
COLUMNS

26 / JULY 2014 / WWW.LINUXJOURNAL.COM

Flask
Love Python, but don’t want the overhead

of a large Web framework? Try Flask, a lean,

powerful microframework.

Let’s face it, the Web has gotten

big and complicated. No longer is

it really possible for someone to be

the “Webmaster”, as we used to

say back in the olden days of Web

development. Today, we have front-

end developers, back-end developers,

system administrators, graphic

designers, writers and any number of

other jobs associated with the Web.

Those of us fortunate enough to know

a few of these things call ourselves

“full-stack Web developers”, but

even full-stack developers need other

people, with other talents, in order to

get a Web application up and running.

As the Web has become more

complex, so have the frameworks we

use to develop applications. Once,

we could put up a simple application

in a matter of minutes by writing a

CGI program. Later, it was enough to

slap together a few pages of PHP or

perhaps even a template that mixed

HTML with a higher-level language.

But then came the frameworks—first

��� ��� ����� ���� ��� ���� ��� ����

worlds, and then the open-source

ones, particularly Rails (for Ruby) and

Django (for Python).

These frameworks are totally

amazing, and they do just about

everything you ever would want from

a Web-development framework.

But over time, these frameworks—

developed in order to get away from

large, do-everything frameworks from

the world of enterprise software—

have become big. I won’t use the

term “bloated”, because the fact

is that I believe most framework

maintainers are doing a good job

of balancing the core needs and

functionality with optional extras.

However, there are times when

you want the best of all worlds—the

ease and speed of creating something

without a big framework, while still

enjoying the benefits that a framework

can provide. This is where “micro-

frameworks” can suit your needs

perfectly. For example, when creating

the site that powers my consulting

Web site (http://lerner.co.il), I

REUVEN M.

LERNER

AT THE FORGE

COLUMNS

WWW.LINUXJOURNAL.COM / JULY 2014 / 27

AT THE FORGE

wanted there to be some dynamic

content and also to be able to

program things. But, I wasn’t about

to fire up a full instance of Rails or

Django just for that.

One of the first, and best-known,

microframeworks is Sinatra, which I

covered in this column several years

ago. Sinatra is written in Ruby, which

makes it a great alternative to Rails

for smaller projects. But if you’re a

Python developer, and particularly if

you want to make use of the terrific

Python infrastructure and community,

you actually have several options

from which to choose.

Perhaps the best known and most

fully featured microframework for

Python is Flask, written by Armin

Ronacher and other members of

the international “Pocoo” team of

Python developers. There are other

microframeworks for Python, such as

Bottle, but Flask seems to do a good

job of balancing ease of use, a small

core, oodles of features, a distinctly

Python-like feeling when developing

sites in it and a large array of extensions

that make it easy to add all sorts of

functionality without writing it yourself.

So in this article, I take a brief tour

of Flask and show how it can make

life quite easy for Web developers.

I’ve already incorporated Flask into

the curriculum of some of my Python

courses, not only because it allows

us to get up and running quickly, but

also because I find that the design

reinforces the coding style Python

developers should aim to attain.

Starting with Flask

Assuming that you have pip (the modern

Python installation program) on your

computer, you can install Flask with:

pip install flask

(Depending on the permissions of your

computer, you might need to install

the above as root.)

With that package (and its

dependencies) in place, you’re ready to

start developing. Create a new Python

program that contains the following:

#!/usr/bin/env python

from flask import Flask

app = Flask(_ _name_ _)

@app.route("/")

def foo():

 return "Hello, world...!"

app.run(debug=True)

Let’s go through this program

(which I have called simple.py), line

by line, to see what it does before

COLUMNS

28 / JULY 2014 / WWW.LINUXJOURNAL.COM

AT THE FORGE

you run it. The

first line is actually

not surprising to

anyone with Python

experience; it simply

means that you

want to open the

“flask” module or

package and put

the “Flask” class

defined there in the

current namespace.

With that done,

you now can create

an instance of

Flask, which you do

using the built-in

_ _name_ _, which,

of course, will

be the string

_ _main_ _ on all

programs run

directly from the

command line.

Now the real

magic begins, with

the line starting

with @app.route.

The @ at the start

of the lines indicates

that this is a

decorator. This isn’t

the appropriate place

to go into detail on

what decorators do,

Listing 1. simple.py

#!/usr/bin/env python

from flask import Flask, render_template, request

app = Flask(_ _name_ _)

@app.route("/blah")

@app.route("/")

def foo():

 return render_template('foo.html')

@app.route("/submit", methods=["POST"])

def submit():

 username = request.form['name']

 return "Thank you for submitting a form, %s." % username

app.run(debug=True)

Listing 2. foo.html

<!DOCTYPE html>

<html>

 <head>

 <title>Hello!</title>

 </head>

 <body>

 <h1>Hello!</h1>

 <p>Test paragraph</p>

 <form method="POST" action="/submit">

 <p>Name: <input type="text" name="name" /></p>

 <p><input type="submit" value="Send your name" /></p>

 </form>

 </body>

</html>

COLUMNS

WWW.LINUXJOURNAL.COM / JULY 2014 / 29

AT THE FORGE

but suffice it to say that this allows

app.route to execute both before

the foo() function is defined, and

also each time it is executed. Routes

are just one place in Flask that use

decorators in this way; you also

can use them to ensure that certain

actions happen before or after others.

You also can use multiple decorators

on a single function definition. Thus,

if you (for whatever reason) want two

different URLs to invoke the same

function, just stack the decorators:

@app.route("/foo")

@app.route("/")

def foo():

 return "Hello, world!"

Next, you can see that the

function “foo” takes no parameters

and is a normal Python function.

The only unusual thing about this

function is that you don’t invoke it

directly. Rather, the Flask framework

invokes your function for you, based

on the URL to which the user has

navigated. So when the user goes

to “/”, which has been registered

with app.route, Flask knows to

invoke this function, and it does

so. The string that is returned by

the function is then returned to the

user’s browser.

Finally, you tell your application,

which you created with the call to

Flask(_ _name_ _) at the top of the

fi le, that it should run. You could

do that just by invoking app.run(),

but by passing debug=True as

a keyword parameter, you gain

a number of things, including

automatic reloading of fi les without

restarting the server, and a browser-

based debugger and console if and

when things go wrong.

If you now invoke simple.py:

$./simple.py

* Running on http://127.0.0.1:5000/

 * Restarting with reloader

the server is waiting on port 5000.

You can point your browser to

http://localhost:5000 and immediately

see “Hello, world!” It’s not the fanciest

of responses, but not a bad one.

I’m probably jumping the gun a bit,

but the Web-based console is pretty

snazzy, and I think it really can help

in debugging. Instead of the “return”

line shown above, in which you return

a string, replace it with the line:

return "a" + 5

No, this line isn’t valid Python,

but that’s just the point. You’re

deliberately forcing an error. Now, go

back to the “/” URL in your browser,

COLUMNS

30 / JULY 2014 / WWW.LINUXJOURNAL.COM

AT THE FORGE

and you should see a long stack trace

with error messages. So far, that’s not

too exciting. But if you move your

mouse cursor to the right side of the

darker lines (that is, those containing

source code), you’ll see two icons

appear. The rightmost icon (of a text

file) will display the Python source

code that was executing when the

error occurred.

Far more powerful is what happens

if you click on the darker (terminal-

like) icon. A full-fledged Python

interpreter and console opens

up, containing the variables and

functions that were defined at that

point in the stack. You can open a

console for any point in the stack

trace, explore the stack frame and its

variables, and figure out what went

wrong in your program.

Simple Templates

Returning strings of text, or even

HTML, from within a function is

good for a simple demo, but quickly

becomes tedious. Flask’s JinJa2

templates support not only HTML,

but also a Python-like syntax that

you can embed inside the templates.

For now though, let’s ignore JinJa2’s

capabil it ies and create a simple

form you can submit.

First and foremost, if you are

going to use JinJa2 templates, you

need to create a subdirectory called

“templates”. This subdirectory should

exist in the same directory as simple.py.

Inside this templates directory, let’s

create a very simple HTML file:

<!DOCTYPE html>

<html>

 <head>

 <title>Hello!</title>

 </head>

 <body>

 <h1>Hello!</h1>

 <p>Test paragraph</p>

 </body>

</html>

As you can see, this template won’t

do much. But the fact that it’s a full-

fledged HTML file means you suddenly

can have all of the text, CSS, links

and JavaScript that you want, without

having to stuff it inside a triple-quoted

string in your function.

As things currently stand, the

template (in templates/foo.html) isn’t

going to be called by your “foo”

function. You need to change the

function such that it invokes the

template. You do this with:

@app.route("/foo")

@app.route("/")

def foo():

 return render_template('index.html')

WWW.LINUXJOURNAL.COM / JULY 2014 / 31

COLUMNS

AT THE FORGE

The render_template function

is defined in the flask module,

which means you’ll need to change

your import statement at the top of

the program too:

from flask import Flask, render_template

Once you’ve done that, you can

reload the page, and—voilà!—the

template is rendered, as you hoped.

Handling Forms

It’s pretty typical for sites to have

one or more HTML forms. You’ve

already seen just about everything

you need in order for Flask to

process forms, believe it or not.

All you need to do now is modify

your template so that it contains an

HTML form, write a function that is

invoked with POST, and then grab

the submitted form element and do

��������� ���� ��� ���� �� �����

three steps is fairly easy with Flask.

First, add an HTML form to your

template:

<!DOCTYPE html>

<html>

 <head>

 <title>Hello!</title>

 </head>

 <body>

 <h1>Hello!</h1>

 <p>Test paragraph</p>

 <form method="POST" action="/submit">

 <p>Name: <input type="text" name="name" /></p>

 <p><input type="submit" value="Send your name" /></p>

 </form>

 </body>

</html>

This indicates that the form

will be submitted using the POST

method to the “/submit” URL. In

addition to a “submit” button,

the form consists of a single text

field, called “name”. If you click on

the “submit” button, you get an

error message:

The requested URL was not found on

the server. If you entered the

URL manually please check your

spelling and try again.

That’s not a surprise, given that

you haven’t defined a route for it,

let alone a function. Let’s add that

to simple.py:

@app.route("/submit")

def submit():

 return "Thank you for submitting a form."

If you go back to “/” and enter your

name, then click on “submit”, you get

COLUMNS

the following error:

Method Not Allowed

The method is not allowed for the requested URL.

Notice that the problem here isn’t that

Flask doesn’t recognize the route. Rather,

the route doesn’t know how to handle

a POST request. That’s because routes in

����� ��� ������� �� ������ ���� ������

you specify otherwise. You can do that

by passing the “methods” parameter to

your route, specifying a list of methods

(as strings) that are acceptable:

@app.route("/submit", methods=["POST"])

def submit():

 return "Thank you for submitting a form."

Sure enough, if you submit the

form, you get the text back. But this

text is rather generic. It would be

nice to acknowledge the user’s name,

given that he or she went through the

trouble of providing it. You can grab

the user’s name, as well as any other

form parameters, via the “request”

AT THE FORGE

LINUX JOURNAL
on your

Android device

www.linuxjournal.com/android

For more information about advertising opportunities within Linux Journal iPhone, iPad and

Android apps, contact John Grogan at +1-713-344-1956 x2 or ads@linuxjournal.com.

Download the app now

in the Android Marketplace

WWW.LINUXJOURNAL.COM / JULY 2014 / 33

COLUMNS

object that Flask makes available to you.

request.form is a dictionary-like object

that lets you query the form via key

names (as strings). You need to import

“request” from the “flask” package:

from flask import Flask, render_template, request

And, then you can do this:

@app.route("/submit", methods=["POST"])

def submit():

 username = request.form['name']

 return "Thank you for submitting a form, %s." % username

If you’re thinking this all seems

very simple—well, that’s precisely the

point. Flask is there to let you run

ahead quickly using the Python you

already know to create simple but

interesting Web applications.

Conclusion

If you are familiar with Python, want

to create Web applications and

don’t want the overhead of a large

framework like Django, you might

well want to consider Flask. The

core framework is (as you saw here)

easy to get up and running, and the

extensions make it extremely flexible

and powerful.�

Reuven M. Lerner, a longtime Web developer, consultant and

trainer, is completing his PhD in learning sciences at Northwestern

University. You can learn about his on-line programming courses,

subscribe to his newsletter or contact him at http://lerner.co.il.

Resources

The Flask home page is at http://flask.pocoo.org. This includes links to the code, documentation,

tutorials, examples and an official list of Flask extensions. The documentation is excellent, and it

should provide anyone with even a bit of Python knowledge with good understanding of Flask.

Miguel Grinberg, who recently authored a book about Flask for O’Reilly (which I haven’t

yet had a chance to read or review), has written an excellent Flask “mega-tutorial” that

complements the official one very nicely:

http://blog.miguelgrinberg.com/post/the-flask-mega-tutorial-part-i-hello-world.

A video of Miguel’s tutorial at PyCon 2014 is available at

https://www.youtube.com/watch?v=FGrIyBDQLPg.

Send comments or feedback via

http://www.linuxjournal.com/contact

or to ljeditor@linuxjournal.com.

AT THE FORGE

