
AT91RM9200DK U-Boot User Manual

Version: V1.0

CONFIDENTIAL – INTERNAL USE ONLY

Atmel Corporation makes no warranty for the use of its products, other than those expressly contained in the Company’s
standard warranty which is detailed in Atmel’s Terms and Conditions located on the Company’s web site. The Company
assumes no responsibility for any errors which may appear in this document, reserves the right to change devices or specifi-
cations detailed herein at any time without notice, and does not make any commitment to update the information contained
herein. No licenses to patents or other intellectual property of Atmel are granted by the Company in connection with the sale
of Atmel products, expressly or by implication. Atmel’s products are not authorized for use as critical components in life sup-
port devices or systems.

Reference: ABP-STD-BOOT-003

ARM-Based Product Application Group

Release Date: 10-Jul-2003

Revision History

Date 10-Jul-2003 Name AT91RM9200DK U-Boot User Manual

Version V1.0 Reference ABP-STD-BOOT-003

ARM-Based Product Application Group

ATMEL CONFIDENTIAL – INTERNAL USE ONLY

Revision Date Author Comments

V1.0 24-Jun-2003 NLe Creation.

Page i

Table of Contents

Date 10-Jul-2003 Name AT91RM9200DK U-Boot User Manual

Version V1.0 Reference ABP-STD-BOOT-003

ARM-Based Product Application Group

ATMEL CONFIDENTIAL – INTERNAL USE ONLY

1 - Scope... 1

2 - Features... 1

3 - Overview.. 1
3.1 - Description.. 1
3.2 - AT91RM9200 Development Kit Setup.. 2
3.3 - Autoboot Mode and Interactive Mode... 2
3.4 - Environment Variables ... 2

4 - Data Download.. 4
4.1 - Download via the serial port ... 4
4.2 - Download via the Ethernet Interface .. 4

5 - Memory Operations.. 6
5.1 - Generic Memory Operations .. 6
5.2 - Flash-specific Operations ... 6
5.3 - DataFlash Features .. 7
5.4 - Advanced Features .. 8

5.4.1Scripting .. 8
5.4.2Code Execution... 9

Go command ... 9
Bootm command.. 9

5.5 - Automatic Host Configuration... 9

6 - U-Boot Reference ... 10
6.1 - Reserved Environment Variables ... 10
6.2 - Commands ... 11

Date 10-Jul-2003 Name AT91RM9200DK U-Boot User Manual

Version V1.0 Reference ABP-STD-BOOT-003

ARM-Based Product Application Group
1 - Scope
This document aims at describing the bootloader embedded in the AT91RM9200DK
development kit. It gives a general overview of U-Boot and a detailed description of the
different commands to use.

It is mainly destined to those who want to know how using U-Boot.

2 - Features
The main features of the U-Boot software for the AT91RM9200 series ARM Based
Products are:

• Standalone primary bootstrap

• Small footprint

• OS-independent

• Auto-boot and interactive modes

• Command line interface

• Non-volatile environment variables

• Flash programming capability

• DataFlash programming capability (only available in latest Open Source download)

• Download through serial interface (Kermit protocol)

• Download through Ethernet (tftp)

• Integrated bootp

• Scripting capability

3 - Overview

3.1 - Description

The U-Boot program is a standalone software application that initializes the
AT91RM9200 processor and then jumps to the main application. If the user sends a
character to the system console during the bootstrap, U-Boot enters interactive mode.
The user is prompted to enter commands on the command line. The commands allow
the processor to read/modify memory areas, set environment variables, download data
from the serial port or from the Ethernet interface and execute code routines.

The U-Boot program is completely standalone. In particular, it is independent of the
operating system and not linked to the main application software. However, it is able to
launch the latter by executing an absolute branch operation.

U-Boot is a project supported by the Open Source community. It is distributed under the
GPL license. See the source code for credits and other licensing information.
Page 1 / 15ATMEL CONFIDENTIAL – INTERNAL USE ONLY

Date 10-Jul-2003 Name AT91RM9200DK U-Boot User Manual

Version V1.0 Reference ABP-STD-BOOT-003

ARM-Based Product Application Group
3.2 - AT91RM9200 Development Kit Setup

To start the U-Boot software:

• Connect a PC running a terminal emulator such as Kermit or HyperTerminal to the
Serial Debug port of the AT91RM9200DK development board. The default port
parameters are 115200 bps (can be changed later), 8 bits, one stop, no parity, no
flow control. The PC acts as the system console.

• Power-up the board.

The U-Boot starts and supplies a prompt on the terminal emulator.

It is recommended that a network connection is in place when U-Boot is used. In this
case, the network should be connected to the Ethernet interface of the AT91RM9200DK
development board.

3.3 - Autoboot Mode and Interactive Mode

When the AT91RM9200-based system is powered up, a banner is displayed on the sys-
tem console. The user is then prompted to send a character to the system console to
enter the interactive mode. If, after a delay controlled by the bootdelay environment vari-
able, no character is received, U-Boot continues in autoboot mode by attempting to
execute the command defined by the bootcmd environment variable. Typically, this vari-
able contains a “go” command that performs a jump and gives control to the main
application software.

Note that if the bootdelay variable is not defined or does not contain a relevant value, U-
Boot does not attempt the autoboot and will remain in interactive mode. The same fall-
back in interactive mode occurs if the bootcmd variable is undefined.

3.4 - Environment Variables

U-Boot has the ability to define and maintain environment variables in non-volatile mem-
ory. An environment variable may contain any character string. Some variables have a
reserved name which directly impacts the behavior of the system. An example of such a
reserved variable is ipaddr. This variable contains the IP address of the local host in the
quad-dotted notation. For complete information on the reserved environment variables,
refer to Section 6.1.

Other variables are user-defined. Their name can be almost any alphanumeric string
and they may contain any character string for the user's convenience.

The list of currently defined environment variables can be displayed on the console with
the printenv command. The example below shows a typical display following the print-
env command:

Uboot> printenv

baudrate=115200

ipaddr=192.168.1.1

ethaddr=12:34:56:78:9A:BC

serverip=192.168.1.5

Environment size: 80/8188 bytes
Page 2 / 15ATMEL CONFIDENTIAL – INTERNAL USE ONLY

Date 10-Jul-2003 Name AT91RM9200DK U-Boot User Manual

Version V1.0 Reference ABP-STD-BOOT-003

ARM-Based Product Application Group
A new variable can be defined by the setenv command. The example below defines a
new variable:

Uboot> setenv myboard AT91RM9200DK

Uboot> printenv

baudrate=115200

ipaddr=192.168.1.1

ethaddr=12:34:56:78:9A:BC

serverip=192.168.1.5

myboard=AT91RM9200DK

Environment size: 102/8188 bytes

Variables are created and modified in regular system memory (RAM). This means that a
power outage would alter the existence and value of a new variable. A Flash sector is
dedicated to store all the environment variables and their values in a non-volatile area.
The saveenv command transfers all the currently defined variables and their values into
the Flash memory.

The memory space used to store environment variables is 8 kilobytes. This space is
used to store the variable names and values. The total length of variable names and val-
ues should not exceed 8 kilobytes.
Page 3 / 15ATMEL CONFIDENTIAL – INTERNAL USE ONLY

Date 10-Jul-2003 Name AT91RM9200DK U-Boot User Manual

Version V1.0 Reference ABP-STD-BOOT-003

ARM-Based Product Application Group
4 - Data Download
U-Boot offers two options to download data into the local memory: via the serial port of
the console using the Kermit protocol or via a tftp network service.

4.1 - Download via the serial port

The loadb command enables download of binary data via the serial port interface used
by the console.

loadb uses the Kermit protocol to transfer data with a good compromise between reli-
ability and bandwidth usage. Kermit is a protocol supported by most terminal emulation
tools (including C-Kermit, Minicom and Microsoft’s HyperTerminal).

• The example below shows how to transfer data from the PC connected on the
console port to the AT91RM9200DK memory at address 0x20000000:
Uboot> loadb 20000000

Ready for binary (Kermit) download ...

• Instruct the terminal emulation tools to send the required file using the Kermit
protocol.

• For information on how to send files using the Kermit protocol, refer to the
documentation of the terminal emulation tool.

Note: For C-Kermit users: “set prefixing all” under the C-Kermit prompt must be set to ensure
proper transmission of all packets.

• When transmission is complete, the U-Boot command line prompt re-appears.

4.2 - Download via the Ethernet Interface

Network downloading is one of the most powerful capabilities of U-Boot. It provides the
system with the capability to download binary data from a tftp server connected to the
network via the Ethernet interface of the AT91RM9200 processor. In particular, the
downloaded data can be the main application software itself, thus economizing a con-
siderable amount of Flash memory.

Before downloading any data from the network, some reserved environment variables
must be set so as to configure the user system. The configuration can be done either
manually, or automatically by co-operating with a remote bootp service. The operations
described below demonstrate how to configure the network manually. For information
about the automated bootp procedure, refer to Section 5.5.

• Define the Ethernet hardware address of the AT91RM9200 device. This is done by
setting the reserved environment variable ethaddr to a text string reflecting this
address. The hardware address is given by using common 6-byte notation, as
illustrated below:
Uboot> setenv ethaddr 12:34:56:78:9A:BC

Note: The hardware address given above is only for purposes of illustration. It may belong to
another organization. The user should ensure that the hardware addresses used are his
own property.
Page 4 / 15ATMEL CONFIDENTIAL – INTERNAL USE ONLY

Date 10-Jul-2003 Name AT91RM9200DK U-Boot User Manual

Version V1.0 Reference ABP-STD-BOOT-003

ARM-Based Product Application Group
• Define an IP address for the Ethernet interface. This is done by setting the reserved
environment variable ipaddr. The value of ipaddr should be a text string reflecting
the IP address in quad-dotted notation. This is illustrated below:
Uboot> setenv ipaddr 192.168.1.1

• Specify the IP address of the tftp server by setting the reserved environment
variable serverip as illustrated below:
Uboot> setenv serverip 192.168.1.254

• The system is now able to connect the tftp service (assuming it is available) on the
server 192.168.1.254 to download data. This can be done with the following
command:
Uboot> tftp 20000000 application.bin

The command above assumes that there is a tftp service active on host 192.168.1.254,
and that there is a file named application.bin located in the tftp root directory of this host.

The command tells U-Boot to download the file with the tftp protocol and to store it at
address 0x20000000.
Page 5 / 15ATMEL CONFIDENTIAL – INTERNAL USE ONLY

Date 10-Jul-2003 Name AT91RM9200DK U-Boot User Manual

Version V1.0 Reference ABP-STD-BOOT-003

ARM-Based Product Application Group
5 - Memory Operations

5.1 - Generic Memory Operations

The U-Boot application provides memory-related operations which help to view or set
the value of memory areas. The corresponding commands apply to regular memory as
well as to memory-mapped registers. The list below gives a summary of the generic
memory operations available:

• md displays the contents of a memory area.

• mm modifies the contents of a memory location. The address is auto-incremented to
ease the filling of continuous areas.

• nm modifies the contents of a memory location. The address is not auto-
incremented to ease the filling of the same register several times.

• mw writes a memory area with a pattern (filling)

• cp copies a memory location to another.

• cmp compares two memory areas.

All the memory commands can be followed by a suffix to indicate the size of each loca-
tion to be copied (e.g. cp.b indicates a copy byte by byte).

Below are a few examples illustrating these commands.

5.2 - Flash-specific Operations

In addition to generic memory commands, some other memory-related commands are
applicable to Flash memory areas.

The protect command enables or disables the soft protection of a Flash area. The status
of the protection can be viewed with the flinfo command. Here are a few examples using
these commands:

Uboot> flinfo

Bank # 1: Atmel: AT49BV1614 (16Mbit)

 Size: 2 MB in 40 Sectors

 Sector Start Addresses:

10000000 (RO) 10002000 (RO) 10004000 (RO) 10006000 10008000

1000A000 1000C000 1000E000 (RO) 10010000 (RO) 10018000 (RO)

10020000 10030000 10040000 10050000 10060000

10070000 10080000 10090000 100A0000 100B0000

100C0000 100D0000 100E0000 100F0000 10100000

10110000 10120000 10130000 10140000 10150000

10160000 10170000 10180000 10190000 101A0000

101B0000 101C0000 101D0000 101E0000 101F0000

Uboot> protect off 10004000 10005FFF

Un-Protected 1 sectors
Page 6 / 15ATMEL CONFIDENTIAL – INTERNAL USE ONLY

Date 10-Jul-2003 Name AT91RM9200DK U-Boot User Manual

Version V1.0 Reference ABP-STD-BOOT-003

ARM-Based Product Application Group
Uboot> flinfo

Bank # 1: Atmel: AT49BV1614 (16Mbit)

 Size: 2 MB in 40 Sectors

 Sector Start Addresses:

10000000 (RO) 10002000 (RO) 10004000 10006000 10008000

1000A000 1000C000 1000E000 (RO) 10010000 (RO) 10018000 (RO)

10020000 10030000 10040000 10050000 10060000

10070000 10080000 10090000 100A0000 100B0000

100C0000 100D0000 100E0000 100F0000 10100000

10110000 10120000 10130000 10140000 10150000

10160000 10170000 10180000 10190000 101A0000

101B0000 101C0000 101D0000 101E0000 101F0000

When data needs to be written into a Flash area, the sectors concerned must be erased
before the write can be performed. This is done with the erase command.

For complete information on Flash-specific operation, refer to Section 6.2.

5.3 - DataFlash Features

There is no specific command to access a DataFlash. Indeed, it is accessed exactly as
a flash device that is to say as a memory with a physical address.

When starting, U-Boot checks if DataFlash devices are connected on SPI Chip Select 0
and 3. If it is the case, a virtual address is attributed to the corresponding DataFlash:

• 0xC0000000 for DataFlash connected on SPI Chip Select 0

• 0xD0000000 for DataFlash connected on SPI Chip Select 3

Here is an example of U-Boot starting with two DataFlash devices connected.

U-Boot 0.3.0 (Jun 11 2003 - 14:33:35)

U-Boot code: 21F00000 -> 21F13C0C BSS: -> 21F1EF44

DRAM Configuration:

Bank #0: 20000000 32 MB

Atmel: AT49BV1614 (16Mbit)

Flash: 2 MB

DataFlash:AT45DB642

Nb pages: 8192

Page Size: 1056

Size= 8650752 bytes

Logical address: 0xC0000000

DataFlash:AT45DB161

Nb pages: 4096

Page Size: 528

Size= 2162688 bytes

Logical address: 0xD0000000

Uboot>
Page 7 / 15ATMEL CONFIDENTIAL – INTERNAL USE ONLY

Date 10-Jul-2003 Name AT91RM9200DK U-Boot User Manual

Version V1.0 Reference ABP-STD-BOOT-003

ARM-Based Product Application Group
Once virtual address is attributed, the DataFlash is accessed by using the generic mem-
ory operations (cp, md...) with its corresponding virtual address.

It is possible to have informations about DataFlash by using the flinfo command:

Uboot> flinfo

DataFlash:AT45DB642

Nb pages: 8192

Page Size: 1056

Size= 8650752 bytes

Logical address: 0xC0000000

DataFlash:AT45DB161

Nb pages: 4096

Page Size: 528

Size= 2162688 bytes

Logical address: 0xD0000000

Bank # 1: Atmel: AT49BV1614 (16Mbit)

 Size: 2 MB in 40 Sectors

 Sector Start Addresses:

10000000 (RO) 10002000 (RO) 10004000 (RO) 10006000 10008000

 1000A000 1000C000 1000E000 (RO) 10010000 (RO) 10018000 (RO)

 10020000 10030000 10040000 10050000 10060000

 10070000 10080000 10090000 100A0000 100B0000

 100C0000 100D0000 100E0000 100F0000 10100000

 10110000 10120000 10130000 10140000 10150000

 10160000 10170000 10180000 10190000 101A0000

 101B0000 101C0000 101D0000 101E0000 101F0000

Uboot>

5.4 - Advanced Features

5.4.1 - Scripting

In the context of U-Boot, scripting refers to the capability of executing several consecu-
tive commands as if they were entered in sequence on the command line. The script
program is stored in an environment variable.

Scripting is supported by assigning an environment variable to a string which contains a
list of commands separated by semi-colons. The contents of the variable can be subse-
quently executed consecutively with the run command. The example below illustrates
scripting. It implements a routine which downloads a new application from the tftp server
and writes it to Flash. The first line assigns the variable flashit to a list of commands. The
saveenv command is then executed to save the flashit variable into the non-volatile
environment area. The flashit command is then executed and the Flash is updated. Note
that this script assumes that the Flash memory is unprotected against write.

Uboot> setenv flashit tftp 20000000 mycode.bin\; erase 10020000 1002FFFF\;

cp.b 20000000 10020000 8000

Uboot> saveenv

Uboot> run flashit
Page 8 / 15ATMEL CONFIDENTIAL – INTERNAL USE ONLY

Date 10-Jul-2003 Name AT91RM9200DK U-Boot User Manual

Version V1.0 Reference ABP-STD-BOOT-003

ARM-Based Product Application Group
Note that the reserved variable bootcmd is a special case of scripting. If this variable is
defined, its contents are automatically executed in autoboot mode.

5.4.2 - Code Execution

U-Boot has the ability to execute binary code located in memory. Two commands are
provided to execute the binary: go and bootm.

Go command

go executes a simple branch to the specified address. If required, command line param-
eters can be passed to the launched application. The usage of go is simple, but no
checks are made as to the suitability of the target binary. Additionally, a binary started
by go is always executed in place.

Bootm command

bootm expects the binary code to be specially formatted. Such a format is produced by
mkimage with the -T kernel or -T standalone option. Before the actual execution, bootm
checks the suitability of the code by checking a magic number and a checksum. Then
the executable section is copied into RAM at the address pointed to by loadaddr and a
jump is performed there.

Note that bootm supports the execution of compressed code produced by mkimage with
the -C gzip option. In this case, the compressed code is de-compressed while it is cop-
ied to RAM.

Please refer to the U-Boot Developper Manual for more informations on mkimage.

5.5 - Automatic Host Configuration

U-Boot supports automatic configuration via the bootp protocol. With this protocol, U-
Boot can be assigned several parameters, such as its IP address or its host name,
dynamically. Its application code can also be downloaded from a server and does not
have to reside locally in a non-volatile memory. Another advantage is the ease of main-
tenance of the application software. When a new firmware release is available, it can be
copied to a server, identified by the bootp protocol, and the update is effective as soon
as the host is rebooted.

The only prerequisite for starting the bootp operation is the assignment of an Ethernet
hardware address to the AT91RM9200DK development kit. When the bootp starts, the
host sends a network broadcast requesting the response of a bootp service. If a bootp
service is available and recognizes the hardware address of the requesting host, the
server is able to provide the client host with its configuration parameters.

Starting the bootp operation with U-Boot is easy. Once the Ethernet hardware address
is assigned, the operation consists of typing the bootp command. All the configurations
regarding which parameters can be assigned to which values by bootp are made on the
server side. Refer to the bootp server documentation for more information.
Page 9 / 15ATMEL CONFIDENTIAL – INTERNAL USE ONLY

Date 10-Jul-2003 Name AT91RM9200DK U-Boot User Manual

Version V1.0 Reference ABP-STD-BOOT-003

ARM-Based Product Application Group
6 - U-Boot Reference

6.1 - Reserved Environment Variables

baudrate

This variable is used to select the baud rate of the system console through which U-Boot
interacts with the user.

baudrate is always defined. If not specified, it defaults to 115200. The supported values
are 9600, 19200, 38400, 57600, and 115200.

bootargs

This variable is application-specific. It is used as an exchange area to pass information
to the main application which is started by U-Boot. It can be filled with any data.

It is the responsibility of the main application to implement the routines which will access
bootargs and interpret its contents.

bootcmd

If defined, this variable is executed automatically when entering the autoboot mode. In
an operational context, it should contain the list of commands which launch the main
application.

If bootcmd is left undefined, U-Boot never enters the autoboot mode and remains in
interactive mode.

As any other script, bootcmd can be executed with the run command for test purposes.

bootfile

This variable is set by the bootp service to the name of the boot file to be loaded from
the tftp service.

ethaddr

This variable is used to specify the MAC address of the Ethernet interface of the
AT91RM9200 device. The address must be in the format of six hex bytes separated by
a column.

When the variable is first defined, the Ethernet MAC address is immediately pro-
grammed into the Ethernet interface. If the ethaddr is set in the non-volatile
environment, the Ethernet MAC address is programmed when U-Boot starts.

filesize

This variable is set by the bootp service to the size (in hex) of the boot file to be loaded
from the tftp service.

hostname

This variable can be set to a character string which reflects the name of the local host. It
can be either set manually or by the bootp service.

ipaddr

The ipaddr variable defines the IP address assigned to the first network interface. This
address is mandatory for U-Boot to exchange data through the network such as for tftp
downloads.

ipaddr can be either specified manually, or automatically assigned by the bootp
protocol.
Page 10 / 15ATMEL CONFIDENTIAL – INTERNAL USE ONLY

Date 10-Jul-2003 Name AT91RM9200DK U-Boot User Manual

Version V1.0 Reference ABP-STD-BOOT-003

ARM-Based Product Application Group
The format of the address is the popular quad-dotted notation composed of four decimal
bytes separated by dots.

loadaddr

Several commands can be used to download data into the host's memory. Such com-
mands include loadb and tftp. If the destination address is not specified explicitly in the
command line, the downloaded data will be stored at the address defined by loadaddr.

When undefined, a default of 0x21000000 is assumed.

serverip

This variable specifies the IP address of the tftp server from which U-Boot downloads
data. It can be either defined manually or automatically assigned by the bootp protocol.

The tftp server IP address must be specified in quad-dotted notation composed of four
decimal bytes separated by dots.

6.2 - Commands

?

Alias for the help command.

bootd

Boot default. Short for 'run bootcmd'.

bootm [<address> [<parameters list>]]

Bootm is used to execute an application located in the host’s memory. This application
must be in the specific image format generated by the mkimage tool with the -T kernel or
-T standalone option. For more information about mkimage, please refer to U-Boot
Developer Manual.

The optional <address> parameter of the bootm command is used to specify the loca-
tion of the application in the host's memory. This value can be overridden by the <load
address> parameter given to mkimage when the executable application was built. If
none of these addresses is given, the value of the reserved variable loadaddr is used as
a default.

If extra parameters are given after <address>, these are passed to the application as its
argc and argv global variables.

If the application was designed so that it returns, the user is prompted with a new com-
mand line when the application is finished.

The main difference between the go and bootm commands is that go expects a pure
binary code while bootcmd expects an mkimage-formatted executable.

bootp [<address>]

This command establishes the host's bootp client connection. The only pre-requisite
needed to initiate the bootp connection is the hardware address of the local host's Ether-
net interface. If the connection is successful, the bootp client can get configuration
information from the bootp server, and stores this information in environment variables.

The bootp command of U-Boot has the ability to set the following environment variables:

• bootfile

• filesize

• hostname
Page 11 / 15ATMEL CONFIDENTIAL – INTERNAL USE ONLY

Date 10-Jul-2003 Name AT91RM9200DK U-Boot User Manual

Version V1.0 Reference ABP-STD-BOOT-003

ARM-Based Product Application Group
• ipaddr

• netmask

• serverip

For more information about these variables, refer to the corresponding entry in Section
6.1

If the automatic configuration defines a tftp server to download a boot file, the tftp con-
nection is established and the file download is attempted. If the optional <address>
parameter is given, the boot file is stored at this location. If this address remains unspec-
ified, the value of loadaddr is used as a default.

Note that the boot file cannot be downloaded into Flash memory. To program Flash
memory, the file must be first downloaded into regular RAM, and then copied into Flash
with the cp command.

cp[.<size>] <source> <destination> <length>

This command is used to copy data between two memory areas. The optional size
parameter specifies the type of data to be moved at each iteration. Supported values
are l for long 32-bit words, w for 16-bit half-words, and b for bytes. If the size is not spec-
ified, the last used size is used, l being the first default.

The <length> parameter specifies the total number of bytes to be copied.

Misaligned copies are not allowed.

Note that cp is the only command which permits Flash memory to be written. For such
an operation to be successful, make sure that the Flash area to be programmed has
been erased (all bits at 1). See the erase command below.

cp command is also the only command which permits DataFlash memory to be written.

cmp [.<size>] <area1> <area2> <length>

cmp compares the values of two memory areas. It returns a message giving the result.
In case of mismatch, a summary is given.

echo [<string> [...]]

echo is mainly used in scripts. It simply sends the argument strings to the console.

erase <start> <stop>

This command erases an area of Flash memory. This operation is mandatory before
any write to the are can be performed.

<start> and <stop> are the first and last addresses of the area to be erased. They must
match Flash sector boundaries. Please refer to the datasheet of the Flash memory to
obtain the sector boundaries and to the flinfo command below.

For the erase to be successful, it is necessary to have the area unprotected (see the
protect command).

flinfo

Gives information about the Flash memory. More specifically, it display the start address
of all sectors and the protection status. Device type and vendor information are also
provided.

It gives also informations about the DataFlash memories. It displays the DataFlash type,
the number of pages, the page size, the DataFlash size and the associated virtual
address.
Page 12 / 15ATMEL CONFIDENTIAL – INTERNAL USE ONLY

Date 10-Jul-2003 Name AT91RM9200DK U-Boot User Manual

Version V1.0 Reference ABP-STD-BOOT-003

ARM-Based Product Application Group
go <address> [<parameter list>]

This command executes an absolute branch to <address>. A common usage of the go
command is to start the main software application.

If the code initiated by the go command returns, control is given back to U-Boot.

Note that the <address> parameter is mandatory.

It is the responsibility of the user to make sure that there is a valid executable code start-
ing from <address>.

If the parameter list is given, it is passed to the application in its argc and argv global
variables.

The main difference between the go and bootm commands is that go expects a pure
binary code while bootcmd expects an mkimage-formatted executable.

help

Displays an online help summary of all available commands. A question mark ? is an
alias for the help command.

loadb [<address> [<baudrate>]]

Any binary file can be downloaded through the console's serial port with the loadb com-
mand. loadb uses the Kermit protocol developed by University of Columbia.

When loadb is run, the console operation through the serial port is suspended and U-
Boot waits for a valid Kermit communication. The user then should then instruct the ter-
minal emulator to send a file in Kermit format.

If <address> is specified, the received file will be stored at this address. Otherwise, the
value of loadaddr is used as the default load address.

Note that the boot file cannot be downloaded into Flash memory. To program Flash
memory, the file must be first downloaded into RAM, and then copied into Flash with the
cp command.

Specifying <baudrate> switches the serial port speed temporarily for the Kermit transfer.
When the transfer is finished, the original console speed is restored.

md[.<size>] [<address> [<length>]]

md dumps areas of memory. The <size> parameter defines the width of the read trans-
action of the memory and the display format. l stands for long 32-bit words, w for 16-bit
half-words, and b stands for bytes. If <size> is not specified, the last used value is
assumed, l being the default.

If specified, <address> defines the address of the first data to display. If unspecified, the
dump address is the sum of the last <address> + <length>. Note that <address> must
be specified at least once since it has no default value.

If specified, <length> gives the number of words to be dumped. Note that this is not nec-
essarily the number of bytes, but rather the number of data items of the specified size.
The default is 64.

mm[.<size>] [<address>]

nm[.<size>] [<address>]

mm and nm provide the user with the possibility of modifying areas of memory manually.
The address of the first memory location to be modified can be specified by the
Page 13 / 15ATMEL CONFIDENTIAL – INTERNAL USE ONLY

Date 10-Jul-2003 Name AT91RM9200DK U-Boot User Manual

Version V1.0 Reference ABP-STD-BOOT-003

ARM-Based Product Application Group
<address> argument. If <address> remains unspecified, the last used address is
retained.

The width of the word to be modified at each iteration can be specified by the <size>
argument. l means that modifications will occur on 32-bit long words, w for 16-bit half-
words and b for bytes.

When the mm command is used, the user is prompted to enter the new value at the
specified address. Once entered, the address is incremented by a value defined by
<size> (4 for l, 2 for w and 1 for b) and the same iteration restarts. When the user has
finished data modification, he can exit by typing Ctrl-C.

nm has the same behavior except the address is not auto-incremented between modifi-
cations. This is convenient to program several values in sequence in the same location.

Note that neither mm nor nm can modify the contents of Flash and DataFlash memo-
ries. Only cp can do that.

mw[.<size>] <address> <value> [<length>]

mw fills <length> words of data in memory with <value>. The start address is
<address>, and the size of a word (and of <value>) is defined by <size>. l specifies a
32-bit long word, w a 16-bit half-word, b a byte.

If <size> is unspecified, the last size is retained, defaulting to l.

If <length> is unspecified, 1 is assumed.

nm[.<size>] [<address>]

See mm.

printenv

Displays the value of all defined environment variables.

protect <on | off> <start> <stop>

Flash memory areas can be soft protected against unwanted corruption or erasure by
setting a protection flag. This operation is performed with the protect on command.

When an erase or a write needs to be performed, protect off removes the protection.

<start> and <stop> should contains the first and last addresses of the area to
protect/unprotect.

run <envvar>

The run command implements the scripting capability of U-Boot. The <envvar> parame-
ter is expected to be an environment variable that contains a U-Boot script. This script is
a list of commands to be executed, separated by semi-colons.

saveenv

Saves all environment variables in a non-volatile memory area.

setenv <variable> <value>

setenv creates new environment variables, and can modify their value.

tftpboot [<address> <filename>]

tftp [<address> <filename>]
Page 14 / 15ATMEL CONFIDENTIAL – INTERNAL USE ONLY

Date 10-Jul-2003 Name AT91RM9200DK U-Boot User Manual

Version V1.0 Reference ABP-STD-BOOT-003

ARM-Based Product Application Group
tftp is an alias for tftpboot. This command is used to download data from a tftp server. To
operate successfully, it is required that the serverip variable be set and reflect the IP
address of an host where a tftp service is active.

<address> and <filename> are optional arguments. <filename> specifies the name of
the file to be downloaded as it is known by the tftp server, including the directory path.
<address> should be set to the address (hex) where to store the file on the local host.

If <address> and <filename> are not specified, the file name defaults to the contents of
the reserved variable bootfile, and the load address defaults to the contents of the
reserved variable loadaddr.

Note that the boot file cannot be downloaded into Flash or DataFlash memory. To pro-
gram Flash or DataFlash memory, the file must be first downloaded into regular RAM,
and then copied into Flash or DataFlash with the cp command.

version

Displays the version number of U-Boot.
Page 15 / 15ATMEL CONFIDENTIAL – INTERNAL USE ONLY

	1 - Scope
	2 - Features
	3 - Overview
	3.1 - Description
	3.2 - AT91RM9200 Development Kit Setup
	3.3 - Autoboot Mode and Interactive Mode
	3.4 - Environment Variables

	4 - Data Download
	4.1 - Download via the serial port
	4.2 - Download via the Ethernet Interface

	5 - Memory Operations
	5.1 - Generic Memory Operations
	5.2 - Flash-specific Operations
	5.3 - DataFlash Features
	5.4 - Advanced Features
	5.4.1 - Scripting
	5.4.2 - Code Execution
	Go command
	Bootm command

	5.5 - Automatic Host Configuration

	6 - U-Boot Reference
	6.1 - Reserved Environment Variables
	6.2 - Commands

