

8-bit
Microcontrollers

Application Note

Rev. 32106A-AVR32-07/08

AVR32744: AVR32 AP7 Linux Custom Board
Support

Features
• Adding a new custom board code to the Linux kernel

• Boot sequence considerations
• Adding peripherals to the system

• Adding a new board to the kernel configuration system
• Menu entries
• Custom kernel configuration

1 Introduction
This application note describes how the Linux® kernel must be expanded in order
to add support for a new custom board.

Because the kernel source changes over the time, a close look at the source code
is mandatory to verify that the configurations described in this document are still
valid.

Adding support for a custom board makes it easier to maintain changes across
kernel releases. A proper board code can also be submitted upstream in order to
be added to the official kernel.

2 AVR32744
32106A-AVR32-07/08

2 Custom board setup code
The code for a new custom board should be placed into a sub-directory beneath
arch/avr32/boards/, which reflects the board name.

Examples of already existing boards for the AVR®32 architecture in the Linux kernel
are the STK®1000 (arch/avr32/atstk1000/) and ATNGW100 (arch/avr32/atngw100/).
These examples can be used to form a new custom board.

2.1 Configuration sequence
 The main task for the board setup code is to configure the on-chip peripherals and
register them with the system. Depending on when in the boot process a module is
needed it has to be initialized earlier or later. Also if modules have dependencies
within each other the initialization sequence is important. Currently most of the board-
specific initialization code is gathered in a setup.c (for the STK1000 the code is
spread to other files because this board supports different devices).

2.1.1 Early board setup

The serial console must be initialized very early in the boot process to be able to
provide the boot messages. The function prototype can be found in
include/asm/arch/init.h and should be implemented like this:

void __init setup_board(void)

{

 /* Put early board setup code (like the console) here */

}

More details upon the USART setup are described in a later chapter.

2.1.2 Main board setup code

The main initialization is done by specifying a function (or functions) which will be
called during the main boot process. Where in the boot process this function is called
can be specified by “initcall” macros that are defined in include/linux/init.h. Another
situation where an “initcall” is needed is described in the next chapter. The main
board setup code should be placed in a function that is defined like the following:

static int __init myboard_init(void)

{

 /* Put main board code here */

}

postcore_initcall(myboard_init);

In this function all peripheral initializations and device registering with the Linux kernel
should be done. In other words put all code that is not especially reserved for other
places here.

 AVR32744

 3

32106A-AVR32-07/08

2.1.3 Late board setup

The flash initialization is done later in the boot process and is therefore not done in
the initializations described in the previous chapter. The reason for that is because
the SMC flash initialization needs a pre-initialized SMC controller.

The flash setup code is usually gathered in a flash.c file but can also be added to the
setup.c file. According to the initialization in the previous chapter a function must be
defined so that it is called during the boot process but at a later stage. The function
should look like this.

static int __init myboard_flash_init(void)

{

 /* Put flash initialization code here */

}

device_initcall(myboard_flash_init);

2.2 Clock setup
Linux needs to know the available clock sources in order to calculate all other system
clocks. Therefore these values have to be provided in the board setup code. Currently
the clocks are specified in arch/avr32/mach-at32ap/at32ap700x.c but this will
probably be moved sooner or later to the board setup code because it is board
specific.

The boot loader sets up the main system clock and bus speeds and the kernel reads
out these values. In order to change the main clock and bus speeds the boot loader
has to be recompiled with the new settings.

2.3 Module configuration
To ease the setup of a board the peripheral initialization, code is already available in
the AVR32 kernel code. All prepared functions are available by including the header
file include/asm/arch/board.h. The according function bodies are in arch/avr32/mach-
at32ap/at32ap700x.c.

Sometimes the prepared functions may not serve the actual needs and have to be
adapted. For example an adaptation is necessary if the pin multiplexing should be
different or unused peripheral pins should be used for other things. In such cases a
custom initialization is needed. This should rather be done in the board code than in
the original code, which would result in an incompatibility with already existing boards.

Pin numbers that can be used together with the prepared functions can be calculated
by using the macros in the file include/asm/arch/at32ap700x.h or in a similar file if
another derivate is used. To select I/O line 0 on the peripheral I/O (PIO) controller B
for instance, use the following code to get the pin number for the at32_select_gpio
function:

 GPIO_PIN_PB(0)

For the I/O lines on the other PIO controllers A, C and so forth, use GPIO_PIN_PA(),
GPIO_PIN_PC() …

The following chapters give a short overview how to use these prepared functions or
reference documentation where this is described.

4 AVR32744
32106A-AVR32-07/08

2.3.1 Main system modules

The first setup function that should be called in the main board setup code is:

void at32_add_system_devices(void)

This is mandatory because it adds all basic devices such as the interrupt controller,
system manager, real time clock and others.

2.3.2 GPIOs

The application note “AVR32408: AVR32 AP7 Linux GPIO driver” from the Atmel
web-site describes the needed steps to reserve and configure pins in the board setup
code.

2.3.3 LCD controller

Documentation and examples for the configuration of the LCD controller is available
in the application note ”AVR32416: AVR32 AP7 Linux LCD Panel Customization”.

2.3.4 USART

The first part of the USART initialization should be placed into the early board setup
code as described in chapter 2.1.1. This is the assignment of USART modules to
device numbers. The function

void at32_map_usart(unsigned int hw_id, unsigned int line);

takes as arguments the USART module number hw_id (numbering as described in
the device datasheet) and a number “line” for the device that it should be assigned to.
In addition it will configure the pins (by default only RXD and TXD) for the USART
module. For example the following call

at32_map_usart(1, 0);

assigns the USART1 module to the device 0 and will appear in the /dev directory as
ttyS0. If more signals are needed like handshaking signals the source code must be
edited or an own implementation of the function needs to be done. Calling the
function

void at32_setup_serial_console(unsigned int usart_id);

sets the device number that should be used as serial console. It will also be used to
print the boot messages.

The second part of the USART initialization should be done in the other setup
function that is called later in the boot process. The previously preconfigured USART
module has to be registered as a platform device in order to load a driver for it. This is
done with the function

struct platform_device *at32_add_device_usart(unsigned int id);

The function argument selects the device number for which a platform device should
be registered and the id conforms to the line id's given with the at32_map_usart
function.

2.3.5 SPI

The application note “AVR32743: AVR32 AP7 Linux Kernel Module Application
Example” describes how a SPI module can be configured and added as a platform
device.

 AVR32744

 5

32106A-AVR32-07/08

The application note “AVR32401: Interfacing DataFlash® in Linux with the AVR32”
describes how a DataFlash device can be connected over the SPI interface.

2.3.6 TWI

TWI modules can be added by calling the function

struct platform_device *at32_add_device_twi(unsigned int id);

The id specifies the TWI module number and starts with the number 0 for the first
device. The device datasheet lists available TWI modules.

Another possible solution is to use GPIOs as TWI interface. More information about
this is available in the application note “AVR32083: AVR32 AP7 Linux TWI Driver”.

2.3.7 Ethernet

The Ethernet address is provided by the boot loader through tags that are passed to
the Linux kernel at start up. This is similar to the kernel boot command line. To get the
Ethernet address the tags have to be parsed. After that the hardware can be
initialized with the address. The needed functions and data to do this can be copied
from one of the existing boards.

struct eth_addr {

 u8 addr[6];

};

static struct eth_addr __initdata hw_addr[2];

Also the two functions set_hw_addr and parse_tag_ethernet must be copied. The
macro

__tagtable(ATAG_ETHERNET, parse_tag_ethernet);

is needed in order to add the parse_tag_ethernt functions to the tag parsing
process.

The copying of the functions, declarations and definitions may not be needed in later
releases of the kernel because they may be moved to the other prepared setup
functions.

To add an Ethernet device to the system the following function has to be called:

struct platform_device * at32_add_device_eth(unsigned int id,

struct eth_platform_data *data);

The id specifies the Ethernet module number and starts with the number 0 for the
first device. The eth_platform_data is defined as

struct eth_platform_data {

 u32 phy_mask;

 u8 is_rmii;

};

Setting is_rmii to 1 will configure the Ethernet device for the Reduced Media
Independent Interface (RMII). The phy_mask can be used to mask out everything but
the correct address during the auto detection on the management interface. This is
normally not needed.

Next step is to configure the Ethernet address by calling:

static void set_hw_addr(struct platform_device *pdev);

6 AVR32744
32106A-AVR32-07/08

The parameter should be the return value of the at32_add_device_eth function.

2.3.8 USB

Following function can be used to add a USB controller to the system.

struct platform_device * at32_add_device_usba(unsigned int id,

struct usba_platform_data *data);

The id specifies the USB module number and starts with the number 0 for the first
device. The usba_platform_data is optional (if not used pass in a null pointer
instead) and is defined like this:

struct usba_platform_data {

int vbus_pin;

};

By using this structure a VBUS signal pin can be specified. The pin number is a GPIO
line connected to the VBUS signal from the USB connector. Use the macro
GPIO_PIN_NONE to mark unused pins in this structure.

2.3.9 MCI

The MultiMedia Card interface is added by following function to the system:

struct platform_device * at32_add_device_mci(unsigned int id,

struct mci_platform_data *data);

The id specifies the MCI module number and starts with the number 0 for the first
device. The data structure is defined as:

struct mci_platform_data {

 int detect_pin;

 int wp_pin;

};

In this structure selections can be made to specify pins that should be used as detect
and write protect pins. The pin numbers are the GPIO lines connected to the detect
signal and write protect signal from the MMC/SD-card socket. Use the macro
GPIO_PIN_NONE to mark unused pins in this structure.

2.3.10 AC97 Controller

To add the AC97 controller use following function:

struct platform_device *at32_add_device_ac97c(unsigned int id);

The id specifies the AC97C module number and starts with the number 0 for the first
device.

2.3.11 ABDAC

The ABDAC can be added to the system by using following function:

struct platform_device *at32_add_device_abdac(unsigned int id);

The id specifies the ABDAC module number and starts with the number 0 for the first
device.

2.3.12 PWM

PWM channels can be added with the following function:

 AVR32744

 7

32106A-AVR32-07/08

struct platform_device *at32_add_device_pwm(u32 mask);

The mask parameter specifies the channels that should be added. Each bit in the
mask represents a channel but not all channels may be available on the device. The
mask 0x3 will add channel 0 and 1 to the system. The datasheet lists available
channels and the respective pins that are used.

2.3.13 PS/2 Module (PSIF)

All information regarding a system extension with the PS/2 module(s) is available in
the application note “AVR32415: AVR32 AP7 Linux PS/2 keyboard and mouse”.

2.3.14 SSC

A SSC device is added by calling:

struct platform_device * at32_add_device_ssc(unsigned int id,

unsigned int flags);

The id specifies the SSC module number and starts with the number 0 for the first
device. The flags parameter is used to select specific pins of the SSC module that
should be used. Possible values are defined as macros.

Table 2-1. Possible values for the flags parameter
Macro Description

ATMEL_SSC_TK Configures TX_CLOCK pin

ATMEL_SSC_TF Configures TX_FRAME_SYNC pin

ATMEL_SSC_TD Configures TX_DATA pin

ATMEL_SSC_TX Configures TX_CLOCK, TX_FRAME_SYNC and TX_DATA pins

ATMEL_SSC_RK Configures RX_CLOCK pin

ATMEL_SSC_RF Configures RX_FRAME_SYNC pin

ATMEL_SSC_RD Configures RX_DATA pin

ATMEL_SSC_RX Configures RX_CLOCK, RX_FRAME_SYNC and RX_DATA pins

2.3.15 CF/IDE

A CompactFlash device is added to the system by following function:

struct platform_device * at32_add_device_cf(unsigned int id,

unsigned int extint, struct cf_platform_data *data);

The id specifies the CF module number and starts with the number 0 for the first
device. The extint parameter chooses the external interrupt line to which the IDE
device is connected. The datasheet lists available external interrupt lines. Use 0 for
the first line, 1 for the second … The last parameter is a data structure that is defined
as follows:

struct cf_platform_data {

int detect_pin;

int reset_pin;

int vcc_pin;

int ready_pin;

u8 cs;

8 AVR32744
32106A-AVR32-07/08

};

The cs value specifies the used chip select line. Valid values for the AP7000 and
AP7001 are 4 and 5 because these chip select lines are dedicated to the
CompactFlash controller. See datasheet for more details. The other structure
members can be used to configure optional pins. Use the macro GPIO_PIN_NONE to
mark unused pins in this structure.

The application note “AVR32115: ATA Driver for AVR32” describes how to connect
parallel ATA devices to the AVR32 using the built-in CompactFlash controller, the
External Bus Interface (EBI) and a simple EBI to ATA adaptor. This application note
describes an example adaptor card for the STK1000 development board.

To hook up IDE devices the function

struct platform_device * at32_add_device_ide(unsigned int id,

unsigned int extint, struct ide_platform_data *data);

can be used. The id specifies the IDE module number and starts with the number 0
for the first device. The extint parameter chooses the external interrupt line to which
the IDE device is connected. The datasheet lists available external interrupt lines.
Use 0 for the first line, 1 for the second … The last parameter is a data structure that
is defined as follows:

struct ide_platform_data {

 u8 cs;

};

The cs value specifies the used chip select line. Valid values for the AP7000 and
AP7001 are 4 and 5 because these chip select lines are dedicated to the
CompactFlash controller. See datasheet for more details.

2.3.16 SMC/Flash

As previously mentioned in chapter “2.1.3 Late board setup” the flash initialization has
to be done later in the boot process. The configuration of the SMC for a flash device
needs three steps. All necessary structures and function prototypes related to the
SMC configuration are available in the header file include/asm/arch/smc.h.

The first step is to set proper timings for the flash device. This can be done by calling
the function

void smc_set_timing(struct smc_config *config,

const struct smc_timing *timing);

with the pre-configured arguments. All values in the smc_timing and smc_config
structure are documented in include/asm/arch/smc.h and are directly related to the
register values in the device datasheet.

After the timings are in place the configuration must be set by calling the following
function:

int smc_set_configuration(int cs, const struct smc_config *config);

The config parameter should contain the same structure that was used earlier in the
timing setup. The cs value selects a chip select line. Valid values are described in the
datasheet.

The last step is to add a flash device as a platform device to the system. To form the
platform device data the flash partitions must be specified in the structure

 AVR32744

 9

32106A-AVR32-07/08

mtd_partition that can be found in include/linux/mtd/partitions.h. For an 8 MiB flash
this could look like:

static struct mtd_partition flash_parts[] = {

 {

 .name = "u-boot",

 .offset = 0x00000000,

 .size = 0x00020000, /* 128 KiB */

 .mask_flags = MTD_WRITEABLE,

 },

 {

 .name = "root",

 .offset = 0x00020000,

 .size = 0x007d0000,

 },

 {

 .name = "env",

 .offset = 0x007f0000,

 .size = 0x00010000, /* 64 KiB */

 .mask_flags = MTD_WRITEABLE,

 },

};

More information about the structure members can be found in the header file
include/linux/mtd/partitions.h. It is important to place the partition boundaries on a
multiple of an erase sector size. The U-Boot environment partition must be at least
the size specified in the boot loader (usually 64 KiB). Also the partition for the boot
loader must be big enough to fit the image (at the moment 128KiB is enough for U-
Boot). The boot loader has to be placed at the beginning of the flash in order to boot.
The rest of the flash can be used to store the root file system or other data. To make
a partition readonly for the Linux system set the MTD_WRITEABLE flag.

Next step is to tie the mtd-partitions to a physmap_flash_data structure that can be
found in include/linux/physmap.h. For the above partitions the structure would be
initialized like this:

static struct physmap_flash_data flash_data = {

 .width = 2,

 .nr_parts = ARRAY_SIZE(flash_parts),

 .parts = flash_parts,

};

The width value specifies the interface width of the flash device in bytes. The
specified partitions are tied to parts. To fit this all together two more structures are
needed. The memory address range that will be used for the flash must be set in a
resource structure.

static struct resource flash_resource = {

 .start = 0x00000000,

 .end = 0x007fffff,

 .flags = IORESOURCE_MEM,

};

10 AVR32744
32106A-AVR32-07/08

All above structures can now be gathered in a single structure as a platform device.

static struct platform_device flash_device = {

 .name = "physmap-flash",

 .id = 0,

 .resource = &flash_resource,

 .num_resources = 1,

 .dev = {

 .platform_data = &flash_data,

 },

};

To add the platform device to the system call:

platform_device_register(&flash_device);

3 Adding a custom board to the Linux kernel configuration system

3.1 Menu entry for the board
In order to make a custom board visible as a menu entry in the Linux kernel
configuration system the file arch/avr32/Kconfig needs to be edited.

choice

 prompt "AVR32 board type"

 default BOARD_ATSTK1000

config BOARD_ATSTK1000

 bool "ATSTK1000 evaluation board"

config BOARD_ATNGW100

 bool "ATNGW100 Network Gateway"

 select CPU_AT32AP7000

endchoice

Similar to the above configuration options for the ATSTK1000 and the ATNGW100 a
new entry is needed here for a new board. This entry could look like this:

config BOARD_MYBOARD

 bool "MYBOARD My own custom board"

 select CPU_AT32AP7000

The “select” is optional but can be useful to automatically set a device type. This
approach should be used for all boards that use a fixed device type. For the
ATSTK1000 this is not useful because different devices can be plugged onto the
board. Valid device types are listed in the same file. Currently are
CPU_AT32AP7000, CPU_AT32AP7001 and CPU_AT32AP7002 available.

If the board has its own configuration options an additional entry is needed. This entry
could look like this:

if BOARD_MYBOARD

source "arch/avr32/boards/myboard/Kconfig"

endif

 AVR32744

 11

32106A-AVR32-07/08

Basically the lines above add the “Kconfig” file in the custom board directory to the
configuration system. All additional configuration options in the board specific
“Kconfig” file will be available now when the board is selected in the menu.

3.2 Build entry
The Makefile in arch/avr32/ needs an entry that adds the path to the board code to
the build.

An entry like the following is needed:

core-$(CONFIG_BOARD_MYBOARD) += arch/avr32/boards/myboard/

Make sure that “BOARD_MYBOARD” reflects the name of the configuration option
described in chapter 3.1 and keep the “CONFIG_” before the name. Also the path
should point to the correct board.

3.3 Makefile for custom board
The board needs also a Makefile that adds the files that should be compiled into the
kernel to the build. A simple Makefile that adds the board and flash set up code (if
separated into two files) would look like this

obj-y += setup.o flash.o

and should be placed in arch/avr32/boards/myboard/Makefile.

3.4 Custom kernel configuration
The Linux kernel needs to be configured properly before a build. The current
configuration is stored in the file “.config” in the Linux kernel root source directory.
(The leading “.” makes this file not visible by default; use e.g. “ls –a” to list it)

An easy and effectively way to configure the kernel is to load a prepared configuration
to “.config”. This can be done by hand (just copying the configuration file to “.config”)
or more general by using the Linux configuration framework. The Linux configuration
framework can be used by running

make ARCH=avr32 myboard_defconfig

with “myboard_defconfig” replaced by a valid configuration. This will copy the
configuration from arch/avr32/configs/ to “.config”. The “ARCH=avr32” definition
selects the architecture resulting in a search path for the myboard_defconfig
configuration of arch/avr32/configs/. Without the definition the configuration file would
be searched for in arch/x86/configs/, if developing on a x86 architecture.

Following steps are needed to add a new board configuration.

1. Create a valid Linux kernel configuration for the custom board.

2. Copy the “.config” file to arch/avr32/configs/ and rename it to the desired
configuration name but keep “_defconfig” at the end of the name.

3. To load the configuration run “make ARCH=avr32 myboard_defconfig” by
using the chosen configuration name instead of “myboard_defconfig”.

12 AVR32744
32106A-AVR32-07/08

4 References
• Related application notes from the Atmel web-site

http://www.atmel.com/dyn/products/app_notes.asp?family_id=682
o AVR32408: AVR32 AP7 Linux GPIO driver
o AVR32115: ATA Driver for AVR32
o AVR32743: AVR32 AP7 Linux Kernel Module Application Example
o AVR32401: Interfacing DataFlash in Linux with the AVR32
o AVR32415: AVR32 AP7 Linux PS/2 keyboard and mouse
o AVR32083: AVR32 AP7 Linux TWI Driver

• Linux kernel documentation
o Documentation/ folder in the Linux kernel sources
o Linux kernel configuration system

Disclaimer
Headquarters International

Atmel Corporation
2325 Orchard Parkway
San Jose, CA 95131
USA
Tel: 1(408) 441-0311
Fax: 1(408) 487-2600

 Atmel Asia
Room 1219
Chinachem Golden Plaza
77 Mody Road Tsimshatsui
East Kowloon
Hong Kong
Tel: (852) 2721-9778
Fax: (852) 2722-1369

Product Contact

Atmel Europe
Le Krebs
8, Rue Jean-Pierre Timbaud
BP 309
78054 Saint-Quentin-en-
Yvelines Cedex
France
Tel: (33) 1-30-60-70-00
Fax: (33) 1-30-60-71-11

Atmel Japan
9F, Tonetsu Shinkawa Bldg.
1-24-8 Shinkawa
Chuo-ku, Tokyo 104-0033
Japan
Tel: (81) 3-3523-3551
Fax: (81) 3-3523-7581

 Web Site
www.atmel.com

Technical Support
Avr32@atmel.com

Sales Contact
www.atmel.com/contacts

 Literature Request
www.atmel.com/literature

Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any
intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMEL’S TERMS AND
CONDITIONS OF SALE LOCATED ON ATMEL’S WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED
OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT,
CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS,
BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS
BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the
contents of this document and reserves the right to make changes to specifications and product descriptions at any time without notice. Atmel does not make any
commitment to update the information contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in,
automotive applications. Atmel’s products are not intended, authorized, or warranted for use as components in applications intended to support or sustain life.

© 2008 Atmel Corporation. All rights reserved. Atmel®, logo and combinations thereof, AVR®, DataFlash®, STK® and others, are the
registered trademarks or trademarks of Atmel Corporation or its subsidiaries. Other terms and product names may be trademarks of others.

32106A-AVR32-07/08

	1 Introduction
	2 Custom board setup code
	2.1 Configuration sequence
	2.1.1 Early board setup
	2.1.2 Main board setup code
	2.1.3 Late board setup

	2.2 Clock setup
	2.3 Module configuration
	2.3.1 Main system modules
	2.3.2 GPIOs
	2.3.3 LCD controller
	2.3.4 USART
	2.3.5 SPI
	2.3.6 TWI
	2.3.7 Ethernet
	2.3.8 USB
	2.3.9 MCI
	2.3.10 AC97 Controller
	2.3.11 ABDAC
	2.3.12 PWM
	2.3.13 PS/2 Module (PSIF)
	2.3.14 SSC
	2.3.15 CF/IDE
	2.3.16 SMC/Flash

	3 Adding a custom board to the Linux kernel configuration system
	3.1 Menu entry for the board
	3.2 Build entry
	3.3 Makefile for custom board
	3.4 Custom kernel configuration

	4 References

