is available by setting ADMOD0<REPEAT and SCAN>. As for top-priority AD conversion, only single conversion mode by channel fix mode is available.

- a. Channel-fix single conversion mode
- b. Channel-scan single conversion mode
- c. Channel-fix repeat conversion mode
- d. Channel-scan repeat conversion mode

(1) Normal AD conversion

To select operation modes, use ADMOD0<REPEAT, SCAN>. After AD conversion is started, ADMOD0<ADBFN> is set to "1". When a specified AD conversion ends, the Normal AD conversion end interrupt is generated, ADMOD0<EOCFN> is set "1", shows the end of the AD conversion sequence.

a. Channel-fix single conversion mode

Setting ADMOD0 <REPEAT, SCAN> to "00" selects the channel-fix single conversion mode.

This mode performs a conversion only one time at one channel selected. After conversion ends, ADMOD0<EOCFN> is set to "1," generating Normal AD conversion End interrupt request. <EOCFN> is cleared to "0" only by being read.

b. Channel-scan single conversion mode

Setting ADMOD0 <REPEAT, SCAN> to "01" selects the channel-scan single conversion mode.

This mode performs a conversion only one time at each scan channel selected. After scan conversion ends, ADMOD0<EOCFN> is set to "1," generating Normal AD conversion End interrupt request. <EOCFN> is cleared to "0" only by being read.

c. Channel-fix repeat conversion mode

Setting ADMOD0<REPEAT, SCAN> to "10" selects the channel-fix repeat conversion mode.

This mode performs a conversion at one channel selected repeatedly. After conversion ends, ADMOD0<EOCFN> is set to "1." The timing of Normal AD conversion End interrupt request generation can be selected by setting ADMOD0 <ITM>. The timing of <EOCFN> being set is also liked to the interrupt timing.

ADMOD0<EOCFN> is cleared to "0" only by being read.

Setting <ITM> to "0" generates an interrupt request each time an AD conversion ends. In this case, conversion results are always stored into the storage register of ADREGxH/L. At the point of storage, <EOCFN> is set to "1".

Setting <ITM> to "1" generates an interrupt request each time four AD conversions end. In this case, conversion results are stored into the storage registers of ADREGO H/L to ADREG3 H/L one after another. After stored into ADREG3, <EOCFN> is set to "1," restarting storage from ADREG0. ADMOD0<EOCFN is set to "1" after a forth conversion result is stored. <EOCFN> is cleared to "0" only by being read.

d. Channel-scan repeat conversion mode

Setting ADMOD0 <REPEAT, SCAN> to "11" selects the channel-scan repeat conversion mode.

This mode performs a conversion at selected scan channels repeatedly. Each time after the conversion at a final channel ends, ADMOD0<EOCFN> is set to "1," generating Normal AD conversion End interrupt request. <EOCFN> is cleared to "0" only by being read.

To stop the repeat conversion mode (mode of c and d) operation, write "0" in ADMOD1 <REPEAT>. At the point when a scan conversion being executed ends, the repeat conversion mode ends.

(2) Top-priority AD conversion

The operation mode is only single conversion by channel fix mode. The settings in ADMOD0<REPEAT, SCAN> are not involved.

When startup conditions are established, a conversion at a channel specified by ADMOD2<HPADCH[2:0]> is performed only one time. When conversion ends, the top-priority AD conversion end interrupt is generated, which sets "1" in ADMOD2<EOCFHP>. The EOCFHP flag is cleared to "0" only by being read.

Table 3.24.1 Relationship between AD conversion mode, interrupt generation timing, and flag operation

	Interrupt	EOCFN set	ADMOD0			
Conversion mode	generation timing	timing (Note)	ITM	REPEAT	SCAN	
Channel fix Single conversion	After conversion end	After conversion end		0	0	
Channel fix Repeat conversion	Per one conversion	Each time after one conversion ends	0	1	0	
	Per four conversions	Each time after four conversions end	1		0	
Channel scan Single conversion	After scan conversion end	After scan conversion end		0	1	
Channel scan Repeat conversion	Each time after one scan conversion ends	Each time after one scan conversion ends		1	1	

Note: EOCFN is cleared to "0" only by being read.

3.24.2.5 Top-Priority Conversion Mode

Top-priority AD conversion can be performed by interrupting into normal AD conversion. Top-priority AD conversion can be started up by software while setting ADMOD2<HPADCE> to "1"

When top-priority AD conversion is started up during normal AD conversion, the AD conversion being converted currently is cancelled immediately to execute the single conversion at a channel specified by ADMOD2<HPADCH[2:0]>. The conversion result is stored into ADREGSPH/L, generating a top-priority AD conversion interrupt . After that, conversion is restarted from the channel where normal AD conversion was cancelled. Note that a top-priority AD conversion started up during another top-priority AD conversion is ignored.

Example: When AN5 top-priority AD conversion is started up with ADMOD2 <HPADCH[2:0]> = "101" during repeat scan conversion at channels AN0 to AN3 with ADMOD0 <REPEAT,SCAN> = "11" and ADMOD1<ADCH[2:0]> = "011"

3.24.2.6 AD Monitoring Function

Setting ADMOD3<ADOBSY> to "1" enables the AD monitoring function.

The value of Result storage register that is appointed by ADMOD3 <REGS[3:0> is compared with

the value of AD conversion result register (H/L), ADMOD3<ADOIBC> can select greater or smaller of comparison format. As register ADIE<MIE> is Enable, This comparison operation is performed each time when a result is stored in the corresponding conversion result storage register. When conditions are met, the interrupt is generated. Be careful that the storage registers assigned for the AD monitoring function are usually not ready by software, which means that the overrun flag <OVRx> is always set and the conversion result storage flag <ADRxRF> is also set.

3.24.2.7 AD Conversion Time

One AD conversion takes 46 clocks including sampling clocks. The AD conversion clock is selected from 1/1, 1/2, 1/4, 1/8 PCLK by <ADCLK[2:0]>. To meet the guaranteed accuracy, the AD conversion clock needs to be set from 0.625MHz to 33 MHz, or equivalently from 1.39µs to 73.6µs of AD conversion time.

3.24.2.8 Storage and Read of AD Conversion Results

A/D conversion results are stored in the A/D conversion result higher-order/lower-order registers (ADREG0H/L to ADRG5H/L) for the normal AD conversion (ADREG0H/L to ADREG5H/L are read-only registers)

In the channel-fix repeat conversion mode, AD conversion results are stored into ADREG0H/L to ADREG3H/L one after another. In other modes, the conversion results of channels AN0, AN1, AN2, AN3, AN4, and AN5 are each stored into ADREG0H/L, ADREG1H/L, ADREG2H/L, ADREG3H/L, ADREG4H/L, and ADREG5H/L.

Table 3.24.2 shows the correspondence between analog input channels and AD conversion result registers.

	AD conversion result register					
Analog input channel (Port D)	Other conversion modes than shown in	Channel-fix repeat conversion mode				
	the right	(per 4 times)				
ANO	ADREG0H/L	ADREGOH/L				
AN1	ADREG1H/L					
AN2	ADREG2H/L					
AN3	ADREG3H/L	ADREG2H/L				
AN4	ADREG4H/L	ADREG3H/L				
AN5	ADREG5H/L					

Table 3.24.2 Correspondence between analog input channels and AD conversion result registers

Note: In order to detect overruns without omission, read the conversion result storage register's higher-order bits first, and than read the lower-order bits next. As this result, receiving the result of OVRn = "0" and ADRnRF = "1" for overruns existing in the lower-order bits means that a correct conversion result has been obtained.

3.24.2.9 Data Polling

To process AD conversion results by using data polling without using interrupts, perform a polling on ADMOD0<EOCFN>. After confirming that ADMOD0<EOCFN> is set to "1," read the AD conversion storage register.

3.25 Watchdog Timer (WDT) (Runaway Detection Timer)

The TMPA910CRA contains a watchdog timer (WDT) for runaway detection.

The watchdog timer is provided for detecting a CPU malfunction (runaway) due to causes such as noise and for restoring the CPU to a normal state. When the watchdog timer detects a runaway condition, it generates an interrupt to notify the interrupt controller and CPU of this condition.(Interrupt source signal to Interrupt controller :INTS [0])

By connecting the watchdog timer output to the internal reset pin, a reset can be forcefully generated.

3.25.1 Register Functions

The following list shows the registers for the watchdog timer and their functions.

Base address = 0xF001_0000

Register Name	Address (base+)	Description	
WdogLoad	0x0000	Watchdog load register	
WdogValue	0x0004	The current value for the watchdog counter	
WdogControl	0x0008	Watchdog control register	
WdogIntClr	0x000C	Clears the watchdog interrupt	
WdogRIS	0x0010	Watchdog raw interrupt status	
WdogMIS	0x0014	Watchdog masked interrupt status	
WdogLock	0x0C00	Watchdog Lock register	

1. WdogLoad (Watchdog load register)

				Address = (0xF001_0000) + 0x0000
Bit	Bit	Tupo	Reset	Description
Symbol		туре	Value	Description
[31:0]	WDTCNT	R/W	0xFFFFFFF	WDT counter setting value
				0x00000001 to 0xFFFFFFFF

[Explanation]

a. <WDTCNT>

Specifies the value to be set to the WDT 32 bit counter (The clock of WDT counter is PCLK).

After WdogControl <INTEN> is enabled, the value set in WdogLoad<WDTCNT> is loaded into the internal decrement counter. The value of counter can be set from 0x00000001 to $0xFFFFFFF_{\circ}$ ("0" cannot be set)

2. WdogValue (The current value for the watchdog counter)

Address = (0xF001_0000) + 0x0004

Bit	Bit Symbol	Туре	Reset Value	Description
[31:0]	CWDTCNT	RO	0xFFFFFFF	Current value of the WDT counter

[Explanation]

a. <CWDTCNT>

This bit can be read the current value of watch dog counter.

3. WdogControl (Watchdog control register)

				Address = (0xF001_0000) + 0x0008
Bit	Bit Symbol	Туре	Reset Value	Description
	Cymool		Value	
[31:2]	_	-	Undefined	Read undefined. Write as zero.
[1]	RESEN	R/W	0y0	WDT reset output enable
				0y0: Disable
				0y1: Enable
[0]	INTEN	R/W	0y0	WDT counter and interrupt enable
				0y0: Disable
				0y1: Enable

[Explanation]

a. <RESEN>

Controls the WDT reset output.

- b. <INTEN>
 - 0y1: Enables the WDT counter and the WDT interrupt. When this bit is set to "1", the value set in the WdogLoad register is loaded into the WDT counter and the counter starts decrementing.
- 4. WdogIntClr (Clears the watchdog interrupt)

Address = (0xF001_0000) + 0x000C

Bit	Bit Symbol	Туре	Reset Value	Description
[31:0]	WDTINTCLR	WO	Undefined	WDT interrupt clear (Writing any value clears the interrupt.)

[Explanation]

a. <WDTINTCLR>

Writing any value to this register clears the WDT interrupt and loads the value set in the WdogLoad register into the WDT counter.

5. WdogRIS (Watchdog raw interrupt status)

				(uni con_0000) + 0x0010
Bit	Bit Symbol	Туре	Reset Value	Description
[31:1]	-	-	Undefined	Read undefined. Write as zero.
[0]	RAWWDTINT	RO	0у0	WDT interrupt raw status
				0y0: No interrupt
				0y1: Interrupt requested

[Explanation]

a. <RAWWDTINT>

Indicates the raw status of the WDT interrupt. The <RAWWDTINT> value is ANDed with the interrupt enable signal value to generate an interrupt.

6. WdogMIS (Watchdog masked interrupt status)

Address = (0xF001_0000) + 0x0014

Address = (0xE001, 0000) + 0x0010

Bit	Bit Symbol	Туре	Reset Value	Description
[31:1]	-	-	Undefined	Read undefined. Write as zero.
[0]	WDTINT	RO	0у0	WDT interrupt enabled status
				0y0: No interrupt
				0y1: Interrupt requested

[Explanation]

a. <WDTINT>

This bit is status bit of the interrupt from WDT counter. Can be read the AND of WdogRIS <RAWWDTINT> and WdogControl <INTEN>.

7. WdogLock (Watchdog Lock register)

Address = (0xF001_0000) + 0x0C00

Bit	Bit Symbol	Туре	Reset Value	Description
[31:0]	REGWEN	WO	undefined	Enables/disables writes to other WDT registers. 0x1ACCE551: Enable Others: Disable (Initial value: Enable)

Address = (0xF001_0000) + 0x0C00

Bit	Bit Symbol	Туре	Reset Value	Description		
[31:1]	Reserved	RO	undefined	_		
[0]	REGWENST	RO	0y0	Indicates the enabled/disabled status of writes to other WDT registers. 0y0: Enabled (Not locked) 0y1: Disabled (Locked)		

[Explanation]

a. <REGWEN>

Disables writes to other WDT registers to prevent the WDT registers from being inadvertently rewritten by runaway of program, etc.

Write except 0x1ACCE551: Disabled writes to WDT register except this register. Write 0x1ACCE551: Enabled writes to WDT register except this register.

b. <REGWENST>

Indicates the enabled/disabled (not locked/locked) status of writes to other WDT registers.

3.26 PMC (Power Management Circuit)

This product contains a power management circuit that manages standby currents against current leaks from microprocessing products. The following ten systems of power supply are conceivable:

•	3.3-V power supply for A/D converters	(for A/D converters: AVCC3AD & AVSS3AD)
•	3.3-V digital power supply	(for general pins: DVCC3IO & DVSSCOM)
•	3.3-V and 1.8-V power supplies for memory	(for memory control: DVCCM & DVSSCOM)
•	3.3-V and 1.8-V power supplies for CMOS	cameras:
		(for CMOS camera control: DVCC3CMS & DVSSCOM)
•	3.3-V and 1.8-V power supplies for LCDD	(for LCDD control: DVCC3LCD & DVSSCOM)
•	3.3-V and 1.8 -V power supplies for I2S	(for I2S control: DVCC3I2S & DVSSCOM)
•	3.3-V power supply for USB	(for USB control: AVDD3T/C & AVSS3T/C)
•	1.5-V-A internal power supply	(for general circuits: DVCC1A & DVSSCOM)
•	1.5-V-B internal power supply	(for RTC and PMC: DVCC1B & DVSSCOM)
•	1.5-V-C power supply for oscillators	(for high frequency oscillators and PLL: DVCC1C & DVSS1C)

Each power supply is independent. (VSS is partially common.)

In the power-cut mode, power supplies to most part of the internal circuits are cut off externally to reduce the leak current in a standby state.

At this time, the state of each external pin can be fixed as "H output", "L output", "High-Z" or "input". (See the backup register output data register list later in this section).

Of the ten power supplies, those that should be supplied in the power-cut mode are DVCC3IO, DVCCM, DVCC3CMS, DVCC3LCD, DVCC3I2S, AVCC3AD, and DVCC1B.

The power supplies that should be cut off are DVCC1A, DVCC1C and AVDD3T/AVDD3C. Even if these power supplies are cut off after the TMPA910CRA enters the power-cut mode, no flow-through current will be generated in the TMPA910CRA.

Figure 3.26.2 Power Supply System

3.26.1 Example of Connection and System Application

Figure 3.26.3 Power Supply System

Figure 3.26.3 shows an example of the external circuit using this system.

The power management pin (PWE) controls the power cutoff circuit or power circuit of pins. This circuit outputs "High" in normal status including system reset status, supplying power to all blocks.

The circuit outputs "Low" in power-cut mode, cutting off the power to most part of the internal circuits including CPU, high-frequency oscillators and power supply of USB to reduce consumption currents.

The power-cut mode is released by a Wake-Up request. Then, the PWE pin outputs "High" again and supplies power to the internal circuits.

3.26.2 Description of Operation

The following shows a flowchart for entering and exiting the PCM state.

Figure 3.26.4 Flowchart for Entering and Exiting the PCM state

3.26.2.1 Entering the PCM state

In the PCM state, power supplies to the internal circuits including the CPU are cut off. To enter the PCM state, the following procedure must be observed to prepare for operation after exiting the power-cut mode, to define the external pin states during the PCM state and to ensure proper mode transition.

- 1. Execution procedure
 - Program execution area For entering the PCM state, the program must be executing in the internal RAM.
 - (2) Remove possible impediments to transition to the PCM mode Before entering the PCM mode, stop all functions that may interfere with the mode transition operation.
 - a. Disable interrupts
 - b. Stop the watchdog timer (The watchdog timer is initially stopped.)
 - c. Stop the AD converter.
 - d. Stop DMA operation
 - Stop the LCD controller.
 - Disable the SDRAM auto refresh function (so that the self refresh mode is enabled.)
 - Stop DMA transfer.
 - (3) Set the pin states

Set the backup registers to fix the state of each pin during the PCM state.

In the PCM state, the port states are controlled by the backup registers in the PMC.

PC2 should be set as the PWE pin.

Only the CKE pin (which is controlled by SDRAM) allows the pin state on exiting the PCM state to be different from the pin state after system reset. For details, refer to 3.26.2.2.

(4) Set the wake-up conditions

Set the external pin for waking up from the PCM state.

The enable register, edge selection register and wake-up interrupt flag register are provided for each external pin.

The internal RTC, an external key or an external interrupt can be selected as a wake-up trigger. (Interrupts not used can be masked.)

To use PD6 as the TSI interrupt pin (INTA), the debounce circuit must be disabled. For details, refer to the chapter on the TSI.

(5) Stop PLL operation.

Stop the PLL circuit operation by setting high frequency clock to fosch.

(6) Set the warm-up time: PMCCTL<WUTM1:0>

The status of the external PWE signal changes from "0" to "1" 2.5 XT1(77 μ s) after the wake-up interrupt. Then, the period set by the warm-up timer is counted up, and after another approximately 3 XT1(92 μ s), the internal reset is released. Since power stabilization time depends on the response of the power source to be used and conditions on the set, determine the warm-up time in consideration of the period required until power is stabilized. (The warm-up time can be selected in the range between 15.625 ms and 125 ms.)

- (7) Disable the internal cache memory.
- (8) Clear the releasing request in PMC

Before transition to PCM status, the PCM releasing request must be clear.

- (9) Move to the power-cut status (PMCCTL<PCM_ON>= "1").
 - Note: Register PMCCTL <PMCPWE>, <WMTM 1 >, and <WMTM0> those bits can't be changed at the same time of setting PMCCTL<PCM_ON> from "0" to "1" (becasuse setting PMCCTL<PCM_ON> from "0" to "1", enter PCM mode, internal circuit is stopped, and PMCCTL <PMCPWE>, <WMTM 1 >, and <WMTM0> those bits can't be updated).

Register PMCCTL <PMCPWE>, <WMTM 1>, and <WMTM0> should be changed at <PCM_ON>="0" status. And when configure <PCM_ON> ="1", PMCCTL <PMCPWE>, <WMTM 1>, and <WMTM0> those bits must be same setting value as the eve setting value.

(10)Insert dummy statements to fill the waiting time before transit to the power-cut status. (Use of 20 NOP statements is recommended.)

Note: Programs to be started after Warm-up

Either the built-in BOOT_ROM or external memory (SMCCS0n) is selected and the program is started according to the settings of the external AM0/1 pins after Wake-up as in the case system reset is asserted. Whether system reset starting or Wake-up from the power-cut status occurred can be known by checking the flag of PMCCTL<PMC_ON> in the PMC circuit in the initial routine of the starting program.

- Wake-up from the power-cut status: PMCCTL<PMC_ON>="1"
- System reset starting: PMCCTL<PMC_ON>="0"

The flag should be checked previously in the starting program to prepare a program branch mechanism.

3.26.2.2 Recovery from power-cut status

Following wake-up from the power-cut status, either the built-in BOOT_ROM or external memory (SMCCS0n) is selected and the program is started according to the settings of the external AM0/1 pins.

Whether system reset starting or Wake-up from the power-cut status occurred can be known by checking the flag of PMCCTL<PMC_ON> in the PMC circuit in the initial routine of the starting program.

Recovery from the power-cut status is made by external interrupts or resetting.

(Recovery by resetting with DVCC1A cut off is inhibited. Resetting should be done after power is supplied to DVCC1A and the power is sufficiently stabilized.) Target interrupts include RTC interrupts, INTO to INT7 (TSI interrupts), and INTKEY interrupts. For details, refer to the later section "PCM Status Release Pins".

An interrupt source is started by changing the power management signal (PWE) status from "0" to "1" on receipt of a request, so that each power is supplied to each block in the power cut off condition.

After the warm-up operation set by PMCCTL<WUTM1:0>, HOT_RESET is automatically released.

The status of the external pins is held as set in the PMC circuit in the power-cut status. However, these pins **except the DMCCKE** pin assume the status similar to external system reset almost simultaneously with release of internal HOT_RESET.

– Caution –

Only the CKE pin for SDRAM control can change its status after system resetting and that on release of the power-cut status. Set the pin status in the register in the PMC circuit.

Whether system reset starting or wake-up from the power-cut status occurred can be known by checking the <PMC_ON> bit in the PMC circuit in the initial routine of the start program.

The PMCCTL<PCM_ON> bit in the PMC circuit is not initialized with wake-up from the power-cut status. After wake-up, program PMCCTL<PCM_ON> bit from "1" to "0".

The PMC circuit is provided with flag to check for PCM status release interrupts for checking the trigger signal that caused wake-up of the PCM status. This flag tells the factor that caused wake-up of the PCM status.

Note: The logic of releasing the self-refresh function of SDCKE depends on the type of SDRAM.

3.26.2.3 Status Transition to Power-Cut Mode to its Release

	Transition under way	Power-cut mode Power Cut	Release under way	Normal status	
DVCC1A	Power ON		Power ON	Power ON	
	RESET				
			RESET - Restalt	Operating	
DVCC1B	Power ON	Power ON	Power ON	Power ON	
PMC circuit	Operating	Operating	Operating	Operating	
RTC circuit	Operating	Operating	Operating	Operating	
		PMC can be released.			
DVCC1C	Power ON	Power OFF	Power ON	Power ON	
High-frequency oscillator	Operating	DEAD	Restart	Operating	
DVCC3IO	Power ON	Power ON	Power ON	Power ON	
PWE pin	"H" output	"L" output	"L" \rightarrow "H" output	"H" output	
Low-frequency oscillator	Operating	Operating	Operating	Operating	
Reset, AM pill, etc.	Operating	Operating	Operating	Operating	
JTAG pin	Pin fixed (port)	Pin fixed (PMC)	$RESET \rightarrow Restart$	Operating	
NANDF pin	Pin fixed (port)	Pin fixed (PMC)	$RESET \rightarrow Restart$	Operating	
KEY pin	Pin fixed (port)	Pin fixed (PMC)	RESET \rightarrow Restart	Operating	
·		PCM can be released.			
I2C0 pin	Pin fixed (port)	Pin fixed (PMC)	$RESET \rightarrow Restart$	Operating	
INT pin	Pin fixed (port)	Pin fixed (PMC)	$RESET \rightarrow Restart$	Operating	
		PCM can be released.			
SD-CARD pin	Pin fixed (port)	Pin fixed (PMC)	$RESET \rightarrow Restart$	Operating	
UART0/1 pin	Pin fixed (port)	Pin fixed (PMC)	$RESET \rightarrow Restart$	Operating	
SPIC0 pin	Pin fixed (port)	Pin fixed (PMC)	$RESET \to Restart$	Operating	
	Power ON	Power UN	Power UN	Power ON	
Plns related to memory control	Pin fixed (port)	PIN fixed (PMC)	RESEI \rightarrow Restart		
				$\begin{array}{c} \text{Operating} \rightarrow \\ \text{Operating} \end{array}$	
DVCC3CMS	Power ON	Power ON	Power ON	Power ON	
CMOSIS pin	Pin fixed (port)	Pin fixed (PMC)	$RESET \rightarrow Restart$	Operating	
I2S1 pin	Pin fixed (port)	Pin fixed (PMC)	$RESET \to Restart$	Operating	
DVCC3LCD	Power ON	Power ON	Power ON	Power ON	
LCDC pin	Ριη τιχεά (ροπ)		$RESET \rightarrow Restant$	Operating	
AVCC3AD	Power ON	Power ON	Power ON	Power ON	
A/D pin	Pin fixed (port)	Pin fixed (PMC)	$RESET \rightarrow Restart$	Operating	
TSI pin	Pin fixed (port)	Pin fixed (PMC)	$RESET \rightarrow Restart$	Operating	
		PCM can be released.			
51/000100		Dama ON	David		
	Power ON	Power UN		Power UN	
SPI1 nin	Pin fixed (port)	Pin fived (PMC)	$RESET \to Restart$	Operating	
or tripin				Sperating	
AVDD3T/C	Power ON	Power OFF	Power ON	Power ON	
USB pin	Operating	DEAD	$RESET \rightarrow Restart$	Operating	

Note 1: Any interrupt requests for power ON are invalid in the PCM status. However, the factor that caused the wake-up can be known from the flag in the PMC circuit.

Note 2: The PMCCTL<PCM_ON> bit is held in the "1" state. To set the power-cut mode again, once write "0" and then "1" again. Wait 31 μS or more before writing "0" and then "1" again.

Note 3: In the 3.26.2.1 table of Status Transition, "Pin fixed (PMC) " is that the external pins are fixed as the backup registers sate of PMC even if the internal circuit power is cut. But some pins(PC2, SJ6) are special. Show in the below chart.

TMPA910CRAXBG

3.26.3 Notes on Operation

• Power ON/OFF sequence (initial power ON/complete power OFF)

For the initial power ON, the internal power should be supplied first, and for the complete power OFF, the internal power should be cut off last.

- Note 1: Simultaneous rising and falling of the internal 1.5-V power and the external pin power is possible. However, the external pins may become unstable momentarily at that time. Therefore, rising and falling of the external power should be made while the internal 1.5-V power is stable as shown by the thick line in the above figure if the devices connecting to the LSIs in the surrounding parts can be affected.
- Note 2: Do not allow the 3.3-V power to rise earlier than the 1.5-V power. In the same way, do not allow the 3.3-V power to fall after the 1.5-V power.

3.26.4 PCM Status Release Pins

The power-cut mode is reset on interrupt request.

The table below shows the external pins for which the power-cut mode can be released.

Note: When the pins in the table are not used, the power-cut mode can also be released on interrupt from the built-in RTC.

	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0						
SA				D[7	7:0]									
SB				D[1	5:8]									
SC				D[23	3:16]									
SD	D[31:24]													
SE	A[7:0]													
SF	A[15:8]													
SG	A[23:16]													
SH	DMCCSn	SMCCS3n	SMCCS2n	SMCCS1n	SMCCS0n	SMCBE0n	A[25]	A[24]						
SJ	SMCAVDn	DMCCKE	DMCBA1	DMCBA0	DMCCASn	DMCRASn	DMCWEn	SMCOEn						
SK	SMCBE3n	SMCBE2n	SMCBE1n	SMCWEn	DMCSDQM3	DMCSDQM2	DMCSDQM1 DMCDDM1	DMCSDQM0 DMCDDM0						
SL	SMCWAITn	DMCCLKIN	DMCDDQS1	DMCDDQS0	SMCCLK	DMCAP	DMCDCLKN	DMCDCLKP DMCSCLK						
SM	AM1	AM0	TEST0n	RESETn	XT2	XT1	X2	X1						
SN						SELJTAG	SELDVCCM	SELMEMC						
SP			TDO	RTCK	TRSTn	TDI	TMS	ТСК						
SR				VSENS	REXT	UMON	DM	DP						
ST	LD7	LD6	LD5	LD4	LD3	LD2	LD1	LD0						
SU	LPRG2	LPRG1	LPRG0	LCLLP	LCLFP	LCLLE	LCLAC	LCLCP						
SV	NDD7	NDD6	NDD5	NDD4	NDD4 NDD3 ND		NDD1	NDD0						
SW		NDRB	NDCE1n	NDCE0n	NDCLE	NDALE	NDWEn	NDREn						

	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
PA	KI7	KI6	KI5	KI4	KI3	KI2	KI1	KI0
PB	KO7	KO6	KO5	KO4	KO3	KO2	KO1	KO0
PC	I2C0DA INT9	I2C0CL	MLDALMn INT8	FSOUT PWM2OUT	MLDALM PWM0OUT	PWE	KO9	KO8
PD	PY INTB	PX INTA(TSI)	AN5 MY	AN4 MX	AN3	AN2	AN1	AN0
PE	CMSD7	CMSD6	CMSD5	CMSD4	CMSD3	CMSD2	CMSD1	CMSD0
PF	I2C1DA INTC	I2C1CL			CMSVSY	CMSHBK	CMSHSY	CMSPCK
PG	SDC0CLK	SDC0CD	SDC0WP	SDC0CMD	SDC0DAT3	SDC0DAT2	SDC0DAT1	SDC0DAT0
PH	SDC1CLK	SDC1CD	SDC1WP	SDC1CMD	SDC1DAT3	SDC1DAT2	SDC1DAT1	SDC1DAT0
PJ	LD15	LD14	LD13	LD12	LD11	LD10	LD9	LD8
PK	LD23	LD22	LD21	LD20	LD19	LD18	LD17	LD16
PL				I2SSCLK	I2S0MCLK SP1DI	I2S0DATI SP1DO	I2S0CLK SP1CLK	I2S0WS SP1FSS
PM					I2S1MCLK	I2S1DATO	I2S1CLK	I2S1WS
PN	U0RTSn INTG	U0DTRn INTF	U0RIn INTE	U0DSRn INTD	U0DCDn	U0CTSn	U0RXD SIR0IN	U0TXD SIR0OUT
PP	INT7	INT6	INT5	INT4	INT3	INT2	INT1	INT0
PR						INTH	SMCWPn, FCOUT	RESETOUTn
PT	X1USB	U1CTSn	U1RXD	U1TXD	SP0DI	SP0DO	SP0CLK	SP0FSS

3.26.5 Description of Registers

The following lists the registers:

		Base address = 0xF002_0000
Register	Address	Description
Name	(base+)	Description
BPADATA	0x0000	PortA Data Set Register when Power Cut Mode
BPBDATA	0x0004	PortB Data Set Register when Power Cut Mode
BPCDATA	0x0008	PortC Data Set Register when Power Cut Mode
BPDDATA	0x000C	PortD Data Set Register when Power Cut Mode
Reserved	0x0010	-
BPFDATA	0x0014	PortF Data Set Register when Power Cut Mode
BPGDATA	0x0018	PortG Data Set Register when Power Cut Mode
BPHDATA	0x001C	PortH Data Set Register when Power Cut Mode
BPJDATA	0x0024	PortJ Data Set Register when Power Cut Mode
BPKDATA	0x0028	PortK Data Set Register when Power Cut Mode
BPLDATA	0x002C	PortL Data Set Register when Power Cut Mode
BPMDATA	0x0030	PortM Data Set Register when Power Cut Mode
BPNDATA	0x0034	PortN Data Set Register when Power Cut Mode
BPPDATA	0x003C	PortP Data Set Register when Power Cut Mode
BPRDATA	0x0044	PortR Data Set Register when Power Cut Mode
BPTDATA	0x004C	PortT Data Set Register when Power Cut Mode
Reserved	0x0080	_
BPBOE	0x0084	PortB Data Out Enable Control when Power Cut Mode
BPCOE	0x0088	PortC Data Out Enable Control when Power Cut Mode
BPDOE	0x008C	PortD Data Out Enable Control when Power Cut Mode
BPEOE	0x0090	PortE Data Out Enable Control when Power Cut Mode
BPFOE	0x0094	PortF Data Out Enable Control when Power Cut Mode
BPGOE	0x0098	PortG Data Out Enable Control when Power Cut Mode
BPHOE	0x009C	PortH Data Out Enable Control when Power Cut Mode
BPJOE	0x00A4	PortJ Data Out Enable Control when Power Cut Mode
BPKOE	0x00A8	PortK Data Out Enable Control when Power Cut Mode
BPLOE	0x00AC	PortL Data Out Enable Control when Power Cut Mode
BPMOE	0x00B0	PortM Data Out Enable Control when Power Cut Mode
BPNOE	0x00B4	PortN Data Out Enable Control when Power Cut Mode
BPPOE	0x00BC	PortP Data Out Enable Control when Power Cut Mode
BPROE	0x00C4	PortR Data Out Enable Control when Power Cut Mode
BPTOE	0x00CC	PortT Data Out Enable Control when Power Cut Mode

TOSHIBA

Base address = 0xF002_0000

Register	Address	Description
Name	(base+)	Description
BSADATA	0x0100	SA Data Set Register when Power Cut Mode
BSBDATA	0x0104	SB Data Set Register when Power Cut Mode
BSCDATA	0x0108	SC Data Set Register when Power Cut Mode
BSDDATA	0x010C	SD Data Set Register when Power Cut Mode
BSEDATA	0x0110	SE Data Set Register when Power Cut Mode
BSFDATA	0x0114	SF Data Set Register when Power Cut Mode
BSGDATA	0x0118	SG Data Set Register when Power Cut Mode
BSHDATA	0x011C	SH Data Set Register when Power Cut Mode
BSJDATA	0x0124	SJ Data Set Register when Power Cut Mode
BSKDATA	0x0128	SK Data Set Register when Power Cut Mode
BSLDATA	0x012C	SL Data Set Register when Power Cut Mode
BSMDATA	0x0130	SM Data Set Register when Power Cut Mode
Reserved	0x013C	-
Reserved	0x0144	-
BSTDATA	0x014C	ST Data Set Register when Power Cut Mode
BSUDATA	0x0150	SU Data Set Register when Power Cut Mode
BSVDATA	0x0154	SV Data Set Register when Power Cut Mode
BSWDATA	0x0158	SW Data Set Register when Power Cut Mode
BSAOE	0x0180	SA Data Out Enable Control when Power Cut Mode
BSBOE	0x0184	SB Data Out Enable Control when Power Cut Mode
BSCOE	0x0188	SC Data Out Enable Control when Power Cut Mode
BSDOE	0x018C	SD Data Out Enable Control when Power Cut Mode
BSEOE	0x0190	SE Data Out Enable Control when Power Cut Mode
BSFOE	0x0194	SF Data Out Enable Control when Power Cut Mode
BSGOE	0x0198	SG Data Out Enable Control when Power Cut Mode
BSHOE	0x019C	SH Data Out Enable Control when Power Cut Mode
BSJOE	0x01A4	SJ Data Out Enable Control when Power Cut Mode
BSKOE	0x01A8	SK Data Out Enable Control when Power Cut Mode
BSLOE	0x01AC	SL Data Out Enable Control when Power Cut Mode
BSMOE	0x01B0	SM Data Out Enable Control when Power Cut Mode
Reserved	0x01BC	-
Reserved	0x01C4	-
BSTOE	0x01CC	ST Data Out Enable Control when Power Cut Mode
BSUOE	0x01D0	SU Data Out Enable Control when Power Cut Mode
BSVOE	0x01D4	SV Data Out Enable Control when Power Cut Mode
BSWOE	0x01D8	SW Data Out Enable Control when Power Cut Mode

TOSHIBA

Base address = 0xF002_0000

Register Name	Address (base+)	Description
BPARELE	0x0200	PortA Enable Register of Wake-up trigger from Power Cut Mode
BPDRELE	0x0204	PortD Enable Register of Wake-up trigger from Power Cut Mode
BPPRELE	0x0208	PortP Enable Register of Wake-up trigger from Power Cut Mode
Reserved	0x0400	-
BRTRELE	0x0210	Touch panel Enable Register of Wake-up trigger from Power Cut Mode
BPAEDGE	0x0220	PortA Selection of Wake-up trigger Edge from Power Cut Mode
BPDEDGE	0x0224	PortD Selection of Wake-up trigger Edge from Power Cut Mode
BPPEDGE	0x0228	PortP Selection of Wake-up trigger Edge from Power Cut Mode
Reserved	0x022C	-
BPARINT	0x0240	PortA Wake-up Flag from Power Cut Mode
BPDRINT	0x0244	PortD Wake-up Flag from Power Cut Mode
BPPRINT	0x0248	PortP Wake-up Flag from Power Cut Mode
Reserved	0x0400	-
BRTRINT	0x0250	Touch panel Wake-up Flag from Power Cut Mode
-	-	-
PMCDRV	0x0260	External Port Driverbility control
-	-	-
DMCCKECTL	0x0280	
PMCCTL	0x0300	Power Management Circuit Control Register
Reserved	0x0320	_
Reserved	0x0400	=

TENTATIVE

	1. back up register output data register list 1												
register Address	correspond to port	register name	type	bit7	bit6	bit5	bit4	bit3	bit2	bit1	Obit		
0xF002_0000	PA	BPADATA Note	w	BPADATA7	BPADATA6	BPADATA5	BPADATA4	BPADATA3	BPADATA2	BPADATA1	BPADATA0		
0xF002_0004	PB	BPBDATA	W	BPBDATA7	BPBDATA6	BPBDATA5	BPBDATA4	BPBDATA3	BPBDATA2	BPBDATA1	BPBDATA0		
0xF002_0008	PC	BPCDATA	W	BPCDATA7	BPCDATA6	BPCDATA5	BPCDATA4	BPCDATA3	-	BPCDATA1	BPCDATA0		
0xF002_000C	PD	BPDDATA	W	BPDDATA7	BPDDATA6	BPDDATA5	BPDDATA4		Read undefined. Write as zero.				
0xF002_0010	_	Reserved	_				Read undefined	1. Write as zero	Write as zero.				
0xF002_0014	PF	BPFDATA	w	BPFDATA7	BPFDATA6	_	_		Read undefined	d. Write as zero			
0xF002_0018	PG	BPGDATA	W	BPGDATA7	BPGDATA6	BPGDATA5	BPGDATA4	BPGDATA3	BPGDATA2	BPGDATA1	BPGDATA0		
0xF002_001C	PH	BPHDATA	W	BPHDATA7	BPHDATA6	BPHDATA5	BPHDATA4	BPHDATA3	BPHDATA2	BPHDATA1	BPHDATA0		
0xF002_0024	PJ	BPJDATA	W	BPJDATA7	BPJDATA6	BPJDATA5	BPJDATA4	BPJDATA3	BPJDATA2	BPJDATA1	BPJDATA0		
0xF002_0028	PK	BPKDATA	W	BPKDATA7	BPKDATA6	BPKDATA5	BPKDATA4	BPKDATA3	BPKDATA2	BPKDATA1	BPKDATA0		
0xF002_002C	PL	BPLDATA	W	_		-	BPLDATA4	BPLDATA3	BPLDATA2	BPLDATA1	BPLDATA0		
0xF002_0030	PM	BPMDATA	W	_	_	_	_	BPMDATA3	BPMDATA2	BPMDATA1	BPMDATA0		
0xF002_0034	PN	BPNDATA	W	BPNDATA7	BPNDATA6	BPNDATA5	BPNDATA4	BPNDATA3	BPNDATA2	BPNDATA1	BPNDATA0		
0xF002_003C	PP	BPPDATA	W	BPPDATA7	BPPDATA6	BPPDATA5	BPPDATA4	BPPDATA3	BPPDATA2	BPPDATA1	BPPDATA0		
0xF002_0044	PR	BPRDATA	W	-	_	_	_	_	BPRDATA2	BPRDATA1	BPRDATA0		
0xF002_004C	PT	BPTDATA	W	BPTDATA7	BPTDATA6	BPTDATA5	BPTDATA4	BPTDATA3	BPTDATA2	BPTDATA1	BPTDATA0		

In backup status(PCM) output data setting register(reset state is "0", After Hot reset , hold the eve data) :

Each bit = 0y0: "L" output

Each bit= 0y1: "H" output

Note: In PCM state, BPADATA initial value=0x00, The PULL-UP circuits of PORT A is OFF. Please set 0xFF to BPADATA before set PCM , The PULL-UP state of PORT A can be keep.

register Address	correspond to port	register name	type	bit7	bit6	bit5	bit4	bit3	bit2	bit1	Obit	
0xF002_0080	PA	Reserved	-									
0xF002_0084	PB	BPBOE	W	BPBOE7	BPBOE6	BPBOE5	BPBOE4	BPBOE3	BPBOE2	BPBOE1	BPBOE0	
0xF002_0088	PC	BPCOE	W	BPCOE7	BPCOE6	BPCOE5	BPCOE4	BPCOE3	BPCOE2	BPCOE1	BPCOE0	
0xF002_008C	PD	BPDOE	W	BPDOE7	BPDOE6	BPDOE5	BPDOE4	F	Read undefined. Write as zero.			
0xF002_0090	_	Reserved	-		_	F	Read undefined	l. Write as zero).			
0xF002_0094	PF	BPFOE	W	BPFOE7	BPFOE6	-	-	F	Read undefined. Write as zero.			
0xF002_0098	PG	BPGOE	W	BPGOE7	BPGOE6	BPGOE5	BPGOE4	BPGOE3	BPGOE2	BPGOE1	BPGOE0	
0xF002_009C	PH	BPHOE	W	BPHOE7	BPHOE6	BPHOE5	BPHOE4	BPHOE3	BPHOE2	BPHOE1	BPHOE0	
0xF002_00A4	PJ	BPJOE	W	BPJOE7	BPJOE6	BPJOE5	BPJOE4	BPJOE3	BPJOE2	BPJOE1	BPJOE0	
0xF002_00A8	PK	BPKOE	W	BPKOE7	BPKOE6	BPKOE5	BPKOE4	BPKOE3	BPKOE2	BPKOE1	BPKOE0	
0xF002_00AC	PL	BPLOE	W	-	-	-	BPLOE4	BPLOE3	BPLOE2	BPLOE1	BPLOE0	
0xF002_00B0	PM	BPMOE	W	-	-	-	-	BPMOE3	BPMOE2	BPMOE1	BPMOE0	
0xF002_00B4	PN	BPNOE	W	BPNOE7	BPNOE6	BPNOE5	BPNOE4	BPNOE3	BPNOE2	BPNOE1	BPNOE0	
0xF002_00BC	PP	BPPOE	W	BPPOE7	BPPOE6	BPPOE5	BPPOE4	BPPOE3	BPPOE2	BPPOE1	BPPOE0	
0xF002_00C4	PR	BPROE	W	_	_	_	-	-	BPROE2	BPROE1	BPROE0	
0xF002_00CC	PT	BPTOE	W	BPTOE7	BPTOE6	BPTOE5	BPTOE4	BPTOE3	BPTOE2	BPTOE1	BPTOE0	

2. back up register output Enable register list 1

Backup register output enable setting register(reset state is "0", After Hot reset , hold the eve data) :

Each bit = 0y0: "L" output Enable

Each bit= 0y1: "H" output Enable

TENTATIVE

	3. back up register output data register list 2											
register Address	correspond to port	register name	type	bit7	bit6	bit5	bit4	bit3	bit2	bit1	Obit	
0xF002_0100	SA	BSADATA	W	BSADATA7	BSADATA6	BSADATA5	BSADATA4	BSADATA3	BSADATA2	BSADATA1	BSADATA0	
0xF002_0104	SB	BSBDATA	W	BSBDATA7	BSBDATA6	BSBDATA5	BSBDATA4	BSBDATA3	BSBDATA2	BSBDATA1	BSBDATA0	
0xF002_0108	SC	BSCDATA	W	BSCDATA7	BSCDATA6	BSCDATA5	BSCDATA4	BSCDATA3	BSCDATA2	BSCDATA1	BSCDATA0	
0xF002_010C	SD	BSDDATA	W	BSDDATA7	BSDDATA6	BSDDATA5	BSDDATA4	BSDDATA3	BSDDATA2	BSDDATA1	BSDDATA0	
0xF002_0110	SE	BSEDATA	W	BSEDATA7	BSEDATA6	BSEDATA5	BSEDATA4	BSEDATA3	BSEDATA2	BSEDATA1	BSEDATA0	
0xF002_0114	SF	BSFDATA	W	BSFDATA7	BSFDATA6	BSFDATA5	BSFDATA4	BSFDATA3	BSFDATA2	BSFDATA1	BSFDATA0	
0xF002_0118	SG	BSGDATA	W	BSGDATA7	BSGDATA6	BSGDATA5	BSGDATA4	BSGDATA3	BSGDATA2	BSGDATA1	BSGDATA0	
0xF002_011C	SH	BSHDATA	W	BSHDATA7	BSHDATA6	BSHDATA5	BSHDATA4	BSHDATA3	BSHDATA2	BSHDATA1	BSHDATA0	
0xF002_0124	SJ	BSJDATA	W	BSJDATA7	BSJDATA6	BSJDATA5	BSJDATA4	BSJDATA3	BSJDATA2	BSJDATA1	BSJDATA0	
0xF002_0128	SK	BSKDATA	W	-	-	-	BSKDATA4	BSKDATA3	BSKDATA2	BSKDATA1	BSKDATA0	
0xF002_012C	SL	BSLDATA	W	No	ote	BSLDATA5	BSLDATA4	BSLDATA3	BSLDATA2	BSLDATA1	BSLDATA0	
0xF002_014C	ST	BSTDATA	W	BSTDATA7	BSTDATA6	BSTDATA5	BSTDATA4	BSTDATA3	BSTDATA2	BSTDATA1	BSTDATA0	
0xF002_0150	SU	BSUDATA	W	BSUDATA7	BSUDATA6	BSUDATA5	BSUDATA4	BSUDATA3	BSUDATA2	BSUDATA1	BSUDATA0	
0xF002_0154	SV	BSVDATA	W	BSVDATA7	BSVDATA6	BSVDATA5	BSVDATA4	BSVDATA3	BSVDATA2	BSVDATA1	BSVDATA0	
0xF002_0158	SW	BSWDATA	W	_	Note	BSWDATA5	BSWDATA4	BSWDATA3	BSWDATA2	BSWDATA1	BSWDATA0	

Note: Read undefined. Write as zero.

In backup status(PCM) output data setting register(reset state is "0", After Hot reset , hold the eve data) :

Each bit = 0y0: "L" output

Each bit= 0y1: "H" output

4. back up register output Enable register list 2

register Address	correspond to port	register name	type	bit7	bit6	bit5	bit4	bit3	bit2	bit1	Obit
0xF002_0180	SA	BSAOE	W	BSAOE7	BSAOE6	BSAOE5	BSAOE4	BSAOE3	BSAOE2	BSAOE1	BSAOE0
0xF002_0184	SB	BSBOE	W	BSBOE7	BSBOE6	BSBOE5	BSBOE4	BSBOE3	BSBOE2	BSBOE1	BSBOE0
0xF002_0188	SC	BSCOE	W	BSCOE7	BSCOE6	BSCOE5	BSCOE4	BSCOE3	BSCOE2	BSCOE1	BSCOE0
0xF002_018C	SD	BSDOE	W	BSDOE7	BSDOE6	BSDOE5	BSDOE4	BSDOE3	BSDOE2	BSDOE1	BSDOE0
0xF002_0190	SE	BSEOE	W	BSEOE7	BSEOE6	BSEOE5	BSEOE4	BSEOE3	BSEOE2	BSEOE1	BSEOE0
0xF002_0194	SF	BSFOE	W	BSFOE7	BSFOE6	BSFOE5	BSFOE4	BSFOE3	BSFOE2	BSFOE1	BSFOE0
0xF002_0198	SG	BSGOE	W	BSGOE7	BSGOE6	BSGOE5	BSGOE4	BSGOE3	BSGOE2	BSGOE1	BSGOE0
0xF002_019C	SH	BSHOE	W	BSHOE7	BSHOE6	BSHOE5	BSHOE4	BSHOE3	BSHOE2	BSHOE1	BSHOE0
0xF002_01A4	SJ	BSJOE	W	BSJOE7	BSJOE6	BSJOE5	BSJOE4	BSJOE3	BSJOE2	BSJOE1	BSJOE0
0xF002_01A8	SK	BSKOE	W	I	-	-	BSKOE4	BSKOE3	BSKOE2	BSKOE1	BSKOE0
0xF002_01AC	SL	BSLOE	W	No	ote	BSLOE5	BSLOE4	BSLOE3	BSLOE2	BSLOE1	BSLOE0
0xF002_01B0	SM	BSMOE	W		No	ote		BSMOE3	Note 1	BSMOE1	Note 1
0xF002_01CC	ST	BSTOE	W	BSTOE7	BSTOE6	BSTOE5	BSTOE4	BSTOE3	BSTOE2	BSTOE1	BSTOE0
0xF002_01D0	SU	BSUOE	W	BSUOE7	BSUOE6	BSUOE5	BSUOE4	BSUOE3	BSUOE2	BSUOE1	BSUOE0
0xF002_01D4	SV	BSVOE	W	BSVOE7	BSVOE6	BSVOE5	BSVOE4	BSVOE3	BSVOE2	BSVOE1	BSVOE0
0xF002_01D8	SW	BSWOE	W	_	Note	BSWOE5	BSWOE4	BSWOE3	BSWOE2	BSWOE1	BSWOE0

Note: Read undefined. Write as zero.

Backup register output enable setting register (reset state is "0", After Hot reset , hold the eve data) :

Each bit = 0y0 : "L" output Enable

Each bit= 0y1 : "H" output Enable

5. BPARELE register

					Address = (0xF002_0000) + 0x0200
		T	Reset	Hot Reset	Description
BI	Bit Symbol	Туре	Value	Value	Description
[31:8]	-	-	Undefined	Undefined	Read undefined. Write as zero.
[7]	BPARELE7	R/W	0у0	hold eve data	PCM release request Enable
					0y0: disable
					0y1: enable
[6]	BPARELE6	R/W	0у0	hold eve data	PCM release request Enable
					0y0: disable
					0y1: enable
[5]	BPARELE5	R/W	0у0	hold eve data	PCM release request Enable
					0y0: disable
					0y1: enable
[4]	BPARELE4	R/W	0у0	hold eve data	PCM release request Enable
					0y0: disable
					0y1: enable
[3]	BPARELE3	R/W	0у0	hold eve data	PCM release request Enable
					0y0: disable
					0y1: enable
[2]	BPARELE2	R/W	0у0	hold eve data	PCM release request Enable
					0y0: disable
					0y1: enable
[1]	BPARELE1	R/W	0у0	hold eve data	PCM release request Enable
					0y0: disable
					0y1: enable
[0]	BPARELE0	R/W	0у0	hold eve data	PCM release request Enable
					0y0: disable
					0y1: enable

[Explanation]

a. <BPARELE[7:0]>

Enable PCM release request of key input KI[7:0].

6. BPDRELE register

Address = (0xF002_0000) + 0x0204

Bit	Bit Symbol	Туре	Reset	Hot Reset	Description
			Value	Value	
[31:8]	-	-	Undefined	Undefined	Read undefined. Write as zero.
[7]	-	-	Undefined	Undefined	Read undefined. Write as zero.
[6]	BPDRELE6	R/W	0y0	hold eve data	PCM release request Enable
					0y0: disable
					0y1: enable
[5:0]	-	-	Undefined	Undefined	Read undefined. Write as zero.

[Explanation]

a. <BPDRELE6>

Enable PCM release request of INTA(TSI).

7. BPPRELE register

					Address = (0xF002_0000) + 0x0208
Bit	Bit Symbol	Type	Reset	Hot Reset	Description
Dit	Bit Gymbol	туре	Value	Value	Description
[31:8]	-	-	Undefined	Undefined	Read undefined. Write as zero.
[7]	BPPRELE7	R/W	0у0	hold eve data	PCM release request Enable
					0y0: disable
					0y1: enable
[6]	BPPRELE6	R/W	0у0	hold eve data	PCM release request Enable
					0y0: disable
					0y1: enable
[5]	BPPRELE5	R/W	0у0	hold eve data	PCM release request Enable
					0y0: disable
					0y1: enable
[4]	BPPRELE4	R/W	0у0	hold eve data	PCM release request Enable
					0y0: disable
					0y1: enable
[3]	BPPRELE3	R/W	0у0	hold eve data	PCM release request Enable
					0y0: disable
					0y1: enable
[2]	BPPRELE2	R/W	0у0	hold eve data	PCM release request Enable
					0y0: disable
					0y1: enable
[1]	BPPRELE1	R/W	0у0	hold eve data	PCM release request Enable
					0y0: disable
					0y1: enable
[0]	BPPRELE0	R/W	0у0	hold eve data	PCM release request Enable
					0y0: disable
					0y1: enable

[Explanation]

a. <BPPRELE[7:0]>

Enable PCM release request of INT7/INT6/INT5/INT4/INT3/INT2/INT1/INT0.

8. BRTRELE register

Address = (0xF002_0000) + 0x0210

Bit	Bit Symbol	Туре	Reset Value	Hot Reset Value	Description
[31:1]	-	-	Undefined	Undefined	Read undefined. Write as zero.
[0]	BRTRELE0	R/W	0y0	hold eve data	PCM release request Enable
					0y0: disable
					0y1: enable

[Explanation]

a. <BRTRELE0>

Enable PCM release request of RTC.

9. BPAEDGE register

					Address = (0xF002_0000) + 0x0220
		_	Reset	Hot Reset	
Bit	Bit Symbol	Туре	Value	Value	Description
[31:8]	_	_	Undefined	Undefined	Read undefined. Write as zero.
[7]	BPAEDGE7	R/W	0y0	hold eve data	edge selection of PCM release request
					0y0 : rise edge
					0y1 : fall edge
[6]	BPAEDGE6	R/W	0y0	hold eve data	edge selection of PCM release request
					0y0 : rise edge
					0y1 : fall edge
[5]	BPAEDGE5	R/W	0у0	hold eve data	edge selection of PCM release request
					0y0 : rise edge
					0y1 : fall edge
[4]	BPAEDGE4	R/W	0у0	hold eve data	edge selection of PCM release request
					0y0 : rise edge
					0y1 : fall edge
[3]	BPAEDGE3	R/W	0у0	hold eve data	edge selection of PCM release request
					0y0 : rise edge
					0y1 : fall edge
[2]	BPAEDGE2	R/W	0y0	hold eve data	edge selection of PCM release request
					0y0 : rise edge
					0y1 : fall edge
[1]	BPAEDGE1	R/W	0y0	hold eve data	edge selection of PCM release request
					0y0 : rise edge
					0y1 : fall edge
[0]	BPAEDGE0	R/W	0y0	hold eve data	edge selection of PCM release request
					0y0 : rise edge
					0y1 : fall edge

[Explanation]

a. <BPAEDGE[7:0]>

Edge selection of PCM release request of key input KI[7:0].

10. BPDEDGE register

Address = (0xF002_0000) + 0x0224

Bit	Bit Symbol	Туре	Reset	Hot Reset	Description
			Value	Value	
[31:8]	-	-	Undefined	Undefined	Read undefined. Write as zero.
[7]	-	-	Undefined	Undefined	Read undefined. Write as zero.
[6]	BPDEDGE6	R/W	0y0	hold eve data	Edge selection of PCM release request
					0y0: rise edge
					0y1: fall edge
[5:0]	-	-	Undefined	Undefined	Read undefined. Write as zero.

[Explanation]

a. <BPDEDGE6>

Edge selection of PCM release request of INTA(TSI).

11. BPPEDGE register

Address = (0xF002_0000) + 0x0228

		T	Reset	Hot Reset	Description
Bit	Bit Symbol	Туре	Value	Value	Description
[31:8]	-	-	Undefined	Undefined	Read undefined. Write as zero.
[7]	BPPEDGE7	R/W	0y0	hold eve data	Edge selection of PCM release request
					0y0: rise edge
					0y1: fall edge
[6]	BPPEDGE6	R/W	0y0	hold eve data	Edge selection of PCM release request
					0y0: rise edge
					0y1: fall edge
[5]	BPPEDGE5	R/W	0y0	hold eve data	Edge selection of PCM release request
					0y0: rise edge
					0y1: fall edge
[4]	BPPEDGE4	R/W	0y0	hold eve data	Edge selection of PCM release request
					0y0: rise edge
					0y1: fall edge
[3]	BPPEDGE3	R/W	0y0	hold eve data	Edge selection of PCM release request
					0y0: rise edge
					0y1: fall edge
[2]	BPPEDGE2	R/W	0y0	hold eve data	Edge selection of PCM release request
					0y0: rise edge
					0y1: fall edge
[1]	BPPEDGE1	R/W	0y0	hold eve data	Edge selection of PCM release request
					0y0: rise edge
					0y1: fall edge
[0]	BPPEDGE0	R/W	0y0	hold eve data	Edge selection of PCM release request
					0y0: rise edge
					0y1: fall edge

[Explanation]

a. <BPPEDGE[7:0]>

Edge selection of PCM release request of INT7/INT6/INT5/INT4/INT3/INT2/INT1/INT0.

12. BPARINT register

Address = (0xF002_0000) + 0x0240

D''		-	Reset	Hot Reset	
Bit	Bit Symbol	туре	Value	Value	Description
[31:8]	-	-	Undefined	Undefined	Read undefined. Write as zero.
[7]	BPARINT7	R/W	Undefined	hold eve data	PCM release interrupt status
					0y0: no interrupt request
					0y1: interrupt request
[6]	BPARINT6	R/W	Undefined	hold eve data	PCM release interrupt status
					0y0: no interrupt request
					0y1: interrupt request
[5]	BPARINT5	R/W	Undefined	hold eve data	PCM release interrupt status
					0y0: no interrupt request
					0y1: interrupt request
[4]	BPARINT4	R/W	Undefined	hold eve data	PCM release interrupt status
					0y0: no interrupt request
					0y1: interrupt request
[3]	BPARINT3	R/W	Undefined	hold eve data	PCM release interrupt status
					0y0: no interrupt request
					0y1: interrupt request
[2]	BPARINT2	R/W	Undefined	hold eve data	PCM release interrupt status
					0y0: no interrupt request
					0y1: interrupt request
[1]	BPARINT1	R/W	Undefined	hold eve data	PCM release interrupt status
					0y0: no interrupt request
					0y1: interrupt request
[0]	BPARINT0	R/W	Undefined	hold eve data	PCM release interrupt status
					0y0: no interrupt request
					0y1: interrupt request

[Explanation]

a. <BPARINT[7:0]>

PCM release interrupt status of key input KI[7:0].

For the factor of PCM release can be confirmed.

					Address = (0xF002_0000) + 0x0244
Dit	Rit Symbol	Reset Hot Reset		Description	
DIL	Bit Symbol	туре	Value	alue Value Descrip	
[31:7]	-	-	Undefined	Undefined	Read undefined. Write as zero.
[6]	BPDRINT6	R/W	Undefined	hold eve data	PCM release interrupt status
					0y0: no interrupt request
					0y1: interrupt request
[5:0]	-	-	Undefined	Undefined	Read undefined. Write as zero.

13. BPDRINT register

[Explanation]

a. <BPDRINT6>

PCM release interrupt status of INTA (TSI).

For the factor of PCM release can be confirmed.

14. BPPRINT register

Address = (0xF002_0000) + 0x0248

		т	Reset	Hot Reset	Description
Bit	Bit Symbol	туре	Value	Value	Description
[31:8]	-	-	Undefined	Undefined	Read undefined. Write as zero.
[7]	BPPRINT7	R/W	Undefined	hold eve data	PCM release interrupt status
					0y0: no interrupt request
					0y1: interrupt request
[6]	BPPRINT6	R/W	Undefined	hold eve data	PCM release interrupt status
					0y0: no interrupt request
					0y1: interrupt request
[5]	BPPRINT5	R/W	Undefined	hold eve data	PCM release interrupt status
					0y0: no interrupt request
					0y1: interrupt request
[4]	BPPRINT4	R/W	Undefined	hold eve data	PCM release interrupt status
					0y0: no interrupt request
					0y1: interrupt request
[3]	BPPRINT3	R/W	Undefined	hold eve data	PCM release interrupt status
					0y0: no interrupt request
					0y1: interrupt request
[2]	BPPRINT2	R/W	Undefined	hold eve data	PCM release interrupt status
					0y0: no interrupt request
					0y1: interrupt request
[1]	BPPRINT1	R/W	Undefined	hold eve data	PCM release interrupt status
					0y0: no interrupt request
					0y1: interrupt request
[0]	BPPRINT0	R/W	Undefined	hold eve data	PCM release interrupt status
					0y0: no interrupt request
					0y1: interrupt request

[Explanation]

a. <BPPRINT[7:0]>

PCM release interrupt status of INT7,INT6, INT5,INT4,INT3,INT2,INT1,INT0. For the factor of PCM release can be confirmed.

15. BRTRINT register

Address = (0xF002_0000) + 0x0250

Bit	Bit Symbol	Туре	Reset Value	Hot Reset Value	Description
[31:1]	-	-	Undefined	Undefined	Read undefined. Write as zero.
[0]	BRTRINT0	R/W	Undefined	hold eve data	PCM release interrupt status
					0y0: no interrupt request
					0y1: interrupt request

[Explanation]

a. <BRTRINT0>

PCM release interrupt status of RTC.

For the factor of PCM release can be confirmed.

16. PMCDRV register

Address = (0xF002_0000) + 0x0260

Bit	Bit Symbol	Туре	Reset	Hot Reset	Pasarintian
DIL	Dit Symbol	iype	Value	Value	Description
[31:7]	-	-	Undefined	Undefined	Read undefined. Write as zero.
[6]	DRV_SP0	R/W	0y1	hold eve data	SSP relation port drive power
					0y0: 12mA(1.8V)
					0y1: 6mA(3.3V)
[5]	DRV_I2S	R/W	0y1	hold eve data	I2S relation port drive power
					0y0: 12mA(1.8V)
					0y1: 6mA(3.3V)
[4]	DRV_LCD	R/W	0y1	hold eve data	LCDC relation port drive power
					0y0: 12mA(1.8V)
					0y1: 6mA(3.3V)
[3:2]	-	-	Undefined	Undefined	Read undefined. Write as zero.
[1]	DRV_MEM1	R/W	0y0	hold eve data	memory relation port drive power
[0]	DRV_MEM0	R/W	0y1	hold eve data	0y00: 1/4
					0y01: 1/2 (3.3V)
					0y10: 3/4
					0y11: 1/1 (1.8V)

17.	DMCCKECTL	register
-----	-----------	----------

 $Address = (0xF002_0000) + 0x0280$

Bit	Bit Symbol	Туре	Reset Value	Hot Reset Value	Description
[31:1]	-	-	Undefined	Undefined	Read undefined. Write as zero.
[0]	DMCCKEHLD	R/W	0у0	hold eve data	output selection of SJ6 0y0: GPIO 0y1: PMC register setting

18. PMCCTL register

	Address = (0xF002_0000) + 0x0300				
Dit	Bit Symbol	Turne	Reset	Hot Reset	Description
DIL	ыі Зушьої	туре	Value	Value	Description
[31:8]	-	-	Undefined	Undefined	Read undefined. Write as zero.
[7]	PCM_ON	R/W	0y0	hold eve data	Power Cut Enable
	Note1				0y0: Disable
					0y1:Enable
[6]	PMCPWE	R/W	0y1	hold eve data	output selection of PWE
					0y0: GPIO
					0y1: PMC register output(PWE)
[5:3]	-	-	Undefined	Undefined	Read undefined. Write as zero.
[2]	Reserved	-	Undefined	Undefined	Read undefined. Write as zero.
[1]	WUTM1	R/W	0y0	hold eve data	Warm-up timing setting
[0]	WUTM0	R/W	0y0	hold eve data	0y00: 2 ⁹ (15.625ms)
					0y01: 2 ¹⁰ (31.25ms)
					0y10: 2 ¹¹ (62.5ms)
					0y11: 2 ¹² (125ms)

[Explanation]

a. <PCM_ON>

The following Table show the PCM operation .

	PCM_ON = 1	$PCM_ON = 0$
Input of an external interrupt request	The interrupt request is ignored and the HOT_RESET signal is generated.	Interrupt operation
Operation after RESET	_	Started according to the AM1:0 pin status.
Operation after HOT_RESET	Started from Boot ROM independently of the AM1:0 pin status	_
Warm-up counter	The low-frequency clocks are counted using a PWE pin status change as a trigger and then HOT_RESET is released.	_

Note1: Register PMCCTL <PMCPWE>, <WMTM 1 >, and <WMTM0> those bits can't be changed at the same time of setting PMCCTL<PCM_ON> from "0" to "1"

(becasuse setting PMCCTL<PCM_ON> from "0" to "1", enter PCM mode, internal circuit is stopped, and PMCCTL <PMCPWE>, <WMTM 1>, and <WMTM0> those bits can't be updated).

Register PMCCTL <PMCPWE>, <WMTM 1 >, and <WMTM0> should be changed at <PCM_ON>="0" status. And when configure <PCM_ON> ="1", PMCCTL <PMCPWE>, <WMTM 1 >, and <WMTM0> those bits must be same setting value as the eve setting value.

Note2: The status of the external PWE signal changes from "0" to "1" 2.5 XT1(77µs) after the wake-up interrupt. Then, the period set by the warm-up timer is counted up, and after another approximately 3 XT1(92µs), the internal reset is released. Since power stabilization time depends on the response of the power source to be used and conditions on the set, determine the warm-up time in consideration of the period required until power is stabilized.

3.26.6 Using example

About the following program example, program practice in built-in RAM.

As transition to PCM status, Stop any factors (include pin setting) that can hamper the status change to the PCM before actual status transition occurs.

(1) stop function

- Stop the watchdog timer.
- Stop the AD converter.
- Stop DMA operation of the system.
- Stop LCDC.
- Disable the auto refresh function of SDRAM (transition to self-refresh mode).
- Disable DMA transfer.

(2) Fix the pin status.

Fix the pin status with the port function. Fix also the pin status in the PMC circuit. Edge selection is possible for the external interrupts that permit wake-up. Configure the edge selection. The debounce circuit must be disabled when PD6 is used as the INTA for TSI interrupts.

- Disable interrupts.
- Stop PLL operation.
- Disable the internal cache memory.

; Example of Wakeup by PA port

LDR	r0,=BPADATA	; Enable PULL-UP of PA
MOV	r1,#0x000000FF	;
STR	r1,[r0]	;
LDR	r0,=BPARELE	;
MOV	r1,#0x000000FF	; Wake-up by PA : Enable
STR	r1,[r0]	;
LDR	r0,=BPDRELE	;
MOV	r1,#0x00000000	;
STR	r1,[r0]	; Wake-up by PD : Disable
LDR	r0,=BPPRELE	;
MOV	r1,#0x00000000	; Wake-up by PP : Disable
STR	r1,[r0]	;
LDR	r0,=BRTRELE	;
MOV	r1,#0x00000000	; Wake-up by RTC : Disable
STR	r1,[r0]	;
LDR	r0,=BPAEDGE	;
MOV	r1,#0x00000000	; PA Wake-up edge : rise edge
STR	r1,[r0]	;
LDR	r0,=BPDEDGE	;
MOV	r1,#0x00000000	; PD Wake-up edge : rise edge
STR	r1,[r0]	;
LDR	r0,=BPPEDGE	;
MOV	r1,#0x00000000	; PP Wake-up edge [:] rise edge
STR	r1,[r0]	;

	LDR MOV STR	r0,=BPARINT r1,#0x00000000 r1,[r0]	; ; clear the status of PA Wake-up request ;
	LDR MOV STR	r0,=BPDRINT r1,#0x00000000 r1,[r0]	; ;clear the status of PD Wake-up request ;
	LDR MOV STR	r0,=BPPRINT r1,#0x00000000 r1,[r0]	; ;clear the status of PP Wake-up request ;
	LDR MOV STR	r0,=PMCCTL r1,#0x43 r1,[r0]	; PCMCTL PCM MODE ; First configure warm-up time as 25mS
	MOV STR	r1,#0xc3 r1,[r0]	; next configure Power Cut Enable
LOOD	NOP NOP		;;
LUOP	В	LOOP	;
	HALT		;

4. Electrical Characteristics

4.1 Absolute Maximum Ratings

Symbol	Parameter	Rating	Unit
DVCC3IO DVCCM DVCC3CMS DVCC3LCD DVCC3I2S		-0.3 to 3.8	
DVCC1A DVCC1B DVCC1C	Power supply voltage	-0.3 to 2.0	V
AVCC3AD AVDD3T AVDD3C		-0.3 to 3.8	
V _{IN}	Input voltage	-0.3 ~DVCC3IO+0.3 (Note 1) -0.3 ~DVCCM+0.3 (Note 2) -0.3 ~DVCC3CMS+0.3 (Note 3) -0.3 ~DVCC3LCD+0.3 (Note 3) -0.3 ~DVCC3I2S+0.3 (Note 5) -0.3 ~AVCC3AD+0.3 (Note 6) -0.3 ~AVDD3T+0.3 (Note 7) -0.3 ~AVDD3C+0.3 (Note 8)	V
IOL	Output current (per pin)	5	mA
IOH	Output current (per pin)	-5	mA
Σ _{IOL}	Output current (total)	80	mA
Σ _{IOH}	Output current (total)	-80	mA
PD	Power consumption (Ta=70°C)	800	mW
T _{SOLDER}	Soldering temperature (10s)	260	°C
T _{STG}	Storage temperature	-65~150	°C
T _{OPR}	Operating temperature	0~70	°C

Note 1: Do not exceed the maximum rating of DVCC3IO (SM2-7, SN0-2, SP0-5, SV0-7, SW0-6, PA0-7, PB0-7, PC0-7, PG0-7, PH0-7, PN0-7, PT0-7)

Note 2: Do not exceed the maximum rating of DVCCM (SA0-7, SB0-7, SC0-7, SD0-7, SE0-7, SF0-7, SG0-7, SH0-7, SJ0-7, SL0-7, SL0-7, PR0-2)

Note 3: Do not exceed the maximum rating of DVCC3CMS (PE0-7, PF0-7)

Note 4: Do not exceed the maximum rating of DVCC3LCD (ST0-7, SU0-7, PJ0-7, PK0-7)

Note 5: Do not exceed the maximum rating of DVCC3I2S.

Note 6: For PD0-7, VREFH、VREFL the maximum rating of AVCC is applied.

Note 7: For the USB, D+ and D- pins, the maximum rating of AVCC3T/3C is applied.

Note 8: The absolute maximum ratings are rated values that must not be exceeded during operation, even for an instant. Any one of the ratings must not be exceeded. If any absolute maximum rating is exceeded, the device may break down or its performance may be degraded, causing it to catch fire or explode resulting in injury to the user. Thus, when designing products that include this device, ensure that no absolute maximum rating value will ever be exceeded.

Solderability of lead-free products (with the suffix G in the part number)

Test parameter	Test condition	Note
Solderability	230°C, 5 seconds, once, use of R-type flux (when using Sn-37Pb solder)	Pass:
	245°C, 5 seconds, once, use of R-type flux (when using lead-free solder)	solderability rate until forming \ge 95%

ESD tolerance specification as follows, please take care the operations in production line.

ESD examination model	Tolerance
MM: Machine Model	Over -200V Over +150V
HBM: Human Body Model	Over -2000V Over +2000V

We don't take below NC pins as an object of ESD.

[Ball A1,A19,W1,W19 and G7] these pins are not connect signals of internal chip.

4.2 DC Electrical Characteristics

Operating Voltage

Symbol	Parameter	Min	Тур	Max	Unit	Condi	tion
DVCC3IO	General I/O Power Supply Voltage (DVCC3IO) (DVSSCOMx=AVSS=0V)	3.0	3.3	3.6			
DVCCM_1	Memry I/O Power	3.0	3.3	3.6		X1=10 to 27MHz	XT1=30 to 34kHz
DVCCM_2	Memry I/O Power	1.7	1.8	1.9			
DVCC3CMS	CMOS Sensor I/O Power	1.8	_	3.6			
DVCC3LCD	LCDD I/O Power	1.8	-	3.6	V		
DVCC3I2S	I2S I/O Power	1.8	-	3.6		(200MHz)	
AVCC3AD	ADC Power	3.0	3.3	3.6		(~20010112)	
AVDD3T/3C	USB Power	3.15	3.3	3.6			
DVCC1A	Internal Power A						
DVCC1B	Internal Power B	1.4	1 5	16			
DVCC1C	High CLK oscillator and PLL Power	1.4	1.5	1.0			

It is assumed that all power supply pins of the same rail are electrically connected externally and are supplied with the equal voltage.

Input Voltage (1)

Symbol	Parameter	Min	Тур	Max	Unit	Condition
VILO	Input Low Voltage for SM2, SM6-7, SN0-2, SP0-3 SV0-7, SW6, PA0-7, PG0-7 PH0-7, PT0-7		_	0.3×DVCC3IO		3.0≦DVCC3IO≦3.6V
VIL1	Input Low Voltage for		_	0.3×DVCCM		3.0≦DVCCM≦3.6V SELDVCCM=0
VIL2	SA0-7, SB0-7, SC0-7 SD0-7, SL4-7, PR2		_	0.3×DVCCM		1.7≦DVCCM≦1.9V SELDVCCM=1
VIL3	Input Low Voltage for PE0-7, PF0-3, PF6-7	-0.3	_	0.3× DVCC3CMS		1.8≦DVCC3CMS≦3.6V
VIL4	Input Low Voltage for PL0-4, PM0-3		_	0.3× DVCC3I2S	V	1.8≦DVCC3I2S≦3.6V
VIL5(Note9)	Input Low Voltage for PD0-7		_	0.3×AVCC3AD		3.0≦AVCC3AD≦3.6V
VIL6	Input Low Voltage for SM4, SM5, PC5, PC6, PC7 PN0-7, PP0-7		_	0.25×DVCC3IO		3.0≦DVCC3IO≦3.6V
VIL7	Input Low Voltage for PR2		_	0.25×DVCCM		3.0≦DVCCM≦3.6V SELDVCCM=0
VIL8	Input Low Voltage for PR2		_	0.25×DVCCM		1.7≦DVCCM≦1.9V SELDVCCM=1

Note 9: When Ports PD0 to PD7 are used as general-purpose inputs.

Input Voltage (2)

Symbol	Parameter	Min	Ту р	Max	Unit	Condition
VIHO	Input High Voltage for SM2, SM4-7, SN0-2, SP0-3 SV0-7, SW6, PA0-7, PC5-7 PG0-7, PH0-7, PN0-7 PP0-7, PT0-7	0.7 × DVCC3IO	-	DVCC3IO + 0.3		3.0≦DVCC3IO≦3.6
VIH1	Input High Voltage for	$0.7 \times \text{DVCCM}$	-	DVCCM + 0.3		3.0≦DVCCM≦3.6
VIH2	SA0-7, SB0-7, SC0-7 SD0-7, SL4-7, PR2	$0.7 \times \text{DVCCM}$	_	DVCCM + 0.3		1.7≦DVCCM≦1.9
VIH3	Input High Voltage for PE0-7, PF0-3, PF6-7	$0.7 \times \text{DVCC3CMS}$	_	DVCC3CMS + 0.3	V	1.7≦DVCC3CMS≦3.6
VIH4	Input High Voltage for PL0-4, PM0-3	$0.7 \times \text{DVCC3I2S}$	_	DVCC3I2S + 0.3		1.7≦DVCC3l2S≦3.6
VIH5 (Note 9)	Input High Voltage for PD0-7	0.7 × ADCC3AD	_	AVCC3AD + 0.3		3.0≦AVCC3AD≦3.6
VIH6	Input High Voltage for SM0-1	0.7 × DVCC1C	_	DVCC1C + 0.3		1.4(1.3)≦DVCC1C≦1.6

Note 9: When Ports PD0 to PD7 are used as general-purpose inputs.

Output Voltage (1)

Symbol	Parameter	Min	Тур	Max	Unit	Condition
VOL0	Output Low Voltage for SM3, SP4, SP5, SV0-7, SW0-5, PB0-7, PC0-7, PG0-7 PH0-7, PN0-7, PP0-7, PT0-7					IOL=2.0 mA 3.0≦DVCC3IO≦3.6V
VOL1	Output Low Voltage for SA0-7, SB0-7, SC0-7					IOL=2.0 mA 3.0≦DVCCM≦3.6V
VOL2	SD0-7, SE0-7, SF0-7, SG0-7 SH0-7, SJ0-7, SK0-7, SL0-5 PR0-2	_	_	0.4	V	IOL=2.0 mA 1.8≦DVCCM≦1.9V
VOL3	Output Low Voltage for PF6-7					IOL=3.0 mA 1.8≦DVCC3CMS≦3.6V
VOL4	Output Low Voltage for PL0-4, PM0-3					IOL=2.0 mA 1.8≦DVCC3I2S≦3.6V
VOL5	Output Low Voltage for PD4-7					IOL=2.0 mA 3.0≦AVCC3AD≦3.6V
VOL6	Output Low Voltage for ST0-7, SU0-7, PJ0-7, PK0-7					IOL=2.0 mA 1.8 ≦DVCC3LCD≦3.6V

Note 9: When Ports PD0 to PD7 are used as general-purpose inputs.

Output Voltage (2)

Symbol	Parameter	Min	Тур	Max	Unit	Condition
VOH0	Output Low Voltage for SM3, SP4, SP5, SV0-7, SW0-5, PB0-7, PC0-7, PG0-7 PH0-7, PN0-7, PP0-7, PT0-7	DVCC3IO-0.4				IOH=-1.0 mA 3.0≦DVCC3IO≦3.6V
VOH1	Output Low Voltage for SA0-7, SB0-7, SC0-7	DVCCM-0.4				IOH=-1.0 mA 3.0≦DVCCM≦3.6V
VOH2	SD0-7, SE0-7, SF0-7, SG0-7 SH0-7, SJ0-7, SK0-7, SL0-5 PR0-2	DVCCM-0.4	-	-	V	IOH=-1.0 mA 1.8≦DVCCM≦1.9V
VOH3	Output Low Voltage for PL0-4, PM0-3	DVCC3I2S-0.4				IOH=-1.0 mA 1.8≦DVCC3I2S≦3.6V
VOH4	Output Low Voltage for PD4-7	AVCC3AD-0.4				IOH=-1.0 mA 3.0≦AVCC3AD≦3.6V
VOH5	Output Low Voltage for ST0-7, SU0-7, PJ0-7, PK0-7	DVCC3LCD-0.4				IOH=-1.0 mA 1.8 ≦DVCC3LCD≦3.6V

Note 9: When Ports PD0 to PD7 are used as general-purpose inputs.

Others

Symbol	Parameter	Min	Тур	Max	Unit	Condition			
IMon	Internal resistor (ON) MX, MY pins	_	_	30		VOL =0.2V	2 0 < 1/1/2/22 0/2 2 6/1		
IMon	Internal resistor (ON) PX, PY pins	_	_	30	52	VOH = AVCC3AD-0.2V	5.0 AVCC3AD 23.0V		
ILI	Input Leakage Current	_	0.02	±5	μA				
ILO	Output Leakage Current	_	0.05	±10	μΑ				
R	Pull Up/Down Resistor for RESETn, PA0-7, PD6	30	50	70	KΩ				
CIO	Pin Capacitance	-	1.0	-	pF	fc=1MHz	fc=1MHz		
VTH	Schmitt Width for SM4, SM5, PA0-7 PD6, PD7, PC5, PC6, PC7 PF6, PF7, PN0-7, PP0-7 PT4-6	_	0.6	_	V	3.0≦DVCC3IO≦3	3.6V		
	PR2	_	0.6	_	V	3.0≦DVCC3IO≦3	3.6V		
	PR2	-	0.4	-	V	1.7≦DVCC3IO≦1	1.9V		
VIX	AC Differential Cross point Voltage	0.4 × DVCCM		0.6 × DVCCM		1.7≦DVCCM≦1.9	9V		

Note 1: Typical values show those with Ta = 25 °C and DVCC3IO=DVCC3CMS=DVCC3I2S=DVCC3LCD=3.3 V, DVCCM=3.3V or DVCCM=1.8V, DVCC1A,1B,1C = 1.5V unless otherwise noted.

Note 2: The above values do not apply when debug mode is used.

Symbol	Parameter	Min	Тур	Max	Unit	(Condition
	NORMAL (note2)	_	TBD	TBD	mA	PLL_ON f _{FCLK} =	DVCC3IO = 3.6V, DVCC3CMS = 3.6V DVCC3I2S = 3.6V DVCC3LCD = 3.6V AVCC3AD = 3.6V AVDD3T = 3.6V AVDD3C = 3.6V
		-	TBD	TBD		200MHz	DVCCM = 3.6V
		-	6	7			DVCCM = 1.9V
ICC		-	181	246			DVCC1A = 1.6V DVCC1B = 1.6V DVCC1C = 1.6V
	CPU HALT	_	8	11	MA PLL_OFF f _{FCLK} =25MHz	DVCC3IO = 3.6V DVCCM = 3.6V DVCC3CMS = 3.6V DVCC3I2S = 3.6V DVCC3LCD = 3.6V AVCC3AD = 3.6V AVCC3AD = 3.6V AVDD3T = 3.6V	
		_	23	36			

Operationg Conditions:

NORMAL

CPU: DRYSTONE rev2.1 Instruction Cache : ON Data Cache: ON Program Exection area : internal RAM Data area: internal RAM Stack area: internal RAM Peripheral Circuit TSB original program

HALT

CPU: HALT USB: Suspend Peripheral Circuit TSB original program

Note 1: Typical values show those with Ta = 25°C, DVCC3IO=DVCC3CMS=DVCC3I2S=DVCC3LCD=3.3V, DVCCM=3.3V or DVCCM=1.8V, DVCC1A,1B,1C = 1.5V unless otherwise noted.

Note 2: IC measurement conditions:

CL = 25 pF for bus pins, other output pins = open, input pins = level fixed

Note 3: The above values do not apply when debug mode is used.

Symbol	Parameter	Min	Тур	Max	Unit	Condition		
	Power Cut Mode (With PMC function)	_	7	26	μΑ	Ta ≦ 70°C	DVCC3IO = 3.6V DVCCM = 3.6V DVCC3CMS = 3.6V DVCC3I2S = 3.6V DVCC3I2S = 3.6V	
				15		Ta ≦ 50°C	AVCC3AD = 3.6V $AVDD3T = 0V$ $AVDD3C = 0V$	
			9	200		Ta ≦ 70°C	DVCC1A=0V DVCC1B=1.6V, DVCC1C=0V	
				100		Ta ≦ 50°C	XT=32KHz X=OFF	

Note 1: Typical values show those with Ta = 25°C, DVCC3IO=DVCC3ICMS=DVCC3I2S=DVCC3LCD=3.3 V,

DVCCM=3.3Vor DVCCM=1.8V,DVCC1A,1B,1C = 1.5V, unless otherwise noted.

Note 2: IC measurement conditions:

CL = 25 pF for bus pins, other output pins = open, input pins = level fixed

Note 3: The above values do not apply when debug mode is used.

AC Electrical Characteristics 4.3

All AC specifications shown below are the measurement results under the following conditions unless specified otherwise.

AC measurement conditions

- The letter "T" used in the equations in the table represents the period of internal bus frequency (f_{HCLK}) which is one-half of the CPU clock (f_{FCLK}).
- Output level: High = 0.7 × DVCCM, Low = 0.3 × DVCCM
- Input level: High = 0.9 × DVCCM, Low = 0.1 × DVCCM
- Note: The "Equation" column in the table shows the specifications under the conditions DVCCM=1.7 V to 3.6 V and DVCC1A=DVCC1B=DVCC1C=1.4 to 1.6 V.
 - In the case of asynchronous mode, The external wait function from external SMCWAITn pin can't be supported

4.3.1 **Basic Bus Cycles**

Read cycle (asynchronous mode)

		Symbol	Equati	on	100 MHz	96 MHz	48 MHz	
					N=10	N=10	N=5	
No.	Parameter		Min	Max	M=3	M=3	M=1	Unit
				Ινίαλ	K=10	K=10	K=5	
					L=6	L=6	L=3	
1	Internal bus period (= T)	t _{CYC}	10	800	10.0	10.4	20.8	
2	A0-A25 valid to D0-D31 input	t _{AD}	(N)T – 15.0		85.0	89.2	89.2	
3	SMCOEn fall to D0-D31 input	t _{OED}	(N-M)T – 10.0		60.0	62.8	73.3	
4	SMCOEn low level pulse width	tOEW	(N-M)T – 8.0		62.0	64.9	75.3	ns
5	A0-A25 valid to SMCOEn rise	t _{AOE}	MT – 5.0		25	26.3	15.8	
6	SMCOEn rise to D0-D31 hold	t _{HR}	0		0	0	0	
7	SMCOEn high level pulse width	t _{OEHW}	MT – 8.0		24	23.3	12.8	
	Write cycle (asynchronous r	node)						

vvrite cycle (asynchronous mode)

					-		-
8	D0-D31 valid to SMCWEn rise	t _{DW}	(L+1)T – 10.0	60.0	62.9	73.3	
9	D0-D31 valid to SMCWEn rise (bls=1)	t _{SDS}	(L+1)T – 10.0	60.0	62.9	73.3	
10	SMCWEn low level width	t _{WW}	LT – 8.0	52.0	54.5	54	
11	A0-A25 valid to SMCWEn rise	t _{AW}	T – 5.0	5.0	5.4	15.8	
12	SMCWEn rise to A0-A25 hold	t _{WA}	(K-L-1)T – 5.0	25.0	26.3	15.8	ns
13	SMCWEn rise to D0-D31 hold	t _{WD}	(K-L-1)T – 5.0	25.0	26.3	15.8	
14	SMCOEn rise to D0-D31 output	t _{OEO}	2	2.0	2.0	2.0	
15	Data byte control to write complete time	t _{SBW}	LT – 8.0	52.0	54.5	54.5	

The variables used in the equations in the table are defined as follows: •

> N = Number of t_{RC} cycles $M = Number of t_{CEOE} cycles$

 $K = Number of t_{WC} cycles$

L = Number of t_{WP} cycles

Measuring Condition

Connection

1. DVCC3IOx0.7≦SELDVCCM≦DVCC3IO

Register

1. PMCDRV<DRV_MEM1:0>=11 (Full Drive)

Loaded capacitance

CL = 25 pF

(1) Asynchronous memory read cycle ($t_{RC} = 4$, $t_{CEOE} = 1$)

(2) Asynchronous memory write cycle ($t_{WC} = 4$, $t_{WP} = 2$)

4.3.2 Basic Bus Cycles

All AC specifications shown below are the measurement results under the following conditions unless specified otherwise.

AC measurement conditions

- The letter "T" used in the equations in the table represents the period of internal bus frequency (f_{HCLK}), which is one-half of the CPU clock (f_{FCLK}).
- Output level: High = $0.7 \times \text{DVCCM}$, Low = $0.3 \times \text{DVCCM}$
- Input level: High = $0.9 \times \text{DVCCM}$, Low = $0.1 \times \text{DVCCM}$

Note: The "Equation" column in the table shows the specifications under the conditions DVCCM=1.7 V to 1.9 V and DVCC1A=DVCC1B=DVCC1C=1.4 to 1.6 V.

	. Parameter	Symbol	Equation		100 MHz	96 MHz	48 MHz	
				1	N=10	N=10	N=5	Unit
No.			Min	Max	M=3	M=3	M=1	
					K=10	K=10	K=5	
					L=6	L=6	L=3	
1	Internal bus period (= T)	t _{CYC}	10	800	10	10.4	20.8	
2	CLK rise up time	t _{CR}		1.5	1.5	1.5	1.5	
3	CLK fall down time	t _{CF}		1.5	1.5	1.5	1.5	
4	CLK high level width	t _{CH}	0.5T - 1.5		3.5	3.7	8.9	
5	CLK low level width	t _{CL}	0.5T - 1.5		3.5	3.7	8.9	
6	SMCCLK rise to D0-D31 input	t _{ACC}		(N-1.0)T - 8.0	82.0	3.7	8.9	
7	SMCAVDn fall to SMCCLK rise	t _{AVC}	0.5T - 3.0		2.0	2.2	7.4	
8	SMCCLK rise to SMCAVDn rise	t _{AVH}	0.5T - 3.0		2.0	2.2	7.4	
9	A0-A25 valid to SMCCLK rise	t _{ADC}	0.5T - 5.0		0.0	0.2	5.4	20
10	SMCCSn valid to SMCCLK rise	t _{CES}	0.5T - 5.0					115
11	SMCAVDn low level width	t _{AVPW}	T-3.0		7.0	7.4	17.8	
12	SMCCLK rise to D0-D31 input	t _{BACC}		T-8.0	2.0	2.4	12.8	
13	Data hold time with respect to SMCCLK rise	t _{CDH}	3.0		3.0	3.0	3.0	
14	WAITn setup time with respect to SMCCLK rise	t _{TK}	5.0		5.0	5.0	5.0	
15	WAITn hold time with respect to SMCCLK rise	t _{КТ}	8.0		8.0	8.0	8.0	
16	SMCWEn low level width	t _{WW}	LT - 8.0		52.0	54.5	54.5	
17	SMCWEn rise to D0-D31 setup time	t _{SDW}	LT - 10.0		50.0	52.5	52.5	
18	SMCWEn rise to D0- D31 hold time	t _{HDW}	(K- L)T - 4.0		36.0	37.7	37.7	

Read/write cycle (synchronous mode)

• The variables used in the equations in the table are defined as follows:

N = Number of t_{RC} cycles + required wait states, M = Number of t_{CEOE} cycles

K = Number of t_{WC} cycles + required wait states, L = Number of t_{WP} cycles

Measuring Condition

Connection

2. DVCC3IOx0.7≦SELDVCCM≦DVCC3IO

Register

2. PMCDRV<DRV_MEM1:0>=11 (Full Drive)

Loaded capacitance

CL = 25 pF

TOSHIBA

(1) Synchronous memory read cycle (0 wait states, $t_{RC} = 7$, $t_{CEOE} = 3$)

(2) Synchronous memory read cycle (1 wait state, $t_{RC} = 6$, $t_{CEOE} = 3$)

(3) Synchronous memory write cycle (0 wait states, $t_{WC} = 6$, $t_{WP} = 3$)

4.3.3 DDR SDRAM Controller AC Electrical Characteristics

AC measurement conditions

- The letter "T" used in the equations in the table represents the period of internal bus frequency (f_{HCLK}), which is one-half of the CPU clock (f_{FCLK}).
- Output level: High = $0.7 \times \text{DVCCM}$, Low = $0.3 \times \text{DVCCM}$
- Input level: High = 0.9 \times DVCCM, Low = 0.1 \times DVCCM
- Note 1: Only DDR SDRAM devices of LVCMOS type are supported. DDR SDRAM devices of SSTIL (2.5 V) type are not supported.
- Note 2: The "Equation" column in the table shows the specifications under the conditions DVCCM=1.7 V to 1.9 V and DVCC1A=DVCC1B=DVCC1C=1.4 to 1.6 V.

No	Parameter	Symbol	Equation		100	96	Lloit
INO.			Min	Max	MHz	MHz	Unit
1	DMCDCLKP/ DMCDCLKN cycle time	t _{CK}	Т		10	10.4	
2	DMCDCLKP&DMCDCLKN Clock Skew time		-0.35	0.35			
3	CLK high level width	t _{CH}	0.5T-0.5		4.5	4.7	
4	CLK low level width	t _{CL}	0.5T-0.5		4.5	4.7	
5	DMCDQSx Access time from CLK(CL*=3)	t _{AC1}		2T-13.5	6.5	7.3	
6	Data Access time from CLK(CL*=3)	t _{AC2}		2T-13.5	6.5	7.3	
7	DQS to Data Skew time	t _{DQSQ}	0	0.7	0.7	0.7	
8	Address set-up time	t _{AS}	0.5T - 3.0		2.0	2.2	nS
9	Address hold time	t _{AH}	0.5T-3.0		2.0	2.2	
10	CKE set-up time	t _{CKS}	0.5T-3.0		2.0	2.2	
11	Command set-up time	t _{CMS}	0.5T-3.0		2.0	2.2	
12	Command hold time	t _{CMH}	0.5T-3.0		2.0	2.2	
13	Data Setup Time	t _{DS}	0.25T - 1.5		1.0	1.1	
14	Data Hold Time	t _{DH}	0.25T - 1.5		1.0	1.1	
15	DMCDDM Setup Time	t _{MS}	0.25T - 1.5		1.0	1.1	
16	DMCDDM Hold Time	t _{MH}	0.25T - 1.5		1.0	1.1	
17	Write command to 1'st DQS Latching Trasistion	t _{DQSS}	0.75T	1.25T	7.50 to 12.5	7.80 to 13.0	

*CL = CAS latency

In case of DDR_SDRAM, CL number counting method is defferent with SDR_SDRAM,. Memory controller CL number =(DDR_SDRAM's CL Number) - 1

Measuring Condition

Connection

- 1. DVCC3IOx0.7≦SELDVCCM≦DVCC3IO
- 2. DVCC3IOx0.7≦SELMEMC≦DVCC3IO
- 3. DMCCLKIN pin connect to DMCDCLKP

Register

- 1. PMCDRV<DRV_MEM1:0>=11 (Full Drive)
- 2. dmc_user_config5=0x0000_0048

Loaded capacitance

DMCDCLKP pin and DMCDCLKN pin: CL = 15pFOthers: CL = 25 pF

(1) DDR SDRAM read timing (2-word read mode, Memory's CAS latency = 3 Memory controller's CAS latency = 2) tCK DMCDCLKP t_{CL} tсн tdκ DMCDCLKN tсн tCL DMCCSx tCMS ^tCMH DMCRASn tCMS tCMH DMCCASn ACT READ CMD DMCWEn t_{AS} tAH A0 to A15 t_{AS} t_{AH} DMCAP DMCDDMx t_{AC1} tAC1 DMCDDQSx Input tDQSQ t_{AC2} t_{AC2} D0 to D15 . Input . Input

(2) DDR SDRAM write timing (2-word write mode)

4.3.4 Mobile SDR SDRAM Controller AC Electrical Characteristics

AC measurement conditions

• The letter "T" used in the equations in the table represents the period of internal bus frequency (f_{HCLK}), which is one-half of the CPU clock (f_{FCLK}).

- Output level: High = $0.7 \times \text{DVCCM}$, Low = $0.3 \times \text{DVCCM}$
- Input level: High = $0.9 \times \text{DVCCM}$, Low = $0.1 \times \text{DVCCM}$

Note: The "Equation" column in the table shows the specifications under the conditions DVCCM=1.7 V to 1.9 V and DVCC1A=DVCC1B=DVCC1C=1.4 to 1.6 V.

No	Parameter	Symbol	Equation		100 MH-		Lloit
INU.			Min	Max			Unit
1	CLK cycle time	t _{CK}	т		10	10.4	
2	DMCSCLK high level width	t _{CH}	0.5T - 1.5		3.5	3.7	
3	DMCSCLK low level width	t _{CL}	0.5T - 1.5		3.5	3.7	
4	Access time from CLK(CL* =2)	t _{AC}		T –4.0	6.0	6.4	
5	Data hold time from internal read	t _{HR}	2.0		2.0	2.0	ns
6	Data setup time	t _{DS}	0.5T – 3.0		2.0	2.2	
7	Data hold time	t _{DH}	0.5T – 4.0		1.0	1.2	
8	Address setup time	t _{AS}	0.5T <u>-</u> 3.0		2.0	2.2	
9	Address hold time	t _{AH}	0.5T – 4.0		1.0	1.2	
10	CKE setup time	t _{CKS}	0.5T – 3.0		2.0	2.2	
11	Command setup time	t _{CMS}	0.5T – 3.0		2.0	2.2	
12	Command hold time	t _{CMH}	0.5T – 4.0		1.0	1.2	

*CL = CAS latency

Measuring Condition

Connection

- 1. DVSSCOMx≦SELDVCCM≦DVCC3IOx0.3
- 2. DVSSCOMx≦SELMEMC≦DVCC3IOx0.3
- 3. DMCCLKIN pin connect to DVSSCOMx

Regisnter

- 1. PMCDRV<DRV_MEM1:0>=11 (Full Drive)
- 2. dmc_user_config3=0x0000_0011 (32bit bus width memory)
- dmc_user_config3=0x0000_0010 (16bit bus width memory)

Loaded capacitance

DMCSCLK pin: CL = 15pFOthers: CL = 25 pF

4.3.5 SDR SDRAM Controller Electrical Characteristics

AC measurement conditions

• The letter "T" used in the equations in the table represents the period of internal bus frequency (f_{HCLK}), which is one-half of the CPU clock (f_{FCLK}).

• Output level: High = $0.7 \times \text{DVCCM}$, Low = $0.3 \times \text{DVCCM}$

• Input level: High = $0.9 \times \text{DVCCM}$, Low = $0.1 \times \text{DVCCM}$

Note: The "Equation" column in the table shows the specifications under the conditions DVCCM=3.0 V to 3.6 V and DVCC1A=DVCC1B=DVCC1C=1.4 to 1.6 V.

No	Parameter	Symbol	Equation		100 MH-		Lloit
NO.			Min	Max		9010172	Unit
1	CLK cycle time	t _{CK}	Т		10	10.4	
2	DMCSCLK high level width	tсн	0.5T – 1.5		3.5	3.7	
3	DMCSCLK low level width	t _{CL}	0.5T – 1.5		3.5	3.7	
4	Access time from CLK(CL* =2)	t _{AC}		T <u>-</u> 4	6.0	6.4	
5	Data hold time from internal read	t _{HR}	2.0		2.0	2.0	ns
6	Data set-up time	t _{DS}	0.5T – 3		2.0	2.2	
7	Data hold time	t _{DH}	0.5T – 4.0		1.0	1.2	
8	Address set-up time	t _{AS}	0.5T – 3		2.0	2.2	
9	Address hold time	t _{AH}	0.5T – 4.0		1.0	1.2	
10	CKE set-up time	t _{CKS}	0.5T – 3		2.0	2.2	
11	Command set-up time	t _{CMS}	0.5T – 3		2.0	2.2	
12	Command hold time	t _{CMH}	0.5T – 4.0		1.0	1.2	

*CL = CAS latency

Measuring condition

Connection

- 1. DVCC3IOx0.7 \leq SELDVCCM \leq DVCC3IO
- 2. DVSSCOMx≦SELMEMC≦DVCC3IOx0.3
- 3. DMCCLKIN pin connect to DVSSCOMx

Register

- 1. PMCDRV<DRV_MEM1:0>=11 (Full Drive)
- 2. dmc_user_config3=0x0000_0011 (32bit bus width memory)
- dmc_user_config3=0x0000_0010 (16bit bus width memory)

Loaded capacitance

DMCSCLK pin: CL = 15pF

Others: CL = 25 pF

TENTATIVE

(1) SDRAM read timing (CAS latency = 2)

(3) SDRAM burst read timing (burst cycle start, CAS latency = 2)

(4) SDRAM burst read timing (burst timing end)

TENTATIVE

4.3.6 NAND Flash Controller AC Electrical Characteristics

AC measurement conditions

- The letter "T" used in the equations in the table represents the period of internal bus frequency (f_{HCLK}), which is one-half of the CPU clock (f_{FCLK}).
- Output level: High = $0.7 \times \text{DVCC3IO}$, Low = $0.3 \times \text{DVCC3IO}$
- Input level: High = $0.9 \times \text{DVCC3IO}$, Low = $0.1 \times \text{DVCC3IO}$
- Note 1: The "Equation" column in the table shows the specifications under the conditions DVCC3IO=3.0 V to 3.6 V and DVCC1A=DVCC1B=DVCC1C=1.4 to 1.6 V.
- Note 2: The letter "n" in the equations represents the value set in NDFMCR0<SPLR2:0>, the letter "m" the value set in NDFMCR0<SPHR2:0>, the letter "k" the value in NDFMCR0<SPLW2:0>, and the letter "l" the value in NDFMCR0<SPHW2:0>. Care should be taken not to use values that produce negative results.

			Equa	ition	100 MHz	96 MHz	
No. Sy	Symbol	Parameter	Min	Max	(n=3) (m=3) (k=3) (l=3)	(n=3) (m=3) (k=3) (l=3)	n=3) n=3) Unit k=3) l=3)
1-1	t _{RC}	Read access cycle	(n + m) T		60.0	62.5	
1-2	t _{WC}	Write access cycle	(k +l) T		60.0	62.5	
2	t _{RP}	NDREn low level pulse width	(n) T -10.0		20.0	21.2	
3	t _{RHP}	NDREn low high pulse width	(m) T -10.0		20.0	21.2	
4	t _{REA}	NDREn data access time		(n) T – 14	16.0	19.2	20
5	t _{OH}	Read data hold time	0		0	0	115
6	t _{WP}	NDWEn low level pulse width	(k) T -10.0		20.0	15.2	
7	t _{WHP}	NDWEn low high pulse width	(I) T -10.0		20.0	15.2	
8	t _{DS}	Write data setup time	(k) T -10.0		20.0	15.2	
9	t _{DH}	Write data hold time	(I) T -10.0		20.0	20.0	

AC measurement conditions CL = 40 pF

4.3.7 LCD Controller

AC measurement conditions

- The letter "T" used in the equations in the table represents the period of internal bus frequency (f_{HCLK}), which is one-half of the CPU clock (f_{FCLK}).
- Output level: High = $0.7 \times \text{DVCC3LCD}$, Low = $0.3 \times \text{DVCC3LCD}$

Note: The "Equation" column in the table shows the specifications under the conditions DVCC3LCD=1.8 V to 3.6 V and DVCC1A=DVCC1B=DVCC1C=1.4 to 1.6 V.

Doromotor	Symbol	Equa	ation	100 MHz	96 MHz	48 MHz	Lloit
Farameter	Symbol	Min	Max	(n=3)	(n=3)	(n=2)	Unit
LCLCP clock period (nT)	t _{CW}	30		30.0	31.25	41.6	
LCLCP high level pulse width		When n = even					
(including phase reversal)	town	(nT / 2) – 5.0		5.0	5.4	15.8	
	CWH	When n= odd		5.0			
		((n-1)T / 2) - 5.0					
LCLCP low level pulse width		When n = even					
(including phase reversal)	t _{CWL}	(nT / 2) – 5		15.0	15.8	15.8	
		When $n = odd$					
		((n+1)T / 2) - 5					ns
Data valid to LCLCP fall		When n = even					
(including phase reversal)		(nT / 2) - 6.0		4.0		44.0	
	^t DSU	When n= odd		4.0	4.4	14.8	
		((n-1)T / 2) – 6.0					
LCLCP fall to data hold	CLCP fall to data hold						
(including phase reversal)		(nT / 2) - 6.0		14.0	14.8	14.8	
	^t DHD	When n = odd					
		((n+1)T / 2) - 6.0					

AC measurement conditions

• CL = 20 pF

Note: The letter "n" in the equations represents the value set in LCDTiming2<PCD9:0> plus two. The following limitations apply to the "n" value depending on operating frequency.

Example 1: When $f_{HCLK} = 100 \text{ MHz}$, LCDTiming2<PCD9:0> $\geq 1 \text{ (n} \geq 3$).

Example 2: When $f_{HCLK} = 48 \text{ MHz}$, LCDTiming2<PCD9:0> $\geq 0 \text{ (n} \geq 2$).

4.3.8 SD Card

AC measurement conditions

- The letter "T" used in the equations in the table represents the period of internal bus frequency (f_{HCLK}), which is one-half of the CPU clock (f_{FCLK}).
- Output level: High = $0.7 \times \text{DVCC3IO}$, Low = $0.3 \times \text{DVCC3IO}$
- Input level: High = $0.9 \times \text{DVCC3IO}$, Low = $0.1 \times \text{DVCC3IO}$

(HIGH SPEED MODE)

Parameter	Symbol	Equ	ation	CL	Unit
i arameter	Symbol	Min	Max	0L	Onit
SDCxCLK clock period	t _{CR}	20.0	10000	≦10pF	
SDCxCLK high level pulse width	t _{HB}	7.0		≦10pF	
SDCxCLK low level pulse width	t _{LB}	7.0		≦10pF	
SDCxCLK rise time	t _{TLH}		3.0	≦10pF	
SDCxCLK fall time	t _{THL}		3.0	≦10pF	
Input setup time with respect to SDCxCLK rise	t _{SD}	6.0		≦40pF	ns
Input hold time with respect to SDCxCLK rise	t _{HD}	2.0		≦40pF	
Output delay time with respect to SDCxCLK rise	tODLY		14.0	≦40pF	
Output hold time with respect to SDCxCLK rise	tон	2.5		≦40pF	

Note: The "Equation" column in the table show the specifications under the conditions DVCC3IO=3.0 V to 3.6 V and DVCC1A=DVCC1B=DVCC1C=1.4 to 1.6 V.

AC measurement conditions

- The letter "T" used in the equations in the table represents the period of internal bus frequency (f_{HCLK}), which is one-half of the CPU clock (f_{FCLK}).
- Output level: High = $0.7 \times \text{DVCC3IO}$, Low = $0.3 \times \text{DVCC3IO}$
- Input level: High = $0.9 \times \text{DVCC3IO}$, Low = $0.1 \times \text{DVCC3IO}$
- Note: The "Equation" column in the table shows the specifications under the conditions DVCC3IO=3.0 V to 3.6 V and DVCC1A=DVCC1B=DVCC1C=1.4 to 1.6 V.

(NORMAL MODE)

Deremeter	Symbol	Equa	ation	CI	Unit
Parameter	Symbol	Min	Max	UL	
SDCxCLK clock period	t _{CR}	40.0	10000	≦10pF	
SDCxCLK high level pulse width	t _{HB}	10.0		≦10pF	
SDCxCLK low level pulse width	t _{LB}	10.0		≦10pF	
SDCxCLK rise time	t _{TLH}		10	≦10pF	
SDCxCLK fall time	t _{THL}		10	≦10pF	
Input setup time with respect to SDCxCLK rise	t _{SD}	5.0		≦40pF	ns
Input hold time with respect to SDCxCLK rise	t _{HD}	5.0		≦40pF	
Output delay time with respect to SDCxCLK rise	t _{ODLY}	0	14.0	≦40pF	

4.3.9 SSP Controller

AC measurement conditions

- The letter "T" used in the equations in the table represents the period of internal bus frequency (f_{PCLK}).
- Output level: High = $0.7 \times \text{DVC3IOM}$, Low = $0.3 \times \text{DVCC3IO}$
- Input level: High = $0.9 \times \text{DVCC3IO}$, Low = $0.1 \times \text{DVCC3IO}$
- Note: The "Equation" column in the table shows the specifications under the conditions DVCC3IO=3.0 V to 3.6 V and DVCC1A=DVCC1B=DVCC1C=1.4 to 1.6 V.

		Equatio	on	PCLK	PCLK	
	0			100MHz	96MHz	11.27
Parameter	Symbol	Min	Max	(m=6	(m=6	Unit
				n=12)	n=12)	
SPxCLK Period (Master)	T _m	50		60.0	62.5	
SPxCLK Period (Slave)	Ts	(n)T		120.0	125.0	
SPxCLK rise up time	t _r		10.0	10.0	10.0	
SPxCLK fall down time	t _f		10.0	10.0	10.0	
Master mode: SPxCLK low level pulse width	t _{WLM}	(m)T / 2 - 7.0		23.0	24.3	
Master mode: SPxCLK high level pulse width	t _{WHM}	(m)T / 2 –7.0		23.0	24.3	
Slave mode: SPxCLK low level pulse width	t _{WLS}	(n)T / 2 - 7.0		53.0	55.5	
Slave mode: SPxCLK high level pulse width	t _{WHS}	(n)T / 2 - 7.0		53.0	55.5	
Master Mode:	tonsm		15.0	15.0	15.0	
SPxCLK rise/fall to output data valid	ODOM					
Master Mode:	t _{ODHM}	(m)T/2 -10		20.0	21.3	
Master Mede:						
SPxCLK rise/fall to input data valid delay time	t _{IDSM}		(m)T /2 - 20	25.0	26.3	nS
Master Mode:	t _{IDHM}	5.0		5.0	5.0	
SPxCLK rise/fall to input data hold						
Master Mode: SPxFSS valid to SPxCLK rise/fall	tofsm	(m)T -10	(m)T+10			
Slave mode: SPxCLK rise/fall to output data valid delay time	t _{ODSS}		(3T) + 25	55.0	56.3	
Slave mode: SPxCLK rise/fall to output data hold	t _{ODHS} Note1)	(n)T/2 + (2T)		80.0	83.3	
Slave mode: SPxCLK rise/fall to input data valid delay time	t _{IDSS}		(n)T/2 + (3T) - 10.0	80.0	83.8	
Slave mode: SPxCLK rise/fall to input data hold	t _{IDHS}	(2T) +10		30.0	30.8	
Slave mode: SPxFSS valid to SPxCLK rise/fall	tOFSS	(n)T				

Note1: Baud rate Clock is set under below condition

Master mode

 $m = (\langle CPSDVSR \rangle \times (1 + \langle SCR \rangle)) = f_{PCLK} \checkmark SPxCLK$

<CPSDVR> is set only even number and "m" must set during 65204 \geqq m $\geqq~2$

Slave Mode

 $n = f_{PCLK} \checkmark SPxCLK (65204 \ge n \ge 12)$

AC measurement conditions: Load capacitance CL = 25 pF

SSP SPI mode (Master)

- * $f_{PCLK} \ge 2 \times SPxCLK$ (max.)
- * $f_{PCLK} \leq 65204 \times SPxCLK$ (min.)
- (1) Master SSPxCR0<SPH>= "0" (Data is latched on the first edge.)

SSP SPI mode (Master)

SSP SPI mode (Slave)

* $f_{PCLK} \ge 12 \times SPxCLK \text{ (max.)}$

* $f_{PCLK} \leq 65204 \times SPxCLK$ (min.)

(3) Slave SSPxCR0<SPH>= "0" (Data is latched on the first edge.)

SSP SPI mode (Slave)

(4) Slave SSPxCR0<SPH>= "1" (Data is latched on the second edge.)

4.3.10 I2S

AC measurement conditions

The letter "T" used in the equations in the table represents the period of internal bus frequency (f_{PCLK}). PCLK \geqq 16 \times 12SxSCLK

The letter "t" used in the equations in the table represents the period of internal bus frequency (f_{OSCH}). Output level: High = 0.7 × DVCC3I2S, Low = 0.3 × DVCC3I2S

Input level: High = 0.9 \times DVCC3I2S, Low = 0.1 \times DVCC3I2S

Note: The "Equation" column in the table shows the specifications under the conditions DVCC3I2S=1.8 V to 3.6 V and DVCC1A=DVCC1B=DVCC1C=1.4 to 1.6 V. In slave mode, the stabilization time is required after I2SxCLK input.

Deren	ootor	Symbol	Equ	uation			Unit
Paran	netel	Symbol	Min	Max			Unit
I2SSCLK Input		f _{sc}		24.576	24.576	24.576	MHz
	Use I2SSCLK	f _{MC}	f _{SC} /1	6.144 to 24.576	6.144 to 24.576		MHz
125MCLK Out	Use f _{OSCH}	f _{MC}	t /1	2.5 to 27	2.5 to 27		MHz
I2SSCLK rise time	e	tr	-	5	5	5	
I2SSCLK fall time)	t _f	-	5	5	5	
I2SxMCLK high le	evel pulse width	t _{WMH}	10	-	10	10	
I2SxMCLK low let	vel pulse width	t _{WML}	10	-	10	10	
I2SxCLK clock ou	Itput period	f _{scкм}	333	-	333	333	
I2SxCLK clock in	put period	f _{SCKS}	160	-	160	160	
I2SxCLK high lev	el pulse width	t _{WH}	0.45 f _{scкм}	-	149	149	
I2SxCLK low leve	el pulse width	t _{WL}	0.45 f _{scкм}	-	149	149	
Master mode: I2S1DATO, I2SxV	mode: TO, I2SxWS hold time t _{HTRM} 0.5 f _{SCKM} + 2T		0.5 f _{SCKM} + 2T	_	186	187	
Master mode: I2S1DATO, I2SxWS_delay time		t _{DTRM}	-	0.5 f _{SCKM} + 3T+10	206	207	
Master mode: I2S0DATL setup time		t _{SRM}	10.0	_	10	10	
Master mode: I2S0DATI hold tir	ne	t _{HRM}	0.2 f _{SCKM}	_	66	66	115
Master mode:		t _{DLY0}	_	20.0	20	20	
Master mode: I2SxMCLK. I2SxSCLK delay time		t _{DLY1}	-	10.0	10	10	
Slave mode: I2S1DATO, I2SxWS hold time		t _{HTRS}	0.5 f _{SCKS} + 2T	-	100	100	
Slave mode: I2S1DATO, I2SxWS delay time		t _{DTRS}	-	0.8 f _{SCKS} + 3T+20	178	179	
Slave mode: I2S0DATI setup time		t _{SRS}	10.0	_	10	10	
Slave mode I2S0DATI hold tir	ne	t _{HRS}	0.2 f _{SCKS}	_	32	32	

AC measurement conditions: Load capacitance CL = 25 pF

(1) I²S master mode

4.3.11 CMOS Sensor I/F

AC measurement conditions

- The letter "T" used in the equations in the table represents the period of internal bus frequency (f_{HCLK}), which is one-half of the CPU clock (f_{FCLK}).
- Output level: High = 0.7 \times DVCC3CMS, Low = 0.3 \times DVCC3CMS
- Input level: High = $0.9 \times \text{DVCC3CMS}$, Low = $0.1 \times \text{DVCC3CMS}$
- Note: The "Equation" column in the table shows the specifications under the conditions DVCC3CMS=1.8 V to 3.6 V and DVCC1A=DVCC1B=DVCC1C=1.4 to 1.6 V.

Deremeter	Sumbol	Equa	Unit	
Parameter	Зупрог	Min	Max	Unit
CMSPCK input frequency *	f _{PCK}	2.0	35.0	MHz
CMSPCK input rise time	t _r		5.0	
CMSPCK input fall time	t _f		5.0	
CMSPCK low level pulse width	t _{CWL}	10.0		
CMSPCK high level pulse width	t _{CWH}	10.0		
CMSD[7:0] input data valid to CMSPCK rise	t _{DS}	5.0		
CMSPCK rise to CMSD[7:0] input data hold	t _{DH}	5.0		ns
CMSHBK, CMSVSY input to CMSPCK rise	t _{CS}	5.0		
CMSPCK rise to CMSHBK, CMSVSY hold	t _{CH}	0		

AC measurement conditions:

• The CMSPCK input frequency must be one-half or less of the frequency of the internal system clock (f_{HCLK)}).

4.4 AD Conversion Characteristics

Parameter	Symbol	Condition	Min	Тур	Max	Unit
Analog reference voltage (+)	VREFH		AVCC3AD	AVCC3AD	AVCC3AD	
Analog reference voltage (-)	VREFL		DVSSCOMn	DVSSCOMn	DVSSCOMn	
AD converter power supply voltage	AVCC3AD		3.0	3.3	3.6	V
AD converter GND	AVSS		DVSSCOMn	DVSSCOMn	DVSSCOMn	
Analog input voltage	AVIN		VREFL		VREFH	
Analog reference voltage	IREFON	<vrefon> = 1</vrefon>		2.1	3.5	mA
Power supply current	IREFOFF	<vrefon> = 0</vrefon>		0.1	10	μA
Full Scale Error	EFULL			+1	-1~ +4	LSB
Offset Error	EOFF			-3	-4~ +1	LSB
Differential Error	EDNL			-1~ +2	±2	LSB
Integral Error	EINL			-2~ +3	±3	LSB

Note 1: Error = ("conversion result" – "theoretical value")

1 LSB = (VREFH - VREFL)/1024[V]

Note 2: The quantization error does not include.

Note 3: Minimum operating frequency

The minimum operating clock and maximum operating clock (ADCLK) of the AD converter is 3 MHz and 35 MHz, respectively. (3MHz \leq ADCLK \leq 33MHz)

Minimum conversion time is 1.39 μ s at 33MHz, and Maximum conversion time is 15.3 μ s at 3MHz.

4.5 Recommended Oscillation Circuit

The TMPA910CRA is evaluated by using the resonators shown below. Please use this information when selecting the resonator to be used.

- Note: The total load capacitance of the oscillation pins is the sum of the external (or internal) load capacitances C1and C2 and the stray capacitance on the circuit board. Even if the recommended C1 and C2 constants are used, the total load capacitance may vary with each board. In board design, the patterns around the oscillation circuit must be as short as possible. We also recommend that oscillation evaluations be performed on the actual board to be used.
 - (1) Connection example

(2) Recommended ceramic resonator: Murata Manufacturing Company, Ltd.

The table below shows the recommended circuit constants for the high-frequency oscillation circuit.

MOL	Oscillation			Recommended constants				Recommended operating conditions		
MCU	[MHZ]	туре	Recommended resonator	C1 [pF]	C2 [pF]	Rd [Ω]	Rf [Ω]	Power supply voltage range [V]	Temperature range [°C]	
	10.000	SMD	CSTCE10M0G55-R0	(33)	(33)					
	10.000	LEAD	CSTLS10M0G56-B0	(47)	(47)					
	12.000	SMD	CSTCE12M0G55-R0	(33)	(33)					
	16.000	SMD	CSTCE16M0V51-R0	(5)	(5)					
	16.000	LEAD	CSTLS16M0X51-B0	(5)	(5)		Onen	1.4 to 1.6	-0 to + 70	
TIMP ASTOCICANDO		SMD	CSTCE20M0V51-R0	(5)	(5)	0	Open	1.4 10 1.0	-0 10 + 70	
	20.000	Mini SMD	CSTCG20M0V51-R0	(5)	(5)					
	24.000	Mini SMD	CSTCG24M0V51-R0	(5)	(5)					

Note 1: Constants C1 and C2 indicates values for the built-in load capacitance type.

Note 2: The part numbers and specifications of Murata's products are updated as occasion requires. For details, please check the website of Murata.

http://www.murata.co.jp.

Note 3: When the ceramic resonator is used for High-frequency oscillator circuit, USB device controller require using the clock in High precision. In this case, using the clock precision is 24MHz ±100ppm or less from 24MHz.

(3) Recommended crystal high-frequency resonator: KYOCERA KINSEKI Corporation The table below shows the recommended circuit constants of the high-frequency oscillation circuit.

MOL	Oscillation frequency [MHZ]	Recommended resonator	Recommended constants				Recommended operating conditions		
MCU			C1 [pF]	C2 [pF]	Rd [Ω]	Rf [Ω]	Power supply voltage range [V]	Temperature range [°C]	
TMPA910CRAXBG	24.000	CX2520SB	3	3	0	Open	1.4 to 1.6 1.2 to 1.6	-0 to +70	

(4) Recommended crystal low-frequency resonator: KYOCERA KINSEKI Corporation The table below shows the recommended circuit constants of the low-frequency

os	oscillation circuit.									
MOL	Oscillation	Recommended	Reco	mmend	ed con	stants	Recommende condit	ed operating ions		
MCU	[kHZ]	resonator	C1	C2	Rd	Rf	Power supply	Temperature		
			[pF]	[pF]	[Ω]	[Ω]	voltage range [V]	range [°C]		
TMPA910CRAXBG	32.768	ST-4115B	8	8	470	Open	3.0 to 3.6	-0 to +70		

Note 2: The part numbers and specifications of KYOCERA KINSEKI's products are updated as occasion requires. For details, please check the website of KYOCERA KINSEKI. http://www.kinseki.co.jp/.

5. Package Dimensions

Package name: P-FBGA361-1616-0.80AZ

