
REST in a Nutshell: A Mini
Guide for Python

Developers
REST is essentially a set of useful conventions for structur-
ing a web API. By "web API", I mean an API that you inter-
act with over HTTP - making requests to specific URLs, and
often getting relevant data back in the response.

There are whole books written about this topic, but I can
give you a quick start here. In HTTP, we have different
"methods", as they are called. GET and POST are the most
common; these are used by web browsers to load a page
and submit a form, respectively. In REST, you use these to
to indicate different actions. GET is generally used to get
information about some object or record that already exists.

Crucially, the GET does not modify anything, or at least
isn't supposed to. For example, imagine a kind of todo-list

2

web service. You might do an HTTP GET to the url "/
tasks/" to get a list of current tasks to be done.

So it may return something like this:

[
 { "id": 3643, "summary": "Wash car" },
 { "id": 3697, "summary": "Visit gym" }
]

This is a list of JSON objects. (A "JSON object" is a data
type very similar to a Python dictionary.)

In contrast, POST is typically used when you want to create
something. So to add a new item to the todo list, you might
trigger an HTTP POST to "/tasks/".

That's right, it is the same URL: that is allowed in REST.
The different methods GET and POST are like different
verbs, and the URL is like a noun.

When you do a POST, normally you will include a body in
the request. That means you send along some sequence of
bytes - some data defining the object or record you are cre-
ating.

3

What kind of data? These days, it's very common to pass
JSON objects. So the API may state that a POST to /tasks/
must include a single object with two fields, "summary" and
"description", like this:

{
 "summary": "Get milk",
 "description": "A half gallon of organic 2% milk."
}

This is a string, encoding a JSON object. The API server
then parses it and creates the equivalent Python dictionary.

What happens next? Well, that depends on the API, but
generally speaking you will get a response back with some
useful information, along two dimensions. First is the sta-
tus code. This is a positive number, something like 200 or
404 or 302. The meaning of each status code is well defined
by the HTTP protocol standard; search for "http status
codes" and the first hit will probably be the official refer-
ence. Anything in the 200s indicates success.

The other thing you get back is the response body. When
your web browser GETs a web page, the HTML sent back is

4

the response body. For an API, this can response body can
be empty, or not - it depends on the API and the end point.

For example, when we POST to /tasks/ to add something to
our todo list, we may get back an automatically assigned
task ID. This can again be in the form of a JSON object:

{ "id": 3792 }

Then if we GET /tasks/ again, our list of tasks will include
this new one:

[
 { "id": 3643, "summary": "Wash car" },
 { "id": 3697, "summary": "Visit gym" },
 { "id": 3792, "summary": "Get milk" }
]

There are other methods besides GET and POST. In the
HTTP standard, PUT is used to modify an existing resource
(e.g., change a task's summary). Another method called
DELETE will... well, delete it. You could use this when a
task is done, to remove it from your list.

5

HTTP Methods for REST APIs
The HTTP verbs comprise a major portion of our “uniform
interface” constraint and provide us the action counterpart
to the noun-based resource. The primary or most-common-
ly-used HTTP verbs (or methods, as they are properly
called) are POST, GET, PUT, PATCH, and DELETE.

These correspond to create, read, update, and delete (or
CRUD) operations, respectively. There are a number of oth-
er verbs, too, but are utilized less frequently. Of those less-
frequent methods, OPTIONS and HEAD are used more of-
ten than others.

 POST → Create New Object

The POST verb is most-often utilized to create new re-
sources. In particular, it's used to create subordinate re-
sources. That is, subordinate to some other (e.g. parent) re-
source. In other words, when creating a new resource,
POST to the parent and the service takes care of associating

6

the new resource with the parent, assigning an ID (new re-
source URI), etc.

On successful creation, return HTTP status 201, returning a
Location header with a link to the newly-created resource
with the 201 HTTP status.

POST is neither safe nor idempotent. It is therefore recom-
mended for non-idempotent resource requests. Making two
identical POST requests will most-likely result in two re-
sources containing the same information.

Examples:

POST http://www.example.com/customers
POST http://www.example.com/customers/12345/orders

GET → Read Object

The HTTP GET method is used to read (or retrieve) a rep-
resentation of a resource. In the “happy” (or non-error)
path, GET returns a representation in XML or JSON and an
HTTP response code of 200 (OK). In an error case, it most

7

often returns a 404 (NOT FOUND) or 400 (BAD RE-
QUEST).

According to the design of the HTTP specification, GET
(along with HEAD) requests are used only to read data and
not change it. Therefore, when used this way, they are con-
sidered safe. That is, they can be called without risk of data
modification or corruption—calling it once has the same ef-
fect as calling it 10 times, or none at all. Additionally, GET
(and HEAD) is idempotent, which means that making mul-
tiple identical requests ends up having the same result as a
single request.

Do not expose unsafe operations via GET—it should never
modify any resources on the server.

Examples:

GET http://www.example.com/customers/12345
GET http://www.example.com/customers/12345/orders
GET http://www.example.com/buckets/sample

8

PUT → Update/Replace Object

PUT is most-often utilized for update capabilities, PUT-
ing to a known resource URI with the request body contain-
ing the newly-updated representation of the original re-
source.

However, PUT can also be used to create a resource in the
case where the resource ID is chosen by the client instead of
by the server. In other words, if the PUT is to a URI that
contains the value of a non-existent resource ID. Again, the
request body contains a resource representation. Many feel
this is convoluted and confusing. Consequently, this
method of creation should be used sparingly, if at all.

Alternatively, use POST to create new resources and pro-
vide the client-defined ID in the body representation—pre-
sumably to a URI that doesn't include the ID of the re-
source (see POST below).

On successful update, return 200 (or 204 if not returning
any content in the body) from a PUT. If using PUT for cre-
ate, return HTTP status 201 on successful creation. A body
in the response is optional—providing one consumes more

9

bandwidth. It is not necessary to return a link via a Loca-
tion header in the creation case since the client already set
the resource ID.

PUT is not a safe operation, in that it modifies (or creates)
state on the server, but it is idempotent. In other words, if
you create or update a resource using PUT and then make
that same call again, the resource is still there and still has
the same state as it did with the first call.

If, for instance, calling PUT on a resource increments a
counter within the resource, the call is no longer idempo-
tent. Sometimes that happens and it may be enough to doc-
ument that the call is not idempotent. However, it's recom-
mended to keep PUT requests idempotent. It is strongly
recommended to use POST for non-idempotent requests.

Examples:

PUT http://www.example.com/customers/125
PUT http://www.example.com/customers/125/orders/98
PUT http://www.example.com/buckets/secret_stuff

10

PATCH → Updated/Modify Object

PATCH is used for modify capabilities. The PATCH re-
quest only needs to contain the changes to the resource, not
the complete resource.

This resembles PUT, but the body contains a set of instruc-
tions describing how a resource currently residing on the
server should be modified to produce a new version. This
means that the PATCH body should not just be a modified
part of the resource, but in some kind of patch language like
JSON Patch or XML Patch.

PATCH is neither safe nor idempotent. However, a PATCH
request can be issued in such a way as to be idempotent,
which also helps prevent bad outcomes from collisions be-
tween two PATCH requests on the same resource in a simi-
lar time frame. Collisions from multiple PATCH requests
may be more dangerous than PUT collisions because some
patch formats need to operate from a known base-point or
else they will corrupt the resource. Clients using this kind of
patch application should use a conditional request such
that the request will fail if the resource has been updated
since the client last accessed the resource. For example, the

11

client can use a strong ETag in an If-Match header on the
PATCH request.

Examples:

PATCH http://www.example.com/customers/125
PATCH http://www.example.com/customers/125/orders/98
PATCH http://www.example.com/buckets/secret_stuff

DELETE → Delete Object

DELETE is pretty easy to understand. It is used to delete a
resource identified by a URI.

On successful deletion, return HTTP status 200 (OK) along
with a response body, perhaps the representation of the
deleted item (often demands too much bandwidth), or a
wrapped response (see Return Values below). Either that or
return HTTP status 204 (NO CONTENT) with no response
body. In other words, a 204 status with no body, or the
JSEND-style response and HTTP status 200 are the recom-
mended responses.

HTTP-spec-wise, DELETE operations are idempotent. If
you DELETE a resource, it's removed. Repeatedly calling

12

DELETE on that resource ends up the same: the resource is
gone. If calling DELETE say, decrements a counter (within
the resource), the DELETE call is no longer idempotent. As
mentioned previously, usage statistics and measurements
may be updated while still considering the service idempo-
tent as long as no resource data is changed. Using POST for
non-idempotent resource requests is recommended.

There is a caveat about DELETE idempotence, however.
Calling DELETE on a resource a second time will often re-
turn a 404 (NOT FOUND) since it was already removed
and therefore is no longer findable. This, by some opinions,
makes DELETE operations no longer idempotent, however,
the end-state of the resource is the same. Returning a 404
is acceptable and communicates accurately the status of the
call.

Examples:

DELETE http://www.example.com/customers/12345
DELETE http://www.example.com/customers/12345/orders
DELETE http://www.example.com/bucket/sample

13

This section is based on tfredrich's excellent REST API tu-
torial available under the Creative Commons Attribution-
ShareAlike 4.0 International License.

https://github.com/tfredrich/RestApiTutorial.com
https://github.com/tfredrich/RestApiTutorial.com
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/

