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Features 
• Linux kernel module basics 

- Initialization and cleanup 
- Module parameters 
- Build system integration 

• Platform driver example 
• SPI driver example 

1 Introduction 
This application note explains how to write a custom loadable driver module for the 
Linux® kernel. Common mechanisms like module parameters, initialization and 
cleanup are explained in detail. The Linux driver model is introduced, and a short 
introduction on how to write drivers for two common bus types, the platform and spi 
busses, is given. This application note also explains how to build a custom module 
using the Linux kernel’s internal build system. 
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2 Kernel module basics 
This section explains some of the basics about loadable Linux kernel modules: How 
to do initialization and cleanup, how to pass parameters and how to build and execute 
the module. A simple kernel module example, “simple”, is provided to demonstrate 
how this works. 

When trying out the examples, it is recommended to increase the kernel console log 
level to at least 7. Otherwise, some of the output from the example modules may not 
be shown on the console, although it will still be shown by the “dmesg” command. 
The following command will set the console log level appropriately: 

echo 7 4 1 7 > /proc/sys/kernel/printk 

The first number indicates the console log level; setting it to 8 will show debug 
messages on the console as well. 

2.1 A simple example 
To build the “simple” module, unpack the sources that came with this application note 
and enter the “simple” subdirectory. In there, you’ll find three files: 

• simple.c. This is the source code for the module. 

• Kbuild: This is used by the kernel build system (kbuild) to determine how the 
module is to be built. 

• Makefile: Simple makefile that utilizes kbuild to build the module. 

Everything is set up to work out of the box, except for one thing: The Makefile 
wrapper needs to know where the AVR®32 Linux kernel sources are located. After 
editing the Makefile and updating the KDIR variable if necessary, simply run “make” 
to build the module. 

After the module has been successfully built, copy it onto the target system and load 
it using the “insmod” utility: 

insmod simple.ko 

If nothing appears to be happening, the kernel log level may be set too low. Try 
running “dmesg” and look at the last few lines of the output: 

Hello World! 

The number is: 0 

To unload the module, use the “rmmod” utility: 

rmmod simple 

2.2 Module initialization and cleanup 
Every kernel module should include at least two functions: The initialization function 
and the cleanup function. In many cases, these two functions are the only ones that 
are called directly by the kernel; everything else is called as a result of registering the 
driver with one or more subsystems. 

The names of the initialization and cleanup functions don’t matter, but the usual 
convention is to use a name on the form module-name_init for the initialization 
function and module-name_exit for the cleanup function. To specify which functions 
are to be used as init- and cleanup functions, use the macros module_init() and 
module_exit() respectively, like this: 
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int __init my_module_init(void) 

{ 

 /* Initialization code goes here */ 

 return 0; 

} 

module_init(my_module_init); 

 

void __exit my_module_exit(void) 

{ 

 /* Cleanup code goes here */ 

} 

module_exit(my_module_exit); 

In the example above, the function my_module_init() will be called after the module 
has been loaded into memory, while the my_module_exit() function will be called right 
before the module is unloaded. 

If the driver is built into the kernel instead of as a loadable module, no modifications 
are necessary. The module_init() macro will ensure that the initialization function is 
called at some point during the boot process, while the module_exit() macro will not 
do anything since the driver will never be unloaded. 

2.2.1 Reducing the run-time memory footprint 

The previous example used two special preprocessor macros to annotate the init- and 
cleanup functions: __init and __exit. __init means that the function is only used for 
initialization, and can be discarded once the driver has been successfully initialized. 
__exit means that the function can be discarded if the driver will never be unloaded 
(i.e. if it is compiled into the kernel instead of as a loadable module.) 

Properly annotating functions using the __init and __exit macros may help reduce the 
amount of kernel memory consumed by the driver after it has been fully loaded and 
initialized. But be careful not to annotate any functions that may be called while the 
module is fully operational. 

2.2.2 Return values 

The vast majority of kernel functions use a common return value convention, 
returning 0 for success and a negative error code for failure. The module initialization 
functions must also follow this convention, so if anything goes wrong during 
initialization, the function should return a negative value, preferably a meaningful one. 

For example, if the user specified an invalid module parameter, the module init 
function should return –EINVAL, which means “Invalid Argument”. Other meaningful 
error codes may be found in include/asm-generic/errno-base.h and include/asm-
generic/errno.h. 

2.3 Module parameters 
Module parameters are a straightforward mechanism for allowing user-specific 
settings. When loading the module, the user may override certain defaults in the 
module through the command line. 

The “simple” example above takes a single module parameter, “number”, which can 
be overridden on the insmod command line, like this: 
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insmod simple.ko number=42 

This results in the following being printed to the console: 

Hello World! 

The number is: 42 

Module parameters are basically just regular global or static variables which are 
subjected to a bit of preprocessor magic. The following three lines of code from the 
“simple” module is all it takes to support module parameters: 

static int number; 

module_param(number, int, S_IRUGO); 

MODULE_PARM_DESC(number, "Number to be printed on startup"); 

If the “number” parameter is overridden on the command line, the variable “number”, 
will be initialized to the specified value before the module initialization function is 
called. If the parameter is not specified on the command line, it will retain its initial 
value, 0. 

The second parameter to module_param() specifies the type of the parameter, which 
can be one of byte, short, ushort, int, uint, long, ulong, charp (pointer to character 
array), bool or invbool (same as bool, but the inverse of the specified value is stored). 
The module_param() macro is defined in “include/linux/moduleparam.h”. 

The third parameter to module_param() specifies the file mode of the parameter as it 
appears under /sys/module. S_IRUGO means that the file should be readable for 
everyone, but not writeable for anyone. This is usually a good choice since writable 
module parameters need special care to be taken when implementing the module. 

If the driver is built into the kernel, module parameters can still be specified on the 
kernel command line using the form “module-name.parameter-name=value”. For 
example, if the “simple” module is built-in, the “number” parameter can be set to 42 by 
passing “simple.number=42” on the kernel command line. 

2.3.1 Other forms of module metadata 

It is considered good practice to include some additional information about the 
module. The following macros can be used for this purpose: 

• MODULE_DESCRIPTION: A short description of the purpose of the module. 

• MODULE_AUTHOR: Information about who developed the module. Usually, 
this is specified on the form “Full Name <e-mail address>”, but the e-mail 
address can be omitted. 

• MODULE_LICENSE: Which license the module is distributed under. 

The license types recognized by the kernel can be found in “include/linux/module.h”. 
Note that loading a module that has a license which is not GPL-compatible (i.e. 
“Properietary” or a license type the kernel doesn’t recognize) will “taint” the kernel. 
This means that if the kernel crashes, the register dump will show that the kernel is 
tainted, which is a hint to other developers that the crash may be caused by code 
they don’t have access to. Many developers will ignore bug reports from tainted 
kernels because of this. Note that even if a proprietary module is unloaded, the kernel 
will stay tainted until the next reboot. 
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2.4 Building a custom module 
The easiest way to build a custom module is to use the kernel’s build system. This 
ensures that the correct compiler flags and configuration options are being used. 

To build the module using the kernel’s build system, first add a file named “Kbuild” to 
the directory containing the module’s source code containing one or more lines on the 
form 

obj-m  += my_module.o 

This will instruct the kernel’s build system to take a single file named “my_module.c” 
and turn it into a module named “my_module.ko”. To build more than one module in a 
single directory, simply add more such lines to the Kbuild file. 

Building a single module from several source files can be done by adding a few lines 
on the following form: 

obj-m  += my_module.o 

my_module-y += my_module-1.o my_module-2.o 

This will instruct the kernel’s build system to compile the files “my_module-1.c” and 
“my_module-2.c” into separate object files, and then link them together to produce a 
module named “my_module.ko”. 

For more information about the kernel’s build system, please consult the 
documentation in “Documentation/kbuild”. 

When an appropriate Kbuild file is in place, the modules can be built by running 

make ARCH=avr32 CROSS_COMPILE=avr32-linux- –C $KERNEL_SRC_DIR \ 

M=`pwd` modules 

Where $KERNEL_SRC_DIR should be replaced by the full path to a Linux kernel 
source tree configured for AVR32. The examples distributed with this application note 
include a wrapper Makefile which allows the modules to be built by simply running 
“make”. 

3 The Linux driver model 
The Linux Device model is built around the concept of busses, devices and drivers. 
All devices in the system are connected to a bus of some kind. The bus does not 
have to be a real one; busses primarily exist to gather similar devices together and 
coordinate initialization, shutdown and power management. 

When a device in the system is found to match a driver, they are bound together. The 
specifics about how to match devices and drivers are bus-specific. The PCI bus, for 
example, compares the PCI Device ID of each device against a table of supported 
PCI IDs provided by the driver. The platform bus, on the other hand, simply compares 
the name of each device against the name of each driver; if they are the same, the 
device matches the driver. 

Binding a device to a driver involves calling the driver’s probe() function passing a 
pointer to the device as a parameter. From this point on, it’s the responsibility of the 
driver to get the device properly initialized and register it with any appropriate 
subsystems. 

Devices that can be hot-plugged must be un-bound from the driver when they are 
removed from the system. This involves calling the driver’s remove() function passing 
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a pointer to the device as a parameter. This also happens if the driver is a 
dynamically loadable module and the module is unloaded. 

All device driver callbacks, including probe() and remove(), must follow the return 
value convention described in section 2.2.2. 

4 Writing a platform driver 
The “platform” example distributed with this application note demonstrates how 
devices are bound and un-bound to drivers on the platform bus. The “platform_driver” 
module is the driver part and does not take any parameters. To load it, simply run the 
following command. 

insmod platform_driver.ko 

It will not show any output to the console unless the “platform_test” module has 
already been loaded. 

The “platform_test” module can be used to test the “platform_driver” module. It takes 
two parameters. The first one, “nr_devices”, specifies how many platform devices to 
be added to the system; by default, one platform device is registered. The other one, 
“value”, specifies a value to be passed to the driver as platform-specific data. 

When both the “platform_driver” and “platform_test” modules have been loaded, the 
following is printed to the console: 

Registering device "platform_example.0"... 

platform_example platform_example.0: probe() called, value: 0 

Unloading the “platform_test” module results in the following console output: 

Removing device platform_example.0... 

platform_example platform_example.0: remove() called 

The order in which the modules are loaded and unloaded does not matter. When both 
are loaded, the devices are bound to the driver. When one of them goes away, all the 
devices are unbound. 

4.1 Platform driver structure 
A platform driver is usually built around a single instance of struct platform_driver. In 
the platform driver example, it is initialized as follows. 

static struct platform_driver platform_example_driver = { 

 .probe  = platform_example_probe, 

 .remove = __devexit_p(platform_example_remove), 

 .suspend = platform_example_suspend, 

 .resume = platform_example_resume, 

 .driver = { 

  .name = "platform_example", 

 }, 

}; 

After this structure has been registered by calling platform_driver_register(), usually 
from the module initialization function, any devices named “platform_example” will be 
bound to the driver, resulting in platform_example_probe() to be called with the 
matching device as a parameter. If any matching devices show up later, they will be 
bound to the driver in the same way. 
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When the driver is unregistered by calling platform_driver_unregister(), usually from 
the module exit function, all the devices that have previously been bound to the driver 
are unbound, resulting in platform_example_remove() to be called with the device to 
be unbound as a parameter. If a device bound to the driver goes away, it will be 
unbound in the same way. 

When the power management subsystem in Linux determines that a device is to be 
suspended, for example if the system as a whole is being suspended, 
platform_example_suspend() is called with the device as a parameter. When the 
device is to be resumed, platform_example_resume() is called with the device as a 
parameter. 

Finally, the name of the driver is specified in the “driver” structure around which the 
platform_driver structure is wrapped. This name determines which devices can be 
bound to the driver. 

4.1.1 Reducing the run-time memory footprint 

In some cases, the hotplug functionality of the driver core is not considered useful. 
This is typically the case with drivers for on-chip hardware which can never actually 
be hot-plugged, so keeping all the initialization and cleanup code in memory after all 
the devices have been initialized is just a waste of precious memory. 

Such drivers can be written in a way so that all the initialization code is discarded 
after the module has been initialized by using the “__init” annotation on the probe() 
callback. Since keeping references to discarded memory in the platform_driver 
structure is potentially dangerous, the probe() hook should be removed from the 
platform_driver instance and an alternative way of registering the driver should be 
used: platform_driver_probe(). This function takes the address of the probe() function 
as the second parameter and will bind all devices present at the time the driver was 
registered to the driver. Any matching devices that show up later will not be bound to 
the driver. 

The “platform” example can be modified to consume slightly less memory by defining 
the platform device instance like this. 

static struct platform_driver platform_example_driver = { 

 .remove = __exit_p(platform_example_remove), 

 .suspend = platform_example_suspend, 

 .resume = platform_example_resume, 

 .driver = { 

  .name = "platform_example", 

 }, 

}; 

Then, the module initialization function must be modified to use the alternative way of 
registering the driver. 

static int __init platform_example_init(void) 

{ 

 return platform_driver_probe(&platform_example_driver, 

platform_example_probe); 

} 

Now, the platform_example_probe() function may be safely annotated as __init, and 
platform_example_remove() as __exit. If the driver is built into the kernel, 
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platform_example_remove() will be discarded as well, but if it is built as a module, it 
will be kept around to do any necessary cleanup when the module is unloaded. 

5 Writing a SPI driver 
The “spi” example distributed with this application note demonstrates how devices are 
bound and un-bound to drivers on the spi bus. The “spi_example” module does not 
take any parameters. To load it, simply run the following command. 

insmod spi_example.ko 

It doesn’t show any output on the console unless the board code added one or more 
matching SPI devices. 

To add a SPI device, the board code must contain a structure like the following: 

static struct spi_board_info spi1_board_info[] __initdata = { 

        { 

                .modalias       = "spi_example", 

                .max_speed_hz   = 1000000, 

                .chip_select    = 0, 

                .mode           = SPI_MODE_3, 

                .platform_data  = &spi_example_data, 

        } 

}; 

This structure must be passed to at32_add_device_spi() when adding the SPI master 
device. 

at32_add_device_spi(1, spi1_board_info, 

ARRAY_SIZE(spi1_board_info)); 

The platform_data field is optional, but for the example above to work, the platform 
data for the driver must be defined, for example like this. 

static struct spi_example_data spi_example_data = { 

        .value = 42, 

}; 

When the board information above has been added to the kernel, something similar 
to the following should be printed on the console when the spi_example driver is 
loader: 

spi_example spi1.0: probe() called, value: 42 

spi_example spi1.0: sending 55 56 57 58... 

spi_example spi1.0: received 00 00 00 00 

If the MISO and MOSI lines are connected together, the values received should be 
the same as the values that were sent. Unloading the “spi_example” module results in 
the following console output: 

spi_example spi1.0: remove() called 

5.1 SPI driver structure 
The SPI driver structure is by design very similar to the platform driver structure 
described in section 4.1. The main differences are that the driver instance must be 
defined as a struct spi_driver, it must be registered by calling spi_register_driver() and 
unregistered by calling spi_unregister_driver(). 
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Also, the SPI driver framework doesn’t have anything similar to the 
platform_driver_probe() function, so the memory saving techniques described in 
section 4.1.1 can not be applied to SPI drivers. 

5.2 Adding SPI devices 
As a rule, all SPI devices in the system are added by the board initialization code. 
The SPI subsystem does provide functions for adding SPI devices at run time, but 
these functions assume that all platform-specific setup such as port multiplexing has 
already been taken care of, so in general, it’s best to avoid this interface. On most 
boards, the SPI devices are fixed, so the board initialization code is the most natural 
place to specify which devices are present and how they are connected. 

For each SPI master device that has any devices connected to it, the board code 
must define an array with board-specific information about each slave device, like in 
the example given at the beginning of section 5. The meaning of each field is 
described in include/linux/spi/spi.h. The most common ones are: 

• modalias. This must match the name of the driver (as specified in the struct 
spi_driver initializer.) 

• max_speed_hz. The highest SCK rate in Hz supported by the device. 

• chip_select. A number identifying the chip select line that the device is 
connected to. For example, 0 means the device is connected to NPCS0 on 
the SPI controller. 

• mode. Specifies the clock polarity, clock phase and other parameters to be 
used when communicating with the device. For most devices, one of the 
combinations defined by SPI_MODE0..SPI_MODE3 will do. 

• platform_data. A pointer that can be used to pass platform-specific 
information to the device driver. 

The board information array must be passed as the second parameter to 
at32_add_device_spi(). This function will also add a platform device for the master 
controller driver (atmel®_spi) and setting up the port multiplexer so that the chip 
selects of all the devices specified in the board information array will work. 
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