Using the POSIX API
Threads, real-time and IPC




» In Linux, when a new process is created, it already contains a
thread, used to execute the main () function

» Additional threads can be created using the pthread library, which
is part of the C library

» Of course all threads inside a given process will share the same
address space, the same set of open files, etc.

» The pthread library also provide thread synchronization
primitives: mutexes and conditions

» This pthread library has its own header : pthread.h

» Applications using pthread function calls should be explicitly

linked with the pthread library
gcc -0 app app.c -lpthread

2



» The function to create a new thread is pthread create()
int pthread create(pthread t * thread,
pthread attr t * attr,
void *(*start routine) (void *),
void * arg);
» thread is a pointer to a pthread_t structure that will be initialized
by the function. Later, this structure can be used to reference the

thread.

P Attr is a pointer to an optional structure pthread_attr _t. This
structure can be manipulated using pthread attr *()
functions. It can be used to set various attributes of the threads
(detach policy, scheduling policy, etc.)

» start routine is the function that will be executed by the thread

» arg is the private data passed as argument to the start_routine
function

e



Address space Address space

Process creation

using fork() Thread creation using pthread_create()

with function func() as start_routine




#include <pthread.h>

void *thread(void *data)
{
while(1l) {
printf(« Hello world from thread »);
}
}

int main(void) {
pthread t thj;
pthread create(& th, NULL, thread, NULL);
return 0;

L



» When the main () function exits, all threads of the application are
destroyed

» The pthread join() function call can be used to suspend the
execution of a thread until another thread terminates. This
function must be called in order to release the ressources used
by the thread, otherwise it remains as zombie.

» Threads can also be detached, in which case they become
iIndependent. This can be achieved using

» Thread attributes at thread creation, using
pthread attr setdetachstate(& attr,
PTHREAD CREATE DETACHED) ;

P pthread detach(), passing the pthread t structure as
argument

e



#include <pthread.h>

void *thread(void *data)

{
int i;
for (i = 0; i < 100; i++) {
printf(« Hello world from thread »);
}
}

int main(void) {
pthread t th;
pthread create(& th, NULL, thread, NULL);
pthread join(& th, NULL);
return 0;



@

» It is also possible to cancel a thread from another thread using the
pthread cancel() function, passing the pthread t structure of
the thread to cancel.

#include <pthread.h>

void *thread(void *data)
{
while(1l) {
printf(« Hello world from thread »);
}
}

int main(void) {
pthread t th;
pthread create(& th, NULL, thread, NULL);
sleep(l);
pthread cancel(& th);
pthread join(& th, NULL);
return O0;

e



» The pthread library provides a mutual exclusion primitive, the
pthread _mutex.

» Declaration and initialization of a pthread mutex

P Solution 1, at definition time
pthread mutex t lock

PTHREAD MUTEX INITIALIZER;
» Solution 2, at runtime

pthread mutex t lock;

pthread mutex init(& lock, NULL);

pthread mutex destroy(& lock);

» The second argument to pthread mutex init() is a set of
mutex-specific attributes, in the form of a pthread mutexattr t
structure that can be initialized and manipulated using
pthread mutexattr *() functions.

e



» Take the mutex
ret = pthread mutex lock(& lock);

» If the mutex is already taken by the calling threads, three possible
behaviours depending on the mutex type (defined at creation
time)

» Normal (« fast ») mutex : the function doesn't return, deadlock

» « Error checking » mutex : the function return with the ~-EDEADLK
error

P « Recursive mutex » : the function returns with success

» Release the mutex
ret = pthread mutex unlock(& lock);

» Try to take the mutex
ret = pthread mutex trylock(& lock);

e



» Conditions can be used to suspend a thread until a condition
becomes true, as signaled by another thread.

» Initialization, static or dynamic

P pthread cond t cond = PTHREAD COND INITIALIZER;

P pthread cond t cond;
pthread cond init(& cond, NULL);

» Wait for the condition
pthread cond wait(& cond, & mutex)

The mutex will be released before waiting and taken again after
the walit

» Signaling the condition

» To one thread waiting, pthread cond signal(& cond);
» To all threads waiting, pthread cond broadcast(& cond);

11



Receiver
side

Sender
side




See http://free-electrons.com/docs/realtime/ for an introduction
C API Available through <sched.h> (see man sched.h for details)

> sched getscheduler, sched setscheduler
Get / set the scheduling class of a process

> sched getparam, sched setparam
Get / set the priority of a process

P sched get priority max, sched get priority min
Get the maximum / minimum priorities allowed for a scheduling
class.

» sched rr get interval
Get the current timeslice of the SCHED RR process

» sched yield
Yield execution to another process.

Can also be manipulated from scripts with the chrt command.

e


http://free-electrons.com/docs/realtime/

A great way to communicate between processes
without going through expensive system calls.

» Open a shared memory object:
shm fd = shm open(“acme”, O CREAT | O RDWR, 0666);
A zero size /dev/shm/acme file appears.

» Set the shared memory object size
ftruncate(shm fd, SHM SIZE);

/dev/shm/acme is now listed with the specified size.

» If the object has already been sized by another process,
you can get its size with the £stat function.




» Map the shared memory in process address space:
addr = mmap (0, SHM SIZE, PROT WRITE,
MAP SHARED, shm fd, 0);
Now we have a memory area we can use!

» Lock the shared memory in RAM (best for real-time tasks):
mlock(addr, SHM SIZE);

» Use the shared memory object!
Other processes can use it too.




Exiting

» Unmap the shared memory object:
munmap (addr, SHM SIZE);

This automatically unlocks it too.

» Close it:
close (shm fd);

» Remove the shared memory object:
shm unlink (“acme”);

The object is effectively deleted after the last call to shm unlink.

More details in man shm open.

e



Deterministic and efficient IPC. See man mgueue.h.
Advantages for real-time applications:

» Preallocated message buffers

» Messages with priority.
A message with a higher priority is always received first.

» Send and receive functions are synchronous by default.
Possibility to set a wait timeout to avoid non-determinism.

» Support asynchronous delivery notifications.




» Declare queue attributes:

queue attr.mg maxmsg = 16;
/* max number of messages in queue */
queue attr.mg msgsize = 128;

/* max message size */

» Open a queue:
gqd = mg_open(

“/msg_queue”, /* gqueue name * /
OCREAT | O RDWR, /* opening mode */
0600, /* permissions */

&queue_ attr);

e



» Posting a message:
#define PRIORITY 3
char msg[] = “Goodbye Bill”;
mgsend(qd, msg, strlen(msg), PRIORITY);

» Closing the queue:
mg close(qgd);

Caution: simplistic example code. Should check return values.




From another application:

» Opening the shared message queue:
gd = mg open(“/msg _queue”, O RDWR,
0600, NULL);

» Waiting for a message:
mg receive(qd, text, buf, buf size, &prio);

» Close the queue:
mg close(qgd);

» Destroy the queue:
mg unlink(*“/msg queue”);

L



Resources for sharing resources between threads or
processes. See man semaphore.h.

» Named semaphores:
can be used between unrelated processes.

» Unnamed semaphores: can be used between threads from
the same process, or by related processes (parent / child).




@

P sem open
Open and / or create
a named semaphore.

P sem close
Close a named semaphore

P sem unlink
Destroy a named semaphore
P sem init
Initialize an unnamed semaphore

P sem destroy
Destroy an unnamed semaphore

P sem getvalue
Get current semaphore count

P sem wait
Try to lock the semaphore.
Wait otherwise.

P sem trywait
Just tries to lock the semaphore,
but gives up if the semaphore is
already locked.

P sem post
Release the semaphore.




» Signals are a mechanism to notify a process that an event
occured : expiration of a timer, completion of an asynchronous
/O operation, or any kind of event specific to your application

» Signals are also used internally by the system to tell a process
that it must be suspended, restarted, stopped, that is has done
an invalid memory reference, etc.

» Each signal is identified by a number : SIGSEGV, SIGKILL,
SIGUSRI1, etc.

» An APl is available to catch signals, wait for signals, mask
signals, etc.

» See signal(7) for a general description of the signal
mechanism

L



» A signal handler can be registered using

P sighandler t signal(int signum, sighandler t
handler);

P The handler has the following prototype : void handler(int
signum)

P int sigaction(int signum, const struct sigaction
*act, struct sigaction *oldact);

P The sigaction structure contains the reference to the handler
P The handler can have two different prototypes

P void handler(int signum)
P void handler(int signum, siginfo t *info, void
*data)
» Inside the handler code, only some functions can be used : only
the async-signal-safe functions, as documented by signal(7).

24



@

#include <signal.h>
#include <assert.h>
#include <unistd.h>
#include <stdio.h>

void myhandler (int signum)

{
printf("Signal catched!\n");
}
int main(void)
{
int ret;
struct sigaction action = {
.sa _handler = myhandler,
}i
ret = sigaction(SIGUSR1l, & action, NULL);
assert(ret == 0);
while(1l);
return 0;
}

From the command
line, the signal can then

be sent using
kill -USR1 PID

e L



» From the command line, with the famous kill command,
specifying the PID of the process to which the signal should be
sent

» By default, kill will send SIGTERM
» Another signal can be sent using kill -USRI1

» POSIX provides a function to send a signal to a process
P int kill(pid t pid, int sig);

» In a multithread program, the signal will be delivered to an arbitrary
thread. Use tkill () to send the signal to a specific thread.

L



> A type sigset_t is defined by POSIX, to hold a set of signals
» This type is manipulated through different functions

P sigemptyset () to empty the set of signals

P sigaddset () to add a signal to a set

P sigdelset () to remove a signal from a set

P sigfillset () to fill the set of signals with all signals

» Signals can then be blocked or unblocked using

sigprocmask(int how, const sigset t *set, sigset t *oldset);

P sigset_t are also used in many other functions

P sigaction() to give the list of signals that must be blocked during
execution of the handler

» sigpending() to get the list of pending signals

27



2 ways of waiting for signals:

P sigwaitinfo() and sigtimedwait () to wait for blocked
signals (signals which remain pending until they are processed by
a thread waiting for them.)

P sigsuspend() to register a signal handler and suspend the
thread until the delivery of an unblocked signal (which are
delivered without waiting for a thread to wait for them).




Reqular signals

P Just 2 applications-specific signals:

SIGUSR1 and SIGUSR2
» No signal priorities

P Signals can't carry any extra
information.

P Signals can be lost. When a signal
is sent multiple times, the receiver
will just process one instance.

POSIX signals

P Whole range of application specific
signals: SIGRTMIN to SIGRTMAX

» Priorities available.
Top priority signals delivered first.

P Possible to carry extra information
In a signal.

P Signals are queued. All pending
signals are processed: no signal is
lost.




Compared to standard (BSD) timers in Linux
» Possibility to have more than 1 timer per process.
» Increased precision, up to nanosecond accuracy

» Timer expiration can be notified
either with a signal or with a thread.

» Several clocks available.




Defined in /usr/include/linux/time.h

» CLOCK REALTIME
System-wide clock measuring the time in seconds and
nanoseconds since Jan 1, 1970, 00:00. Can be modified.
Accuracy: 1/HZ (1 to 10 ms)

» CLOCK MONOTONIC
System-wide clock measuring the time in seconds and
nanoseconds since system boot. Cannot be modified,
SO can be used for accurate time measurement.
Accuracy: 1/HZ

e



» CLOCK_PROCESS CPUTIME ID
Measures process uptime. 1/HZ accuracy. Can be changed.

» CLOCK THREAD CPUTIME ID
Same, but only for the current thread.




Functions defined in time.h

» clock settime
Set the specified clock to a value

» clock gettime
Read the value of a given clock

» clock getres
Get the resolution of a given clock.

See man time.h and the manual of each of these functions.




Functions also defined in time.h

» clock nanosleep
Suspend the current thread for the specified time,
using a specified clock.

» nanosleep
Same as clock_nanosleep,
using the CLOCK_REALTIME clock.




» timer create
Create a timer based on a given clock.

» timer delete
Delete a timer

» timer settime
Arm a timer.

» timer gettime
Access the current value of a timer.




» Available in Linux since 2.6.21 (on x86).
Now available on most supported platforms.

» Depending on the hardware capabilities,
this feature gives microsecond or nanosecond accuracy to the
regular clocks (CLOCK REALTIME, CLOCK MONOTONIC).

» No need to recompile your applications!




» Helpful to implement non-blocking 1/O.

» Allows to overlap compute tasks with /O processing,
to increase determinism.

» Supported functionality:
» Send multiple I/O requests at once from different sources
» Cancel ongoing I/O requests
» Wait for request completion

» Inquire the status of a request: completed, failed, or in
progress.

» APl available in aio.h (man aio.h for details)

e



» Includes: nothing special to do.
Available in the standard path.

» Libraries: link with 1ibrt

» Example:
gce -1lrt -o rttest rttest.c




POSIX manual pages may not be installed on your system

» On Debian Linux, based systems,
to find the names of the corresponding packages:
apt-cache search posix

Then, install these packages as follows:
apt-get install manpages-posix manpages-posix-dev

» Other distributions should have similar package names.

» These manual pages are also available on-line:
http://www.opengroup.org/onlinepubs/009695399/idx/realtime.html

You can almost consider these manual pages as specifications.
The standard can also be accessed on
http://www.unix.org/online.html (registration required).

e


http://www.opengroup.org/onlinepubs/009695399/idx/realtime.html
http://www.unix.org/online.html

» The POSIX manual pages

» Embedded Linux System Design and Development
P. Raghavan, A. Lad, S. Neelakandan, Auerbach, Dec. 2005.
http://free-electrons.com/redirect/elsdd-book.html
Very nice and clear coverage on real-time programming
with the POSIX interface. Nice and useful examples.

» Guide to real-time programming
http://www.phys.uu.nl/DU/unix/HTML/APS33DTE/TITLE.HTM

A 11-year old document, with some Digital Unix specifics,
but still up to date (thanks to standards).



http://free-electrons.com/redirect/elsdd-book.html
http://www.phys.uu.nl/DU/unix/HTML/APS33DTE/TITLE.HTM

	USING THE POSIX API
	The pthread library
	Creating a new thread
	Creating a new thread (2)
	Thread creation, code sample
	Joinable and detached threads
	Thread join, code sample
	Thread cancelation
	pthread mutexes (1)
	pthread mutexes (2)
	pthread conditions
	pthread conditions example
	Managing real-time priorities
	POSIX shared memory (1)
	POSIX shared memory (2)
	POSIX shared memory (3)
	POSIX message queues
	Creating and opening a message queue
	Posting a message
	Receiving a message
	POSIX semaphores (1)
	POSIX semaphores (2)
	POSIX signals
	Registering a signal handler
	Signal registration example
	Sending a signal
	Signal sets and their usage
	Waiting for signals
	POSIX real-time signals
	POSIX clocks and timers
	Available POSIX clocks (1)
	Available POSIX clocks (2)
	Time management
	Using timers (1)
	Using timers (2)
	Using high resolution timers
	Asynchronous I/O
	Compiling instructions
	POSIX manual pages
	More information on the POSIX interface

