

Published on Linux DevCenter (http://www.linuxdevcenter.com/)
See this if you're having trouble printing code examples

/dev/hello_world: A Simple Introduction to
Device Drivers under Linux

by Valerie Henson
07/05/2007

Since the misty days of yore, the first step in learning a new programming
language has been writing a program that prints "Hello, world!" (See the
Hello World Collection for a list of more than 300 "Hello, world!" examples.)
In this article, we will use the same approach to learn how to write simple
Linux kernel modules and device drivers. We will learn how to print "Hello,
world!" from a kernel module three different ways: printk(), a /proc file, and a
device in /dev.

Preparation: Installing Kernel Module Compilation
Requirements

For the purposes of this article, a kernel module is a piece of kernel code that
can be dynamically loaded and unloaded from the running kernel. Because it
runs as part of the kernel and needs to interact closely with it, a kernel
module cannot be compiled in a vacuum. It needs, at minimum, the kernel
headers and configuration for the kernel it will be loaded into. Compiling a
module also requires a set of development tools, such as a compiler. For
simplicity, we will briefly describe how to install the requirements to build a
kernel module using Debian, Fedora, and the "vanilla" Linux kernel in tarball
form. In all cases, you must compile your module against the source for the
running kernel (the kernel executing on your system when you load the
module into your kernel).

A note on kernel source location, permissions, and privileges: the kernel
source customarily used to be located in /usr/src/linux and owned by root.
Nowadays, it is recommended that the kernel source be located in a home
directory and owned by a non-root user. The commands in this article are all
run as a non-root user, using sudo to temporarily gain root privileges only
when necessary. To setup sudo, see the sudo(8), visudo(8), and sudoers(5) main
pages. Alternatively, become root, and run all the commands as root if
desired. Either way, you will need root access to follow the instructions in this
article.

Preparation for Compiling Kernel Modules Under Debian

LinuxDevCenter.com: /dev/hello_world: A Simple... http://www.linuxdevcenter.com/lpt/a/7060

1 of 11 07.06.2016 23:01

The module-assistant package for Debian installs packages and configures
the system to build out-of-kernel modules. Install it with:

$ sudo apt-get install module-assistant

That's it; you can now compile kernel modules. For further reading, the
Debian Linux Kernel Handbook has an in-depth discussion on kernel-related
tasks in Debian.

Fedora Kernel Source and Configuration

The kernel-devel package for Fedora has a package that includes all the
necessary kernel headers and tools to build an out-of-kernel module for a
Fedora-shipped kernel. Install it with:

$ sudo yum install kernel-devel

Again, that's all it takes; you can now compile kernel modules. Related
documentation can be found in the Fedora release notes.

Vanilla Kernel Source and Configuration

If you choose to use the vanilla Linux kernel source, you must configure,
compile, install, and reboot into your new vanilla kernel. This is definitely not
the easy route and this article will only cover the very basics of working with
vanilla kernel source.

The canonical Linux source code is hosted at http://kernel.org. The most
recent stable release is linked to from the front page. Download the full
source release, not the patch. For example, the current stable release is
located at http://kernel.org/pub/linux/kernel/v2.6/linux-2.6.21.5.tar.bz2. For
faster download, find the closest mirror from the list at http://kernel.org
/mirrors/, and download from there. The easiest way to get the source is
using wget in continue mode. HTTP is rarely blocked, and if your download is
interrupted, it will continue where it left off.

$ wget -c "http://kernel.org/pub/linux/kernel/v2.6/linux-<version>.tar.bz2"

Unpack the kernel source:

$ tar xjvf linux-<version>.tar.bz2

Now your kernel is located in linux-<version>/. Change directory into your
kernel and configure it:

$ cd linux-<version>
$ make menuconfig

A number of really nice make targets exist to automatically build and install a
kernel in many forms: Debian package, RPM package, gzipped tar, etc. Ask
the make system for help to list them all:

$ make help

LinuxDevCenter.com: /dev/hello_world: A Simple... http://www.linuxdevcenter.com/lpt/a/7060

2 of 11 07.06.2016 23:01

A target that will work on almost every distro is:

$ make tar-pkg

When finished building, install your new kernel with:

$ sudo tar -C / -xvf linux-<version>.tar

Then create a symbolic link to the source tree in the standard location:

$ sudo ln -s <location of top-level source directory> /lib/modules/'uname -r'/build

Now the kernel source is ready for compiling external modules. Reboot into
your new kernel before loading modules compiled against this source tree.

"Hello, World!" Using printk()

For our first module, we'll start with a module that uses the kernel message
facility, printk(), to print "Hello, world!". printk() is basically printf() for the
kernel. The output of printk() is printed to the kernel message buffer and
copied to /var/log/messages (with minor variations depending on how syslogd is
configured).

Download the hello_printk module tarball and extract it:

$ tar xzvf hello_printk.tar.gz

This contains two files: Makefile, which contains instructions for building the
module, and hello_printk.c, the module source file. First, we'll briefly review
the Makefile.

obj-m := hello_printk.o

obj-m is a list of what kernel modules to build. The .o and other objects will be
automatically built from the corresponding .c file (no need to list the source
files explicitly).

KDIR := /lib/modules/$(shell uname -r)/build

KDIR is the location of the kernel source. The current standard is to link to the
associated source tree from the directory containing the compiled modules.

PWD := $(shell pwd)

PWD is the current working directory and the location of our module source
files.

default:
 $(MAKE) -C $(KDIR) M=$(PWD) modules

default is the default make target; that is, make will execute the rules for this
target unless it is told to build another target instead. The rule here says to
run make with a working directory of the directory containing the kernel
source and compile only the modules in the $(PWD) (local) directory. This allows
us to use all the rules for compiling modules defined in the main kernel

LinuxDevCenter.com: /dev/hello_world: A Simple... http://www.linuxdevcenter.com/lpt/a/7060

3 of 11 07.06.2016 23:01

source tree.

Now, let's run through the code in hello_printk.c.

#include <linux/init.h>
#include <linux/module.h>

This includes the header files provided by the kernel that are required for all
modules. They include things like the definition of the module_init() macro,
which we will see later on.

static int __init
hello_init(void)
{
 printk("Hello, world!\n");
 return 0;
}

This is the module initialization function, which is run when the module is
first loaded. The __init keyword tells the kernel that this code will only be run
once, when the module is loaded. The printk() line writes the string "Hello,
world!" to the kernel message buffer. The format of printk() arguments is, in
most cases, identical to that of printf(3).

module_init(hello_init);

The module_init() macro tells the kernel which function to run when the
module first starts up. Everything else that happens inside a kernel module is
a consequence of what is set up in the module initialization function.

static void __exit
hello_exit(void)
{
 printk("Goodbye, world!\n");
}

module_exit(hello_exit);

Similarly, the exit function is run once, upon module unloading, and the
module_exit() macro identifies the exit function. The __exit keyword tells the
kernel that this code will only be executed once, on module unloading.

MODULE_LICENSE("GPL");
MODULE_AUTHOR("Valerie Henson <val@nmt.edu>");
MODULE_DESCRIPTION("\"Hello, world!\" minimal module");
MODULE_VERSION("printk");

MODULE_LICENSE() informs the kernel what license the module source code is
under, which affects which symbols (functions, variables, etc.) it may access
in the main kernel. A GPLv2 licensed module (like this one) can access all the
symbols. Certain module licenses will taint the kernel, indicating that
non-open or untrusted code has been loaded. Modules without a
MODULE_LICENSE() tag are assumed to be non-GPLv2 and will result in tainting
the kernel. Most kernel developers will ignore bug reports from tainted
kernels because they do not have access to all the source code, which makes
debugging much more difficult. The rest of the MODULE_*() macros provide

LinuxDevCenter.com: /dev/hello_world: A Simple... http://www.linuxdevcenter.com/lpt/a/7060

4 of 11 07.06.2016 23:01

useful identifying information about the module in a standard format.

Now, to compile and run the code. Change into the directory and build the
module:

$ cd hello_printk
$ make

Then, load the module, using insmod, and check that it printed its message,
using dmesg, a program that prints out the kernel message buffer:

$ sudo insmod ./hello_printk.ko
$ dmesg | tail

You should see "Hello, world!" in the output from dmesg. Now unload the
module, using rmmod, and check for the exit message:

$ sudo rmmod hello_printk
$ dmesg | tail

You have successfully compiled and installed a kernel module!

Hello, World! Using /proc

One of the easiest and most popular ways to communicate between the
kernel and user programs is via a file in the /proc file system. /proc is a
pseudo-file system, where reads from files return data manufactured by the
kernel, and data written to files is read and handled by the kernel. Before
/proc, all user-kernel communication had to happen through a system call.
Using a system call meant choosing between finding a system call that
already behaved the way you needed (often not possible), creating a new
system call (requiring global changes to the kernel, using up a system call
number, and generally frowned upon), or using the catch-all ioctl() system
call, which requires the creation of a special file that the ioctl() operates on
(complex and frequently buggy, and very much frowned upon). /proc provides
a simple, predefined way to pass data between the kernel and userspace with
just enough framework to be useful, but still enough freedom that kernel
modules can do what they need.

For our purposes, we want a file in /proc that will return "Hello, world!" when
read. We'll use /proc/hello_world. Download and extract the hello_proc module
tarball. We'll run through the code in hello_proc.c.

#include <linux/init.h>
#include <linux/module.h>
#include <linux/proc_fs.h>

This time, we add the header file for procfs, which includes support for
registering with the /proc file system.

The next function will be called when a process calls read() on the /proc file we
will create. It is simpler than a completely generic read() system call
implementation because we only allow the "Hello, world!" string to be read

LinuxDevCenter.com: /dev/hello_world: A Simple... http://www.linuxdevcenter.com/lpt/a/7060

5 of 11 07.06.2016 23:01

all at once.

static int
hello_read_proc(char *buffer, char **start, off_t offset, int size, int *eof,
 void *data)
{

The arguments to this function deserve an explicit explanation. buffer is a
pointer to a kernel buffer where we write the output of the read(). start is used
for more complex /proc files; we ignore it here. offset tells us where to begin
reading inside the "file"; we only allow an offset of 0 for simplicity. size is the
size of the buffer in bytes; we must check that we don't write past the end of
the buffer accidentally. eof is a short cut for indicating EOF (end of file) rather
than the usual method of calling read() again and getting 0 bytes back. data is
again for more complex /proc files and ignored here.

Now, for the body of the function:

 char *hello_str = "Hello, world!\n";
 int len = strlen(hello_str); /* Don't include the null byte. */
 /*
 * We only support reading the whole string at once.
 */
 if</ (size < len)
 return< -EINVAL;
 /*
 * If file position is non-zero, then assume the string has
 * been read and indicate there is no more data to be read.
 */
 if (offset != 0)
 return 0;
 /*
 * We know the buffer is big enough to hold the string.
 */
 strcpy(buffer, hello_str);
 /*
 * Signal EOF.
 */
 *eof = 1;

 return len;

}

Next, we need to register with the /proc subsystem in our module initialization
function.

static int __init
hello_init(void)
{
 /*
 * Create an entry in /proc named "hello_world" that calls
 * hello_read_proc() when the file is read.
 */
 if (create_proc_read_entry("hello_world", 0, NULL, hello_read_proc,
 NULL) == 0) {
 printk(KERN_ERR
 "Unable to register \"Hello, world!\" proc file\n");
 return -ENOMEM;
 }

LinuxDevCenter.com: /dev/hello_world: A Simple... http://www.linuxdevcenter.com/lpt/a/7060

6 of 11 07.06.2016 23:01

 return 0;
}

module_init(hello_init);

And unregister when the module unloads (if we didn't do this, when a process
attempted to read /proc/hello_world, the /proc file system would try to execute a
function that no longer existed and the kernel would panic).

static void __exit
hello_exit(void)
{
 remove_proc_entry("hello_world", NULL);
}

module_exit(hello_exit);

MODULE_LICENSE("GPL");
MODULE_AUTHOR("Valerie Henson <val@nmt.edu>");
MODULE_DESCRIPTION("\"Hello, world!\" minimal module");
MODULE_VERSION("proc");

Then, we're ready to compile and load the module:

$ cd hello_proc
$ make
$ sudo insmod ./hello_proc.ko

Now, there is a file named /proc/hello_world that will produce "Hello, world!"
when read:

$ cat /proc/hello_world
Hello, world!

You can create many more /proc files from the same driver, add routines to
allow writing to /proc files, create directories full of /proc files, and more. For
anything more complicated than this driver, it is easier and safer to use the
seq_file helper routines when writing /proc interface routines. For further
reading, see Driver porting: The seq_file interface.

Hello, World! Using /dev/hello_world

Now we will implement "Hello, world!" using a device file in /dev,
/dev/hello_world. Back in the old days, a device file was a special file created by
running a crufty old shell script named MAKEDEV which called the mknod command
to create every possible file in /dev, regardless of whether the associated
device driver would ever run on that system. The next iteration, devfs, created
/dev files when they were first accessed, which led to many interesting locking
problems and wasteful attempts to open device files to see if the associated
device existed. The current version of /dev support is called udev, since it
creates /dev links with a userspace program. When kernel modules register
devices, they appear in the sysfs file system, mounted on /sys. A userspace
program, udev, notices changes in /sys and dynamically creates /dev entries
according to a set of rules usually located in /etc/udev/.

Download the hello world module tarball. We'll go through hello_dev.c.

LinuxDevCenter.com: /dev/hello_world: A Simple... http://www.linuxdevcenter.com/lpt/a/7060

7 of 11 07.06.2016 23:01

#include <linux/fs.h>
#include <linux/init.h>
#include <linux/miscdevice.h><
#include <linux/module.h>

#include <asm/uaccess.h>

As we can see from looking at the necessary header files, creating a device
requires quite a bit more kernel support than our previous methods. fs.h
includes the definitions for a file operations structure, which we must fill out
and attach to our /dev file. miscdevice.h includes support for registering a
miscellaneous device file. asm/uaccess.h includes functions for testing whether
we can read or write to userspace memory without violating permissions.

hello_read() is the function called when a process calls read() on /dev/hello. It
writes "Hello, world!" to the buffer passed in the read() call.

static ssize_t hello_read(struct file * file, char * buf,
 size_t count, loff_t *ppos)
{
 char *hello_str = "Hello, world!\n";
 int len = strlen(hello_str); /* Don't include the null byte. */
 /*
 * We only support reading the whole string at once.
 */
 if (count < len)
 return -EINVAL;
 /*
 * If file position is non-zero, then assume the string has
 * been read and indicate there is no more data to be read.
 */
 if (*ppos != 0)
 return 0;
 /*
 * Besides copying the string to the user provided buffer,
 * this function also checks that the user has permission to
 * write to the buffer, that it is mapped, etc.
 */
 if (copy_to_user(buf, hello_str, len))
 return -EINVAL;
 /*
 * Tell the user how much data we wrote.
 */
 *ppos = len;

 return len;
}

Next, we create the file operations struct defining what actions to take when
the file is accessed. The only file operation we care about is read.

static const struct file_operations hello_fops = {
 .owner = THIS_MODULE,
 .read = hello_read,
};

Now, create the structure containing the information needed to register a
miscellaneous device with the kernel.

static struct miscdevice hello_dev = {

LinuxDevCenter.com: /dev/hello_world: A Simple... http://www.linuxdevcenter.com/lpt/a/7060

8 of 11 07.06.2016 23:01

 /*
 * We don't care what minor number we end up with, so tell the
 * kernel to just pick one.
 */
 MISC_DYNAMIC_MINOR,
 /*
 * Name ourselves /dev/hello.
 */
 "hello",
 /*
 * What functions to call when a program performs file
 * operations on the device.
 */
 &hello_fops
};

As usual, we register the device in the module's initialization function.

static int __init
hello_init(void)
{
 int ret;

 /*
 * Create the "hello" device in the /sys/class/misc directory.
 * Udev will automatically create the /dev/hello device using
 * the default rules.
 */
 ret = misc_register(&hello_dev);
 if (ret)
 printk(KERN_ERR
 "Unable to register \"Hello, world!\" misc device\n");

 return ret;
}

module_init(hello_init);

And remember to unregister the device in the exit function.

static void __exit
hello_exit(void)
{
 misc_deregister(&hello_dev);
}

module_exit(hello_exit);

MODULE_LICENSE("GPL");
MODULE_AUTHOR("Valerie Henson <val@nmt.edu>");
MODULE_DESCRIPTION("\"Hello, world!\" minimal module");
MODULE_VERSION("dev");

Compile and load the module:

$ cd hello_dev
$ make
$ sudo insmod ./hello_dev.ko

Now there is a device named /dev/hello that will produce "Hello, world!" when
read by root:

LinuxDevCenter.com: /dev/hello_world: A Simple... http://www.linuxdevcenter.com/lpt/a/7060

9 of 11 07.06.2016 23:01

$ sudo cat /dev/hello
Hello, world!

But we can't read it as a regular user:

$ cat /dev/hello
cat: /dev/hello: Permission denied
$ ls -l /dev/hello
crw-rw---- 1 root root 10, 61 2007-06-20 14:31 /dev/hello

This is what happens with the default udev rule, which says that when a
miscellaneous device appears, create a file named /dev/<device name> and give it
permissions 0660 (owner and group have read-write access, everyone else
has no access). We would really like instead for the device be readable by
regular users and have a link to it named /dev/hello_world. In order to do this,
we'll write a udev rule.

The udev rule has to do two things: create a symbolic link and change the
permissions on device to make world readable. The rule that accomplishes
this is:

KERNEL=="hello", SYMLINK+="hello_world", MODE="0444"

We'll break the rule down into parts and explain each part.

KERNEL=="hello" says to execute the rest of the rule when a device with a name
the same as this string (the == operator means "comparison") appears in /sys.
The hello device appeared when we called misc_register() with a structure
containing the device name "hello". See the result for yourself in /sys:

$ ls -d /sys/class/misc/hello/
/sys/class/misc/hello/

SYMLINK+="hello_world" says to add (the += operator means append) hello_world to
the list of symbolic links that should be created when the device appears. In
our case, we know this is the only symbolic link in the list, but other devices
may have multiple udev rules that create multiple different symbolic links, so
it is good practice add to the list instead of assigning to it.

MODE="0444" says to set the permissions of the original device file to the 0444
mode, which allows owner, group, and world all to read the file.

In general, it is very important to use the correct operator (==, +=, or =), or
unexpected things will happen.

Now that we understand what the rule does, let's install it in the /etc/udev
directory. Udev rules files are arranged in much the same manner as the
System V init scripts in /etc/init.d/. Udev executes every script the udev rules
directory, /etc/udev/rules.d, in alphabetical/numerical order. Like System V init
scripts, the files in the /etc/udev/rules.d directory are usually symbolic links to
the real rules files, with the symbolic links named so that the rules will be
executed in the correct order.

Copy the hello.rules file from the hello_dev directory into the /etc/udev/ directory

LinuxDevCenter.com: /dev/hello_world: A Simple... http://www.linuxdevcenter.com/lpt/a/7060

10 of 11 07.06.2016 23:01

and create a link to it that will be executed before any other rules file:

$ sudo cp hello.rules /etc/udev/
$ sudo ln -s ../hello.rules /etc/udev/rules.d/010_hello.rules

Now, reload the hello world driver and look at the new /dev entries:

$ sudo rmmod hello_dev
$ sudo insmod ./hello_dev.ko
$ ls -l /dev/hello*
cr--r--r-- 1 root root 10, 61 2007-06-19 21:21 /dev/hello
lrwxrwxrwx 1 root root 5 2007-06-19 21:21 /dev/hello_world -> hello

Now we have /dev/hello_world! Finally, check that you can read the "Hello,
world!" devices as a normal user:

$ cat /dev/hello_world
Hello, world!
$ cat /dev/hello
Hello, world!

For more details on writing udev rules, see Writing udev rules, by Daniel
Drake.

Valerie Henson is a Linux consultant specializing in file systems, and
maintainer of the TCP/IP Drinking Game.

Return to LinuxDevCenter.com.

Copyright © 2009 O'Reilly Media, Inc.

LinuxDevCenter.com: /dev/hello_world: A Simple... http://www.linuxdevcenter.com/lpt/a/7060

11 of 11 07.06.2016 23:01

