

AVR32412: AVR32 AP7 TWI Driver

Features
• Linux I2C driver model

 How to access the AVR32 TWI in master mode under Linux
• I2C Linux kernel configuration
• Driver installation
• Linux I2C device interface

- I2C communication
- SMBus communication

• Example application

1 Introduction
This application note covers the configuration, setup and usage of the I2C
framework on Linux®. The application note gives also examples of how the Linux
API can be used to form SMBus™ commands which can be used on I2C
compatible hardware.

On the Atmel microcontrollers a Two Wire Interface (TWI) is available that is
compatible with the Phillips I2C protocol but other hardware modules can also be
used to emulate the I2C protocol. Currently are drivers available that support
GPIOs as I2C interface. This is also covered in this application note.

32-bit
Microcontrollers

Application Note

Rev. 32083A-AVR32-08/08

2 AVR32412
32083A-AVR32-08/08

2 Linux I2C introduction
For more details on the specification of the bus and the protocol take a look at the
NXP web-site http://nxp.com.

A variant of I2C, called SMBus, is now frequently used in systems for system
management and monitoring. It is possible to mix and match I2C and SMBus devices,
although there are some differences. Linux offers an API to form SMBus commands
by using the I2C hardware. The user may check if the underlying hardware and
software supports this by dedicated API calls. However, the user needs also to make
sure that the electrical constraints are met because these can be not compliant on
some systems. More information about the SMBus specification can be found on
http://smbus.org/.

2.1 Linux I2C driver model
The Linux I2C driver model consists of several parts. Following list describes the
terminology that is used in order to describe the whole model:

 Hardware bus: A low level bus that has a specific interface to handle
transmissions. A hardware bus on the AVR®32 is for example the TWI
module or a set of GPIOs. Other peripherals can also be used but currently
no driver is available.

 Adapter: An adapter is a part specific implementation that works with a
specific hardware bus. An example is the I2C adapter that works with the TWI
module.

 Algorithm: An algorithm driver may work together with the adapter in order to
handle the low level communication. An algorithm driver is needed when
most of the protocol handling is not implemented in hardware. This is for
instance the case when GPIOs are used to “bit-bang” the data. The algorithm
driver could also be implemented into the adapter but this makes it
impossible for other adapters to use the same algorithm.

 I2C driver: An I2C driver is a kernel driver which controls a particular type of
device. Many drivers for various devices are available in the LM-sensors
project (http://www.lm-sensors.org). Each instance of a device (for example
the same type of device on different buses) is handled as a separate client.
The driver can offer several interfaces in order to interact with user-space
applications. A kernel I2C driver may not be needed if the device is controlled
through the I2C device interface from a user-space application.

 I2C device interface: The I2C device interface driver provides an easy access
for a user-space application to the available I2C busses. Because of this
interface a kernel device driver may not be necessary.

The block diagram in Figure 2-1 shows the dependencies of the above mentioned
parts on the AVR32.

http://www.nxp.com/�
http://smbus.org/�
http://www.lm-sensors.org/�

 AVR32412

 3

32083A-AVR32-08/08

Figure 2-1 Linux I2C driver model on the AVR32

On the AVR32 Linux operating system are currently two hardware interfaces
supported by available drivers. These are:

• The TWI module

• GPIOs (General Purpose Input Output), several general purpose pins that
can be used to emulate the I2C protocol (this is also called bit-banging).

Most common is to use the dedicated TWI (Two Wire Interface) module. This module
integrates all relevant parts of the protocol in hardware and reduces therefore the
needed software part.

More information about the Linux I2C driver model can be found in the Linux kernel
source code directory under Documentation/i2c/.

Also a good article series about the I2C driver model is available on the Linux Journal
web-site:

The Driver Model Core: http://www.linuxjournal.com/article/6717

I2C Drivers, Part I: http://www.linuxjournal.com/article/7136

I2C Drivers, Part II: http://www.linuxjournal.com/article/7252

3 Linux kernel configuration
The TWI driver needs to be selected in the kernel configuration before usage. AVR32
patches for the Linux kernel or the git repository are available from

http://www.linuxjournal.com/article/6717�
http://www.linuxjournal.com/article/7136�
http://www.linuxjournal.com/article/7252�

4 AVR32412
32083A-AVR32-08/08

http://avr32linux.org, The Linux kernel comes also with the Buildroot build system
which is most likely the way many users prefer. More information about Buildroot,
Linux kernel sources and so forth is available in the application note “AVR32737:
AVR32 AP7 Linux Getting Started”. This application and more Linux related
documentation is available from www.atmel.com/avr32. To configure the Linux kernel
in a Buildroot environment run in the source directory following command:

make linux26-menuconfig

It is also possible to start the configuration from the Linux kernel source directory. To
do so run in the Linux kernel source directory:

make ARCH=avr32 menuconfig

This will put you in the Linux configuration menu. A module selection can be done by
pressing the space bar on the keyboard. There are two select options:

 built-in: Module is built into the Linux kernel.

 module: Module is not part of the kernel by default but can be loaded into the
kernel during run-time.

To enable general I2C support, activate “Device Drivers -> I2C support” in the
configuration menu.

3.1 GPIO-I2C setup
In order to build the adapter module and algorithm module needed for the GPIO
configuration following selections in the kernel configuration are needed:

• Device Drivers -> I2C support ->I2C Algorithms -> I2C bit-banging interfaces

• Device Drivers -> I2C support -> I2C Hardware bus support -> GPIO-based
bit-banging I2C (by selecting this option the above one will be selected
automatically)

After the selection of the driver modules the device must be added to the system in
the board code. Because every free GPIO pin can be used to emulate the I2C bus a
selection must be done.

On the NGW100 the same pins that are used for the TWI module can be configured
for a GPIO I2C bus in the kernel configuration. The selection is available in “System
Type and features -> Use GPIO for i2c instead of built-in TWI module” in the kernel
configuration menu. If other pins should be used or this configuration option is not
available for the selected board the board setup code has to be edited.

The settings for the GPIO I2C setup are passed to the adapter by the platform data.
The data is defined as a structure in include/linux/i2c-gpio.h and looks as follows:

struct i2c_gpio_platform_data {

 unsigned int sda_pin;

 unsigned int scl_pin;

 int udelay;

 int timeout;

 unsigned int sda_is_open_drain:1;

 unsigned int scl_is_open_drain:1;

 unsigned int scl_is_output_only:1;

};

The description of the structure members are as listed in Table 3-1.

http://avr32linux.org/�

 AVR32412

 5

32083A-AVR32-08/08

Table 3-1 i2c_gpio_platform_data structure members
Structure member Function
sda_pin GPIO pin ID to use for SDA

scl_pin GPIO pin ID to use for SCL

udelay Signal toggle delay. SCL frequency is (500 / udelay) kHz

timeout Clock stretching timeout in jiffies. If the slave keeps SCL low for
longer than this, the transfer will time out.

sda_is_open_drain SDA is configured as open drain, i.e. the pin isn't actively driven
high when setting the output value high. gpio_get_value()
must return the actual pin state even if the pin is configured as an
output.

scl_is_open_drain SCL is set up as open drain. Same requirements as for
sda_is_open_drain apply.

scl_is_output_only SCL output drivers cannot be turned off.

Following code is derived from the NGW100 board code and shall serve as an
example configuration for the needed data structures:

static struct i2c_gpio_platform_data i2c_gpio_data = {

 .sda_pin = GPIO_PIN_PA(6),

 .scl_pin = GPIO_PIN_PA(7),

 .sda_is_open_drain = 1,

 .scl_is_open_drain = 1,

 .udelay = 2, /* close to 100 kHz */

};

static struct platform_device i2c_gpio_device = {

 .name = "i2c-gpio",

 .id = 0,

 .dev = {

 .platform_data = &i2c_gpio_data,

 },

};

Next step is to set up the needed GPIO pins for the I2C. All needed functions and
definitions for setting up GPIOs in the board setup code are listed in the header file
portmux.h. This file can be found in the Linux sources in the directory
include/asm/arch/.

The function

at32_select_gpio(unsigned int pin, unsigned long flags)

is all we need to configure a GPIO. The pin number can be calculated by using the
macros in the file at32ap7000.h or in a similar file if another derivate is used. To
select I/O line 0 on the peripheral I/O (PIO) controller B for instance, use the following
code to get the pin number for the at32_select_gpio function:

 GPIO_PIN_PB(0)

For the I/O lines on the other PIO controllers A, C and so forth, use GPIO_PIN_PA(),
GPIO_PIN_PC() … Available flags for the at32_select_gpio function are listed in
Table 3-2.

6 AVR32412
32083A-AVR32-08/08

Table 3-2 Possible flags for the GPIO pin selection function at32_select_gpio
Flag Function
AT32_GPIOF_PULLUP Enables pull-up if GPIO is configured as input

AT32_GPIOF_OUTPUT Configures the GPIO as output

AT32_GPIOF_HIGH Sets output pin high

AT32_GPIOF_DEGLITCH Enables glitch-filter when GPIO is configured
as input

AT32_GPIOF_MULTIDRV Enables output drivers to be configured as
open drain to support external drivers on the
same pin.

Following code sets up the GPIO pins specified in the above structure and registers
the I2C GPIO device with the system. The code is taken from the NGW100 board
setup code.

at32_select_gpio(i2c_gpio_data.sda_pin, AT32_GPIOF_MULTIDRV |

AT32_GPIOF_OUTPUT | AT32_GPIOF_HIGH);

at32_select_gpio(i2c_gpio_data.scl_pin, AT32_GPIOF_MULTIDRV |

AT32_GPIOF_OUTPUT | AT32_GPIOF_HIGH);

platform_device_register(&i2c_gpio_device);

More information about the board setup code is available in the document
“AVR32744: AVR32 AP7 Linux Custom Board Support”.

3.2 TWI module setup
To enable the TWI driver, “Device Drivers -> I2C support -> I2C Hardware bus
support -> Atmel Two-Wire Interface (TWI)” must be selected in the kernel
configuration.

After the selection of the driver modules the device must be added to the system in
the board code. On the Atmel boards this is done by default by a call to
at32_add_device_twi(unsigned int id) in the board setup code.

3.3 I2C device interface
The device interface provides easy access to the I2C busses for a user-space
application as already described in the previous chapters. In order to add this module
to the kernel, activate “Device Drivers -> I2C support ->I2C device interface” in the
kernel configuration system.

4 Setting up the I2C modules on the target

After the system has booted the needed modules may have to be loaded when they
have been built as modules. If the functionality has already been built into the kernel
no further actions have to be taken. Loaded modules can be listed by running “lsmod”
on the target. Load modules with the “modprobe” or “insmod” tool.

4.1 TWI module
If not already loaded insert the TWI module driver by running:

modprobe i2c-atmeltwi

 AVR32412

 7

32083A-AVR32-08/08

(If the modules are not installed properly e.g. just copied by the user to the system
they can be inserted with the insmod tool). The driver may also be remove by calling

rmmod i2c-atmeltwi

but this is not possible if other modules are loaded that depend on this module. In
order to remove the module all other dependencies have to be removed first.

Another module that may be needed to load if not build into the kernel is i2c-core.
This can also be done with the modprobe tool.

4.2 GPIO I2C setup
Modules needed for the GPIO I2C set up are i2c-gpio and i2c-algo-bit. These
modules can also be loaded with the “modprobe” tool.

4.3 User-space I2C device interface
The Linux kernel provides an "I2C device interface" which is an I2C driver where the
clients are associated with all devices on a particular I2C bus. The interface to the
bus is basically a standard character device that lets a user-space application select a
particular device on the bus, set its properties and read/write to the bus.

If this “I2C device interface” should be used to gain access from a user-space
program rather then from a kernel driver to the I2C core an additional module is
needed. Load the user-space I2C device interface with following command (if not built
in the kernel):

modprobe i2c-dev

Each I2C bus is assigned a device node of /dev/i2c-n (where n is the number of the
bus). This is done automatically if the mdev (or similar) application is installed on the
system. If this is not the case the node can be created by hand with the mknod
command. The device nodes are character devices with permission, device name,
and major and minor numbers. If the module was loaded successfully and a valid bus
is available the /dev directory should contain a device node. Type

ls -l /dev/i2c-0

to list the properties of the bus 0 device. This could look like this:

crwxr-xr-x 1 65534 65534 89, 0 Sep 25 2007 i2c-0

The first set of characters indicates that it's a character device and has read, write
and execute permissions for owner, group and others. In the output above, the major
number for the /dev entry is 89 and the minor number is 0. Make sure you have the
same setting.

More information can be found in the Linux kernel source code directory under
Documentation/i2c/dev-interface. Example code for using this interface is described in
later chapters in this document.

5 Using the I2C device interface
In the documentation supplied with the Linux kernel, the usage of the Linux I2C
interface is described in detail. It is a good reference. It is available in the folder
Documentation/i2c/. Another source of examples is the LM-sensors package.

There are two interfaces available to do the communication, the read/write interface
or the ioctl interface. But independent of the one we choose we will first have to open
the device file like this:

8 AVR32412
32083A-AVR32-08/08

int device_file;

char filename[10] = "/dev/i2c-0";

if ((device_file = open(filename,O_RDWR)) < 0) {

 /* Error */

 return -1;

}

5.1 read / write interface
Before using the read/write interface the slave address needs to be set. This can be
done with an ioctl call. Following example shows how a slave address can be set:

int slave_address = 0x12; /* The I2C address */

if (ioctl(device_file,I2C_SLAVE,slave_address) < 0) {

 /* Error */

 return -1;

}

After setting the slave address it is now possible read from and write to the slave. The
data that should be sent to read from the slave is passed in with a write/read call like
in the example below:

buffer[0] = i2c_slave_register;

buffer[1] = 0x11;

buffer[2] = 0x48;

To write:

if (write(device_file,buffer,3) != 3) {

 /* Error */

 return -1;

}

To read:

if (read(device_file,buffer,1) != 1) {
 /* Error */
 } else {
 /* buffer[0] contains the byte read*/
}

5.2 ioctl interface
The ioctl interface provides an advanced interface for a communication on the I2C
bus. It provides two methods in order to use the I2C protocol or the SMBus protocol.
The adapter should be tested if it provides the needed functionality before starting a
communication.

5.2.1 I2C protocol

A standard message structure is available in the header file <linux/i2c-dev.h>.

struct i2c_rdwr_ioctl_data {

 AVR32412

 9

32083A-AVR32-08/08

 struct i2c_msg *msgs; /* pointers to i2c_msgs */

 __u32 nmsgs; /* number of i2c_msgs */

};

An I2C message structure is defined in <linux/i2c.h>.

struct i2c_msg {

 __u16 addr; /* slave address*/

 __u16 flags;

 __u16 len; /* msg length */

 __u8 *buf; /* pointer to msg data */

};

Where:

• addr is the slave address.

• flags contains whether it is a read or write operation. Other flags are also
available such as 10-bit addressing. Flags are listed in the i2c.h header file.

• len is the number of bytes to write or read.

• buf points to the storage buffer for data to be received or data to be written.

The initialized structure is used as argument for an ioctl call. To do a combined read
or write transfer the macro I2C_RDWR can be used. Following example transfers 3
data bytes to the slave. The 3 bytes can be used to transfer a register address and
two data bytes.

struct i2c_rdwr_ioctl_data work_queue;

uint8_t msg_data[2] = {0,0};

work_queue.nmsgs = 1;

work_queue.msgs = (struct i2c_msg*) malloc(work_queue.nmsgs *
sizeof(struct i2c_msg));

work_queue.msgs[0].len = 2;

work_queue.msgs[0].flags = 0;

work_queue.msgs[0].addr = 0x1; /* slave address */

msg_data[0] = 0x1; /* register address*/

msg_data[1] = 0xA; /* data */

msg_data[2] = 0xB; /* data */

work_queue.msgs[0].buf = msg_data;

if(ioctl(message.device_handle, I2C_RDWR,

(unsigned long) &work_queue) < 0)

{

;/* Error*/

}

5.2.2 SMBus protocol

In order to use the SMBus protocol another structure is needed.

struct i2c_smbus_ioctl_data {

 __u8 read_write;

 __u8 command;

10 AVR32412
32083A-AVR32-08/08

 __u32 size;

 union i2c_smbus_data *data;

};

Where:

• read_write specifies the a read or a write access. Macros are available in
the header file.

• command is the first byte that will be transmitted in a read/write transmission.
In most cases this is the register address.

• size specifies the transfer data size in bytes.

• data points to the data storage location.

To ease byte and word access to the data a union is used.

union i2c_smbus_data {

 __u8 byte;

 __u16 word;

 __u8 block[I2C_SMBUS_BLOCK_MAX + 2];

 /* block[0] is used for length and one more for PEC */

};

A one byte write transfer can be set up like this:

 struct i2c_smbus_ioctl_data args;

 args.read_write = I2C_SMBUS_WRITE;

 args.command = 0x01;

 args.size = I2C_SMBUS_BYTE;

 args.data = NULL;

 ioctl(device_file,I2C_SMBUS,&args);

The LM-sensors project has developed a custom i2c-dev.h header file that replaces
the i2c.h and i2c-dev.h header files from the standard library. This file offers some
nice macros in order to ease the SMBus protocol handling. The API is described in
the kernel documentation. The header file is available in the source code package of
this application note.

6 Custom I2C Linux driver
IC2 device handling can also be done in the kernel by adding an I2C client. Before
writing a new driver from scratch a quick search at the LM-sensors project should be
considered. Maybe a driver for the device exists already there.

If a new driver has to be written following documents are very useful. Documentation
on how to write a Linux driver is available in the application note “AVR32743: AVR32
AP7 Linux Kernel Module Application Example”. In the Linux kernel documentation in
the Documentation/i2c/ directory is a document available that describes all needed
steps in order to build an I2C client. With these two documents all information should
be available to build a custom I2C kernel driver.

Good examples of other IC2 device drivers as said before in the LM-project.

 AVR32412

 11

32083A-AVR32-08/08

7 Source package information
Included with the application note is an example source code that shows some basic
I2C/SMBus usage. The source code is taken from the LM-sensors project with minor
changes. The tool can be used to print out the available I2C busses, the functionality
of the bus-adapters and connected devices on the busses.

8 References
Linux kernel I2C documentation: Documentation/i2c/ in the Linux kernel sources.

LM-Sensors project: http://www.lm-sensors.org

SMBus specification: http://smbus.org/.

I2C specification: http://nxp.com

Related Atmel application notes available from http://www.atmel.com/products/avr32

• AVR32744: AVR32 AP7 Linux Custom Board Support

• AVR32408: AVR32 AP7 Linux GPIO driver

Linux Journal I2C articles:

• The Driver Model Core: http://www.linuxjournal.com/article/6717

• I2C Drivers, Part I: http://www.linuxjournal.com/article/7136

• I2C Drivers, Part II: http://www.linuxjournal.com/article/7252

http://www.lm-sensors.org/�
http://smbus.org/�
http://www.nxp.com/�
http://www.atmel.com/products/avr32�
http://www.linuxjournal.com/article/6717�
http://www.linuxjournal.com/article/7136�
http://www.linuxjournal.com/article/7252�

32083A-AVR32-08/08

Disclaimer
Headquarters International

Atmel Corporation
2325 Orchard Parkway
San Jose, CA 95131
USA
Tel: 1(408) 441-0311
Fax: 1(408) 487-2600

 Atmel Asia
Room 1219
Chinachem Golden Plaza
77 Mody Road Tsimshatsui
East Kowloon
Hong Kong
Tel: (852) 2721-9778
Fax: (852) 2722-1369

Product Contact

Atmel Europe
Le Krebs
8, Rue Jean-Pierre Timbaud
BP 309
78054 Saint-Quentin-en-
Yvelines Cedex
France
Tel: (33) 1-30-60-70-00
Fax: (33) 1-30-60-71-11

Atmel Japan
9F, Tonetsu Shinkawa Bldg.
1-24-8 Shinkawa
Chuo-ku, Tokyo 104-0033
Japan
Tel: (81) 3-3523-3551
Fax: (81) 3-3523-7581

 Web Site
www.atmel.com

Technical Support
Avr32@atmel.com

Sales Contact
www.atmel.com/contacts

 Literature Request
www.atmel.com/literature

Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any
intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMEL’S TERMS AND
CONDITIONS OF SALE LOCATED ON ATMEL’S WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED
OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT,
CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS,
BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS
BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the
contents of this document and reserves the right to make changes to specifications and product descriptions at any time without notice. Atmel does not make any
commitment to update the information contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in,
automotive applications. Atmel’s products are not intended, authorized, or warranted for use as components in applications intended to support or sustain life.

© 2008 Atmel Corporation. All rights reserved. Atmel®, Atmel logo and combinations thereof, AVR® and others, are the registered
trademarks or trademarks of Atmel Corporation or its subsidiaries. Other terms and product names may be trademarks of others.

	1 Introduction
	2 Linux I2C introduction
	2.1 Linux I2C driver model

	3 Linux kernel configuration
	3.1 GPIO-I2C setup
	3.2 TWI module setup
	3.3 I2C device interface

	4 Setting up the I2C modules on the target
	4.1 TWI module
	4.2 GPIO I2C setup
	4.3 User-space I2C device interface

	5 Using the I2C device interface
	5.1 read / write interface
	5.2 ioctl interface
	5.2.1 I2C protocol
	5.2.2 SMBus protocol

	6 Custom I2C Linux driver
	7 Source package information
	8 References

