embedded-linux.co.uk The Inner Penguin

N {
Ho -
Over and over again: periodic tasks in Linux

Fri, 09/25/2009 - 17:03 — csimmonds

Itis very common for real-time applications to have tasks that need to run periodically, for example to scan inputs or to generate regular
outputs. Acrude solution is to use a processing loop with a sleep at the end, but the periodicity will vary as the execution time varies. To
create accurate periodic tasks you need to use timers. In this article | will show how timers work in Linux, especially with regard to multi-

threaded applications.

Linux has several different timer interfaces, acquired over many years. Which to use depends on the versions of the kernel and C library
you have. If you are using GNU libc 2.8 and kernel 2.6.25 or later, the timerfd interface is the best. If you are using GNU libc 2.3 and any
version of the 2.6 kernel, the POSIXtimers interface works well. If you are using uClibc you should use setitimer. | have examples of all

three below.

In the examples | have separated out the timer code into two functions, make_periodic and wait_period:

struct periodic_info
{

/* Opaque data */
I

int make periodic (unsigned int period, struct periodic_info *info);
void wait period (struct periodic_info *info);

You call make_periodic at the start of the thread giving the period in microseconds and then call wait_period when execution is
complete. This is inspired by RTAI [1] which has functions rt_task_make_periodic and rt_task_wait_period to do the same thing. To

show you what | mean, here is an example of a thread with a period of 10 ms:

void *thread 1 (void *arg)

{
struct periodic_info info;
make periodic (10000, &info);
while (1)
{
/* Do useful work */
wait period (&info);
}
return NULL;
}
Using timerfd

The timerfd interface is a Linux-specific set of functions that present POSIX timers as file descriptors (hence the fd) rather than signals
thus awoiding all that tedious messing about with signal handlers. It was firstimplemented in GNU libc 2.8 and kernel 2.6.25: if you have

them | highly recommend this approach.

You create a timer by calling timerfd_create() giving the POSIX clock id CLOCK_REALTIME or CLOCK_MONOTONIC. For periodic timers

http://www.embedded-linux.co.uk/
http://www.embedded-linux.co.uk/tutorial/periodic_threads#ref_1
http://www.embedded-linux.co.uk/

such as we are creating it does not matter which you choose. For absolute timers the expirytime is changed if the system clock is
changed and the clock is CLOCK_REALTIME. In almost all cases, CLOCK_MONOTONIC is the one to use. timerfd_create returns a file
descriptor for the timer.

To setthe timer running, call timerfd_settime() giving flag = TFD_TIMER_ABSTIME for an absolute timer or O for relative, as we want
here, and the period in seconds and nanoseconds. To wait for the timer to expire, read from its file descriptor. It always returns an
unsigned long long (8 byte unsigned integer) representing the number of timer events since the lastread, which should be one ifall is
going well. Ifitis more than one then some events have been missed. In myexample below | keep a record in "wakeups_missed".

#include

struct periodic_info
{

int timer fd;

unsigned long long wakeups missed;
}i

static int make periodic (unsigned int period, struct periodic_info *info)
{

int ret;

unsigned int ns;

unsigned int sec;

int fd;

struct itimerspec itval;

/* Create the timer */
fd = timerfd create (CLOCK MONOTONIC, 0);
info->wakeups missed = 0;
info->timer fd = fd;
if (fd == -1)
return fd;

/* Make the timer periodic */

sec = period/1000000;

ns = (period - (sec * 1000000)) * 1000;
itval.it interval.tv_sec = sec;

itval.it interval.tv nsec = ns;

itval.it value.tv sec = sec;

itval.it value.tv _nsec = ns;

ret = timerfd settime (fd, 0, &itval, NULL);
return ret;

static void wait period (struct periodic info *info)
{

unsigned long long missed;

int ret;

/* Wait for the next timer event. If we have missed any the
number is written to "missed" */
ret = read (info->timer fd, &missed, sizeof (missed));
if (ret == -1)
{
perror ("read timer");
return;

/* "missed" should always be >= 1, but just to be sure, check it is not 0 anyway */
if (missed > 0)
info->wakeups missed += (missed - 1);

Using POSIX timers

If your glibc or kernel doesn't support timerfd, then you will have to use POSIXtimers to generate signals and wait for the signal to arrive
to indicate the start of the next period. This causes problems because signals are sentto the process not the thread. If you have several
periodic threads, and therefore several timers, in a process each one must use a different signal to tell them apart. The obvious signals
to use are the real time signals from SIGRTMIN (33) to SIGRTMAX (64), so you cannot have more than 32 timers per process. Note per

process: itis perfectly acceptable to have 32 other timers in another process.

The way to wait for a signal to arrive is to block it and then call sigwait(). Here is another complication: although signals are sentto the
parent process, each thread has its own signal mask. | will write another article on the reasons itis done this way, butin this case it has
the implication that all the real time signals must be blocked before creating any threads so that they all inheritthe same mask. Doing it
any other way risks the race condition where the signal is delivered before all threads have blocked it, resulting in the process being
killed

You can detect missed timer events using the function timer_getoverrun (), which returns zero if none were missed. Here is the code:

struct periodic info

{
int sig;
sigset t alarm sig;
int wakeups missed;
}

static int make periodic (int unsigned period, struct periodic_info *info)
{

static int next sig;

int ret;

unsigned int ns;

unsigned int sec;

struct sigevent sigev;

timer t timer id;

struct itimerspec itval;

/* Initialise next sig first time through. We can't use static
initialisation because SIGRTMIN is a function call, not a constant */
if (next _sig == 0)
next sig = SIGRTMIN;
/* Check that we have not run out of signals */
if (next_sig > SIGRTMAX)
return -1;
info->sig = next sig;
next sig++;

info->wakeups missed = 0;
/* Create the signal mask that will be used in wait period */
sigemptyset (&(info->alarm sig));

sigaddset (&(info->alarm sig), info->sig);

/* Create a timer that will generate the signal we have chosen */

sigev.sigev _notify = SIGEV SIGNAL;
sigev.sigev signo = info->sig;
sigev.sigev_value.sival ptr = (void *) &timer_id;
ret = timer create (CLOCK MONOTONIC, &sigev, &timer id);
if (ret == -1)

return ret;

/* Make the timer periodic */

sec = period/1000000;

ns = (period - (sec * 1000000)) * 1000;

itval.it interval.tv_sec = sec;

itval.it interval.tv_nsec = ns;

itval.it value.tv sec = sec;

itval.it value.tv nsec = ns;

ret = timer settime (timer id, 0, &itval, NULL);
return ret;

static void wait period (struct periodic info *info)

{

int sig;

sigwait (&(info->alarm sig), &sig);

info->wakeups missed += timer getoverrun (info->timer id);
}

int main(int argc, char *argvl[])
{

sigset t alarm sig;

int i;

/* Block all real time signals so they can be used for the timers.
Note: this has to be done in main() before any threads are created
so they all inherit the same mask. Doing it later is subject to
race conditions */

sigemptyset (&alarm sig);

for (i = SIGRTMIN; i <= SIGRTMAX; i++)

sigaddset (&alarm sig, 1i);
sigprocmask (SIG BLOCK, &alarm sig, NULL);

Using setitimer

This ONLY works if you are using uClibc. Actually the real determinantis that you are using the Linux Threads library rather than the
Native POSIX Threads Library. With very few exceptions, uClibc uses Linux Threads, glibc uses NPTL.

Using setitimer is somewhat similar to POSIX clocks except thatitis hard coded to deliver a SIGALRM at the end of each period. Using
NPTL that means that you can only have one periodic task per process, but with Linux Threads each thread IS a process so thatis fine:
you can have as many periodic threads as you like.

Setitimer is part of the base POSIX specification and has been presentin Linuxsince the year dot. The time outis passed in a struct
itimerval which contains an initial time out, it_value, and a periodic time outin it_interval which is reloaded into it_value everytime it
expires. At each expiry it sends a SIGALRM. The times are given in microseconds which will be rounded up the the granularity of your
timers if they are greater than 1 us. The best way to handle the signal is to block it and then wait for the next one with sigwait() as shown
below. There is no easyway to detect missed timer events.

Here is the code:

struct periodic info
{

sigset t alarm_sig;
Y

static int make periodic (unsigned int period, struct periodic_info *info)
{

int ret;

struct itimerval value;

/* Block SIGALRM in this thread */

sigemptyset (&(info->alarm sig));

sigaddset (&(info->alarm_sig), SIGALRM);

pthread sigmask (SIG BLOCK, &(info->alarm sig), NULL);

/* Set the timer to go off after the first period and then
repetitively */
value.it value.tv sec = period/1000000;
value.it value.tv usec = period%1000000;
value.it_interval.tv_sec = period/1000000;
value.it interval.tv_usec = period%1000000;
ret = setitimer (ITIMER REAL, &value, NULL);
if (ret !'=0)
perror ("Failed to set timer");
return ret;

static void wait period (struct periodic_info *info)

{
int sig;
/* Wait for the next SIGALRM */
sigwait (&(info->alarm sig), &sig);
}
Conclusion

The accuracy of the timers will depend on the your kernel and scheduling policy and priority you use for the threads. By default all time-
outs will be rounded up to the nearest 10 ms (actually 1/HZ, butin most cases HZ = 100). If your board support package supports High
Resolution Timers (most do) enabling CONFIG_HIGH_RES_TIMERS will give you accuracy to a few microseconds. Periodic threads
are almost by definition real-time, so you probably want to give them a real-time policy such as SCHED_FIFO (in a follow-up article | will
look into the implications of real-time periodic threads). Finally, if you want to reduce jitter to sub millisecond, you should enable kernel
pre-emption (CONFIG_PREEMPT) or for jitter in the 10's to 100's microsecond region you should apply the PREEMPT_RT patch [2].

You can download demonstrations of all three techniques from here.

References

[1] RTAI: the RealTime Application Interface, https://www.rtai.org/

[2] The PREEMPT_RT real time patch series, http://www.kernel.org/pub/linuxkernel/projects/rt/

Pthreads

Comments

http://www.embedded-linux.co.uk/taxonomy/term/3
http://www.embedded-linux.co.uk/tutorial/periodic_threads#ref_2
http://www.embedded-linux.co.uk/downloads/periodic-threads-examples.tar.gz
https://www.rtai.org/
http://www.kernel.org/pub/linux/kernel/projects/rt/

Comment viewing options

I B S - -ctng: |

Select your preferred w ay to display the comments and click "Save settings" to activate your changes.

dream hosting Wed, 11/28/2012 - 21:08 — Trergienl (not verified)

this website
Finding Your Path Round The Web Hosting Entire world

When designing a site, you'll oughtto choose a web hosting company sooner or later in time. Although you may don't know very much
about website hosting, there are many quick questions you may request to make sure you get what you require ata cost you really can
afford. Keep reading for what you must watch out for throughout your hunt.

The down time of your web host ought to be carefully scrutinized. The time period accustomed to conduct hosting company servicing,
along with the time the maintenance is carried out, must be thought about. If they seem to be off-line during optimum hrs or regularly

through the entire month, you will need a better number.

Support all of your current information and facts, don't depend on any web hostto accomplish this. It's up to you to ensure you back your
blog often. This reallyis the only method to make certain a challenge doesn't damage your data. If your internet site is Search engine
optimisation intense, it can be specially significant not to take a chance on losing everything that operate.

Be sure that there are actually no costs for cancellation. You could decide to end your assistance after few weeks. When you visit stop,
you might find out your company has a big cancellation payment. Itis a standard exercise, specifically for web hosting solutions which
can be affordable. Ensure you understand what the results will likely be of finishing a contract early on.

Low-cost web hosts will not be the most effective solution. When you'll certainly be tempted by their the best prices, you must also know
that they generally convert to poor quality providers. They either possess a unsafe business model, or these are cutting edges in a

fashion that will end up impacting you and your website.

Read about your potential hold to see what kind of internet sites they handle. Plenty of totally free internet sites offer you only stationary
webpages, which means you can't put vocabulary scripts of your personal. If you discover your self requiring a dynamic scripting site,
you might need to find an cost-effective pay host rather.

Do not let the amount of alternatives available with web hosting companies to overwhelm you. More than the recent years, countless
new website hosting providers have came into the marketplace several present rock-base prices. Keep in mind that in internet hosting,
as with most things, you will get the things you pay for. You may thin your options straight down by trying to find your leading tastes
inside a web host, and comparing prices and offerings properly.

An effective web hostis communicative. You want a host that communicates having its clients and provide them information on any
updates or down time and upkeep. It is additionally significant to possess a hosting provider that can response your questions must
anytroubles come up.

Discover more about the backdrop of any web hosting support just before investing in a plan. Some companies make outlandish claims
or promises that cannot be substantiated. Doing your research is the best way to make the right decisions.

See how big your site is going to be inside the next year and select a internet hosting plan which gives you adequate hard disk drive
area. An Web-page coding site takes minimal area, but incorporating pictures or videos will require a lot more space. For internet

hosting data files by itself, all around 100MB - 1 GB ought to give a great starting system for your domain.

If you love services or design and style program from one business, you don't must feel you have to utilize the web hosting services they
supply also. Most hosts that you deal with will allow you to use various professional services, even if you will likely possess a more
difficult ime addressing problems by doing this.

Just because an online number company s free, does not always mean you should guideline it all out entirely. You may be wary of cost-
free online hosts due to the fact many of them spot banner adverts on top of your websites, producing your site look unprofessional.
Even so, some cost-free hosts don't use banner ad adverts, so it's well worth looking into cost-free hosting services that appeal to you

http://www.lambdaflash.co.uk/
http://www.embedded-linux.co.uk/tutorial/periodic_threads#comment-5521
http://www.lambdaflash.co.uk/

as an alternative to judgment them out instantly. Understand that utilizing a totally free hold will save you lots of money every single 12
months.

Ensure that your website address is listed by you rather than your host company to help you ensure that it stays should you really
transform providers. This spots the charge of your site in your hands, as an alternative to your host's.

Deciding on a web host which can be physically found in the exact same country when your visitors will enhance the velocity of your own
internet site considerably. As an example, should your company web site is centered on British people, be sure that your computer data

server is near to your market.

Usually do not go with a totally free web host even though the services are cost-free. Hosting providers which are free usually force you
to have adverts on your internet site. Sometimes, the ads will not be associated with your website and you will probably struggle to
management what appears on your own site. Adverts will show up randomly, totally outside your manage. It will not only give your
website an less than professional visual appeal, your audiences will more than likely resent the intrusion.

Browse the site of your own potential hosting company. In case the organization includes a doubtful, glitchy or otherwise in question
internet site, prevent it. They could be a fresh firm without any expertise or perhaps a rip-off. Awell created internet site shows they have
a good focus when it comes to detail and so they have good expertise with regards to website design as well as in terms of Web

coding.

Prior to signing in the dotted digital range, ensure that you understand the information on your determination by using a number
company. You must know about hidden service fees their advertising don't talk about. Certain things, for example concealed service
fees, expenses, and penalties when the contract's span isn'timplemented by way of, could add up big time when you don't use caution.

Searching for a web hostis actually much like looking about for whatever else. You need to understand exactly what you want then
evaluate which can be a value thatis good for you, then you need to find services which aligns with one of these objectives. With a little
luck, with all the info you might have obtained using this post, it will be easyto achieve that.

reply

periodic timers - POSIX example Mon, 11/26/2012 - 02:34 — Visitor (not verified)

timer_id should be in periodic_info stuct or exist as a global variable

Bestregars,
Rafal

reply

periodic timers - POSIX example Sat, 09/15/2012 - 01:32 — Jim Gibbons (not verified)

Itlooks like timer_id should have been in periodic_info.

reply

Detecting missed timer events Tue, 02/23/2010 - 14:56 — csimmonds

One keen reader of my blog pointed out that | had misunderstood they way missed timer events are reported when using timerfd. Just to
be clear, when you read, the value is a count of the timer events since the last one, which should be 1, not zero as | stated in an earlier
draft. | have updated the article accordingly, and add in a comment about using timer_getoverrun() to do the same thing when you are
using timers created with timer_create().

Bye for now,
Chris.

reply

Post new comment

http://www.embedded-linux.co.uk/comment/reply/9/5521
http://www.embedded-linux.co.uk/tutorial/periodic_threads#comment-5520
http://www.embedded-linux.co.uk/comment/reply/9/5520
http://www.embedded-linux.co.uk/tutorial/periodic_threads#comment-5514
http://www.embedded-linux.co.uk/comment/reply/9/5514
http://www.embedded-linux.co.uk/tutorial/periodic_threads#comment-3332
http://www.embedded-linux.co.uk/comment/reply/9/3332

Your name: *

|\Asitor

E-mail: *

The content of thisfield is kept private and will not be shown publicly.

Homepage:
I

Subject:

Comment: *

Web page addresses and e-mail addresses turn into links automatically.
Allow ed HTML tags: <a> <cite> <code> <dI> <dt> <dd>

Lines and paragraphs break automatically.

More information about formatting options

By submitting this form, you accept the Mollom privacy policy.

Preview |

http://www.embedded-linux.co.uk/filter/tips
http://mollom.com/web-service-privacy-policy

