
Articles » General Programming » Uncategorised Tips and Tricks » General

Apriorit Inc, Danil Ishkov, 27 Sep 2010 CPOL

A Simple Driver for Linux OS

In this article, I am going to describe the process of writing and building of a simple driver-
module for Linux OS

Download driver - 2.19 KB

Table of Contents
Introduction
General Information
Functions of Module Loading and Unloading
Registration of the Character Device
The Usage of Memory Allocated in the User Mode
The Kernel Module Build System
The Module Loading and Its Usage
Bibliography List

Introduction

In this article, I am going to describe the process of writing and building of a simple driver-
module for Linux OS. Meanwhile, I will touch upon the following questions:

The system of the kernel logging
The work with character devices
The work with the “user level” memory from the kernel

The article concerns the Linux kernel version 2.6.32 because other kernel versions can
have the modified API, which is used in examples or in the build system.

General Information

Linux is a monolithic kernel. That is why the driver for it should be compiled together with
the kernel itself or should be implemented in the form of a kernel module to avoid the
recompiling of the kernel when driver adding is needed. This article deals with the kernel
modules exactly.

4.90 (44 votes)

A Simple Driver for Linux OS - CodeProject http://www.codeproject.com/Articles/112474/A-Si...

1 of 10 06/17/2016 11:23 AM

A module is an object file prepared in a special way. The Linux kernel can load a module to
its address space and link the module with itself. The Linux kernel is written in 2 languages:
C and assembler (the architecture dependent parts). The development of drivers for Linux
OS is possible only in C and assembler languages, but not in C++ language (as for the
Microsoft Windows kernel). It is connected with the fact that the kernel source pieces of
code, namely, header files, can contain C++ key words such as new, delete and the
assembler pieces of code can contain the ‘::’ lexeme.

The module code is executed in the kernel context. It rests some additional responsibility in
the developer: if there is an error in the user level program, the results of this error will affect
mainly the user program; if an error occurs in the kernel module, it may affect the whole
system. But one of the specifics of the Linux kernel is a rather high resistance to errors in
the modules’ code. If there is a non-critical error in a module (such as the dereferencing of
the null pointer), the oops message will be displayed (oops is a deviation from the
normal work of Linux and in this case, the kernel creates a log record with the error
description). Then, the module, in which the error appeared, is unloaded, while the kernel
itself and the rest of modules continue working. However, after the oops message, the
system kernel can often be in an inconsistent state and the further work may lead to the
kernel panic.

The kernel and its modules are built into a practically single program module. That is why it
is worth remembering that within one program module, one global name space is used. To
clutter up the global name space minimally, one should monitor that the module exports
only the necessary minimum of global characters and that all exported global characters
have the unique names (the good practice is to add the name of the module, which exports
the character, to the name of the character as a prefix).

Functions of Module Loading and
Unloading

The piece of code that is required for the creation of the simplest module is very simple and
laconic. It looks as follows:

#include <linux/init.h>
#include <linux/module.h>

static int my_init(void)
{

return 0;
}

static void my_exit(void)
{

return;
}

module_init(my_init);
module_exit(my_exit);

This piece of code does not do anything but allowing loading and unloading the module.
When loading the driver, the my_init function is called; when unloading the driver, the
my_exit function is called. We inform the kernel about it with the help of the
module_init and module_exit macros. These functions must have exactly the
following signature:

int init(void);
void exit(void);

A Simple Driver for Linux OS - CodeProject http://www.codeproject.com/Articles/112474/A-Si...

2 of 10 06/17/2016 11:23 AM

The linking of the linux/module.h header file is necessary for adding information about a
kernel version, for which the module is built, to the module itself. Linux OS will not allow
loading of the module that was built for another kernel version. It is because the kernel API
changes intensively and the change of signature of one of the functions used in the module
will lead to the damage of the stack when calling this function. The linux/init.h header file
contains the declaration of the module_init and module_exit macros.

Registration of the Character Device

We will not dwell on such a simple module. I would like to demonstrate the work with the
device files and with logging in the kernel. These are tools that will be useful for each driver
and will somewhat expand the development in the kernel mode for Linux OS.

First, I would like to say a few words about the device file. The device file is a file that is
usually located in hierarchy of the /dev/ folder. It is the easiest and the most accessible way
of interaction of the user code and the kernel code. To make it shorter, I can say that
everything that is written to such file is passed to the kernel, to the module that serves this
file; everything that is read from such file comes from the module that serves the file. There
are two types of device files: character (non-buffered) and block (buffered) files. The
character file implies the possibility to read and write information to it by one character
whereas the block file allows reading and writing only the data block as a whole. This article
will touch upon only the character device files.

In Linux OS, device files are identified by two positive numbers: major device number and
minor device number. The major device number usually identifies the module that
serves the device file or a group of devices served by a module. The minor device number
identifies a definite device in the range of the defined major device number. These two
numbers can be either defined as constants in the driver code or received dynamically. In
the first case, the system will try to use the defined numbers and if they are already used, it
will return an error. Functions that allocate the device numbers dynamically also reserve the
allocated device numbers so that the dynamically allocated device number cannot be used
by another module when it is allocated or used.

To register the character device, the following function can be used:

int register_chrdev (unsigned int major,
const char * name,
const struct fops);
 file_operations *

It registers the device with the specified name and major device number (or it allocates the
major device number if the major parameter is equal to zero) and links the
file_operations structure with the device. If the function allocates the major device
number, the returned value will be equal to the allocated number. In other case, the zero
value means the successful completion and the negative value means an error. The
registered device is associated with the defined major device number and minor device
number is in the range of 0 to 255.

The string that is passed as the name parameter is the name of the device or the module if
the last registers only one device and is used for the identification of the device in the
/sys/devices file. The file_operations structure contains the pointers to the
functions that must process the manipulations with the device file (such as open, read,
write, etc.) and the pointer to the module structure that identifies the module, which
implements these functions. The structure for the kernel version 2.6.32 looks as follows:

struct file_operations {
struct module *owner;

 loff_t (*llseek) (struct file *, loff_t, int);
 ssize_t (*read) (struct file *, char *, size_t, loff_t *);
 ssize_t (*write) (struct file *, const char *, size_t,

A Simple Driver for Linux OS - CodeProject http://www.codeproject.com/Articles/112474/A-Si...

3 of 10 06/17/2016 11:23 AM

loff_t *);
int (*readdir) (struct file *, void *, filldir_t);
unsigned int (*poll) (struct file *, struct

poll_table_struct *);
int (*ioctl) (struct inode *, struct file *, unsigned

int, unsigned long);
int (*mmap) (struct file *, struct vm_area_struct *);
int (*open) (struct inode *, struct file *);
int (*flush) (struct file *);
int (*release) (struct inode *, struct file *);
int (*fsync) (struct file *, struct dentry *, int

datasync);
int (*fasync) (int, struct file *, int);
int (*lock) (struct file *, int, struct file_lock *);

 ssize_t (*readv) (struct file *, const struct iovec *,
unsigned long,
 loff_t *);
 ssize_t (*writev) (struct file *, const struct iovec *,
unsigned long,
 loff_t *);
 };

It is not necessary to implement all functions from the file_operations structure to
use the file. If the function is not implemented, the corresponding pointer can be of zero
value. In this case, the system will implement some default behavior for this function. It is
enough to implement the read function for our example.

As our driver will provide the work of devices of one type, we can create the global
static file_operations structure and fill it statically. It can look as follows:

static struct file_operations simple_driver_fops =
{

.owner = THIS_MODULE,

.read = device_file_read,
};

Here, the THIS_MODULE macro (declared in linux/module.h) will be converted to the
pointer to the module structure that corresponds to our module. The
device_file_read is a pointer to the function with the prototype, whose body we
will write later.

ssize_t device_file_read (struct file *, char *, size_t, loff_t
*);

So, when we have the file_operations structure, we can write a pair of functions
for registration and unregistration of the device file:

static int device_file_major_number = 0;
static const char device_name[] = "Simple-driver";

static int register_device(void)
{

int result = 0;

printk(KERN_NOTICE "Simple-driver: register_device() is
called.");

result = register_chrdev(0, device_name,

A Simple Driver for Linux OS - CodeProject http://www.codeproject.com/Articles/112474/A-Si...

4 of 10 06/17/2016 11:23 AM

&simple_driver_fops);
if(result < 0)
{

printk(KERN_WARNING "Simple-driver: can\'t
register

character device with errorcode = %i", result);
return result;

}

device_file_major_number = result;
printk(KERN_NOTICE "Simple-driver: registered character

device
with major number = %i and minor numbers 0...255"
 , device_file_major_number);

return 0;
}

We store the major device number in the device_file_major_number global
variable as we will need it for the device file unregistration in the end of the “driver life”.

In the listing above, the only function, which was not mentioned, is the printk()
function. It is used for logging of messages from the kernel. The printk() function is
declared in the linux/kernel.h file and works like the printf library function except one
nuance. As you have already noticed, each format string of printk in this listing has the
KERN_SOMETHING prefix. It is the message priority and it can be of eight levels, from
the highest zero level (KERN_EMERG), which informs that the kernel is unstable, to the
lowest seventh level (KERN_DEBUG).

The string that is formed by printk function is written to the circular buffer. From
there, it is read by the klogd daemon and gets to the system log. The printk function
is written in such a way that it can be called from any place in the kernel. The worst that can
happen is circular buffer overflow when the oldest messages will not get to the system log.

Now, we need only to write the function for the device file unregistration. Its logic is simple:
if we succeed in the device file registration, the device_file_major_number
value will not be zero and we will be able to unregister it with the help of the
unregister_chrdev function declared in linux/fs.h. The first parameter is the
major device number and the second is the device name string. The
unregister_chrdev function, by its action, is fully symmetric to the
register_chrdev function.

We receive the following piece of code for the device registration:

void unregister_device(void)
{

printk(KERN_NOTICE "Simple-driver: unregister_device() is
called");

if(device_file_major_number != 0)
{

unregister_chrdev(device_file_major_number, device_name);
}

}

The Usage of Memory Allocated in the
User Mode

A Simple Driver for Linux OS - CodeProject http://www.codeproject.com/Articles/112474/A-Si...

5 of 10 06/17/2016 11:23 AM

We need to write the function for reading characters from the device. It must have the
signature that is appropriate for the signature from the file_operations structure:

ssize_t (*read) (struct file *, char *, size_t, loff_t *);

The first parameter of this function is the pointer to the file structure from which we can
find out the details: what file we work with, what private data is associated with it, etc. The
second parameter is a buffer that is allocated in the user space for the read data. The third
parameter is the number of bytes to be read. The fourth parameter is the offset (position) in
the file, starting from which we should count bytes. After the performing of the function, the
position in the file should be refreshed. Also the function should return the number of
successfully read bytes.

One of the actions that our read function should perform is the copying of the information to
the buffer allocated by the user in the address space of the user mode. We cannot just
dereference the pointer from the address space of the user mode because the address, to
which it refers, can have another value in the kernel address space. There is a special set
of functions and macros (declared in asm/uaccess.h) for working with pointers from the
user address space. The copy_to_user() function is the best for our task. As it can
be seen from its name, it copies data from the buffer in the kernel to the buffer allocated by
the user. Besides, the copy_to_user() function checks the pointer validity and the
sufficiency of the size of the buffer allocated in the user space. It makes it easier to process
errors in the driver. The copy_to_user prototype looks like the following:

long copy_to_user(void __user *to, const void * from, unsigned
long n);

The first parameter, which should be passed to the function, is the user pointer to the buffer.
The second parameter should be the pointer to the data source, the third – the number of
bytes to be copied. The function will return 0 in case of success and not 0 in case of error.
The __user macro in the function prototype is used for documenting. It also allows
analyzing the piece of code for the correctness of using the pointers from the user address
space by means of the sparse static code analyzer. The pointers from the user address
space should always be marked as __user.

We create only an example of the driver and we do not have the real device. So it will be
sufficient if reading from our device file will always return some text string (e.g., Hello world
from kernel mode!).

Now, we can start writing the piece of code of the read function:

static const char g_s_Hello_World_string[] = "Hello world
from kernel mode!\n\0";
static const ssize_t g_s_Hello_World_size =
sizeof(g_s_Hello_World_string);

static ssize_t device_file_read(
struct file *file_ptr

 , char __user *user_buffer
 , size_t count
 , loff_t *position)

{
printk(KERN_NOTICE "Simple-driver:

Device file is read at offset = %i, read bytes count =
%u"

, (int)*position
, (unsigned int)count);

/* If position is behind the end of a file we have nothing
to read */

A Simple Driver for Linux OS - CodeProject http://www.codeproject.com/Articles/112474/A-Si...

6 of 10 06/17/2016 11:23 AM

if(*position >= g_s_Hello_World_size)
return 0;

/* If a user tries to read more than we have, read only
as many bytes as we have */
if(*position + count > g_s_Hello_World_size)

count = g_s_Hello_World_size - *position;

if(copy_to_user(user_buffer, g_s_Hello_World_string +
*position, count) != 0)

return -EFAULT;

/* Move reading position */
*position += count;
return count;

}

The Kernel Module Build System

Now, when the whole driver piece of code is written, we would like to build it and see how it
will work. In the kernels of version 2.4, to build the module, the developer had to prepare
the compilation environment himself and to compile the driver with the help of the GCC
compiler. As a result of the compilation, the received .o file is the module loadable to the
kernel. Since then, the order of the kernel modules build has changed. Now, the developer
should only write a special makefile that will start the kernel build system and will inform the
kernel what the module should be built of. To build a module from one source file, it is
enough to write the one-string makefile and to start the kernel build system:

obj-m := source_file_name.o

The module name will correspond to the source file name and the module itself will have
the .ko extension.

To build the module from several source files, we should add one string:

obj-m := module_name.o
module_name-objs := source_1.o source_2.o … source_n.o

We can start the kernel build system with the help of the make command:

make –C KERNEL_MODULE_BUILD_SYSTEM_FOLDER M=`pwd` modules

for the module build and

make –C KERNEL_MODULES_BUILD_SYSTEM_FOLDER M=`pwd` clean

for the build folder cleanup.

The module build system is usually located in the /lib/modules/`uname -r`/build folder. We
should prepare the module build system for building to build the first module. To do this, we
should go to the build system folder and execute the following:

#> make modules_prepare

Let’s unite this knowledge into a single makefile:

A Simple Driver for Linux OS - CodeProject http://www.codeproject.com/Articles/112474/A-Si...

7 of 10 06/17/2016 11:23 AM

TARGET_MODULE:=simple-module

If we are running by kernel building system
ifneq ($(KERNELRELEASE),)

$(TARGET_MODULE)-objs := main.o device_file.o
obj-m := $(TARGET_MODULE).o

If we running without kernel build system
else

BUILDSYSTEM_DIR:=/lib/modules/$(shell uname -r)/build
PWD:=$(shell pwd)

all :
run kernel build system to make module

$(MAKE) -C $(BUILDSYSTEM_DIR) M=$(PWD) modules

clean:
run kernel build system to cleanup in current directory

$(MAKE) -C $(BUILDSYSTEM_DIR) M=$(PWD) clean

load:
insmod ./$(TARGET_MODULE).ko

unload:
rmmod ./$(TARGET_MODULE).ko

endif

The load and unload targets are for loading of the built module and for deleting it from
the kernel.

In our example, the driver is compiled from two files with the main.c and device_file.c
source pieces of code and has the simple-module.ko name.

Module Loading and Its Usage

When our module is built, we can load it by executing the following command in the folder
with the source files:

#> make load

After that, a string with the name of our driver appears in the special /proc/modules
file. And a string with the device, registered by our module, appears in the special
/proc/devices file. It will look as follows:

Character devices:
1 mem
4 tty
4 ttyS
…
250 Simple-driver
…

The number before the device name is a major number associated with it. We know the
range of minor numbers for our device (0...255) and that is why we can create the device
file in the /dev virtual file system:

A Simple Driver for Linux OS - CodeProject http://www.codeproject.com/Articles/112474/A-Si...

8 of 10 06/17/2016 11:23 AM

#> mknod /dev/simple-driver c 250 0

When the device file is created, we will check if everything works correctly and will display
its contents with the help of the cat command:

$> cat /dev/simple-driver
Hello world from kernel mode!

Bibliography List
Jonathan Corbet, Alessandro Rubini,Greg Kroah-Hartman Linux Device Drivers,
Third Edition, O’Reilly, ISBN 978-0-596-00590-0 http://lwn.net/Kernel/LDD3/
Peter Jay Salzman Ori Pomerantz The Linux Kernel Module Programming Guide
http://tldp.org/LDP/lkmpg/2.6/html/lkmpg.html
Linux Cross Reference http://lxr.free-electrons.com/ident

License

This article, along with any associated source code and files, is licensed under The Code
Project Open License (CPOL)

Share

About the Authors

Apriorit Inc
Apriorit Inc.
Hungary

ApriorIT is a Software Research and Development
company that works in advanced knowledge-
intensive scopes.

Company offers integrated research&development
services for the software projects in such directions
as Corporate Security, Remote Control, Mobile
Development, Embedded Systems, Virtualization,
Drivers and others.

Official site http://www.apriorit.com

Group type: Organisation

32 members

Apply to join this group

Danil Ishkov
Ukraine

A Simple Driver for Linux OS - CodeProject http://www.codeproject.com/Articles/112474/A-Si...

9 of 10 06/17/2016 11:23 AM

Permalink | Advertise | Privacy | Terms of Use | Mobile
Web01 | 2.8.160615.1 | Last Updated 27 Sep 2010 Select Language ▼

Article Copyright 2010 by Apriorit Inc, Danil Ishkov
Everything else Copyright © CodeProject, 1999-2016

You may also be interested in...

Driver to hide
files in Linux
OS

#COBOLrocks
TechCasts:
New tricks for
COBOL devs

Simple WDM
LoopBack
Driver

Visual COBOL
New Release:
Small point. Big
deal

Driver
Development
Part 1:
Introduction to
Drivers

A Lap Around
@ChakraCore

Comments and Discussions

17 messages have been posted for this article Visit http://www.codeproject.com
/Articles/112474/A-Simple-Driver-for-Linux-OS to post and view comments on this
article, or click here to get a print view with messages.

No Biography provided

A Simple Driver for Linux OS - CodeProject http://www.codeproject.com/Articles/112474/A-Si...

10 of 10 06/17/2016 11:23 AM

