
4 6 | august 2010 www.l inux journa l .com

The BaseBoard4 from Demand Peripherals can

contain different combinations of 25 different

character devices, all multiplexed on to a single

USB-serial link. Its drivers, described here, show

how writing drivers in user space can get a

complex device up and running quickly.

BOB SMITH

in

A Simple Approach to

CHARACTER
DRIVERS

USER SPACE

D
emand Peripherals, Inc., makes an

FPGA-based robot controller that gives

a robot or other industrial control systems

the high I/O pin count and precise timing

that a Linux laptop or single-board

computer alone cannot offer. The com-

pany has built more than 25 different

FPGA-defined peripherals for the controller,

and it wanted to offer Linux device

drivers for all of them.

Doing 25 drivers in the kernel, although possible, would

have required time and effort far beyond what the company

could afford. The process of building kernel device drivers

would have been even more complicated because the FPGA

card connects to the Linux host over a USB-serial link. The

solution, illustrated in Figure 1, is to have a dæmon manage

the USB-serial port and demultiplex the various FPGA-based

peripherals out to their own device nodes. The device nodes

are little more than shims that let the high-level application

deal with separate device entries for each peripheral.

Figure 1. Example of a User-Space Device Driver

The customer selects the mix of peripherals to be loaded

into the FPGA. Figure 2 shows a BaseBoard4 with some cards

that demonstrate what might be a fairly common peripheral

mix. The system pictured has eight peripherals, including a

four-channel servo controller, a dual H-bridge controller, a

quad interface for the Parallax Ping))) range sensor, a RAM-

based pattern generator (driving the data and clock lines

going to a 48-bit shift register that connects directly to the

LCD), a unipolar stepper motor controller, a bipolar stepper

motor controller, a quad event or frequency counter (connected

to a single Parallax light-to-frequency sensor), and a dual

quadrature decoder. Schematics for all of these demo cards

are on the Demand Peripherals Web site.

All of the peripherals shown in Figure 2 can be configured and

controlled using device nodes in the /dev directory. The following

Bash commands, for example, might be part of the higher-level

control software for the system pictured:

Feed wheel quadrature counts to a motor control program

cat /dev/dp/quad0 | my_motor_pgm &

Feed the same quadrature counts to a navigation program

cat /dev/dp/quad0 | my_navi_pgm &

Set a stepper motor step rate to 1000

echo "1000" > /dev/dp/bstep1/rate

Now step 300 steps

echo "300" > /dev/dp/bstep1/count

Monitor distance reported by a Parallax Ping)))

cat /dev/dp/ping0/dist &

Set a servo pulse width to 1.5 ms (1500000 ns)

echo "1500000" > /dev/servo/servo4

USE CASES
The above commands illustrate two of three important use

cases for the user-space drivers: sensor broadcast and driver

configuration. The third use case is bidirectional transfer.

The first use case is sensor broadcast, and in the example

above, it’s actually multicast of sensor data. Did you know

that the /dev/input drivers implement a multicast mechanism?

Multiple readers get identical copies of the events that come

from the input devices. There is a simple experiment you

can do to demonstrate this. Press Ctrl-Alt-F2 (to go to a

different console), log in, and run the command sudo cat

/dev/input/mice | od -b. Do the same for another console

(for example, Ctrl-Alt-F3). Now, move the mouse a little and

switch between the F2 and F3 consoles. They both display the

same thing, don’t they? What a shame that Linux does not

www. l inux journa l .com august 2010 | 4 7

Figure 2. Robot Peripherals, All with Linux Drivers

have some generic way to do multicast like that of the

/dev/input subsystem.

For robotics, the ability to fan a sensor reading out to

several processes is particularly important. For example, a

quadrature encoder attached to a wheel needs to be seen

by both the motor controller software and by the navigation

software. The motor controller might need to know if the

wheel is turning to know whether the motor is stalled, and

the navigation software might count the wheel revolutions

to compute the robot’s current location.

The second use case is peripheral or driver configuration.

DC motor controllers need to know the frequency of the PWM

pulses. Stepper motors need to know the step rate, and the

SPI (Serial Peripheral Interface) ports need to be told the clock

frequency and the mode of operation. Either an ioctl() call or

a sysfs-style interface can be used for driver configuration.

Configuration interfaces can be a little tricky, in that the

information is often not a simple stream of bytes—it may

encompass several different pieces of information. An ioctl()

interface typically passes a data structure for complex configu-

rations, while a sysfs interface might use a space-separated list

of ASCII-encoded values. Demand Peripherals uses the ASCII-

encoded numbers approach, because the overhead of decoding

and parsing a line of text is not too onerous given the relative

infrequency of driver configuration. Also, being able to cat a

sysfs type file to see the driver configuration is kind of handy.

The third use case, bidirectional transfer, is really the most

common use case. You probably are already familiar with

serial ports, the most common example of bidirectional I/O.

Although none are included in the examples above, the FPGA-

based robot controller needs bidirectional I/O for peripherals

that transparently pass data from one end to the other. These

include both FPGA-defined serial ports and SPI ports. You may

prefer, as we did, to be able to do block reads and writes until

both sides of the interface are open.

REQUIREMENTS FOR USER-SPACE DRIVERS
Our number one requirement for this project was to spend as

little programmer time as possible on it. This meant minimiz-

ing the number of lines of code to be written and avoiding

modifying someone else’s poorly or completely undocumented

code. This requirement also implied that we not try to hide

our interfaces in an application library. Because a library is part

of the higher-level control application, you still would need

a dæmon, still need some common IPC mechanism, and still

need to document the internal and the external interfaces.

The other problem with a library approach is that it is usually

not just one library; you may need to write a library, or bind-

ing, for every programming language you want to support.

Using a real character device instead of a library means your

customers can program in any language they want, not just

the ones for which you’ve written a binding.

The second requirement was that the driver security model

be based on file permissions. This implied that all of the device

data and configuration interfaces should be visible in the

filesystem. That is, you should to be able to do a chmod 644

on something like /dev/dp/bstep1/rate. Using named pipes and

FUSE (Filesystem in USErspace) could have fulfilled this requirement.

Doing this using pseudo-terminals would have been tricky.

Another requirement is that select() works both in the higher-

level control application and in the user-space driver itself. This

requirement comes about because select() is so much faster than

threads in most applications. Embedded systems, such as robotic

or other industrial control systems, often run on the cheapest,

lowest cost hardware possible, and, in the case of robots,

often on battery power. These constraints lead embedded

Linux programmers to prefer select()-based systems.

FUSE often is suggested as a way to implement character

drivers, but I was unable to get select() to work on both sides

of a FUSE interface. I like FUSE; it can solve a lot of user-space

driver problems, but it seems unfair to me to ask FUSE, a

filesystem, to double as a character driver. After all, who

would expect ext3 or other kernel filesystems to have built-in

character drivers?

The last requirement was that writers block until a reader

is present. Both named pipes and pseudo-ttys allow the writer

to write 4KB before blocking. It was important to us that the

driver not fill a buffer with stale data that a higher-level robotic

application must discard to get to the current data.

A SIMPLE APPROACH TO USER-SPACE DRIVERS
In the end, we didn’t find any existing Linux facilities that

satisfied all of our requirements and use cases. However, we

were able to find or create two relatively simple device drivers

that could. Figure 3 illustrates the basic idea.

The idea is to have two very thin drivers that sit between

the higher-level applications and the user-space driver. These

are real drivers and appear as such to the higher-level soft-

ware. The data exchanged between the application and the

user-space driver passes as transparently as possible through

the kernel. Even flow control passes transparently between the

application and the user-space driver.

The first use case, that of multicasting sensor data, is solved by

the “fanout” driver described in detail at www.linuxtoys.org.

Demand Peripherals uses fanout devices for quadrature decoders,

4 8 | august 2010 www.l inux journa l .com

FEATURE A Simple Approach to Character Drivers in User Space

Figure 3. Two New Drivers Link Applications to Driver Dæmons

FOR ROBOTICS, THE ABILITY TO FAN A SENSOR READING
OUT TO SEVERAL PROCESSES IS PARTICULARLY IMPORTANT.

IR receivers, ultrasonic range sensors, PlayStation controller inter-

faces, event counters and all other continuously sampled sensors.

Figure 4 shows the basic data flow in a fanout device.

You can skip further down in this article to get and install

fanout, or you can continue reading and come back to try the

examples. Once you’ve installed fanout and created the device

nodes for it, you can test it with a few simple commands:

cat /dev/fanout &

cat /dev/fanout &

cat /dev/fanout &

echo "Hello World" > /dev/fanout

The message appears three times, as you’d expect. Fanout

is like /dev/input in that it protects the writer, not the reader.

If a reader does not keep up, the reader gets the error, allow-

ing the writer and other readers to continue unimpeded.

For data flowing in the opposite direction, you need some-

thing like a “fan-in” device—that is, something that protects

the reader. A named pipe works reasonably well for this.

The low-speed nature of driver configuration, the second

use case, makes possible several approaches. The approach we

took was to write a driver, called proxy, that solved both the

configuration use case as well as the bidirectional transfer use

case. The two defining features of proxy are that one side

cannot write until the other side is open for reading, and that

a write of zero bytes is passed through the driver and seen as a

read of zero bytes at the other end. The usefulness of the sec-

ond feature is best shown by an example. Consider the case of

a user reading the current value of a configuration parameter:

cat /dev/dp/bstep/rate

/dev/dp/bstep/rate is a proxy device, and the user-space

driver dæmon on the other side of it would see that a write

is possible when cat opens the device. The dæmon writes the

Figure 4. A Simple Multicast Device

