
T I M E R S  A N D  S L E E P I N G

A timer allows a process to schedule a notification for itself to occur at some time
in the future. Sleeping allows a process (or thread) to suspend execution for a
period of time. This chapter describes the interfaces used for setting timers and for
sleeping. It covers the following topics:

� the classical UNIX APIs for setting interval timers (setitimer() and alarm()) to
notify a process when a certain amount of time has passed;

� the APIs that allow a process to sleep for a specified interval;

� the POSIX.1b clocks and timers APIs; and

� the Linux-specific timerfd facility, which allows the creation of timers whose
expirations can be read from a file descriptor.

23.1 Interval Timers

The setitimer() system call establishes an interval timer, which is a timer that expires
at a future point in time and (optionally) at regular intervals after that.
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Using setitimer(), a process can establish three different types of timers, by specify-
ing which as one of the following:

ITIMER_REAL

Create a timer that counts down in real (i.e., wall clock) time. When the
timer expires, a SIGALRM signal is generated for the process.

ITIMER_VIRTUAL

Create a timer that counts down in process virtual time (i.e., user-mode
CPU time). When the timer expires, a SIGVTALRM signal is generated for the
process.

ITIMER_PROF

Create a profiling timer. A profiling timer counts in process time (i.e., the
sum of both user-mode and kernel-mode CPU time). When the timer
expires, a SIGPROF signal is generated for the process.

The default disposition of all of the timer signals is to terminate the process. Unless
this is the desired result, we must to establish a handler for the signal delivered by
the timer.

The new_value and old_value arguments are pointers to itimerval structures,
defined as follows:

struct itimerval {
    struct timeval it_interval;     /* Interval for periodic timer */
    struct timeval it_value;        /* Current value (time until
                                       next expiration) */
};

Each of the fields in the itimerval structure is in turn a structure of type timeval, con-
taining seconds and microseconds fields:

struct timeval {
    time_t      tv_sec;             /* Seconds */
    suseconds_t tv_usec;            /* Microseconds (long int) */
};

The it_value substructure of the new_value argument specifies the delay until the
timer is to expire. The it_interval substructure specifies whether this is to be a peri-
odic timer. If both fields of it_interval are set to 0, then the timer is expires just
once, at the time given by it_value. If one or both of the it_interval fields are non-
zero, then, after each expiration of the timer, the timer will be reset to expire again
at the specified interval.

A process has only one of each of the three types of timers. If we call setitimer()
a second time, it will change the characteristics of any existing timer corresponding

#include <sys/time.h>

int setitimer(int which, const struct itimerval *new_value,
              struct itimerval *old_value);

Returns 0 on success, or �1 on error
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to which. If we call setitimer() with both fields of new_value.it_value set to 0, then any
existing timer is disabled.

If old_value is not NULL, then it points to an itimerval structure that is used to
return the previous value of the timer. If both fields of old_value.it_value are 0, then
the timer was previously disabled. If both fields of old_value.it_interval are 0, then the
previous timer was set to expire just once, at the time given by old_value.it_value.
Retrieving the previous settings of the timer can be useful if we want to restore the
settings after the new timer has expired. If we are not interested in the previous
value of the timer, we can specify old_value as NULL.

As a timer progresses, it counts down from the initial value (it_value) toward 0.
When the timer reaches 0, the corresponding signal is sent to the process, and
then, if the interval (it_interval) is nonzero, the timer value (it_value) is reloaded,
and counting down toward 0 recommences.

At any time, we can use getitimer() to retrieve the current state of the timer in
order to see how much time is left before it next expires.

The getitimer() system call returns the current state of the timer specified by which,
in the buffer pointed to by curr_value. This is exactly the same information as is
returned via the old_value argument of setitimer(), with the difference that we don�t
need to change the timer settings in order to retrieve the information. The
curr_value.it_value substructure returns the amount of time remaining until the
timer next expires. This value changes as the timer counts down, and is reset on
timer expiration if a nonzero it_interval value was specified when the timer was set.
The curr_value.it_interval substructure returns the interval for this timer; this value
remains unchanged until a subsequent call to setitimer().

Timers established using setitimer() (and alarm(), which we discuss shortly) are
preserved across exec(), but are not inherited by a child created by fork().

SUSv4 marks getitimer() and setitimer() obsolete, noting that the POSIX timers
API (Section 23.6) is preferred.

Example program

Listing 23-1 demonstrates the use of setitimer() and getitimer(). This program per-
forms the following steps:

� Establish a handler for the SIGALRM signal e.

� Set the value and interval fields for a real (ITIMER_REAL) timer using the values
supplied in its command-line arguments r. If these arguments are absent, the
program sets a timer that expires just once, after 2 seconds.

� Execute a continuous loop t, consuming CPU time and periodically calling
the function displayTimes() q, which displays the elapsed real time since the
program began, as well as the current state of the ITIMER_REAL timer.

#include <sys/time.h>

int getitimer(int which, struct itimerval *curr_value);

Returns 0 on success, or �1 on error
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Each time the timer expires, the SIGALRM handler is invoked, and it sets a global flag,
gotAlarm w. Whenever this flag is set, the loop in the main program calls displayTimes()
in order to show when the handler was called and the state of the timer y. (We
designed the signal handler in this manner to avoid calling non-async-signal-functions
from within the handler, for the reasons described in Section 21.1.2.) If the timer
has a zero interval, then the program exits on delivery of the first signal; otherwise,
it catches up to three signals before terminating u.

When we run the program in Listing 23-1, we see the following:

$ ./real_timer 1 800000 1 0         Initial value 1.8 seconds, interval 1 second
       Elapsed   Value  Interval
START:    0.00
Main:     0.50    1.30    1.00      Timer counts down until expiration
Main:     1.00    0.80    1.00
Main:     1.50    0.30    1.00
ALARM:    1.80    1.00    1.00      On expiration, timer is reloaded from interval
Main:     2.00    0.80    1.00
Main:     2.50    0.30    1.00
ALARM:    2.80    1.00    1.00
Main:     3.00    0.80    1.00
Main:     3.50    0.30    1.00
ALARM:    3.80    1.00    1.00
That's all folks

Listing 23-1: Using a real-time timer
–––––––––––––––––––––––––––––––––––––––––––––––––––––– timers/real_timer.c

#include <signal.h>
#include <sys/time.h>
#include <time.h>
#include "tlpi_hdr.h"

static volatile sig_atomic_t gotAlarm = 0;
                        /* Set nonzero on receipt of SIGALRM */

/* Retrieve and display the real time, and (if 'includeTimer' is
   TRUE) the current value and interval for the ITIMER_REAL timer */

static void
q displayTimes(const char *msg, Boolean includeTimer)

{
    struct itimerval itv;
    static struct timeval start;
    struct timeval curr;
    static int callNum = 0;             /* Number of calls to this function */

    if (callNum == 0)                   /* Initialize elapsed time meter */
        if (gettimeofday(&start, NULL) == -1)
            errExit("gettimeofday");

    if (callNum % 20 == 0)              /* Print header every 20 lines */
        printf("       Elapsed   Value Interval\n");
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    if (gettimeofday(&curr, NULL) == -1)
        errExit("gettimeofday");
    printf("%-7s %6.2f", msg, curr.tv_sec - start.tv_sec +
                        (curr.tv_usec - start.tv_usec) / 1000000.0);

    if (includeTimer) {
        if (getitimer(ITIMER_REAL, &itv) == -1)
            errExit("getitimer");
        printf("  %6.2f  %6.2f",
                itv.it_value.tv_sec + itv.it_value.tv_usec / 1000000.0,
                itv.it_interval.tv_sec + itv.it_interval.tv_usec / 1000000.0);
    }

    printf("\n");
    callNum++;
}

static void
sigalrmHandler(int sig)
{

w     gotAlarm = 1;
}

int
main(int argc, char *argv[])
{
    struct itimerval itv;
    clock_t prevClock;
    int maxSigs;                /* Number of signals to catch before exiting */
    int sigCnt;                 /* Number of signals so far caught */
    struct sigaction sa;

    if (argc > 1 && strcmp(argv[1], "--help") == 0)
        usageErr("%s [secs [usecs [int-secs [int-usecs]]]]\n", argv[0]);

    sigCnt = 0;

    sigemptyset(&sa.sa_mask);
    sa.sa_flags = 0;
    sa.sa_handler = sigalrmHandler;

e     if (sigaction(SIGALRM, &sa, NULL) == -1)
        errExit("sigaction");

    /* Exit after 3 signals, or on first signal if interval is 0 */

    maxSigs = (itv.it_interval.tv_sec == 0 &&
                itv.it_interval.tv_usec == 0) ? 1 : 3;

    displayTimes("START:", FALSE);

    /* Set timer from the command-line arguments */

    itv.it_value.tv_sec = (argc > 1) ? getLong(argv[1], 0, "secs") : 2;
    itv.it_value.tv_usec = (argc > 2) ? getLong(argv[2], 0, "usecs") : 0;
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    itv.it_interval.tv_sec = (argc > 3) ? getLong(argv[3], 0, "int-secs") : 0;
    itv.it_interval.tv_usec = (argc > 4) ? getLong(argv[4], 0, "int-usecs") : 0;

r     if (setitimer(ITIMER_REAL, &itv, 0) == -1)
        errExit("setitimer");

    prevClock = clock();
    sigCnt = 0;

t     for (;;) {

        /* Inner loop consumes at least 0.5 seconds CPU time */

        while (((clock() - prevClock) * 10 / CLOCKS_PER_SEC) < 5) {
y             if (gotAlarm) {                     /* Did we get a signal? */

                gotAlarm = 0;
                displayTimes("ALARM:", TRUE);

                sigCnt++;
u                 if (sigCnt >= maxSigs) {

                    printf("That's all folks\n");
                    exit(EXIT_SUCCESS);
                }
            }
        }

        prevClock = clock();
        displayTimes("Main: ", TRUE);
    }
}

–––––––––––––––––––––––––––––––––––––––––––––––––––––– timers/real_timer.c

A simpler timer interface: alarm()

The alarm() system call provides a simple interface for establishing a real-time timer
that expires once, with no repeating interval. (Historically, alarm() was the original
UNIX API for setting a timer.)

The seconds argument specifies the number of seconds in the future when the timer
is to expire. At that time, a SIGALRM signal is delivered to the calling process.

Setting a timer with alarm() overrides any previously set timer. We can disable
an existing timer using the call alarm(0).

As its return value, alarm() gives us the number of seconds remaining until the
expiration of any previously set timer, or 0 if no timer was set.

#include <unistd.h>

unsigned int alarm(unsigned int seconds);

Always succeeds, returning number of seconds remaining on
any previously set timer, or 0 if no timer previously was set
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An example of the use of alarm() is shown in Section 23.3.

In some later example programs in this book, we use alarm() to start a timer
without establishing a corresponding SIGALRM handler, as a technique for
ensuring that a process is killed if it is not otherwise terminated.

Interactions between setitimer() and alarm()

On Linux, alarm() and setitimer() share the same per-process real-time timer, which
means that setting a timer with one of these functions changes any timer previously
set by either of the functions. This may not be the case on other UNIX implementa-
tions (i.e., these functions could control independent timers). SUSv3 explicitly
leaves unspecified the interactions between setitimer() and alarm(), as well as the
interactions of these functions with the sleep() function described in Section 23.4.1.
For maximum portability, we should ensure that our applications use only one of
setitimer() and alarm() for setting real-time timers.

23.2 Scheduling and Accuracy of Timers

Depending on system load and the scheduling of processes, a process may not be
scheduled to run until some short time (i.e., usually some small fraction of a sec-
ond) after actual expiration of the timer. Notwithstanding this, the expiration of a
periodic timer established by setitimer(), or the other interfaces described later in
this chapter, will remain regular. For example, if a real-time timer is set to expire
every 2 seconds, then the delivery of individual timer events may be subject to the
delays just described, but the scheduling of subsequent expirations will neverthe-
less be at exactly the next 2-second interval. In other words, interval timers are not
subject to creeping errors.

Although the timeval structure used by setitimer() allows for microsecond preci-
sion, the accuracy of a timer has traditionally been limited by the frequency of the
software clock (Section 10.6). If a timer value does not exactly match a multiple of the
granularity of the software clock, then the timer value is rounded up. This means that
if, for example, we specified an interval timer to go off each 19,100 microseconds (i.e.,
just over 19 milliseconds), then, assuming a jiffy value of 4 milliseconds, we would
actually get a timer that expired every 20 milliseconds.

High-resolution timers

On modern Linux kernels, the preceding statement that timer resolution is limited
by the frequency of the software clock no longer holds true. Since kernel 2.6.21,
Linux optionally supports high-resolution timers. If this support is enabled (via the
CONFIG_HIGH_RES_TIMERS kernel configuration option), then the accuracy of the vari-
ous timer and sleep interfaces that we describe in this chapter is no longer con-
strained by the size of the kernel jiffy. Instead, these calls can be as accurate as the
underlying hardware allows. On modern hardware, accuracy down to a microsec-
ond is typical.

The availability of high-resolution timers can be determined by examining the
clock resolution returned by clock_getres(), described in Section 23.5.1.
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23.3 Setting Timeouts on Blocking Operations

One use of real-time timers is to place an upper limit on the time for which a block-
ing system call can remain blocked. For example, we may wish to cancel a read()
from a terminal if the user has not entered a line of input within a certain time. We
can do this as follows:

1. Call sigaction() to establish a handler for SIGALRM, omitting the SA_RESTART flag, so
that system calls are not restarted (refer to Section 21.5).

2. Call alarm() or setitimer() to establish a timer specifying the upper limit of time
for which we wish the system call to block.

3. Make the blocking system call.

4. After the system call returns, call alarm() or setitimer() once more to disable the
timer (in case the system call completed before the timer expired).

5. Check to see whether the blocking system call failed with errno set to EINTR
(interrupted system call).

Listing 23-2 demonstrates this technique for read(), using alarm() to establish the
timer.

Listing 23-2: Performing a read() with timeout
–––––––––––––––––––––––––––––––––––––––––––––––––––––– timers/timed_read.c

#include <signal.h>
#include "tlpi_hdr.h"

#define BUF_SIZE 200

static void     /* SIGALRM handler: interrupts blocked system call */
handler(int sig)
{
    printf("Caught signal\n");          /* UNSAFE (see Section 21.1.2) */
}

int
main(int argc, char *argv[])
{
    struct sigaction sa;
    char buf[BUF_SIZE];
    ssize_t numRead;
    int savedErrno;

    if (argc > 1 && strcmp(argv[1], "--help") == 0)
        usageErr("%s [num-secs [restart-flag]]\n", argv[0]);

    /* Set up handler for SIGALRM. Allow system calls to be interrupted,
       unless second command-line argument was supplied. */

    sa.sa_flags = (argc > 2) ? SA_RESTART : 0;
    sigemptyset(&sa.sa_mask);
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    sa.sa_handler = handler;
    if (sigaction(SIGALRM, &sa, NULL) == -1)
        errExit("sigaction");

    alarm((argc > 1) ? getInt(argv[1], GN_NONNEG, "num-secs") : 10);

    numRead = read(STDIN_FILENO, buf, BUF_SIZE - 1);

    savedErrno = errno;                 /* In case alarm() changes it */
    alarm(0);                           /* Ensure timer is turned off */
    errno = savedErrno;

/* Determine result of read() */

    if (numRead == -1) {
        if (errno == EINTR)
            printf("Read timed out\n");
        else
            errMsg("read");
    } else {
        printf("Successful read (%ld bytes): %.*s",
                (long) numRead, (int) numRead, buf);
    }

    exit(EXIT_SUCCESS);
}

–––––––––––––––––––––––––––––––––––––––––––––––––––––– timers/timed_read.c

Note that there is a theoretical race condition in the program in Listing 23-2. If the
timer expires after the call to alarm(), but before the read() call is started, then the
read() call won�t be interrupted by the signal handler. Since the timeout value used
in scenarios like this is normally relatively large (at least several seconds) this is
highly unlikely to occur, so that, in practice, this is a viable technique. [Stevens &
Rago, 2005] proposes an alternative technique using longjmp(). A further alterna-
tive when dealing with I/O system calls is to use the timeout feature of the select()
or poll() system calls (Chapter 63), which also have the advantage of allowing us to
simultaneously wait for I/O on multiple descriptors.

23.4 Suspending Execution for a Fixed Interval (Sleeping)

Sometimes, we want to suspend execution of a process for a fixed amount of time.
While it is possible to do this using a combination of sigsuspend() and the timer
functions already described, it is easier to use one of the sleep functions instead.

23.4.1 Low-Resolution Sleeping: sleep()
The sleep() function suspends execution of the calling process for the number of
seconds specified in the seconds argument or until a signal is caught (thus interrupt-
ing the call).
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If the sleep completes, sleep() returns 0. If the sleep is interrupted by a signal, sleep()
returns the number of remaining (unslept) seconds. As with timers set by alarm()
and setitimer(), system load may mean that the process is rescheduled only at some
(normally short) time after the completion of the sleep() call.

SUSv3 leaves possible interactions of sleep() with alarm() and setitimer() unspeci-
fied. On Linux, sleep() is implemented as a call to nanosleep() (Section 23.4.2), with
the consequence that there is no interaction between sleep() and the timer func-
tions. However, on many implementations, especially older ones, sleep() is imple-
mented using alarm() and a handler for the SIGALRM signal. For portability, we
should avoid mixing the use of sleep() with alarm() and setitimer().

23.4.2 High-Resolution Sleeping: nanosleep()
The nanosleep() function performs a similar task to sleep(), but provides a number of
advantages, including finer resolution when specifying the sleep interval.

The request argument specifies the duration of the sleep interval and is a pointer to
a structure of the following form:

struct timespec {
    time_t tv_sec;         /* Seconds */
    long   tv_nsec;        /* Nanoseconds */
};

The tv_nsec field specifies a nanoseconds value. It must be a number in the range 0
to 999,999,999.

A further advantage of nanosleep() is that SUSv3 explicitly specifies that it
should not be implemented using signals. This means that, unlike the situation with
sleep(), we can portably mix calls to nanosleep() with calls to alarm() or setitimer().

Although it is not implemented using signals, nanosleep() may still be interrupted
by a signal handler. In this case, nanosleep() returns �1, with errno set to the usual EINTR
and, if the argument remain is not NULL, the buffer it points to returns the remaining
unslept time. If desired, we can use the returned value to restart the system call and
complete the sleep. This is demonstrated in Listing 23-3. As command-line arguments,

#include <unistd.h>

unsigned int sleep(unsigned int seconds);

Returns 0 on normal completion, or number of
unslept seconds if prematurely terminated

#define _POSIX_C_SOURCE 199309
#include <time.h>

int nanosleep(const struct timespec *request, struct timespec *remain);

Returns 0 on successfully completed sleep,
or �1 on error or interrupted sleep
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this program expects seconds and nanosecond values for nanosleep(). The program
loops repeatedly, executing nanosleep() until the total sleep interval is passed. If
nanosleep() is interrupted by the handler for SIGINT (generated by typing Control-C),
then the call is restarted using the value returned in remain. When we run this pro-
gram, we see the following:

$ ./t_nanosleep 10 0                      Sleep for 10 seconds
Type Control-C
Slept for:  1.853428 secs
Remaining:  8.146617000
Type Control-C
Slept for:  4.370860 secs
Remaining:  5.629800000
Type Control-C
Slept for:  6.193325 secs
Remaining:  3.807758000
Slept for: 10.008150 secs
Sleep complete

Although nanosleep() allows nanosecond precision when specifying the sleep interval,
the accuracy of the sleep interval is limited to the granularity of the software clock
(Section 10.6). If we specify an interval that is not a multiple of the software clock,
then the interval is rounded up.

As noted earlier, on systems that support high-resolution timers, the accuracy
of the sleep interval can be much finer than the granularity of the software
clock.

This rounding behavior means that if signals are received at a high rate, then there
is a problem with the approach employed in the program in Listing 23-3. The problem
is that each restart of nanosleep() will be subject to rounding errors, since the returned
remain time is unlikely to be an exact multiple of the granularity of the software
clock. Consequently, each restarted nanosleep() will sleep longer than the value
returned in remain by the previous call. In the case of an extremely high rate of signal
delivery (i.e., as or more frequent than the software clock granularity), the process
may never be able to complete its sleep. On Linux 2.6, this problem can be avoided
by making use of clock_nanosleep() with the TIMER_ABSTIME option. We describe
clock_nanosleep() in Section 23.5.4.

In Linux 2.4 and earlier, there is an eccentricity in the implementation of
nanosleep(). Suppose that a process performing a nanosleep() call is stopped by a
signal. When the process is later resumed via delivery of SIGCONT, then the
nanosleep() call fails with the error EINTR, as expected. However, if the program
subsequently restarts the nanosleep() call, then the time that the process has
spent in the stopped state is not counted against the sleep interval, so that the
process will sleep longer than expected. This eccentricity is eliminated in
Linux 2.6, where the nanosleep() call automatically resumes on delivery of the
SIGCONT signal, and the time spent in the sleep state is counted against the sleep
interval.
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Listing 23-3: Using nanosleep()
–––––––––––––––––––––––––––––––––––––––––––––––––––––– timers/t_nanosleep.c

#define _POSIX_C_SOURCE 199309
#include <sys/time.h>
#include <time.h>
#include <signal.h>
#include "tlpi_hdr.h"

static void
sigintHandler(int sig)
{
    return;                     /* Just interrupt nanosleep() */
}

int
main(int argc, char *argv[])
{
    struct timeval start, finish;
    struct timespec request, remain;
    struct sigaction sa;
    int s;

    if (argc != 3 || strcmp(argv[1], "--help") == 0)
        usageErr("%s secs nanosecs\n", argv[0]);

    request.tv_sec = getLong(argv[1], 0, "secs");
    request.tv_nsec = getLong(argv[2], 0, "nanosecs");

    /* Allow SIGINT handler to interrupt nanosleep() */

    sigemptyset(&sa.sa_mask);
    sa.sa_flags = 0;
    sa.sa_handler = sigintHandler;
    if (sigaction(SIGINT, &sa, NULL) == -1)
        errExit("sigaction");

    if (gettimeofday(&start, NULL) == -1)
        errExit("gettimeofday");

    for (;;) {
        s = nanosleep(&request, &remain);
        if (s == -1 && errno != EINTR)
            errExit("nanosleep");

        if (gettimeofday(&finish, NULL) == -1)
            errExit("gettimeofday");
        printf("Slept for: %9.6f secs\n", finish.tv_sec - start.tv_sec +
                        (finish.tv_usec - start.tv_usec) / 1000000.0);

        if (s == 0)
            break;                      /* nanosleep() completed */

        printf("Remaining: %2ld.%09ld\n", (long) remain.tv_sec,
                remain.tv_nsec);
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        request = remain;               /* Next sleep is with remaining time */
    }

    printf("Sleep complete\n");
    exit(EXIT_SUCCESS);
}

–––––––––––––––––––––––––––––––––––––––––––––––––––––– timers/t_nanosleep.c

23.5 POSIX Clocks

POSIX clocks (originally defined in POSIX.1b) provide an API for accessing clocks
that measure time with nanosecond precision. Nanosecond time values are repre-
sented using the same timespec structure as is used by nanosleep() (Section 23.4.2).

On Linux, programs using this API must be compiled with the �lrt option, in
order to link against the librt (realtime) library.

The main system calls in the POSIX clocks API are clock_gettime(), which
retrieves the current value of a clock; clock_getres(), which returns the resolution of
a clock; and clock_settime(), which updates a clock.

23.5.1 Retrieving the Value of a Clock: clock_gettime()
The clock_gettime() system call returns the time according to the clock specified in
clockid.

The time value is returned in the timespec structure pointed to by tp. Although the
timespec structure affords nanosecond precision, the granularity of the time value
returned by clock_gettime() may be coarser than this. The clock_getres() system call
returns a pointer to a timespec structure containing the resolution of the clock spec-
ified in clockid.

The clockid_t data type is a type specified by SUSv3 for representing a clock
identifier. The first column of Table 23-1 lists the values that can be specified for
clockid.

#define _POSIX_C_SOURCE 199309
#include <time.h>

int clock_gettime(clockid_t clockid, struct timespec *tp);
int clock_getres(clockid_t clockid, struct timespec *res);

Both return 0 on success, or �1 on error

Table 23-1: POSIX.1b clock types

Clock ID Description

CLOCK_REALTIME Settable system-wide real-time clock
CLOCK_MONOTONIC Nonsettable monotonic clock
CLOCK_PROCESS_CPUTIME_ID Per-process CPU-time clock (since Linux 2.6.12)
CLOCK_THREAD_CPUTIME_ID Per-thread CPU-time clock (since Linux 2.6.12)
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The CLOCK_REALTIME clock is a system-wide clock that measures wall-clock time. By
contrast with the CLOCK_MONOTONIC clock, the setting of this clock can be changed.

SUSv3 specifies that the CLOCK_MONOTONIC clock measures time since some
�unspecified point in the past� that doesn�t change after system startup. This clock
is useful for applications that must not be affected by discontinuous changes to the
system clock (e.g., a manual change to the system time). On Linux, this clock mea-
sures the time since system startup.

The CLOCK_PROCESS_CPUTIME_ID clock measures the user and system CPU time con-
sumed by the calling process. The CLOCK_THREAD_CPUTIME_ID clock performs the analogous
task for an individual thread within a process.

All of the clocks in Table 23-1 are specified in SUSv3, but only CLOCK_REALTIME is
mandatory and widely supported on UNIX implementations.

Linux 2.6.28 adds a new clock type, CLOCK_MONOTONIC_RAW, to those listed in
Table 23-1. This is a nonsettable clock that is similar to CLOCK_MONOTONIC, but it
gives access to a pure hardware-based time that is unaffected by NTP adjust-
ments. This nonstandard clock is intended for use in specialized clock-
synchronization applications.

Linux 2.6.32 adds two more new clocks to those listed in Table 23-1:
CLOCK_REALTIME_COARSE and CLOCK_MONOTIC_COARSE. These clocks are similar to
CLOCK_REALTIME and CLOCK_MONOTONIC, but intended for applications that want to
obtain lower-resolution timestamps at minimal cost. These nonstandard clocks
don�t cause any access to the hardware clock (which can be expensive for some
hardware clock sources), and the resolution of the returned value is the jiffy
(Section 10.6).

23.5.2 Setting the Value of a Clock: clock_settime()
The clock_settime() system call sets the clock specified by clockid to the time supplied
in the buffer pointed to by tp.

If the time specified by tp is not a multiple of the clock resolution as returned by
clock_getres(), the time is rounded downward.

A privileged (CAP_SYS_TIME) process may set the CLOCK_REALTIME clock. The initial
value of this clock is typically the time since the Epoch. None of the other clocks in
Table 23-1 are modifiable.

According to SUSv3, an implementation may allow the CLOCK_PROCESS_CPUTIME_ID
and CLOCK_THREAD_CPUTIME_ID clocks to be settable. At the time of writing, these
clocks are read-only on Linux.

#define _POSIX_C_SOURCE 199309
#include <time.h>

int clock_settime(clockid_t clockid, const struct timespec *tp);

Returns 0 on success, or �1 on error



Timers and Sleeping 493

23.5.3 Obtaining the Clock ID of a Specific Process or Thread
The functions described in this section allow us to obtain the ID of a clock that
measures the CPU time consumed by a particular process or thread. We can use
the returned clock ID in a call to clock_gettime() in order to find out the CPU time
consumed by the process or thread.

The clock_getcpuclockid() function returns the identifier of the CPU-time clock
of the process whose ID is pid, in the buffer pointed to by clockid.

If pid is 0, clock_getcpuclockid() returns the ID of the CPU-time clock of the calling
process.

The pthread_getcpuclockid() function is the POSIX threads analog of the
clock_getcpuclockid() function. It returns the identifier of the clock measuring the
CPU time consumed by a specific thread of the calling process.

The thread argument is a POSIX thread ID that identifies the thread whose CPU-
time clock ID we want to obtain. The clock ID is returned in the buffer pointed to
by clockid.

23.5.4 Improved High-Resolution Sleeping: clock_nanosleep()
Like nanosleep(), the Linux-specific clock_nanosleep() system call suspends the calling
process until either a specified interval of time has passed or a signal arrives. In this
section, we describe the features that distinguish clock_nanosleep() from nanosleep().

#define _XOPEN_SOURCE 600
#include <time.h>

int clock_getcpuclockid(pid_t pid, clockid_t *clockid);

Returns 0 on success, or a positive error number on error

#define _XOPEN_SOURCE 600
#include <pthread.h>
#include <time.h>

int pthread_getcpuclockid(pthread_t thread, clockid_t *clockid);

Returns 0 on success, or a positive error number on error

#define _XOPEN_SOURCE 600
#include <time.h>

int clock_nanosleep(clockid_t clockid, int flags,
       const struct timespec *request, struct timespec *remain);

Returns 0 on successfully completed sleep,
or a positive error number on error or interrupted sleep
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The request and remain arguments serve similar purposes to the analogous argu-
ments for nanosleep().

By default (i.e., if flags is 0), the sleep interval specified in request is relative
(like nanosleep()). However, if we specify TIMER_ABSTIME in flags (see the example in
Listing 23-4), then request specifies an absolute time as measured by the clock iden-
tified by clockid. This feature is essential in applications that need to sleep accu-
rately until a specific time. If we instead try retrieving the current time, calculating
the difference until the desired target time, and doing a relative sleep, then there is
a possibility that the process may be preempted in the middle of these steps, and
consequently sleep for longer than desired.

As described in Section 23.4.2, this �oversleeping� problem is particularly
marked for a process that uses a loop to restart a sleep that is interrupted by a sig-
nal handler. If signals are delivered at a high rate, then a relative sleep (of the type
performed by nanosleep()) can lead to large inaccuracies in the time a process
spends sleeping. We can avoid the oversleeping problem by making an initial call
to clock_gettime() to retrieve the time, adding the desired amount to that time, and
then calling clock_nanosleep() with the TIMER_ABSTIME flag (and restarting the system
call if it is interrupted by a signal handler).

When the TIMER_ABSTIME flag is specified, the remain argument is unused (it is
unnecessary). If the clock_nanosleep() call is interrupted by a signal handler, then the
sleep can be restarted by repeating the call with the same request argument.

Another feature that distinguishes clock_nanosleep() from nanosleep() is that we
can choose the clock that is used to measure the sleep interval. We specify the
desired clock in clockid: CLOCK_REALTIME, CLOCK_MONOTONIC, or CLOCK_PROCESS_CPUTIME_ID.
See Table 23-1 for a description of these clocks.

Listing 23-4 demonstrates the use of clock_nanosleep() to sleep for 20 seconds
against the CLOCK_REALTIME clock using an absolute time value.

Listing 23-4: Using clock_nanosleep()

    struct timespec request;

    /* Retrieve current value of CLOCK_REALTIME clock */

    if (clock_gettime(CLOCK_REALTIME, &request) == -1) 
        errExit("clock_gettime");

    request.tv_sec += 20;               /* Sleep for 20 seconds from now */

    s = clock_nanosleep(CLOCK_REALTIME, TIMER_ABSTIME, &request, NULL); 
    if (s != 0) {
        if (s == EINTR)
            printf("Interrupted by signal handler\n");
        else
            errExitEN(s, "clock_nanosleep");
    }
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23.6 POSIX Interval Timers

The classical UNIX interval timers set by setitimer() suffer a number of limitations:

� We can set only one timer of each of the three types, ITIMER_REAL, ITIMER_VIRTUAL,
and ITIMER_PROF.

� The only way of being notified of timer expiration is via delivery of a signal.
Furthermore, we can�t change the signal that is generated when the timer
expires.

� If an interval timer expires multiple times while the corresponding signal is
blocked, then the signal handler is called only once. In other words, we have no
way of knowing whether there was a timer overrun.

� Timers are limited to microsecond resolution. However, some systems have
hardware clocks that provide finer resolution than this, and, on such systems, it
is desirable to have software access to this greater resolution.

POSIX.1b defined an API to address these limitations, and this API is implemented
in Linux 2.6.

On older Linux systems, an incomplete version of this API was provided via a
threads-based implementation in glibc. However, this user-space implementa-
tion doesn�t provide all of the features described here.

The POSIX timer API divides the life of a timer into the following steps:

� The timer_create() system call creates a new timer and defines the method by
which it will notify the process when it expires.

� The timer_settime() system call arms (starts) or disarms (stops) a timer.

� The timer_delete() system call deletes a timer that is no longer required.

POSIX timers are not inherited by a child created by fork(). They are disarmed and
deleted during an exec() or on process termination.

On Linux, programs using the POSIX timer API must be compiled with the �lrt
option, in order to link against the librt (realtime) library.

23.6.1 Creating a Timer: timer_create()
The timer_create() function creates a new timer that measures time using the clock
specified by clockid.

#define _POSIX_C_SOURCE 199309
#include <signal.h>
#include <time.h>

int timer_create(clockid_t clockid, struct sigevent *evp, timer_t *timerid);

Returns 0 on success, or �1 on error
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The clockid can specify any of the values shown in Table 23-1, or the clockid value
returned by clock_getcpuclockid() or pthread_getcpuclockid(). The timerid argument
points to a buffer that returns a handle used to refer to the timer in later system
calls. This buffer is typed as timer_t, which is a data type specified by SUSv3 for rep-
resenting a timer identifier.

The evp argument determines how the program is to be notified when the
timer expires. It points to a structure of type sigevent, defined as follows:

union sigval {
    int   sival_int;              /* Integer value for accompanying data */
    void *sival_ptr;              /* Pointer value for accompanying data */
};

struct sigevent {
    int          sigev_notify;    /* Notification method */
    int          sigev_signo;     /* Timer expiration signal */
    union sigval sigev_value;     /* Value accompanying signal or
                                     passed to thread function */
    union {
        pid_t      _tid;          /* ID of thread to be signaled /
        struct {
            void (*_function) (union sigval);
                                  /* Thread notification function */
            void  *_attribute;    /* Really 'pthread_attr_t *' */
        } _sigev_thread;
    } _sigev_un;
};

#define sigev_notify_function    _sigev_un._sigev_thread._function
#define sigev_notify_attributes  _sigev_un._sigev_thread._attribute
#define sigev_notify_thread_id   _sigev_un._tid

The sigev_notify field of this structure is set to one of the values shown in Table 23-2.

Further details on the sigev_notify field constants, and the fields in the sigval struc-
ture that are associated with each constant value, are as follows:

SIGEV_NONE

Don�t provide notification of timer expiration. The process can still moni-
tor the progress of the timer using timer_gettime().

Table 23-2: Values for the sigev_notify field of the sigevent structure

sigev_notify value Notification method SUSv3

SIGEV_NONE No notification; monitor timer using timer_gettime() •
SIGEV_SIGNAL Send signal sigev_signo to process •
SIGEV_THREAD Call sigev_notify_function as start function of new thread •
SIGEV_THREAD_ID Send signal sigev_signo to thread sigev_notify_thread_id
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SIGEV_SIGNAL

When the timer expires, generate the signal specified in the sigev_signo field
for the process. If sigev_signo is a realtime signal, then the sigev_value field spec-
ifies data (an integer or a pointer) to accompany the signal (Section 22.8.1).
This data can be retrieved via the si_value field of the siginfo_t structure
that is passed to the handler for this signal or returned by a call to sigwaitinfo()
or sigtimedwait().

SIGEV_THREAD

When the timer expires, call the function specified in the sigev_notify_function
field. This function is invoked as if it were the start function in a new thread.
The �as if� wording is from SUSv3, and allows an implementation to generate
the notifications for a periodic timer either by having each notification deliv-
ered to a new unique thread or by having the notifications delivered in series
to a single new thread. The sigev_notify_attributes field can be specified as NULL
or as a pointer to a pthread_attr_t structure that defines attributes for the
thread (Section 29.8). The union sigval value specified in sigev_value is
passed as the sole argument of the function.

SIGEV_THREAD_ID

This is similar to SIGEV_SIGNAL, but the signal is sent to the thread whose thread
ID matches sigev_notify_thread_id. This thread must be in the same process as
the calling thread. (With SIGEV_SIGNAL notification, a signal is queued to the
process as a whole, and, if there are multiple threads in the process, the sig-
nal will be delivered to an arbitrarily selected thread in the process.) The
sigev_notify_thread_id field can be set to the value returned by clone() or the
value returned by gettid(). The SIGEV_THREAD_ID flag is intended for use by
threading libraries. (It requires a threading implementation that employs
the CLONE_THREAD option, described in Section 28.2.1. The modern NPTL
threading implementation employs CLONE_THREAD, but the older
LinuxThreads threading implementation does not.)

All of the above constants are specified in SUSv3, except for SIGEV_THREAD_ID, which
is Linux-specific.

The evp argument may be specified as NULL, which is equivalent to specifying
sigev_notify as SIGEV_SIGNAL, sigev_signo as SIGALRM (this may be different on other systems,
since SUSv3 merely says �a default signal number�), and sigev_value.sival_int as the
timer ID.

As currently implemented, the kernel preallocates one queued realtime signal
structure for each POSIX timer that is created using timer_create(). The intent of
this preallocation is to ensure that at least one such structure is available for queu-
ing a signal when the timer expires. This means that the number of POSIX timers
that may be created is subject to the limitations on the number of realtime signals
that can be queued (refer to Section 22.8).
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23.6.2 Arming and Disarming a Timer: timer_settime()
Once we have created a timer, we can arm (start) or disarm (stop) it using
timer_settime().

The timerid argument of timer_settime() is a timer handle returned by a previous call
to timer_create().

The value and old_value arguments are analogous to the setitimer() arguments
of the same name: value specifies the new settings for the timer, and old_value is
used to return the previous timer settings (see the description of timer_gettime()
below). If we are not interested in the previous settings, we can specify old_value as
NULL. The value and old_value arguments are pointers to itimerspec structures,
defined as follows:

struct itimerspec {
    struct timespec it_interval;    /* Interval for periodic timer */
    struct timespec it_value;       /* First expiration */
};

Each of the fields of the itimerspec structure is in turn a structure of type timespec,
which specifies time values as a number of seconds and nanoseconds:

struct timespec {
    time_t tv_sec;                  /* Seconds */
    long   tv_nsec;                 /* Nanoseconds */
};

The it_value field specifies when the timer will first expire. If either subfield of
it_interval is nonzero, then this is a periodic timer that, after the initial expiry speci-
fied by it_value, will expire with the frequency specified in these subfields. If both
subfields of it_interval are 0, this timer expires just once.

If flags is specified as 0, then value.it_value is interpreted relative to the clock
value at the time of the call to timer_settime() (i.e., like setitimer()). If flags is specified
as TIMER_ABSTIME, then value.it_value is interpreted as an absolute time (i.e., mea-
sured from the clock�s zero point). If that time has already passed on the clock, the
timer expires immediately.

To arm a timer, we make a call to timer_settime() in which either or both of the
subfields of value.it_value are nonzero. If the timer was previously armed, timer_settime()
replaces the previous settings.

If the timer value and interval are not multiples of the resolution of the corre-
sponding clock (as returned by clock_getres()), these values are rounded up to the
next multiple of the resolution.

#define _POSIX_C_SOURCE 199309
#include <time.h>

int timer_settime(timer_t timerid, int flags, const struct itimerspec *value,
                  struct itimerspec *old_value);

Returns 0 on success, or �1 on error
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On each expiration of the timer, the process is notified using the method
defined in the timer_create() call that created this timer. If the it_interval structure
contains nonzero values, these values are used to reload the it_value structure.

To disarm a timer, we make a call to timer_settime() specifying both fields of
value.it_value as 0.

23.6.3 Retrieving the Current Value of a Timer: timer_gettime()
The timer_gettime() system call returns the interval and remaining time for the
POSIX timer identified by timerid.

The interval and the time until the next expiration of the timer are returned in the
itimerspec structure pointed to by curr_value. The curr_value.it_value field returns
the time until next timer expiration, even if this timer was established as an abso-
lute timer using TIMER_ABSTIME.

If both fields of the returned curr_value.it_value structure are 0, then the timer
is currently disarmed. If both fields of the returned curr_value.it_interval structure
are 0, then the timer expires just once, at the time given in curr_value.it_value.

23.6.4 Deleting a Timer: timer_delete()
Each POSIX timer consumes a small amount of system resources. Therefore, when
we have finished using a timer, we should free these resources by using timer_delete()
to remove the timer.

The timerid argument is a handle returned by a previous call to timer_create(). If the
timer was armed, then it is automatically disarmed before removal. If there is
already a pending signal from an expiration of this timer, that signal remains pend-
ing. (SUSv3 leaves this point unspecified, so other UNIX implementations may
behave differently.) Timers are deleted automatically when a process terminates.

23.6.5 Notification via a Signal
If we elect to receive timer notifications via a signal, then we can accept the signal
via a signal handler, or by calling sigwaitinfo() or sigtimedwait(). Both mechanisms
allow the receiving process to obtain a siginfo_t structure (Section 21.4) that provides

#define _POSIX_C_SOURCE 199309
#include <time.h>

int timer_gettime(timer_t timerid, struct itimerspec *curr_value);

Returns 0 on success, or �1 on error

#define _POSIX_C_SOURCE 199309
#include <time.h>

int timer_delete(timer_t timerid);

Returns 0 on success, or �1 on error
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further information about the signal. (To take advantage of this feature in a signal
handler, we specify the SA_SIGINFO flag when establishing the handler.) The follow-
ing fields are set in the siginfo_t structure:

� si_signo: This field contains the signal generated by this timer.

� si_code: This field is set to SI_TIMER, indicating that this signal was generated
because of the expiration of a POSIX timer.

� si_value: This field is set to the value that was supplied in evp.sigev_value when
the timer was created using timer_create(). Specifying different evp.sigev_value
values provides a means of distinguishing expirations of multiple timers that
deliver the same signal.

When calling timer_create(), evp.sigev_value.sival_ptr is typically assigned the address
of the timerid argument given in the same call (see Listing 23-5). This allows the sig-
nal handler (or the sigwaitinfo() call) to obtain the ID of the timer that generated
the signal. (Alternatively, evp.sigev_value.sival_ptr may be assigned the address of a
structure that contains the timerid given to timer_create().)

Linux also supplies the following nonstandard field in the siginfo_t structure:

� si_overrun: This field contains the overrun count for this timer (described in
Section 23.6.6).

Linux also supplies another nonstandard field: si_timerid. This field contains
an identifier that is used internally by the system to identify the timer (it is not
the same as the ID returned by timer_create()). It is not useful to applications.

Listing 23-5 demonstrates the use of signals as the notification mechanism for a
POSIX timer. 

Listing 23-5: POSIX timer notification using a signal
––––––––––––––––––––––––––––––––––––––––––––––––– timers/ptmr_sigev_signal.c

#define _POSIX_C_SOURCE 199309
#include <signal.h>
#include <time.h>
#include "curr_time.h"                  /* Declares currTime() */
#include "itimerspec_from_str.h"        /* Declares itimerspecFromStr() */
#include "tlpi_hdr.h"

#define TIMER_SIG SIGRTMAX              /* Our timer notification signal */

static void
q handler(int sig, siginfo_t *si, void *uc)

{
    timer_t *tidptr;

    tidptr = si->si_value.sival_ptr;

    /* UNSAFE: This handler uses non-async-signal-safe functions
       (printf(); see Section 21.1.2) */
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    printf("[%s] Got signal %d\n", currTime("%T"), sig);
    printf("    *sival_ptr         = %ld\n", (long) *tidptr);
    printf("    timer_getoverrun() = %d\n", timer_getoverrun(*tidptr));
}

int
main(int argc, char *argv[])
{
    struct itimerspec ts;
    struct sigaction  sa;
    struct sigevent   sev;
    timer_t *tidlist;
    int j;

    if (argc < 2)
        usageErr("%s secs[/nsecs][:int-secs[/int-nsecs]]...\n", argv[0]);

    tidlist = calloc(argc - 1, sizeof(timer_t));
    if (tidlist == NULL)
        errExit("malloc");

    /* Establish handler for notification signal */

    sa.sa_flags = SA_SIGINFO;
    sa.sa_sigaction = handler;
    sigemptyset(&sa.sa_mask);

w     if (sigaction(TIMER_SIG, &sa, NULL) == -1)
        errExit("sigaction");

    /* Create and start one timer for each command-line argument */

    sev.sigev_notify = SIGEV_SIGNAL;    /* Notify via signal */
    sev.sigev_signo = TIMER_SIG;        /* Notify using this signal */

    for (j = 0; j < argc - 1; j++) {
e         itimerspecFromStr(argv[j + 1], &ts);

        sev.sigev_value.sival_ptr = &tidlist[j];
                /* Allows handler to get ID of this timer */

r         if (timer_create(CLOCK_REALTIME, &sev, &tidlist[j]) == -1)
            errExit("timer_create");
        printf("Timer ID: %ld (%s)\n", (long) tidlist[j], argv[j + 1]);

t         if (timer_settime(tidlist[j], 0, &ts, NULL) == -1)
            errExit("timer_settime");
    }

y     for (;;)                            /* Wait for incoming timer signals */
        pause();
}

––––––––––––––––––––––––––––––––––––––––––––––––– timers/ptmr_sigev_signal.c
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Each of the command-line arguments of the program in Listing 23-5 specifies the
initial value and interval for a timer. The syntax of these arguments is described in
the program�s �usage� message and demonstrated in the shell session below. This
program performs the following steps:

� Establish a handler for the signal that is used for timer notifications w.

� For each command-line argument, create r and arm t a POSIX timer that
uses the SIGEV_SIGNAL notification mechanism. The itimerspecFromStr() function
that we use to convert e the command-line arguments to itimerspec structures
is shown in Listing 23-6.

� On each timer expiration, the signal specified in sev.sigev_signo will be delivered
to the process. The handler for this signal displays the value that was supplied in
sev.sigev_value.sival_ptr (i.e., the timer ID, tidlist[j]) and the overrun value for
the timer q.

� Having created and armed the timers, wait for timer expirations by executing a
loop that repeatedly calls pause() y.

Listing 23-6 shows the function that converts each of the command-line arguments
for the program in Listing 23-5 into a corresponding itimerspec structure. The for-
mat of the string arguments interpreted by this function is shown in a comment at
the top of the listing (and demonstrated in the shell session below).

Listing 23-6: Converting time-plus-interval string to an itimerspec value
––––––––––––––––––––––––––––––––––––––––––––––– timers/itimerspec_from_str.c
#define_POSIX_C_SOURCE 199309
#include <string.h>
#include <stdlib.h>
#include "itimerspec_from_str.h"        /* Declares function defined here */

/* Convert a string of the following form to an itimerspec structure:
   "value.sec[/value.nanosec][:interval.sec[/interval.nanosec]]".
   Optional components that are omitted cause 0 to be assigned to the
   corresponding structure fields. */

void
itimerspecFromStr(char *str, struct itimerspec *tsp)
{
    char *cptr, *sptr;

    cptr = strchr(str, ':');
    if (cptr != NULL)
        *cptr = '\0';

    sptr = strchr(str, '/');
    if (sptr != NULL)
        *sptr = '\0';

    tsp->it_value.tv_sec = atoi(str);
    tsp->it_value.tv_nsec = (sptr != NULL) ? atoi(sptr + 1) : 0;
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    if (cptr == NULL) {
        tsp->it_interval.tv_sec = 0;
        tsp->it_interval.tv_nsec = 0;
    } else {
        sptr = strchr(cptr + 1, '/');
        if (sptr != NULL)
            *sptr = '\0';
        tsp->it_interval.tv_sec = atoi(cptr + 1);
        tsp->it_interval.tv_nsec = (sptr != NULL) ? atoi(sptr + 1) : 0;
    }
}

––––––––––––––––––––––––––––––––––––––––––––––– timers/itimerspec_from_str.c

We demonstrate the use of the program in Listing 23-5 in the following shell ses-
sion, creating a single timer with an initial timer expiry of 2 seconds and an interval
of 5 seconds.

$ ./ptmr_sigev_signal 2:5
Timer ID: 134524952 (2:5)
[15:54:56] Got signal 64                  SIGRTMAX is signal 64 on this system
    *sival_ptr         = 134524952        sival_ptr points to the variable tid
    timer_getoverrun() = 0
[15:55:01] Got signal 64
    *sival_ptr         = 134524952
    timer_getoverrun() = 0
Type Control-Z to suspend the process
[1]+  Stopped       ./ptmr_sigev_signal 2:5

After suspending the program, we pause for a few seconds, allowing several timer
expirations to occur before we resume the program:

$ fg
./ptmr_sigev_signal 2:5
[15:55:34] Got signal 64
    *sival_ptr         = 134524952
    timer_getoverrun() = 5
Type Control-C to kill the program

The last line of program output shows that five timer overruns occurred, meaning
that six timer expirations occurred since the previous signal delivery.

23.6.6 Timer Overruns
Suppose that we have chosen to receive notification of timer expiration via delivery
of a signal (i.e., sigev_notify is SIGEV_SIGNAL). Suppose further that the timer expires
multiple times before the associated signal is caught or accepted. This could occur
as the result of a delay before the process is next scheduled. Alternatively, it could
occur because delivery of the associated signal was blocked, either explicitly via
sigprocmask(), or implicitly during the execution of the handler for the signal. How
do we know that such timer overruns have happened?

We might suppose that using a realtime signal would help solve this problem,
since multiple instances of a realtime signal are queued. However, this approach
turns out to be unworkable, because there are limits on the number of realtime signals
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that can be queued. Therefore, the POSIX.1b committee decided on a different
approach: if we choose to receive timer notification via a signal, then multiple
instances of the signal are never queued, even if we use a realtime signal. Instead,
after receiving the signal (either via a signal handler or by using sigwaitinfo()), we
can fetch the timer overrun count, which is the number of extra timer expirations
that occurred between the time the signal was generated and the time it was
received. For example, if the timer has expired three times since the last signal was
received, then the overrun count is 2.

After receiving a timer signal, we can obtain the timer overrun count in two ways:

� Call timer_getoverrun(), which we describe below. This is the SUSv3-specified
way of obtaining the overrun count.

� Use the value in the si_overrun field of the siginfo_t structure returned with the
signal. This approach saves the overhead of the timer_getoverrun() system call,
but is a nonportable Linux extension.

The timer overrun count is reset each time we receive the timer signal. If the timer
expired just once since the timer signal was handled or accepted, then the overrun
count will be 0 (i.e., there were no overruns).

The timer_getoverrun() function returns the overrun count for the timer specified by
its timerid argument.

The timer_getoverrun() function is one of those specified as being async-signal-
safe in SUSv3 (Table 21-1, on page 426), so it is safe to call it from within a signal
handler.

23.6.7 Notification via a Thread
The SIGEV_THREAD flag allows a program to obtain notification of timer expiration via
the invocation of a function in a separate thread. Understanding this flag requires
knowledge of POSIX threads that we present later, in Chapters 29 and 30. Readers
unfamiliar with POSIX threads may want to read those chapters before examining
the example program that we present in this section.

Listing 23-7 demonstrates the use of SIGEV_THREAD. This program takes the same
command-line arguments as the program in Listing 23-5. The program performs
the following steps:

� For each command-line argument, the program creates y and arms u a POSIX
timer that uses the SIGEV_THREAD notification mechanism e.

� Each time this timer expires, the function specified by sev.sigev_notify_function r
will be invoked in a separate thread. When this function is invoked, it receives
the value specified in sev.sigev_value.sival_ptr as an argument. We assign the

#define _POSIX_C_SOURCE 199309
#include <time.h>

int timer_getoverrun(timer_t timerid);

Returns timer overrun count on success, or �1 on error
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address of the timer ID (tidlist[j]) to this field t so that the notification func-
tion can obtain the ID of the timer that caused its invocation.

� Having created and armed all of the timers, the main program enters a loop
that waits for timer expirations i. Each time through the loop, the program
uses pthread_cond_wait() to wait for a condition variable (cond) to be signaled by
the thread that is handling a timer notification.

� The threadFunc() function is invoked on each timer expiration q. After print-
ing a message, it increments the value of the global variable expireCnt. To allow
for the possibility of timer overruns, the value returned by timer_getoverrun() is
also added to expireCnt. (We explained timer overruns in Section 23.6.6 in rela-
tion to the SIGEV_SIGNAL notification mechanism. Timer overruns can also come
into play with the SIGEV_THREAD mechanism, because a timer might expire multi-
ple times before the notification function is invoked.) The notification func-
tion also signals the condition variable cond so that the main program knows to
check that a timer has expired w.

The following shell session log demonstrates the use of the program in
Listing 23-7. In this example, the program creates two timers: one with an initial
expiry of 5 seconds and an interval of 5 seconds, and the other with an initial expira-
tion of 10 seconds and an interval of 10 seconds.

$ ./ptmr_sigev_thread 5:5 10:10
Timer ID: 134525024 (5:5)
Timer ID: 134525080 (10:10)
[13:06:22] Thread notify
    timer ID=134525024
    timer_getoverrun()=0
main(): count = 1
[13:06:27] Thread notify
    timer ID=134525080
    timer_getoverrun()=0
main(): count = 2
[13:06:27] Thread notify
    timer ID=134525024
    timer_getoverrun()=0
main(): count = 3
Type Control-Z to suspend the program
[1]+  Stopped       ./ptmr_sigev_thread 5:5 10:10
$ fg                                      Resume execution
./ptmr_sigev_thread 5:5 10:10
[13:06:45] Thread notify
    timer ID=134525024
    timer_getoverrun()=2                  There were timer overruns
main(): count = 6
[13:06:45] Thread notify
    timer ID=134525080
    timer_getoverrun()=0
main(): count = 7
Type Control-C to kill the program
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Listing 23-7: POSIX timer notification using a thread function
––––––––––––––––––––––––––––––––––––––––––––––––– timers/ptmr_sigev_thread.c

#include <signal.h>
#include <time.h>
#include <pthread.h>
#include "curr_time.h"              /* Declaration of currTime() */
#include "tlpi_hdr.h"
#include "itimerspec_from_str.h"    /* Declares itimerspecFromStr() */

static pthread_mutex_t mtx = PTHREAD_MUTEX_INITIALIZER;
static pthread_cond_t cond = PTHREAD_COND_INITIALIZER;

static int expireCnt = 0;           /* Number of expirations of all timers */

static void                         /* Thread notification function */
q threadFunc(union sigval sv)

{
    timer_t *tidptr;
    int s;

    tidptr = sv.sival_ptr;

    printf("[%s] Thread notify\n", currTime("%T"));
    printf("    timer ID=%ld\n", (long) *tidptr);
    printf("    timer_getoverrun()=%d\n", timer_getoverrun(*tidptr));

    /* Increment counter variable shared with main thread and signal
       condition variable to notify main thread of the change. */

    s = pthread_mutex_lock(&mtx);
    if (s != 0)
        errExitEN(s, "pthread_mutex_lock");

    expireCnt += 1 + timer_getoverrun(*tidptr);

    s = pthread_mutex_unlock(&mtx);
    if (s != 0)
        errExitEN(s, "pthread_mutex_unlock");

w     s = pthread_cond_signal(&cond);
    if (s != 0)
        errExitEN(s, "pthread_cond_signal");
}

int
main(int argc, char *argv[])
{
    struct sigevent sev;
    struct itimerspec ts;
    timer_t *tidlist;
    int s, j;
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    if (argc < 2)
        usageErr("%s secs[/nsecs][:int-secs[/int-nsecs]]...\n", argv[0]);

    tidlist = calloc(argc - 1, sizeof(timer_t));
    if (tidlist == NULL)
        errExit("malloc");

e     sev.sigev_notify = SIGEV_THREAD;            /* Notify via thread */
r     sev.sigev_notify_function = threadFunc;     /* Thread start function */

    sev.sigev_notify_attributes = NULL;
            /* Could be pointer to pthread_attr_t structure */

    /* Create and start one timer for each command-line argument */

    for (j = 0; j < argc - 1; j++) {
        itimerspecFromStr(argv[j + 1], &ts);

t         sev.sigev_value.sival_ptr = &tidlist[j];
                /* Passed as argument to threadFunc() */

y         if (timer_create(CLOCK_REALTIME, &sev, &tidlist[j]) == -1)
            errExit("timer_create");
        printf("Timer ID: %ld (%s)\n", (long) tidlist[j], argv[j + 1]);

u         if (timer_settime(tidlist[j], 0, &ts, NULL) == -1)
            errExit("timer_settime");
    }

    /* The main thread waits on a condition variable that is signaled
       on each invocation of the thread notification function. We
       print a message so that the user can see that this occurred. */

    s = pthread_mutex_lock(&mtx);
    if (s != 0)
        errExitEN(s, "pthread_mutex_lock");

i     for (;;) {
        s = pthread_cond_wait(&cond, &mtx);
        if (s != 0)
            errExitEN(s, "pthread_cond_wait");
        printf("main(): expireCnt = %d\n", expireCnt);
    }
}

––––––––––––––––––––––––––––––––––––––––––––––––– timers/ptmr_sigev_thread.c

23.7 Timers That Notify via File Descriptors: the timerfd API

Starting with kernel 2.6.25, Linux provides another API for creating timers. The
Linux-specific timerfd API creates a timer whose expiration notifications can be
read from a file descriptor. This is useful because the file descriptor can be moni-
tored along with other descriptors using select(), poll(), and epoll (described in Chap-
ter 63). (With the other timer APIs discussed in this chapter, it requires some effort
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to be able to simultaneously monitor one or more timers along with a set of file
descriptors.)

The operation of the three new system calls in this API is analogous to the
operation of the timer_create(), timer_settime(), and timer_gettime() system calls
described in Section 23.6.

The first of the new system calls is timerfd_create(), which creates a new timer
object and returns a file descriptor referring to that object.

The value of clockid can be either CLOCK_REALTIME or CLOCK_MONOTONIC (see Table 23-1).
In the initial implementation of timerfd_create(), the flags argument was reserved

for future use and had to be specified as 0. However, since Linux 2.6.27, two flags
are supported:

TFD_CLOEXEC

Set the close-on-exec flag (FD_CLOEXEC) for the new file descriptor. This flag
is useful for the same reasons as the open() O_CLOEXEC flag described in
Section 4.3.1.

TFD_NONBLOCK

Set the O_NONBLOCK flag on the underlying open file description, so that
future reads will be nonblocking. This saves additional calls to fcntl() to
achieve the same result.

When we have finished using a timer created by timerfd_create(), we should close()
the associated file descriptor, so that the kernel can free the resources associated
with the timer.

The timerfd_settime() system call arms (starts) or disarms (stops) the timer
referred to by the file descriptor fd.

The new_value argument specifies the new settings for the timer. The old_value
argument can be used to return the previous settings of the timer (see the descrip-
tion of timerfd_gettime() below for details). If we are not interested in the previous
settings, we can specify old_value as NULL. Both of these arguments are itimerspec
structures that are used in the same way as for timer_settime() (see Section 23.6.2).

The flags argument is similar to the corresponding argument for timer_settime().
It may either be 0, meaning that new_value.it_value is interpreted relative to the
time of the call to timerfd_settime(), or it can be TFD_TIMER_ABSTIME, meaning that

#include <sys/timerfd.h>

int timerfd_create(int clockid, int flags);

Returns file descriptor on success, or �1 on error

#include <sys/timerfd.h>

int timerfd_settime(int fd, int flags, const struct itimerspec *new_value,
                    struct itimerspec *old_value);

Returns 0 on success, or �1 on error
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new_value.it_value is interpreted as an absolute time (i.e., measured from the
clock�s zero point).

The timerfd_gettime() system call returns the interval and remaining time for the
timer identified by the file descriptor fd.

As with timer_gettime(), the interval and the time until the next expiration of the
timer are returned in the itimerspec structure pointed to by curr_value. The
curr_value.it_value field returns the time until the next timer expiration, even if this
timer was established as an absolute timer using TFD_TIMER_ABSTIME. If both fields of
the returned curr_value.it_value structure are 0, then the timer is currently dis-
armed. If both fields of the returned curr_value.it_interval structure are 0, then the
timer expires just once, at the time given in curr_value.it_value.

Interactions of timerfd with fork() and exec()

During a fork(), a child process inherits copies of file descriptors created by
timerfd_create(). These file descriptors refer to the same timer objects as the corre-
sponding descriptors in the parent, and timer expirations can be read in either
process.

File descriptors created by timerfd_create() are preserved across an exec() (unless
the descriptors are marked close-on-exec, as described in Section 27.4), and armed
timers will continue to generate timer expirations after the exec().

Reading from the timerfd file descriptor

Once we have armed a timer with timerfd_settime(), we can use read() to read infor-
mation about timer expirations from the associated file descriptor. For this pur-
pose, the buffer given to read() must be large enough to hold an unsigned 8-byte
integer (uint64_t).

If one or more expirations have occurred since the timer settings were last
modified using timerfd_settime() or the last read() was performed, then read() returns
immediately, and the returned buffer contains the number of expirations that have
occurred. If no timer expirations have occurred, then read() blocks until the next
expiration occurs. It is also possible to use the fcntl() F_SETFL operation (Section 5.3)
to set the O_NONBLOCK flag for the file descriptor, so that reads are nonblocking, and
will fail with the error EAGAIN if no timer expirations have occurred.

As stated earlier, a timerfd file descriptor can be monitored using select(), poll(),
and epoll. If the timer has expired, then the file descriptor indicates as being readable.

Example program

Listing 23-8 demonstrates the use of the timerfd API. This program takes two com-
mand-line arguments. The first argument is mandatory, and specifies the initial time
and interval for a timer. (This argument is interpreted using the itimerspecFromStr()
function shown in Listing 23-6.) The second argument, which is optional, specifies

#include <sys/timerfd.h>

int timerfd_gettime(int fd, struct itimerspec *curr_value);

Returns 0 on success, or �1 on error
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the maximum number of expirations of the timer that the program should wait for
before terminating; the default for this argument is 1.

The program creates a timer using timerfd_create(), and arms it using
timerfd_settime(). It then loops, reading expiration notifications from the file
descriptor until the specified number of expirations has been reached. After each
read(), the program displays the time elapsed since the timer was started, the num-
ber of expirations read, and the total number of expirations so far.

In the following shell session log, the command-line arguments specify a timer
with a 1-second initial value and 1-second interval, and a maximum of 100 expirations.

$ ./demo_timerfd 1:1 100
1.000: expirations read: 1; total=1
2.000: expirations read: 1; total=2
3.000: expirations read: 1; total=3
Type Control-Z to suspend program in background for a few seconds
[1]+  Stopped           ./demo_timerfd 1:1 100
$ fg                                      Resume program in foreground
./demo_timerfd 1:1 100
14.205: expirations read: 11; total=14    Multiple expirations since last read()
15.000: expirations read: 1; total=15
16.000: expirations read: 1; total=16
Type Control-C to terminate the program

From the above output, we can see that multiple timer expirations occurred while
the program was suspended in the background, and all of these expirations were
returned on the first read() after the program resumed execution.

Listing 23-8: Using the timerfd API
––––––––––––––––––––––––––––––––––––––––––––––––––––– timers/demo_timerfd.c
#include <sys/timerfd.h>
#include <time.h>
#include <stdint.h>                     /* Definition of uint64_t */
#include "itimerspec_from_str.h"        /* Declares itimerspecFromStr() */
#include "tlpi_hdr.h"

int
main(int argc, char *argv[])
{
    struct itimerspec ts;
    struct timespec start, now;
    int maxExp, fd, secs, nanosecs;
    uint64_t numExp, totalExp;
    ssize_t s;

    if (argc < 2 || strcmp(argv[1], "--help") == 0)
        usageErr("%s secs[/nsecs][:int-secs[/int-nsecs]] [max-exp]\n", argv[0]);

    itimerspecFromStr(argv[1], &ts);
    maxExp = (argc > 2) ? getInt(argv[2], GN_GT_0, "max-exp") : 1;
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    fd = timerfd_create(CLOCK_REALTIME, 0);
    if (fd == -1)
        errExit("timerfd_create");

    if (timerfd_settime(fd, 0, &ts, NULL) == -1)
        errExit("timerfd_settime");

    if (clock_gettime(CLOCK_MONOTONIC, &start) == -1)
        errExit("clock_gettime");

    for (totalExp = 0; totalExp < maxExp;) {

        /* Read number of expirations on the timer, and then display
           time elapsed since timer was started, followed by number
           of expirations read and total expirations so far. */

        s = read(fd, &numExp, sizeof(uint64_t));
        if (s != sizeof(uint64_t))
            errExit("read");

        totalExp += numExp;

        if (clock_gettime(CLOCK_MONOTONIC, &now) == -1)
            errExit("clock_gettime");

        secs = now.tv_sec - start.tv_sec;
        nanosecs = now.tv_nsec - start.tv_nsec;
        if (nanosecs < 0) {
            secs--;
            nanosecs += 1000000000;
        }

        printf("%d.%03d: expirations read: %llu; total=%llu\n",
                secs, (nanosecs + 500000) / 1000000,
                (unsigned long long) numExp, (unsigned long long) totalExp);
    }

    exit(EXIT_SUCCESS);
}

––––––––––––––––––––––––––––––––––––––––––––––––––––– timers/demo_timerfd.c

23.8 Summary

A process can use setitimer() or alarm() to set a timer, so that it receives a signal after
the passage of a specified amount of real or process time. One use of timers is to
set an upper limit on the time for which a system call can block.

Applications that need to suspend execution for a specified interval of real
time can use a variety of sleep functions for this purpose.

Linux 2.6 implements the POSIX.1b extensions that define an API for high-
precision clocks and timers. POSIX.1b timers provide a number of advantages over
traditional (setitimer()) UNIX timers. We can: create multiple timers; choose the signal
that is delivered on timer expiration; retrieve the timer overrun count in order to
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determine if a timer has expired multiple times since the last expiration notifica-
tion; and choose to receive timer notifications via execution of a thread function
instead of delivery of a signal.

The Linux-specific timerfd API provides a set of interfaces for creating timers that
is similar to the POSIX timers API, but allows timer notifications to be read via a file
descriptor. This file descriptor can be monitored using select(), poll(), and epoll.

Further information

Under the rationale for individual functions, SUSv3 provides useful notes on the
(standard) timer and sleep interface described in this chapter. [Gallmeister, 1995]
discusses POSIX.1b clocks and timers.

23.9 Exercises

23-1. Although alarm() is implemented as a system call within the Linux kernel, this is
redundant. Implement alarm() using setitimer().

23-2. Try running the program in Listing 23-3 (t_nanosleep.c) in the background with a
60-second sleep interval, while using the following command to send as many
SIGINT signals as possible to the background process:

$ while true; do kill -INT pid; done

You should observe that the program sleeps rather longer than expected. Replace
the use of nanosleep() with the use of clock_gettime() (use a CLOCK_REALTIME clock) and
clock_nanosleep() with the TIMER_ABSTIME flag. (This exercise requires Linux 2.6.)
Repeat the test with the modified program and explain the difference.

23-3. Write a program to show that if the evp argument to timer_create() is specified as
NULL, then this is equivalent to specifying evp as a pointer to a sigevent structure with
sigev_notify set to SIGEV_SIGNAL, sigev_signo set to SIGALRM, and si_value.sival_int set to
the timer ID.

23-4. Modify the program in Listing 23-5 (ptmr_sigev_signal.c) to use sigwaitinfo() instead
of a signal handler.


