6/14/2021 HTTP: The Protocol Every Web Developer Must Know - Part 2

) tuts+

CODE > TOOLS & TIPS

HTTP: The Protocol Every Web Developer
Must Know - Part 2

by Pavan Podila 29 Apr 2013
Difficulty: Intermediate Length: Long Languages: English v

Tools & Tips Web Development HTTP

<

In my previous article, we covered some of HTTP's basics, such as the URL scheme,
status codes and request/response headers. With that as our foundation, we will
look at the finer aspects of HTTP, like connection handling, authentication and
HTTP caching. These topics are fairly extensive, but we'll cover the most important
bits.

HTTP Connections

A connection must be established between the client and server before they can
communicate with each other, and HTTP uses the reliable TCP transport protocol
to make this connection. By default, web traffic uses TCP port 80. A TCP stream is
broken into IP packets, and it ensures that those packets always arrive in the
correct order without fail. HTTP is an application layer protocol over TCP, which is
over IP.

HTTPS is a secure version of HTTP, inserting an additional layer between HTTP and
TCP called TLS or SSL (Transport Layer Security or Secure Sockets Layer,
respectively). HTTPS communicates over port 443 by default, and we will look at
HTTPS later in this article.

https://code.tutsplus.com/tutorials/http-the-protocol-every-web-developer-must-know-part-2--net-31155 1/15

https://elements.envato.com/pricing?utm_source=tutsplus.com&utm_medium=promos&utm_campaign=elements_tuts-header_promo_sep20
javascript:
https://tutsplus.com/
https://code.tutsplus.com/tutorials
https://code.tutsplus.com/categories/tools-tips
https://tutsplus.com/authors/pavan-podila
https://code.tutsplus.com/categories/tools-tips
https://code.tutsplus.com/categories/web-development
https://code.tutsplus.com/categories/http
javascript:
https://net.tutsplus.com/tutorials/tools-and-tips/http-the-protocol-every-web-developer-must-know-part-1/
javascript:

6/14/2021 HTTP: The Protocol Every Web Developer Must Know - Part 2

http https
HTTP | HTTP |
» — | - — |
TCP | SSLor TLS |
S - BN
IP | TCP !
————] R

IP

RI—

An HTTP connection is identified by <source-IP, source-port> and
<destination-IP, destination-port>.On aclient,an HTTP application is
identified by a <IP, port> tuple. Establishing a connection between two
endpoints is a multi-step process and involves the following:

Process

AV

DMS Connect Request Response Close
— lookup

e resolve IP address from host name via DNS
e establish a connection with the server

e send a request

e wait for a response

e close connection

The server is responsible for always responding with the
correct headers and responses.

https://code.tutsplus.com/tutorials/http-the-protocol-every-web-developer-must-know-part-2--net-31155 2/15

6/14/2021 HTTP: The Protocol Every Web Developer Must Know - Part 2

In HTTP/1.0, all connections were closed after a single transaction. So, if a client
wanted to request three separate images from the same server, it made three
separate connections to the remote host. As you can see from the above diagram,

this can introduce lot of network delays, resulting in a sub-optimal user
experience.

To reduce connection-establishment delays, HTTP/1.1 introduced persistent
connections, long-lived connections that stay open until the client closes them.
Persistent connections are default in HTTP/1.1, and making a single transaction
connection requires the client to set the Connection: close request header. This
tells the server to close the connection after sending the response.

In addition to persistent connections, browsers/clients also employ a technique,
called parallel connections, to minimize network delays. The age-old concept of
parallel connections involves creating a pool of connections (generally capped at
six connections). If there are six assets that the client needs to download from a
website, the client makes six parallel connections to download those assets,
resulting in a faster turnaround. This is a huge improvement over serial
connections where the client only downloads an asset after completing the
download for a previous asset.

Parallel connections, in combination with persistent connections, is today's
answer to minimizing network delays and creating a smooth experience on the
client. For an in-depth treatment of HTTP connections, refer to the Connections
section of the HTTP spec.

Server-side Connection Handling

The server mostly listens for incoming connections and processes them when it
receives a request. The operations involve:

e establishing a socket to start listening on port 80 (or some other port)

e receiving the request and parsing the message

e processing the response

e setting response headers

e sending the response to the client

e close the connection if a Connection: close request header was found

https://code.tutsplus.com/tutorials/http-the-protocol-every-web-developer-must-know-part-2--net-31155 3/15

https://www.w3.org/Protocols/rfc2616/rfc2616-sec8.html#sec8

6/14/2021 HTTP: The Protocol Every Web Developer Must Know - Part 2

Of course, this is not an exhaustive list of operations. Most applications/websites
need to know who makes a request in order to create more customized
responses. This is the realm of identification and authentication.

Advertisement

Identification and Authentication

HTTP is an application layer protocol over TCP, which is
over IP.

It is almost mandatory to know who connects to a server for tracking an app's or
site's usage and the general interaction patterns of users. The premise of
identification is to tailor the response in order to provide a personalized
experience; naturally, the server must know who a user is in order to provide that
functionality.

There are a few different ways a server can collect this information, and most
websites use a hybrid of these approaches:

e Request headers: From, Referer, User-Agent - We saw these headers in
Part 1.

e Client-IP - the IP address of the client

e Fat Urls - storing state of the current user by modifying the URL and
redirecting to a different URL on each click; each click essentially accumulates

https://code.tutsplus.com/tutorials/http-the-protocol-every-web-developer-must-know-part-2--net-31155 4/15

https://net.tutsplus.com/tutorials/tools-and-tips/http-the-protocol-every-web-developer-must-know-part-1/

6/14/2021 HTTP: The Protocol Every Web Developer Must Know - Part 2
state.

e Cookies - the most popular and non-intrusive approach.

Cookies allow the server to attach arbitrary information for outgoing responses
via the Set-Cookie response header. A cookie is set with one or more name=value
pairs separated by semicolon (;), as in Set-Cookie: session-id=12345ABC;

username=nettuts.

A server can also restrict the cookies to a specific domain and path, and it can
make them persistent with an expires value. Cookies are automatically sent by
the browser for each request made to a server, and the browser ensures that only
the domain - and path -specific cookies are sent in the request. The request
header Cookie: name=value [; name2=value2?] is used to send these cookies to

the server.

The best way to identify a user is to require them to sign
up and log in, but implementing this feature requires
some effort by the developer, as well as the user.

Techniques like OAuth simplify this type of feature, but it still requires user
consent in order to work properly. Authentication plays a large role here, and it is
probably the only way to identify and verify the user.

Authentication

HTTP does support a rudimentary form of authentication called Basic
Authentication, as well as the more secure Digest Authentication.

In Basic Authentication, the server initially denies the client's request with a Www-
Authenticate response header and a 401 Unauthorized status code. On seeing
this header, the browser displays a login dialog, prompting for a username and
password. This information is sent in a base-64 encoded format in the
Authentication request header. The server can now validate the request and
allow access if the credentials are valid. Some servers might also send an
Authentication-Info header containing additional authentication details.

https://code.tutsplus.com/tutorials/http-the-protocol-every-web-developer-must-know-part-2--net-31155 5/15

https://oauth.net/

6/14/2021 HTTP: The Protocol Every Web Developer Must Know - Part 2

WWWoAuthenticate

e Authorization

Response

A corollary to Basic-Authentication is Proxy Authentication. Instead of a web
server, the authetication challenge is requested by an intermediate proxy. The
proxy sends a Proxy-Authenticate header with a 407 Unauthorized status
code. In return, the client is supposed to send the credentials via the Proxy-
Authorization request header.

Digest Authentication is similar to Basic and uses the same handshake technique
with the Www-Authenticate and Authorization headers, but Digest uses a more
secure hashing function to encrypt the username and password (commonly with
MD5 or KD digest functions). Although Digest Authentication is supposed to be
more secure than Basic, websites typically use Basic Authentication because of its
simplicty. To mitigate the security concerns, Basic Auth is used in conjunction with
SSL.

Secure HTTP

& https://mail.google.com/mail fu/0/?shva=1#inbox

The HTTPS protocol provides a secure connection on the web. The easiest way to
know if you are using HTTPS is to check the browser's address bar. HTTPs' secure
component involves inserting a layer of encryption/decryption between HTTP and
TCP. This is the Secure Sockets Layer (SSL) or the improved Transport Layer

https://code.tutsplus.com/tutorials/http-the-protocol-every-web-developer-must-know-part-2--net-31155 6/15

6/14/2021 HTTP: The Protocol Every Web Developer Must Know - Part 2

Security (TLS).

SSL uses a powerful form of encryption using RSA and public-key cryptography.
Because secure transactions are so important on the web, a ubiquitous standards-

based Public-Key Infrastructure (PKI) effort has been underway for quite
sometime.

Existing clients/servers do not have to change the way they handle messages
because most of the hard work happens in the SSL layer. Thus, you can develop
your web application using Basic Authentication and automatially reap the
benefits of SSL by switching to the https:// protocol. However, to make the web
application work over HTTPS, you need to have a working digital certificate
deployed on the server.

Certificates

Just as you need ID cards to show your identity, a web server needs a digital
certificate to identify itself. Certificates (or "certs") are issued by a Certificate
Authority (CA) and vouch for your identity on the web. The CAs are the guardians
of the PKI. The most common form of certificates is the X.509 v3 standard, which
contains information, such as:

e the certificate issuer

e the algorithm used for the certificate

e the subject name or organization for whom this cert is created

e the public key information for the subject

e the Certification Authority Signature, using the specified signing algorithm

When a client makes a request over HTTPS, it first tries to locate a certificate on
the server. If the cert is found, it attempts to verfiy it against its known list of CAs.
If its not one of the listed CAs, it might show a dialog to the user warning about
the website's certficate.

Once the certificate is verified, the SSL handshake is complete and secure
transmission is in effect.

HTTP Caching

https://code.tutsplus.com/tutorials/http-the-protocol-every-web-developer-must-know-part-2--net-31155 7/15

https://www.ietf.org/rfc/rfc2459.txt

6/14/2021 HTTP: The Protocol Every Web Developer Must Know - Part 2

It is generally agreed that doing the same work twice is wasteful. This is the
guiding principle around the concept of HTTP caching, a fundamental pillar of the
HTTP Network Infrastructure. Because most of the operations are over a network,

a cache helps save time, cost and bandwidth, as well as provide an improved
experience on the web.

Caches are used at several places in the network infrastructure, from the browser
to the origin server. Depending on where it is located, a cache can be categorized
as:

e Private: within a browser, caches usernames, passwords, URLs, browsing
history and web content. They are generally small and specific to a user.

e Public: deployed as caching proxies between the server and client. These are
much larger because they serve multiple users. A common practice is to keep
multiple caching proxies between the client and the origin-server. This helps
to serve frequently accessed content, while still allowing a trip to the server
for infrequently needed content.

Origin Server

Level 2 Caching Proxy

Level I | Caching Proxy

— -

https://code.tutsplus.com/tutorials/http-the-protocol-every-web-developer-must-know-part-2--net-31155 8/15

6/14/2021 HTTP: The Protocol Every Web Developer Must Know - Part 2

Clients

Cache Processing

Regardless of where a cache is located, the process of maintaining a cache is quite
similar:

e Receive request message.

e Parse the URL and headers.

e Lookup a local copy; otherwise, fetch and store locally

e Do a freshness check to determine the age of the content in the cache; make
a request to refresh the content only if necessary.

e Create the response from the cached body and updated headers.

e Send the response back to client.

e Optionally, log the transaction.

Of course, the server is responsible for always responding with the correct
headers and responses. If a document hasn't changed, the server should respond
with a 304 Not Modified . If the cached copy has expired, it should generate a

new response with updated response headers and return with a 200 0K . If the
resource is deleted, it should come back with 404 Not Found . These responses
help tune the cache and ensure that stale content is not kept for too long.

Advertisement

Cache Control Headers

https://code.tutsplus.com/tutorials/http-the-protocol-every-web-developer-must-know-part-2--net-31155 9/15

6/14/2021 HTTP: The Protocol Every Web Developer Must Know - Part 2

Parallel connections, in combination with persistent
connections, Is today’s answer to minimizing network
delays.

Now that we have a sense of how a cache works, it's time to look at the request
and response headers that enable the caching infrastructure. Keeping the content
fresh and up-to-date is one of the primary responsibilities of the cache. To keep
the cached copy consistent with the server, HTTP provides some simple
mechanisms, namely Document Expiration and Server Revalidation.

Document Expiration

HTTP allows an origin-server to attach an expiration date to each document using
the Cache-Control and Expires response headers. This helps the client and
other cache servers know how long a document is valid and fresh. The cache can
serve the copy as long as the age of the document is within the expiration date.
Once a document expires, the cache must check with the server for a newer copy
and update its local copy accordingly.

Expires is an older HTTP/1.0 response header that specifies the value as an
absolute date. This is only useful if the server clocks are in sync with the client,
which is a terrible assumption to make. This header is less useful compared to the
newer Cache-Control: max-age=<s> header introduced in HTTP/1.1. Here, max-
age is a relative age, specified in seconds, from the time the response was
created. Thus if a document should expire after one day, the expiration header
should be Cache-Control: max-age=86400 .

Server Revalidation

Once a cached document expires, the cache must revalidate with the server to
check if the document has changed. This is called server revalidation and serves as
a querying mechanism for the stale-ness of a document. Just because a cached
copy has expired doesn't mean that the server actually has newer content.
Revalidation is just a means of ensuring that the cache stays fresh. Because of the
expiration time (as specified in a previous server response), the cache doesn't
have to check with the server for every single request, thus saving bandwidth,
time and reducing the network traffic.

—— | " r 1 s " " 1

https://code.tutsplus.com/tutorials/http-the-protocol-every-web-developer-must-know-part-2--net-31155 10/15

6/14/2021 HTTP: The Protocol Every Web Developer Must Know - Part 2

I ne compination or aocument expiration ana server
revalidation is a very effective mechanism, it and allows
distributed systems to maintain copies with an expiration
date.

If the content is known to frequently change, the expiration time can be reduced—
allowing the systems to re-sync more frequently.

The revalidation step can be accomplished with two kinds of request-headers: If-
Modified-Since and If-None-Match.The former is for date-based validation
while the latter uses Entity-Tags (ETags), a hash of the content. These headers use
date or ETag values obtained from a previous server response. In case of If-
Modified-Since, the Last-Modified response header is used; for If-None-
Match, itis the ETag response header.

Controlling the Cachability

The validity period for a document should be defined by the server generating the
document. If it's a newspaper website, the homepage should expire after a day (or
sometimes even every hour!). HTTP provides the Cache-Control and Expires
response headers to set the expiration on documents. As mentioned earlier,
Expires is based on absolute dates and not a reliable solution for controlling
cache.

The Cache-Control header is far more useful and has a few different values to
constrain how clients should be caching the response:

e Cache-Control: no-cache: the client is allowed to store the document;
however, it must revalidate with the server on every request. There is a
HTTP/1.0 compatibility header called Pragma: no-cache, which works the
same way.

e Cache-Control: no-store: this is a stronger directive to the client to not store
the document at all.

e Cache-Control: must-revalidate: this tells the client to bypass its freshness
calculation and always revalidate with the server. It is not allowed to serve the
cached response in case the server is unavailable.

e Cache-Control: max-age: this sets a relative expiration time (in seconds)
from the time the response is generated.

https://code.tutsplus.com/tutorials/http-the-protocol-every-web-developer-must-know-part-2--net-31155 11/15

6/14/2021 HTTP: The Protocol Every Web Developer Must Know - Part 2

As an aside, if the server does not send any Cache-Control headers, the clientis
free to use its own heuristic expiration algorithm to determine freshness.

Constraining Freshness from the Client

Cachability is not just limited to the server. It can also be specified from the client.
This allows the client to impose constraints on what it is willing to accept. This is
possible via the same Cache-Control header, albeit with a few different values:

e Cache-Control: min-fresh=<s>: the document must be fresh for at least <s>
seconds.

e Cache-Control: max-stale or Cache-Control: max-stale=<s>: the document
cannot be served from the cache if it has been stale for longer than <s>
seconds.

e Cache-Control: max-age=<s>: the cache cannot return a document that has
been cached longer than <s> seconds.

e Cache-Control: no-cache or Pragma: no-cache: the client will not accept a
cached resource unless it has been revalidated.

HTTP Caching is actually a very interesting topic, and there are some very
sophisticated algorithms to manage cached content. For a deeper look into this
topic, refer to the Caching section of the HTTP spec.

Summary

Our tour of HTTP began with the foundation of URL schemes, status codes and
request/response headers. Building upon those concepts, we looked at some of
the finer areas of HTTP, such as connection handling, identification and
authentication and caching. I am hopeful that this tour has given you a good taste
for the breadth of HTTP and enough pointers to further explore this protocol.

References

e RFC 2616, HTTP specification
e HTTP Definitive Guide

https://code.tutsplus.com/tutorials/http-the-protocol-every-web-developer-must-know-part-2--net-31155 12/15

https://www.w3.org/Protocols/rfc2616/rfc2616-sec13.html
https://www.w3.org/Protocols/rfc2616/rfc2616.html
https://www.amazon.com/HTTP-Definitive-Guide-David-Gourley/dp/1565925092

6/14/2021 HTTP: The Protocol Every Web Developer Must Know - Part 2

Advertisement

Pavan Podila
Web Developer, New York

I am a financial technologist specializing in front-end development, mostly
for trading and analytics applications. I have worked on a wide variety of UI
technologies in the past, ranging from Java Swing, Eclipse SWT, and Nokia Qt
to Cocoa on OSX/iOS, .Net WPF, and HTML5. I am the author of WPF Control
Development Unleashed with Addison/Wesley-SAMS. I am also the creator of
QuickLens, a Mac App targeted at UI Designers and Developers.

YWpavanpodila

Weekly email summary

Subscribe below and we’ll send you a weekly email summary of all new Code tutorials.
Never miss out on learning about the next big thing.

https://code.tutsplus.com/tutorials/http-the-protocol-every-web-developer-must-know-part-2--net-31155 13/15

https://tutsplus.com/authors/pavan-podila
https://twitter.com/pavanpodila
https://code.tutsplus.com/categories/tools-tips.atom
https://www.facebook.com/tutsplus
https://twitter.com/tutsplus
https://code.tutsplus.com/weekly_digest_subscription_requests/new

6/14/2021 HTTP: The Protocol Every Web Developer Must Know - Part 2

Translations

Envato Tuts+ tutorials are translated into other languages by our community
members—you can be involved too!

Translate this post

Powered by

native

Advertisement

QUICK LINKS

https://code.tutsplus.com/tutorials/http-the-protocol-every-web-developer-must-know-part-2--net-31155 14/15

https://getnative.me/?ref=tutsplus&lang=en&url=https://code.tutsplus.com/tutorials/http-the-protocol-every-web-developer-must-know-part-2--net-31155&title=HTTP%3A%20The%20Protocol%20Every%20Web%20Developer%20Must%20Know%20-%20Part%202&splitMode=1

6/14/2021 HTTP: The Protocol Every Web Developer Must Know - Part 2

é tuts+

Tutorials Courses Translations

© 2021 Envato Pty Ltd. Trademarks and brands are the property of their respective owners.

Follow Envato Tuts+

https://code.tutsplus.com/tutorials/http-the-protocol-every-web-developer-must-know-part-2--net-31155 15/15

javascript:void(0);
javascript:void(0);
javascript:void(0);
https://www.facebook.com/tutsplus
https://twitter.com/tutsplus
https://www.pinterest.com/tutsplus/
https://envato.com/
https://envato.com/#products
https://envato.com/careers
https://envato.com/sitemap

