
6/14/2021 What Every Developer Should Know About URLs - Skorks

https://skorks.com/2010/05/what-every-developer-should-know-about-urls/ 1/8

Skorks

What Every Developer Should Know About URLs
03/05/2010 · 2757 words · 13 min read

I have recently written about the value of fundamentals in software development. I am still

firmly of the opinion that you need to have your fundamentals down solid, if you want to be

a decent developer. However, several people made a valid point in response to that post,

in that it is often difficult to know what the fundamentals actually are (be they macro or

micro level). So, I thought it would be a good idea to do an ongoing series of posts on

some of the things that I consider to be fundamental – this post is the first instalment.

Being a developer this day and age, it would be almost impossible for you to avoid

doing some kind of web-related work at some point in your career. That means you will

inevitably have to deal with URLs at one time or another. We all know what URLs are

about, but there is a difference between knowing URLs like a user and knowing them like

a developer should know them.

As a web developer you really have no excuse for not knowing everything there is to know

about URLs, there is just not that much to them. But, I have found that even experienced

developers often have some glaring holes in their knowledge of URLs. So, I thought I

would do a quick tour of everything that every developer should know about URLs. Strap

yourself in – this won’t take long :).

The Structure Of A URL

Structure

This is easy, starts with HTTP and ends with .com right :)? Most URLs have the same

general syntax, made up of the following nine parts:

Most URLs won’t contain all of the parts. The most common components, as you

undoubtedly know, are the scheme, host and path. Let’s have a look at each of these in

turn:

scheme – this basically specifies the protocol to use to access the resource

addressed by the URL (e.g. http, ftp). There are a multitude of different schemes. A

<scheme>://<username>:<password>@<host>:<port>/<path>;<parameters>?<query>#

About Contact

https://skorks.com/
http://www.skorks.com/2010/04/on-the-value-of-fundamentals-in-software-development/
https://en.wikipedia.org/wiki/URI_scheme
https://skorks.com/about/
https://skorks.com/contact/

6/14/2021 What Every Developer Should Know About URLs - Skorks

https://skorks.com/2010/05/what-every-developer-should-know-about-urls/ 2/8

scheme is official if it has been registered with the IANA (like http and ftp), but there

are many unofficial (not registered) schemes which are also in common use (such as

sftp, or svn). The scheme must start with a letter and is separated from the rest of the

URL by the first : (colon) character. That’s right, the // is not part of the separator but

is infact the beginning of the next part of the URL.

username – this along with the password, the host and the port form what’s known

as the authority part of the URL. Some schemes require authentication information to

access a resource this is the username part of that authentication information. The

username and password are very common in ftp URLs, they are less common in http

URLs, but you do come across them fairly regularly.

password – the other part of the authentication information for a URL, it is separated

from the username by another : (colon) character. The username and password will

be separated from the host by an @ (at) character. You may supply just the

username or both the username and password e.g.:

ftp://some_user@blah.com/

ftp://some_user:some_path@blah.com/

If you don’t supply the username and password and the URL you’re trying to access

requires one, the application you’re using (e.g. browser) will supply some defaults.

host – as I mentioned, it is one of the components that makes up the authority part of

the URL. The host can be either a domain name or an IP address, as we all should

know the domain name will resolve to an IP address (via a DNS lookup) to identify

the machine we’re trying to access.

port – the last part of the authority. It basically tells us what network port a particular

application on the machine we’re connecting to is listening on. As we all know, for

HTTP the default port is 80, if the port is omitted from an http URL, this is assumed.

path – is separated from the URL components preceding it by a / (slash) character. A

path is a sequence of segments separated by / characters. The path basically tells us

where on the server machine a resource lives. Each of the path segments can

contain parameters which are separated from the segment by a ; (semi-colon)

character e.g.:

http://www.blah.com/some;param1=foo/crazy;param2=bar/path.html

The URL above is perfectly valid, although this ability of path segments to hold

parameters is almost never used (I’ve never seen it personally).

parameters – talking about parameters, these can also appear after the path but

before the query string, also separated from the rest of the URL and from each other

by ; characters e.g.:

http://www.blah.com/some/crazy/path.html;param1=foo;param2=bar

As I said, they are not very common

query – these on the other hand are very common as every web developer

would know. This is the preferred way to send some parameters to a resource

on the server. These are key=value pairs and are separated from the rest of the

URL by a ? (question mark) character and are normally separated from each

https://en.wikipedia.org/wiki/Internet_Assigned_Numbers_Authority
ftp://some_user@blah.com/
ftp://some_user:some_path@blah.com/
http://www.blah.com/some;param1=foo/crazy;param2=bar/path.html
http://www.blah.com/some/crazy/path.html;param1=foo;param2=bar

6/14/2021 What Every Developer Should Know About URLs - Skorks

https://skorks.com/2010/05/what-every-developer-should-know-about-urls/ 3/8

other by & (ampersand) characters. What you may not know is the fact that it is

legal to separate them from each other by the ; (semi-colon) character as well.

The following URLs are equivalent:

http://www.blah.com/some/crazy/path.html?param1=foo¶m2=bar

http://www.blah.com/some/crazy/path.html?param1=foo;param2=bar

fragment – this is an optional part of the URL and is used to address a

particular part of a resource. We usually see these used to link to a particular

section of an html document. A fragment is separated from the rest of the URL

with a # (hash) character. When requesting a resource addressed by a URL

from a server, the client (i.e. browser) will usually not send the fragment to the

server (at least not where HTTP is concerned). Once the client has fetched the

resource, it will then use the fragment to address the relevant part.

That’s it, all you need to know about the structure of a URL. From now on you no longer

have any excuse for calling the fragment – “that hash link thingy to go to a particular

part of the html file”.

Special Characters In URLs

Special Character

There is a lot of confusion regarding which characters are safe to use in a URL and which

are not, as well as how a URL should be properly encoded. Developers often try to infer

this stuff from general knowledge (i.e. the / and : characters should obviously be encoded

since they have special meaning in a URL). This is not necessary, you should know this

stuff solid – it’s simple. Here is the low down.

There are several sets of characters you need to be aware of when it comes to URLs.

Firstly, the characters that have special meaning within a URL are known as reserved

characters, these are:

";" | "/" | "?" | ":" | "@" | "&" | "=" | "+" | "$" | ","

What this means is that these characters are normally used in a URL as-is and are

meaningful within a URL context (i.e. separate components from each other etc.). If a part

of a URL (such as a query parameter), is likely to contain one of these characters, it

should be escaped before being included in the URL. I have spoken about URL encoding

before, check it out, we will revisit it shortly.

The second set of characters to be aware of is the unreserved set. It is made up of the

following characters

http://www.blah.com/some/crazy/path.html?param1=foo¶m2=bar
http://www.blah.com/some/crazy/path.html?param1=foo;param2=bar
http://www.skorks.com/2009/08/different-types-of-encoding-schemes-a-primer/

6/14/2021 What Every Developer Should Know About URLs - Skorks

https://skorks.com/2010/05/what-every-developer-should-know-about-urls/ 4/8

"-" | "_" | "." | "!" | "~" | "*" | "'" | "(" | ")"

The characters can be included as-is in any part of the URL (note that they may not be

allowed as part of a particular component of a URL). This basically means you don’t need

to encode/escape these characters when including them as part of a URL. You CAN

escape them without changing the semantics of a URL, but it is not recommended.

The third set to be aware of is the_ ‘unwise’ set_, i.e. it is unwise to use these characters

as part of a URL. It is made up of the following characters

"{" | "}" | "|" | "\" | "^" | "[" | "]" | "`"

These characters are considered unwise to use in a URL because gateways are known to

sometimes modify such characters, or they are used as delimiters. That doesn’t mean that

these characters will always be modified by a gateway, but it can happen. So, if you

include these as part of a URL without escaping them, you do this at your own risk. What

it really means is you should always escape these characters if a part of your URL

(i.e. like a query param) is likely to contain them.

The last set of characters is the excluded set. It is made up of all ASCII control characters,

the space character as well the following characters (known as delimiters)

"<" | ">" | "#" | "%" | '"'

The control characters are non-printable US-ASCII characters (i.e. hexadecimal 00-1F as

well as 7F). These characters must always be escaped if they are included in a

component of a URL. Some, such as # (hash) and % (percent) have special meaning

within the context of a URL (they can really be considered equivalent to the reserved

characters). Other characters in this set have no printable representation and therefore

escaping them is the only way to represent them. The <, > and “ characters should be

escaped since these characters are often used to delimit URLs in text.

To URL encode/escape a character we simply append its 2 character ASCII hexadecimal

value to the % character. So, the URL encoding of a space character is %20 – we have all

seen that one. The % character itself is encoded as %25.

That’s all you need to know about various special characters in URLs. Of course aside

from those characters, alpha-numerics are allowed and don’t need to be encoded :).

A few things you have to remember. A URL should always be in its encoded form. The

only time you should decode parts of the URL is when you’re pulling the URL apart (for

whatever reason). Each part of the URL must be encoded separately, this should be pretty

obvious, you don’t want to try encoding an already constructed URL, since there is no way

to distinguish when reserved characters are used for their reserved purpose (they

shouldn’t be encoded) and when they are part of a URL component (which means they

should be encoded). Lastly you should never try to double encode/decode a URL.

Consider that if you encode a URL once but try to decode it twice and one of the URL

components contains the % character you can destroy your URL e.g.:

http://blah.com/yadda.html?param1=abc%613

When encoded it will look like this:

http://blah.com/yadda.html?param1=abc%25613

6/14/2021 What Every Developer Should Know About URLs - Skorks

https://skorks.com/2010/05/what-every-developer-should-know-about-urls/ 5/8

If you try to decode it twice you will get:

1. http://blah.com/yadda.html?param1=abc%613

Correct

http://blah.com/yadda.html?param1=abca3

Stuffed

By the way I am not just pulling this stuff out of thin air. It is all defined in RFC 2396, you

can go and check it out if you like, although it is by no means the most entertaining thing

you can read, I’d like to hope my post is somewhat less dry :).

Absolute vs Relative URLs

Absolut

The last thing that every developer should know is the difference between an absolute and

relative URL as well as how to turn a relative URL into its absolute form.

The first part of that is pretty easy, if a URL contains a scheme (such as http), then it can

be considered an absolute URL. Relative URLs are a little bit more complicated.

A relative URL is always interpreted relative to another URL (hence the name :)), this

other URL is known as the base URL. To convert a relative URL into its absolute form

we firstly need to figure out the base URL, and then, depending on the syntax of our

relative URL we combine it with the base to form its absolute form.

We normally see a relative URL inside an html document. In this case there are two ways

to find out what the base is.

1. The base URL may have been explicitly specified in the document using the HTML

tag.

2. If no base tag is specified, then the URL of the html document in which the relative

URL is found should be treated as the base.

Once we have a base URL, we can try and turn our relative URL into an absolute one.

First, we need to try and break our relative URL into components (i.e. scheme, authority

(host, port), path, query string, fragment). Once this is done, there are several special

cases to be aware of, all of which mean that our relative URL wasn’t really relative.

if there is no scheme, authority or path, then the relative URL is a reference to the

base URL

https://www.ietf.org/rfc/rfc2396.txt

6/14/2021 What Every Developer Should Know About URLs - Skorks

https://skorks.com/2010/05/what-every-developer-should-know-about-urls/ 6/8

if there is a scheme then the relative URL is actually an absolute URL and should be

treated as such

if there is no scheme, but there is an authority (host, port), then our relative URL is

likely a network path, we take the scheme from our base URL and append our

“relative” URL to it separating the two by ://

If none of those special cases occurred then we have a real relative URL on our

hands. Now we need to proceed as follows.

we inherit the scheme, and authority (host, port) from the base URL

if our relative URL begins with /, then it is an absolute path, we append it to the

scheme and authority we inherited from the base using appropriate separators to get

our absolute URL

if relative URL does not begin with / then we take the path of from base URL,

discarding everything after the last / character

we then take our relative URL and append it to the resulting path, we now need to do

a little further processing which depends on the first several characters of our relative

URL

if there is a ./ (dot slash) anywhere in a resulting path we remove it (this means our

relative URL started with ./ i.e. ./blah.html)

if there is a ../ (dot dot slash) anywhere in the path then we remove it as well as the

preceding segment of the path i.e. all occurrences of “/../” are removed, keep doing

this step until no more ../ can be found anywhere in the path (this means our relative

path started with one or more ../ i.e. ../blah.html or ../../blah.html etc.)

if the path ends with .. then we remove it and the preceding segment of the path, i.e.

“/..” is removed (this means our relative path was .. (dot dot))

if the path ends with a . (dot) then we remove it (this most likely means our relative

path was . (dot))

At this point we simply append any query string or fragment that our relative URL may

have contained to our URL using appropriate separators and we have finished turning our

relative URL into an absolute one.

Here are some examples of applying the above algorithm:

1)

base: http://www.blah.com/yadda1/yadda2/yadda3?param1=foo#bar

relative: rel1

final absolute: http://www.blah.com/yadda1/yadda2/rel1

2)

base: http://www.blah.com/yadda1/yadda2/yadda3?param1=foo#bar

relative: /rel1

http://www.blah.com/yadda1/yadda2/yadda3?param1=foo#bar
http://www.blah.com/yadda1/yadda2/rel1
http://www.blah.com/yadda1/yadda2/yadda3?param1=foo#bar

6/14/2021 What Every Developer Should Know About URLs - Skorks

https://skorks.com/2010/05/what-every-developer-should-know-about-urls/ 7/8

 8 Types Of Software Consulting Firms – Which One Do You Work For?

Executing Multiple Commands – A Bash Productivity Tip

final absolute: http://www.blah.com/rel1

3)

base: http://www.blah.com/yadda1/yadda2/yadda3?param1=foo#bar

relative: ../rel1

final absolute: http://www.blah.com/yadda1/rel1

4)

base: http://www.blah.com/yadda1/yadda2/yadda3?param1=foo#bar

relative: ./rel1?param2=baz#bar2

final absolute: http://www.blah.com/yadda1/yadda2/rel1?param2=baz#bar2

5)

base: http://www.blah.com/yadda1/yadda2/yadda3?param1=foo#bar

relative: ..

final absolute: http://www.blah.com/yadda1/

#coding #fundamentals #urls

Show Disqus Comments

1
2
3
4
5

 Now you should be able to confidently turn any relative URL int

 There you go that's really all there is to know about URLs, it'

 Image

https://skorks.com/2010/05/8-types-of-software-consulting-firms-which-one-do-you-work-for/
https://skorks.com/2010/05/executing-multiple-commands-a-bash-productivity-tip/
http://www.blah.com/rel1
http://www.blah.com/yadda1/yadda2/yadda3?param1=foo#bar
http://www.blah.com/yadda1/rel1
http://www.blah.com/yadda1/yadda2/yadda3?param1=foo#bar
http://www.blah.com/yadda1/yadda2/rel1?param2=baz#bar2
http://www.blah.com/yadda1/yadda2/yadda3?param1=foo#bar
http://www.blah.com/yadda1/
https://skorks.com/tags/coding/
https://skorks.com/tags/fundamentals/
https://skorks.com/tags/urls/

6/14/2021 What Every Developer Should Know About URLs - Skorks

https://skorks.com/2010/05/what-every-developer-should-know-about-urls/ 8/8

© 2008 - 2018 Alan Skorkin

https://stackoverflow.com/users/639386/skorks
https://www.linkedin.com/in/askorkin/
https://github.com/skorks
https://gitlab.com/skorks
https://skorks.com/index.xml

