

FEATURE Create a Mini PC or Server with Olimex’s Olinuxino A13/A13Micro

74 / OCTOBER 2013 / WWW.LINUXJOURNAL.COM

Create a
Mini PC or Server

with Olimex’s
Olinuxino

A13/A13Micro
STEP-BY-STEP
INSTRUCTIONS

ON HOW TO CREATE
A PERSONAL COMPUTER

OR EVEN A SMALL SERVER
WITH THIS GREAT

EMBEDDED SYSTEM
FOR LESS THAN $80 US!

RONALD KURNIAWAN

LJ234-Oct2013.indd 74 9/18/13 4:09 PM

 WWW.LINUXJOURNAL.COM / OCTOBER 2013 / 75

O
limex is a Bulgarian
company known for
its innovative hobbyist
products. It has a wide
array of microcontroller-
based products, ranging

from the small Arduino clones to
the very able system that has the
Allwinner A13 microcontroller as its
brain. In this article, I describe how
you can create a working Linux system
for the Olinuxino A13 and Olinuxino
A13Micro from scratch.

Let’s begin by obtaining and
compiling the kernel, creating the
U-Boot system, preparing the root
filesystem and getting the necessary
packages to create a comfortable
minimal computing environment.
At the end of this article, I also
explain how to install a compact
desktop environment.

I am using Ubuntu 12.04 (Precise
Pangolin) for my build system. Any
Debian-based system users should be
able to follow the instructions in this
article with relative ease. Before you
begin, you should create a directory
under your home directory to contain
all your work. I am going to call mine
“A13System”.

What Are Arm and eabihf?
As you progress further into the
article, you will encounter the terms

Arm and eabihf more than once.
Let me clarify those terms in order
to avoid confusion with other terms
that you might encounter if you
decide to go further into the world of
cross-compilation.

Arm is a general name for a family
of microcontroller architectures
designed by ARM Holdings, a
British company. You can find Arm
microcontrollers inside most portable
modern gadgets, ranging from
mobile phones, Nintendo DS portable
game consoles to Apple iPhone and
Apple TV. ARM Holdings does not
manufacture these microcontrollers;
rather, it licenses the designs to other
companies. These companies then add
their own “secret recipes” into the
designs and then manufacture and sell
the finished microcontrollers. This is
why there are so many variants of Arm
architecture and so many companies
that produce Arm microcontrollers.

EABI stands for Embedded
Application Binary Interface. It
specifies the low-level conventions
for embedded software
application. When it comes to Arm
microcontrollers, they come in many
sizes, ranging from very small to
large. The smaller variants don’t have
the necessary memory or power to
process floating-point computation
on the hardware itself, thus making it

LJ234-Oct2013.indd 75 9/18/13 4:09 PM

76 / OCTOBER 2013 / WWW.LINUXJOURNAL.COM

FEATURE Create a Mini PC or Server with Olimex’s Olinuxino A13/A13Micro

necessary to do it by software. These
variants are called Arm soft float.
There are other variants that can
process the floating-point calculation
by hardware, like vector floating
point (vfp). These two EABIs (soft
float and vfp) are what is usually
known as armel. A newer EABI
that targets the higher end of Arm
microcontrollers with more efficient
floating-point instructions than vfp is
called hard float, thus armhf.

Olimex’s A13WiFI, A13 and
A13Micro boards are powered by the
Allwinner A13 Arm microcontroller,
which are based on ARMv7 design.
ARMv7, as with the newer ARMv8,
fully supports armhf.

Prerequisites
You can find all the necessary
URLs for file downloads and other
information in the Resources section
of this article. You need to install the
following programs before you can
commence the build process:

■ build-essential.

■ gcc-4.6-arm-linux-gnueabihf (the
version might vary from one distro to
another; the latest I came across at
the time of this writing is version 4.7).

■ ncurses-dev.

■ uboot-mkimage.

■ git.

■ debootstrap.

■ debian-archive-keyring (if you
decide later that you want to use
Debian rootfs).

■ qemu-user-static.

Once you finish installing the
prerequisites, you then need to create
several softlinks in the same directory
where gcc-4.6-arm-linux-gnueabihf is
installed (in my case, it is located in
/usr/bin). Use the which command to
find the installation directory:

$ which arm-linux-gnueabi-gcc-4.6

Next, create softlinks for
arm-linux-gnueabihf-gcc-4.6,
arm-linux-gnueabihf-gcov-4.6 and
arm-linux-gnueabihf-cpp-4.6:

$ sudo ln -s /usr/bin/arm-linux-gnueabihf-gcc-4.6 \

 /usr/bin/arm-linux-gnueabihf-gcc

$ sudo ln -s \

 /usr/bin/arm-linux-gnueabihf-gcov-4.6 \

 /usr/bin/arm-linux-gnueabihf-gcov

$ sudo ln -s /usr/bin/arm-linux-gnueabihf-cpp-4.6 \

 /usr/bin/arm-linux-gnueabihf-cpp

LJ234-Oct2013.indd 76 9/18/13 4:09 PM

 WWW.LINUXJOURNAL.COM / OCTOBER 2013 / 77

Preparing the Kernel and U-Boot
The good people at Linux Sunxi are
kind enough to share the kernel
and U-Boot code tailored to run on
Allwinner chips. You have the option
of getting and compiling version
3.0 or 3.4 of the Linux kernel. The
compilation procedures are similar.
For the purpose of this article, I am
using kernel version 3.4. Get the
kernel and U-Boot source from Linux
Sunxi’s GitHub repository:

$ git clone -b sunxi-3.4

 https://github.com/linux-sunxi/linux-sunxi.git

$ git clone -b sunxi

 https://github.com/linux-sunxi/u-boot-sunxi.git

Let’s compile U-Boot first.
Depending on the target system
(A13 or A13Micro), go to the
U-Boot directory and issue the
following command:

$ make a13-olinuxino \

 CROSS_COMPILE=arm-linux-gnueabihf-

or:

$ make a13-olinuxinom \

 CROSS_COMPILE=arm-linux-gnueabihf-

Note: the dash (-) at the end
of the commands are not typos.
After the make process finishes,

if everything goes correctly, you
should end up with u-boot.bin and
spl/sunxi-spl.bin.

Go to the kernel source directory.
Check the configuration directory
($KERNEL_DIR/arch/arm/configs)
for the A13 configuration fi le
(a13_defconfig) or A13Micro
(a13om_defconfig). If you do not
have the configuration fi le for
A13Micro (which is usually the
case), you can find the download
URL in the Resources section.

Now you need to check the
configuration fi le for a specific l ine.
I learned the hard way that without
this l ine, the compilation will fail.
Add the following l ine to your
configuration fi le if it does not exist
or uncomment it:

CONFIG_GPIOLIB=y

Once again, depending on the
target system, issue one of these
sets of commands to compile the
kernel source:

$ make ARCH=arm a13_defconfig

$ make menuconfig

or:

$ make ARCH=arm a13om_defconfig

$ make menuconfig

LJ234-Oct2013.indd 77 9/18/13 4:09 PM

78 / OCTOBER 2013 / WWW.LINUXJOURNAL.COM

The last step allows you to
customize your kernel. In order
to avoid a long and painful
debugging process, always make
sure you are able to compile
the minimal kernel (that means
compiling without any options
added) successfully first. Once you
succeed, you can add more options
to your kernel. Note any options
you add to the kernel configuration,
as it wil l aid you in figuring out
which feature(s) does not work.

There is a special step you should
adhere to if you are compiling
the kernel for A13Micro boards.
You need to remove the option to
“Suspend to RAM and standby”,
which is located under “Power
Management options”. A13Micro
boards do not support this option.

If you are planning to use any of
the board’s GPIO pins, make sure
that you select “An ugly sun4i
gpio driver” option under “Device
Drivers” and “Misc devices”.

FEATURE Create a Mini PC or Server with Olimex’s Olinuxino A13/A13Micro

Figure 1. Selecting Power Management Options

LJ234-Oct2013.indd 78 9/18/13 4:09 PM

 WWW.LINUXJOURNAL.COM / OCTOBER 2013 / 79

Figure 2. Uncheck Suspend to RAM and Standby

Figure 3. Selecting Misc Devices under Device Drivers

LJ234-Oct2013.indd 79 9/18/13 4:09 PM

80 / OCTOBER 2013 / WWW.LINUXJOURNAL.COM

FEATURE Create a Mini PC or Server with Olimex’s Olinuxino A13/A13Micro

Figure 4. Realtek 8192C Driver as a Module

Figure 5. Networking Support Option

LJ234-Oct2013.indd 80 9/18/13 4:09 PM

 WWW.LINUXJOURNAL.COM / OCTOBER 2013 / 81

I also plan to use Olimex’s
MOD-WIFI USB Stick Module2 that
adds the Wi-Fi capabil it ies to the
board. To do that, you need to
include the driver for the module,
which is called “Realtek 8192C USB
Wifi for SW” and is located under
“Device Drivers/Network device
support/Wireless LAN”. You are
welcome to experiment with other
Wi-Fi devices. I can vouch that I
successfully run the A13 board with
the Netgear WG111v2 USB Wifi

Stick module. The driver I used for
this Wi-Fi device was “Realtek 8187
and 8187B USB support”.

You also have to make sure that
TCP/IP is selected and included in
the kernel. T ick Networking Support
and press Enter to select it.

Go inside Networking options
and make sure that TCP/IP networking
is selected.

Once you are satisfied with your
configuration, save it and go back
to the command prompt. Issue the

Figure 6. Make sure that TCP/IP networking is selected.

LJ234-Oct2013.indd 81 9/18/13 4:09 PM

82 / OCTOBER 2013 / WWW.LINUXJOURNAL.COM

following commands to compile the
kernel and build the drivers:

$ make ARCH=arm \

 CROSS_COMPILE=arm-linux-gnueabihf- uImage

$ make ARCH=arm \

 CROSS_COMPILE=arm-linux-gnueabihf- \

 INSTALL_MOD_PATH=out modules

$ make ARCH=arm \

 CROSS_COMPILE=arm-linux-gnueabihf- \

 INSTALL_MOD_PATH=out modules_install

When the compilation finishes,
you will end up with the kernel
image in $KERNEL_DIR/arch/arm/
boot/uImage and the modules and
drivers in $KERNEL_DIR/out/l ib/
modules/$KERNEL_VERSION.

The next step is to prepare a
minimal fi lesystem for your board.
The easiest option I’ve found so
far is by using the root fi lesystem
from the Debian project or Ubuntu,
as both distributions provide
armhf binaries for the essential
applications. I explain how to
prepare both options next.

Preparing the Filesystem:
Debian Wheezy
Start by creating a new directory
for your root filesystem. For
the sake of clarity, I call mine
debian-rootfs. You’ll use an
application called debootstrap to

pull the basic filesystem structure
from a Debian repository. You are
free to use a repository that is closer
to you, rather than the same one
I use in this example. Enter the
following as root or using sudo,
inside your newly created directory:

debootstrap --foreign --arch armhf wheezy \

 /home/user/A13System/debian-rootfs \

 http://ftp.debian.org/debian

Note that the resulting structure
is still not a complete filesystem.
The next step is to create a chroot
system within your new directory.
For those of you who are not
familiar with chroot, this command
effectively creates an isolated system
within your “host” system:

cp $(which qemu-arm-static) \

 /home/user/A13System/debian-rootfs/usr/bin

mount -t proc proc \

 /home/user/A13System/debian-rootfs/proc

chroot /home/user/debian-rootfs /bin/bash

I have no name!# ./debootstrap/debootstrap \

 --second-stage

Copy the qemu-arm-static binary
into your root filesystem’s /usr/bin
directory. The qemu-arm-static
binary helps run the armhf binaries
from your x86/64-bit systems. You

FEATURE Create a Mini PC or Server with Olimex’s Olinuxino A13/A13Micro

LJ234-Oct2013.indd 82 9/18/13 4:09 PM

 WWW.LINUXJOURNAL.COM / OCTOBER 2013 / 83

also need to mount the
host’s proc filesystem into your
chroot system. When you first
get inside the chroot system,
you might find a strange prompt
greeting you (“I have no name!”).
This is not a cause for concern,
and you can safely disregard it.
Once you are inside your chroot
system, execute another call to
debootstrap to complete the base
system (with --second-stage).

If you are curious whether you
really are running an armhf system
within your chroot system, issue
the uname command to check. If
you see something l ike “armv7l”
somewhere in the output, it is
an indication that your chroot is
running the armhf system.

The next step is to update your
apt source list file. Within your
chroot system, or using the build
host’s editor, go and edit the file
/etc/apt/sources.list that resides
inside your root filesystem directory.
Add the following lines to this
file (remember, you can use other
Debian repositories as well):

deb http://ftp.debian.org/debian wheezy main \

 contrib non-free

deb-src http://ftp.debian.org/debian wheezy main \

 contrib non-free

deb http://ftp.debian.org/debian wheezy-updates \

 main contrib non-free

deb-src http://ftp.debian.org/debian \

 wheezy-updates main contrib non-free

deb http://security.debian.org/ wheezy/updates \

 main contrib non-free

deb-src http://security.debian.org/ \

 wheezy/updates main contrib non-free

Preparing the Filesystem: Ubuntu
If you are feeling adventurous, you
always can try to debootstrap your
Ubuntu root filesystem, just like I
described in the previous section.
(You also can find instructions on
the Internet for that.) Here, let’s
opt for an easier way and just
download a ready-made minimal
root filesystem provided by Ubuntu.
Several packages are available,
including Ubuntu 12.04, 12.10
and 13.04. Make sure that you are
downloading the armhf version of
the root filesystem package.

Create a directory for your
Ubuntu root filesystem and extract
the contents of the file you just
downloaded into it. Your next move
should be to edit /etc/resolv.conf and
add your nameserver in there. Also,
take a look at your sources.list file
in /etc/apt/. You might want to add
universe and multiverse at the
end of each deb and deb-src line.

LJ234-Oct2013.indd 83 9/18/13 4:09 PM

84 / OCTOBER 2013 / WWW.LINUXJOURNAL.COM

You should check the version
number of your qemu-arm-static.
Version 1.0.50 that comes with
standard install of Ubuntu 12.04
generates errors when running the
following steps on my build system
for the Ubuntu root fi lesystem. To
solve the problem, I had to compile
my own qemu-arm-static. I used
version 1.0.91 (see Resources for
the download URL of the source
package). Do the following steps to
configure and compile the binary,
and copy the resulting qemu-arm to
qemu-arm-static inside your Ubuntu
root fi lesystem’s /usr/bin directory:

$./configure \

 --prefix=/home/user/A13System/qemu-arm-static \

 --static --disable-kvm \

 --target-list=arm-linux-user

$ make

$ make install

Finishing Touches for the
Root Filesystem
What you have so far is just a very
basic fi lesystem. Now let’s improve
it so that you have the tools
required for a comfortable basic
computing environment. Change
the locales generated according to
your own locale. All the processes
described next are done inside the

chroot system:

root@host:/# apt-get update

root@host:/# apt-get install apt-utils ncurses-dev

root@host:/# apt-get install dialog locales tzdata

root@host:/# locale-gen en_AU en_AU.UTF-8

root@host:/# dpkg-reconfigure locales

root@host:/# dpkg-reconfigure tzdata

root@host:/# apt-get install iputils-ping \

 wpasupplicant dhcpcd5 sudo openssh-server ntp \

 openssh-client

root@host:/# apt-get install nano vim gettext \

 bison automake autoconf

root@host:/# apt-get install python rsyslog \

 network-manager alsa-utils

Now let’s configure Wi-Fi
connectivity. I’m assuming that you’re
using a Wi-Fi USB adapter for your
connectivity and that your wireless
network connection configuration
is using WPA for security. Change
the steps accordingly for your
configuration. Edit your /etc/network/
interfaces and add the following
lines, changing the values as needed:

auto wlan0

iface wlan0 inet dhcp

wpa-ssid YOUR_ESSID

wpa-psk YOUR_PASSPHRASE

Next, if you want your bash shell
to have autocompletion, edit /etc/
bash.bashrc and uncomment some

FEATURE Create a Mini PC or Server with Olimex’s Olinuxino A13/A13Micro

LJ234-Oct2013.indd 84 9/18/13 4:09 PM

 WWW.LINUXJOURNAL.COM / OCTOBER 2013 / 85

of the lines to be something like
the following:

Commented out, don't overwrite xterm -T

"title" -n "icontitle" by default.

If this is an xterm set the title to

user@host:dir

case "$TERM" in

xterm*|rxvt*)

 PROMPT_COMMAND='echo -ne \

 "\033]0;${USER}@${HOSTNAME}: ${PWD}\007"'

 ;;

*)

 ;;

esac

enable bash completion in interactive shells

if [-f /etc/bash_completion] && ! shopt -oq \

posix; then

 . /etc/bash_completion

fi

Check /etc/shadow for the following:

root:*:15629:0:99999:7:::

daemon:*:15629:0:99999:7:::

If you see an asterisk (*) after the
first colon on the line for root, you
should remove it. This will allow you
to set the root password yourself on
the first run.

You have completed the process
of building the root filesystem for
your board. Next, let’s compress the

entire root filesystem so you can
deploy it easily to your MicroSD card
later. Exit the chroot environment
and do the following inside your
root filesystem directory:

umount proc

rm ./usr/bin/qemu-arm-static

tar -zcvf /home/user/my-rootfs.tar.gz *

Preparing the MicroSD Card
I am using a 4GB MicroSD card for
my board. I am sure that a 2GB
MicroSD card would be sufficient to
contain all your files, but it is nice
to have some room for additional
applications. You need to create two
partitions on your empty MicroSD
card. The first one is a VFAT partition
of around 17MB for U-Boot and the
kernel image. The rest will be used
to store your root filesystem.

Mount the MicroSD card. Take
note of the device name your
computer gives the MicroSD card.
Some computers recognize the
card as /dev/sdX, while others call
it /dev/mmcblkX (for this example,
I assuming that your card is
recognized as /dev/sdb):

fdisk -u=sectors /dev/sdb

Type “p” to l ist the partitions
inside the card. If you have any

LJ234-Oct2013.indd 85 9/18/13 4:09 PM

86 / OCTOBER 2013 / WWW.LINUXJOURNAL.COM

partitions at all l isted, delete them
by pressing “d”. Once the card is
empty, create a new partition by
pressing “n”. Make this the first
primary partition. fdisk is going
to ask you for starting and ending
sector numbers. Type “2048” and
“34815”, respectively. Repeat the
process for the second partition.
This time, just press Enter when
asked for starting and ending sector
numbers; fdisk wil l use the default

values, which wil l f i l l the remainder
of the card.

Type “p” again to list the
partitions. You should see something
like what is shown in Figure 7.

Type “w” to write the changes
permanently onto the card. Now,
create the two fi lesystem types on
the partitions:

mkfs.vfat /dev/sdb1

mkfs.ext3 /dev/sdb2

Figure 7. List of Partitions on a 4GB MicroSD Card

FEATURE Create a Mini PC or Server with Olimex’s Olinuxino A13/A13Micro

LJ234-Oct2013.indd 86 9/18/13 4:09 PM

 WWW.LINUXJOURNAL.COM / OCTOBER 2013 / 87

Don’t forget to do the sync
after every command you type
for the MicroSD card. Sync ensures
that the changes are flushed and
keeps the card in the correct state.
Next, mount the partitions. I am
assuming the mountpoints are
/media/card1 for /dev/sdb1 and
/media/card2 for /dev/sdb2. First,
populate the root fi lesystem and
copy the kernel modules onto the
first partition:

cd /media/card2

tar -xzvf /home/user/A13System/my-rootfs.tar.gz

sync

...[THIS WILL TAKE SOME TIME]

cp -a $KERNEL_DIR/out/lib/modules/3.4.43+/ \

 ./lib/modules/.

sync

Copy the uImage f i le from your
kernel directory (in arch/arm/boot)
to the f irst part it ion, along with
a f i le cal led scr ipt.bin. scr ipt.bin
stores the system configuration
sett ings necessary for Al lwinner
chips. If you want to edit these
sett ings, convert this .bin f i le into a
.fex f i le using a tool cal led bin2fex.
You can edit the result ing f i le with
any text editor.

For the last step, you need to
write U-Boot onto the card itself.
Pay extra attention to what you

type here, as you are not going
to write to /dev/sdb1 or /dev/sdb2
but to /dev/sdb:

cd /home/user/A13System/u-boot

dd if=spl/sunxi-spl.bin of=/dev/sdb bs=1024 \

 seek=8

dd if=u-boot.bin of=/dev/sdb bs=1024 seek=32

sync

Now your MicroSD card is ready
to use.

First Run
Plug in the card in the slot on
the board. Also plug in the
Wi-Fi USB Stick, a keyboard
and the VGA monitor (use a
USB hub if you have to). Plug
in the power cord and wait for
the login prompt.

Log in with the root account.
You shouldn’t need a password
for the first run. After you get in,
set a secure password for your
root account and create another
account for your daily use. Put
this new user into the sudoers
fi le. Check whether you have
network connectivity. Test the
board remotely by connecting to
it via SSH. If you can do all that
successfully, congratulations! You
have a great minimalist PC/server
at your disposal.

LJ234-Oct2013.indd 87 9/18/13 4:09 PM

88 / OCTOBER 2013 / WWW.LINUXJOURNAL.COM

FEATURE Create a Mini PC or Server with Olimex’s Olinuxino A13/A13Micro

Figure 8. A13Micro Running Fluxbox

IF YOU ARE INTERESTED IN USING THIS
BOARD WITH A GRAPHICAL USER INTER-
FACE, YOU NEED TO USE A LIGHTWEIGHT

GUI ENVIRONMENT, BECAUSE THE BOARD
DOES NOT HAVE MUCH RAM TO SPARE.

LJ234-Oct2013.indd 88 9/18/13 4:09 PM

 WWW.LINUXJOURNAL.COM / OCTOBER 2013 / 89

Send comments or feedback via
http://www.linuxjournal.com/contact
or to ljeditor@linuxjournal.com.

Desktop Environment
If you are interested in using this
board with a graphical user interface,
you need to use a lightweight GUI
environment, because the board does
not have much RAM to spare. There
are several options from which to
choose, such as LXDE and XFCE4;
however, I use a different package
here called Fluxbox. You also need to
install a light graphical login manager.
Using the package manager, install
lightdm and fluxbox. Yes, it is really
that easy. These commands will install
the desktop environment, graphical
login manager and their required
servers and libraries:

root@a13board:/# apt-get install lightdm fluxbox

Restart the board. When the board
restarts, you will be greeted with
your new login manager. Make sure
you select Fluxbox from the session
menu on Lightdm screen when you
are logging in. Enjoy your new
mini-personal computer/server!■

Ronald Kurniawan is a software developer living in Brisbane,

Australia. Ronald is interested in embedded systems, Linux,

Java development and trying to come up with interesting

and wacky ways to combine them. Ronald can be reached

at r.kurniawan@fluxodesign.net.

Resources

Debian Repositories List: http://www.debian.org/mirror/list

A13Micro’s Kernel Configuration File: http://goo.gl/YnZ1s

Script.bin for A13 and A13Micro Boards: http://goo.gl/7QZuoU

Ubuntu 12.04 Core Root Filesystem: http://goo.gl/eoALA

Ubuntu 12.10 Core Root Filesystem: http://goo.gl/iLcV8

Ubuntu 13.04 Core Root Filesystem: http://goo.gl/cytEY

Qemu Source Code Download: https://launchpad.net/qemu-linaro/+download

LJ234-Oct2013.indd 89 9/18/13 4:09 PM

