
Published on Free Software Magazine (http://www.freesoftwaremagazine.com)

Writing device drivers in Linux: A brief tutorial

A quick and easy intro to writing device drivers for Linux
like a true kernel developer!

By Xavier Calbet
“Do you pine for the nice days of Minix-1.1, when men were men and wrote their own device drivers?” Linus
Torvalds

Pre-requisites
In order to develop Linux device drivers, it is necessary to have an understanding of the following:

C programming. Some in-depth knowledge of C programming is needed, like pointer usage, bit
manipulating functions, etc.

• 

Microprocessor programming. It is necessary to know how microcomputers work internally:
memory addressing, interrupts, etc. All of these concepts should be familiar to an assembler
programmer.

• 

There are several different devices in Linux. For simplicity, this brief tutorial will only cover type char
devices loaded as modules. Kernel 2.6.x will be used (in particular, kernel 2.6.8 under Debian Sarge, which is
now Debian Stable).

User space and kernel space
When you write device drivers, it’s important to make the distinction between “user space” and “kernel
space”.

Kernel space. Linux (which is a kernel) manages the machine’s hardware in a simple and efficient
manner, offering the user a simple and uniform programming interface. In the same way, the kernel,
and in particular its device drivers, form a bridge or interface between the end-user/programmer and
the hardware. Any subroutines or functions forming part of the kernel (modules and device drivers,
for example) are considered to be part of kernel space.

• 

User space. End-user programs, like the UNIX shell or other GUI based applications
(kpresenter for example), are part of the user space. Obviously, these applications need to interact
with the system’s hardware . However, they don’t do so directly, but through the kernel supported
functions.

• 

All of this is shown in figure 1.
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Figure 1: User space where applications reside, and kernel space where modules or device drivers reside

Interfacing functions between user space and
kernel space
The kernel offers several subroutines or functions in user space, which allow the end-user application
programmer to interact with the hardware. Usually, in UNIX or Linux systems, this dialogue is performed
through functions or subroutines in order to read and write files. The reason for this is that in Unix devices are
seen, from the point of view of the user, as files.

On the other hand, in kernel space Linux also offers several functions or subroutines to perform the low level
interactions directly with the hardware, and allow the transfer of information from kernel to user space.

Usually, for each function in user space (allowing the use of devices or files), there exists an equivalent in
kernel space (allowing the transfer of information from the kernel to the user and vice-versa). This is shown in
Table 1, which is, at this point, empty. It will be filled when the different device drivers concepts are
introduced.

Events User functions Kernel functions
Load module
Open device
Read device
Write device
Close device
Remove module
Table 1. Device driver events and their associated interfacing functions in kernel space and user space.

Interfacing functions between kernel space and the
hardware device
There are also functions in kernel space which control the device or exchange information between the kernel
and the hardware. Table 2 illustrates these concepts. This table will also be filled as the concepts are
introduced.
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Events Kernel functions
Read data
Write data
Table 2. Device driver events and their associated functions between kernel space and the hardware
device.

The first driver: loading and removing the driver in
user space
I’ll now show you how to develop your first Linux device driver, which will be introduced in the kernel as a
module.

For this purpose I’ll write the following program in a file named nothing.c

<nothing.c> =

#include <linux/module.h>

MODULE_LICENSE("Dual BSD/GPL");

Since the release of kernel version 2.6.x, compiling modules has become slightly more complicated. First, you
need to have a complete, compiled kernel source-code-tree. If you have a Debian Sarge system, you can
follow the steps in Appendix B (towards the end of this article). In the following, I’ll assume that a kernel
version 2.6.8 is being used.

Next, you need to generate a makefile. The makefile for this example, which should be named Makefile,
will be:

<Makefile1> =

obj-m := nothing.o

Unlike with previous versions of the kernel, it’s now also necessary to compile the module using the same
kernel that you’re going to load and use the module with. To compile it, you can type:

$ make -C /usr/src/kernel-source-2.6.8 M=pwd modules

This extremely simple module belongs to kernel space and will form part of it once it’s loaded.

In user space, you can load the module as root by typing the following into the command line:

# insmod nothing.ko

The insmod command allows the installation of the module in the kernel. However, this particular module
isn’t of much use.

It is possible to check that the module has been installed correctly by looking at all installed modules:

# lsmod
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Finally, the module can be removed from the kernel using the command:

# rmmod nothing

By issuing the lsmod command again, you can verify that the module is no longer in the kernel.

The summary of all this is shown in Table 3.

Events User functions Kernel functions
Load module insmod
Open device
Read device
Write device
Close device
Remove module rmmod
Table 3. Device driver events and their associated interfacing functions between kernel space and user
space.

The “Hello world” driver: loading and removing the
driver in kernel space
When a module device driver is loaded into the kernel, some preliminary tasks are usually performed like
resetting the device, reserving RAM, reserving interrupts, and reserving input/output ports, etc.

These tasks are performed, in kernel space, by two functions which need to be present (and explicitly
declared): module_init and module_exit; they correspond to the user space commands insmod and
rmmod , which are used when installing or removing a module. To sum up, the user commands insmod and
rmmod use the kernel space functions module_init and module_exit.

Let’s see a practical example with the classic program Hello world:

<hello.c> =

#include <linux/init.h>
#include <linux/module.h>
#include <linux/kernel.h>

MODULE_LICENSE("Dual BSD/GPL");

static int hello_init(void) {
  printk("<1> Hello world!\n");
  return 0;
}

static void hello_exit(void) {
  printk("<1> Bye, cruel world\n");
}

module_init(hello_init);
module_exit(hello_exit);
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The actual functions hello_init and hello_exit can be given any name desired. However, in order for
them to be identified as the corresponding loading and removing functions, they have to be passed as
parameters to the functions module_init and module_exit.

The printk function has also been introduced. It is very similar to the well known printf apart from the
fact that it only works inside the kernel. The <1> symbol shows the high priority of the message (low
number). In this way, besides getting the message in the kernel system log files, you should also receive this
message in the system console.

This module can be compiled using the same command as before, after adding its name into the Makefile.

<Makefile2> =

obj-m := nothing.o hello.o 

In the rest of the article, I have left the Makefiles as an exercise for the reader. A complete Makefile that will
compile all of the modules of this tutorial is shown in Appendix A.

When the module is loaded or removed, the messages that were written in the printk statement will be
displayed in the system console. If these messages do not appear in the console, you can view them by issuing
the dmesg command or by looking at the system log file with cat /var/log/syslog.

Table 4 shows these two new functions.

Events User functions Kernel functions
Load module insmod module_init()
Open device
Read device
Write device
Close device
Remove module rmmod module_exit()
Table 4. Device driver events and their associated interfacing functions between kernel space and user
space.

The complete driver “memory”: initial part of the
driver
I’ll now show how to build a complete device driver: memory.c. This device will allow a character to be
read from or written into it. This device, while normally not very useful, provides a very illustrative example
since it is a complete driver; it’s also easy to implement, since it doesn’t interface to a real hardware device
(besides the computer itself).

To develop this driver, several new #include statements which appear frequently in device drivers need to
be added:

<memory initial> =

/* Necessary includes for device drivers */
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#include <linux/init.h>
#include <linux/config.h>
#include <linux/module.h>
#include <linux/kernel.h> /* printk() */
#include <linux/slab.h> /* kmalloc() */
#include <linux/fs.h> /* everything... */
#include <linux/errno.h> /* error codes */
#include <linux/types.h> /* size_t */
#include <linux/proc_fs.h>
#include <linux/fcntl.h> /* O_ACCMODE */
#include <asm/system.h> /* cli(), *_flags */
#include <asm/uaccess.h> /* copy_from/to_user */

MODULE_LICENSE("Dual BSD/GPL");

/* Declaration of memory.c functions */
int memory_open(struct inode *inode, struct file *filp);
int memory_release(struct inode *inode, struct file *filp);
ssize_t memory_read(struct file *filp, char *buf, size_t count, loff_t *f_pos);
ssize_t memory_write(struct file *filp, char *buf, size_t count, loff_t *f_pos);
void memory_exit(void);
int memory_init(void);

/* Structure that declares the usual file */
/* access functions */
struct file_operations memory_fops = {
  read: memory_read,
  write: memory_write,
  open: memory_open,
  release: memory_release
};

/* Declaration of the init and exit functions */
module_init(memory_init);
module_exit(memory_exit);

/* Global variables of the driver */
/* Major number */
int memory_major = 60;
/* Buffer to store data */
char *memory_buffer;

After the #include files, the functions that will be defined later are declared. The common functions which
are typically used to manipulate files are declared in the definition of the file_operations structure.
These will also be explained in detail later. Next, the initialization and exit functions—used when loading and
removing the module—are declared to the kernel. Finally, the global variables of the driver are declared: one
of them is the major number of the driver, the other is a pointer to a region in memory,
memory_buffer, which will be used as storage for the driver data.

The “memory” driver: connection of the device
with its files
In UNIX and Linux, devices are accessed from user space in exactly the same way as files are accessed. These
device files are normally subdirectories of the /dev directory.

To link normal files with a kernel module two numbers are used: major number and minor number.
The major number is the one the kernel uses to link a file with its driver. The minor number is for
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internal use of the device and for simplicity it won’t be covered in this article.

To achieve this, a file (which will be used to access the device driver) must be created, by typing the
following command as root:

# mknod /dev/memory c 60 0

In the above, c means that a char device is to be created, 60 is the major number and 0 is the minor
number.

Within the driver, in order to link it with its corresponding /dev file in kernel space, the
register_chrdev function is used. It is called with three arguments: major number, a string of
characters showing the module name, and a file_operations structure which links the call with the file
functions it defines. It is invoked, when installing the module, in this way:

<memory init module> =

int memory_init(void) {
  int result;

  /* Registering device */
  result = register_chrdev(memory_major, "memory", &memory_fops);
  if (result < 0) {
    printk(
      "<1>memory: cannot obtain major number %d\n", memory_major);
    return result;
  }

  /* Allocating memory for the buffer */
  memory_buffer = kmalloc(1, GFP_KERNEL); 
  if (!memory_buffer) { 
    result = -ENOMEM;
    goto fail; 
  } 
  memset(memory_buffer, 0, 1);

  printk("<1>Inserting memory module\n"); 
  return 0;

  fail: 
    memory_exit(); 
    return result;
}

Also, note the use of the kmalloc function. This function is used for memory allocation of the buffer in the
device driver which resides in kernel space. Its use is very similar to the well known malloc function.
Finally, if registering the major number or allocating the memory fails, the module acts accordingly.

The “memory” driver: removing the driver
In order to remove the module inside the memory_exit function, the function unregsiter_chrdev
needs to be present. This will free the major number for the kernel.

<memory exit module> =
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void memory_exit(void) {
  /* Freeing the major number */
  unregister_chrdev(memory_major, "memory");

  /* Freeing buffer memory */
  if (memory_buffer) {
    kfree(memory_buffer);
  }

  printk("<1>Removing memory module\n");

}

The buffer memory is also freed in this function, in order to leave a clean kernel when removing the device
driver.

The “memory” driver: opening the device as a file
The kernel space function, which corresponds to opening a file in user space (fopen), is the member open:
of the file_operations structure in the call to register_chrdev. In this case, it is the
memory_open function. It takes as arguments: an inode structure, which sends information to the kernel
regarding the major number and minor number; and a file structure with information relative to the
different operations that can be performed on a file. Neither of these functions will be covered in depth within
this article.

When a file is opened, it’s normally necessary to initialize driver variables or reset the device. In this simple
example, though, these operations are not performed.

The memory_open function can be seen below:

<memory open> =

int memory_open(struct inode *inode, struct file *filp) {

  /* Success */
  return 0;
}

This new function is now shown in Table 5.

Events User functions Kernel functions
Load module insmod module_init()
Open device fopen file_operations: open
Read device
Write device
Close device
Remove module rmmod module_exit()
Table 5. Device driver events and their associated interfacing functions between kernel space and user
space.
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The “memory” driver: closing the device as a file
The corresponding function for closing a file in user space (fclose) is the release: member of the
file_operations structure in the call to register_chrdev. In this particular case, it is the function
memory_release, which has as arguments an inode structure and a file structure, just like before.

When a file is closed, it’s usually necessary to free the used memory and any variables related to the opening
of the device. But, once again, due to the simplicity of this example, none of these operations are performed.

The memory_release function is shown below:

<memory release> =

int memory_release(struct inode *inode, struct file *filp) {

  /* Success */
  return 0;
}

This new function is shown in Table 6.

Events User functions Kernel functions
Load module insmod module_init()
Open device fopen file_operations: open
Read device
Write device
Close device fclose file_operations: release
Remove module rmmod module_exit()
Table 6. Device driver events and their associated interfacing functions between kernel space and user
space.

The “memory” driver: reading the device
To read a device with the user function fread or similar, the member read: of the file_operations
structure is used in the call to register_chrdev. This time, it is the function memory_read. Its
arguments are: a type file structure; a buffer (buf), from which the user space function (fread) will read; a
counter with the number of bytes to transfer (count), which has the same value as the usual counter in the
user space function (fread); and finally, the position of where to start reading the file (f_pos).

In this simple case, the memory_read function transfers a single byte from the driver buffer
(memory_buffer) to user space with the function copy_to_user:

<memory read> =

ssize_t memory_read(struct file *filp, char *buf, 
                    size_t count, loff_t *f_pos) { 

  /* Transfering data to user space */ 
  copy_to_user(buf,memory_buffer,1);
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  /* Changing reading position as best suits */ 
  if (*f_pos == 0) { 
    *f_pos+=1; 
    return 1; 
  } else { 
    return 0; 
  }
}

The reading position in the file (f_pos) is also changed. If the position is at the beginning of the file, it is
increased by one and the number of bytes that have been properly read is given as a return value, 1. If not at
the beginning of the file, an end of file (0) is returned since the file only stores one byte.

In Table 7 this new function has been added.

Events User functions Kernel functions
Load module insmod module_init()
Open device fopen file_operations: open
Read device fread file_operations: read
Write device
Close device fclose file_operations: release
Remove modules rmmod module_exit()
Table 7. Device driver events and their associated interfacing functions between kernel space and user
space.

The “memory” driver: writing to a device
To write to a device with the user function fwrite or similar, the member write: of the
file_operations structure is used in the call to register_chrdev. It is the function
memory_write, in this particular example, which has the following as arguments: a type file structure;
buf, a buffer in which the user space function (fwrite) will write; count, a counter with the number of
bytes to transfer, which has the same values as the usual counter in the user space function (fwrite); and
finally, f_pos, the position of where to start writing in the file.

<memory write> =

ssize_t memory_write( struct file *filp, char *buf,
                      size_t count, loff_t *f_pos) {

  char *tmp;

  tmp=buf+count-1;
  copy_from_user(memory_buffer,tmp,1);
  return 1;
}

In this case, the function copy_from_user transfers the data from user space to kernel space.

In Table 8 this new function is shown.
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Events User functions Kernel functions
Load module insmod module_init()
Open device fopen file_operations: open
Close device fread file_operations: read
Write device fwrite file_operations: write
Close device fclose file_operations: release
Remove module rmmod module_exit()
Device driver events and their associated interfacing functions between kernel space and user space.

The complete “memory” driver
By joining all of the previously shown code, the complete driver is achieved:

<memory.c> =

<memory initial>
<memory init module>
<memory exit module>
<memory open>
<memory release>
<memory read>
<memory write>

Before this module can be used, you will need to compile it in the same way as with previous modules. The
module can then be loaded with:

# insmod memory.ko

It’s also convenient to unprotect the device:

# chmod 666 /dev/memory

If everything went well, you will have a device /dev/memory to which you can write a string of characters
and it will store the last one of them. You can perform the operation like this:

$ echo -n abcdef >/dev/memory

To check the content of the device you can use a simple cat:

$ cat /dev/memory

The stored character will not change until it is overwritten or the module is removed.

The real “parlelport” driver: description of the
parallel port
I’ll now proceed by modifying the driver that I just created to develop one that does a real task on a real
device. I’ll use the simple and ubiquitous computer parallel port and the driver will be called parlelport.
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The parallel port is effectively a device that allows the input and output of digital information. More
specifically it has a female D-25 connector with twenty-five pins. Internally, from the point of view of the
CPU, it uses three bytes of memory. In a PC, the base address (the one from the first byte of the device) is
usually 0x378. In this basic example, I’ll use just the first byte, which consists entirely of digital outputs.

The connection of the above-mentioned byte with the external connector pins is shown in figure 2.

Figure 2: The first byte of the parallel port and its pin connections with the external female D-25 connector

The “parlelport” driver: initializing the module
The previous memory_init function needs modification—changing the RAM memory allocation for the
reservation of the memory address of the parallel port (0x378). To achieve this, use the function for checking
the availability of a memory region (check_region), and the function to reserve the memory region for
this device (request_region). Both have as arguments the base address of the memory region and its
length. The request_region function also accepts a string which defines the module.

<parlelport modified init module> =

  /* Registering port */
  port = check_region(0x378, 1);
  if (port) { 
    printk("<1>parlelport: cannot reserve 0x378\n"); 
    result = port; 
    goto fail;
  } 
  request_region(0x378, 1, "parlelport");

The “parlelport” driver: removing the module
It will be very similar to the memory module but substituting the freeing of memory with the removal of the
reserved memory of the parallel port. This is done by the release_region function, which has the same
arguments as check_region.

<parlelport modified exit module> =

  /* Make port free! */ 
  if (!port) { 
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    release_region(0x378,1);
  }

The “parlelport” driver: reading the device
In this case, a real device reading action needs to be added to allow the transfer of this information to user
space. The inb function achieves this; its arguments are the address of the parallel port and it returns the
content of the port.

<parlelport inport> =

/* Reading port */
parlelport_buffer = inb(0x378);

Table 9 (the equivalent of Table 2) shows this new function.

Events Kernel functions
Read data inb
Write data
Device driver events and their associated functions between kernel space and the hardware device.

The “parlelport” driver: writing to the device
Again, you have to add the “writing to the device” function to be able to transfer later this data to user space.
The function outb accomplishes this; it takes as arguments the content to write in the port and its address.

<parlelport outport> =

/* Writing to the port */
outb(parlelport_buffer,0x378);

Table 10 summarizes this new function.

Events Kernel functions
Read data inb
Write data outb
Device driver events and their associated functions between kernel space and the hardware device.

The complete “parlelport” driver
I’ll proceed by looking at the whole code of the parlelport module. You have to replace the word
memory for the word parlelport throughout the code for the memory module. The final result is shown
below:

<parlelport.c> =

<parlelport initial>
<parlelport init module>
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<parlelport exit module>
<parlelport open>
<parlelport release>
<parlelport read>
<parlelport write>

Initial section

In the initial section of the driver a different major number is used (61). Also, the global variable
memory_buffer is changed to port and two more #include lines are added: ioport.h and io.h.

<parlelport initial> =

/* Necessary includes for drivers */
#include <linux/init.h>
#include <linux/config.h>
#include <linux/module.h>
#include <linux/kernel.h> /* printk() */
#include <linux/slab.h> /* kmalloc() */
#include <linux/fs.h> /* everything... */
#include <linux/errno.h> /* error codes */
#include <linux/types.h> /* size_t */
#include <linux/proc_fs.h>
#include <linux/fcntl.h> /* O_ACCMODE */
#include <linux/ioport.h>
#include <asm/system.h> /* cli(), *_flags */
#include <asm/uaccess.h> /* copy_from/to_user */
#include <asm/io.h> /* inb, outb */

MODULE_LICENSE("Dual BSD/GPL");

/* Function declaration of parlelport.c */ 
int parlelport_open(struct inode *inode, struct file *filp); 
int parlelport_release(struct inode *inode, struct file *filp); 
ssize_t parlelport_read(struct file *filp, char *buf, 
                       size_t count, loff_t *f_pos); 
ssize_t parlelport_write(struct file *filp, char *buf, 
                       size_t count, loff_t *f_pos); 
void parlelport_exit(void);
int parlelport_init(void);

/* Structure that declares the common */
/* file access fcuntions */
struct file_operations parlelport_fops = { 
  read: parlelport_read,
  write: parlelport_write,
  open: parlelport_open,
  release: parlelport_release
};

/* Driver global variables */
/* Major number */
int parlelport_major = 61;

/* Control variable for memory */ 
/* reservation of the parallel port*/
int port;

module_init(parlelport_init);
module_exit(parlelport_exit);
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Module init

In this module-initializing-routine I’ll introduce the memory reserve of the parallel port as was described
before.

<parlelport init module> =

int parlelport_init(void) { 
  int result;

  /* Registering device */
  result = register_chrdev(parlelport_major, "parlelport", 
      &parlelport_fops);
  if (result < 0) { 
    printk(
      "<1>parlelport: cannot obtain major number %d\n",
      parlelport_major); 
    return result; 
  } 

  <parlelport modified init module>

  printk("<1>Inserting parlelport module\n"); 
  return 0;

  fail: 
    parlelport_exit(); 
    return result;
}

Removing the module

This routine will include the modifications previously mentioned.

<parlelport exit module> =

void parlelport_exit(void) {

  /* Make major number free! */
  unregister_chrdev(parlelport_major, "parlelport");

  <parlelport modified exit module>

  printk("<1>Removing parlelport module\n");
}

Opening the device as a file

This routine is identical to the memory driver.

<parlelport open> =

int parlelport_open(struct inode *inode, struct file *filp) {

  /* Success */
  return 0;
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}

Closing the device as a file

Again, the match is perfect.

<parlelport release> =

int parlelport_release(struct inode *inode, struct file *filp) {

  /* Success */
  return 0; 
}

Reading the device

The reading function is similar to the memory one with the corresponding modifications to read from the port
of a device.

<parlelport read> =

ssize_t parlelport_read(struct file *filp, char *buf, 
  size_t count, loff_t *f_pos) {

  /* Buffer to read the device */
  char parlelport_buffer;

  <parlelport inport>

  /* We transfer data to user space */
  copy_to_user(buf,&parlelport_buffer,1); 

  /* We change the reading position as best suits */
  if (*f_pos == 0) { 
    *f_pos+=1; 
    return 1; 
  } else { 
    return 0; 
  }
}

Writing to the device

It is analogous to the memory one except for writing to a device.

<parlelport write> =

ssize_t parlelport_write( struct file *filp, char *buf, 
  size_t count, loff_t *f_pos) {

  char *tmp;

  /* Buffer writing to the device */
  char parlelport_buffer;
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  tmp=buf+count-1;
  copy_from_user(&parlelport_buffer,tmp,1);

  <parlelport outport>

  return 1; 
}

LEDs to test the use of the parallel port
In this section I’ll detail the construction of a piece of hardware that can be used to visualize the state of the
parallel port with some simple LEDs.

WARNING: Connecting devices to the parallel port can harm your computer. Make sure that you are
properly earthed and your computer is turned off when connecting the device. Any problems that arise
due to undertaking these experiments is your sole responsibility.

The circuit to build is shown in figure 3 You can also read “PC & Electronics: Connecting Your PC to the
Outside World” by Zoller as reference.

In order to use it, you must first ensure that all hardware is correctly connected. Next, switch off the PC and
connect the device to the parallel port. The PC can then be turned on and all device drivers related to the
parallel port should be removed (for example, lp, parport, parport_pc, etc.). The hotplug module of
the Debian Sarge distribution is particularly annoying and should be removed. If the file
/dev/parlelport does not exist, it must be created as root with the command:

# mknod /dev/parlelport c 61 0

Then it needs to be made readable and writable by anybody with:

# chmod 666 /dev/parlelport

The module can now be installed, parlelport. You can check that it is effectively reserving the
input/output port addresses 0x378 with the command:

$ cat /proc/ioports

To turn on the LEDs and check that the system is working, execute the command:

$ echo -n A >/dev/parlelport

This should turn on LED zero and six, leaving all of the others off.

You can check the state of the parallel port issuing the command:

$ cat /dev/parlelport
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Figure 3: Electronic diagram of the LED matrix to monitor the parallel port

Final application: flashing lights
Finally, I’ll develop a pretty application which will make the LEDs flash in succession. To achieve this, a
program in user space needs to be written with which only one bit at a time will be written to the
/dev/parlelport device.

<lights.c> =

#include <stdio.h>
#include <unistd.h></p>

int main() { 
  unsigned char byte,dummy;
  FILE * PARLELPORT;

  /* Opening the device parlelport */
  PARLELPORT=fopen("/dev/parlelport","w");
  /* We remove the buffer from the file i/o */
  setvbuf(PARLELPORT,&dummy,_IONBF,1);

  /* Initializing the variable to one */
  byte=1;

  /* We make an infinite loop */
  while (1) { 
    /* Writing to the parallel port */
    /* to turn on a LED */
    printf("Byte value is %d\n",byte);
    fwrite(&byte,1,1,PARLELPORT);
    sleep(1);

    /* Updating the byte value */
    byte<<=1;
    if (byte == 0) byte = 1;
  }

  fclose(PARLELPORT);

}
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It can be compiled in the usual way:

$ gcc -o lights lights.c

and can be executed with the command:

$ lights

The lights will flash successively one after the other! The flashing LEDs and the Linux computer running this
program are shown in figure 4.

Conclusion
Having followed this brief tutorial you should now be capable of writing your own complete device driver for
simple hardware like a relay board (see Appendix C), or a minimal device driver for complex hardware.
Learning to understand some of these simple concepts behind the Linux kernel allows you, in a quick and
easy way, to get up to speed with respect to writing device drivers. And, this will bring you another step closer
to becoming a true Linux kernel developer.

Figure 4: Flashing LEDs mounted on the circuit board and the computer running Linux. Two terminals are
shown: one where the “parlelport” module is loaded and another one where the “lights” program is run. Tux is
closely following what is going on
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Appendix A. Complete Makefile
<Makefile> =

obj-m := nothing.o hello.o memory.o parlelport.o

Appendix B. Compiling the kernel on a Debian
Sarge system
To compile a 2.6.x kernel on a Debian Sarge system you need to perform the following steps, which should be
run as root:

Install the “kernel-image-2.6.x” package.1. 
Reboot the machine to make this the running kernel image. This is done semi-automatically by
Debian. You may need to tweak the lilo configuration file /etc/lilo.conf and then run lilo to
achieve this.

2. 

Install the “kernel-source-2.6.x” package.3. 
Change to the source code directory, cd /usr/src and unzip and untar the source code with
bunzip2 kernel-source-2.6.x.tar.bz2 and tar xvf
kernel-source-2.6.x.tar. Change to the kernel source directory with cd
/usr/src/kernel-source-2.6.x

4. 

Copy the default Debian kernel configuration file to your local kernel source directory cp
/boot/config-2.6.x .config.

5. 

Make the kernel and the modules with make and then make modules.6. 

Appendix C. Exercises
If you would like to take on some bigger challenges, here are a couple of exercises you can do:

I once wrote two device drivers for two ISA Meilhaus boards, an analog to digital converter (ME26)
and a relay control board (ME53). The software is available from the ADQ project. Get the newer PCI
versions of these Meilhaus boards and update the software.

1. 

Take any device that doesn’t work on Linux, but has a very similar chipset to another device which
does have a proven device driver for Linux. Try to modify the working device driver to make it work
for the new device. If you achieve this, submit your code to the kernel and become a kernel developer
yourself!

2. 

Comments and acknowledgements
Three years have elapsed since the first version of this document was written. It was originally written in
Spanish and intended for version 2.2 of the kernel, but kernel 2.4 was already making its first steps at that
time. The reason for this choice is that good documentation for writing device drivers, the Linux device
drivers book (see bibliography), lagged the release of the kernel in some months. This new version is also
coming out soon after the release of the new 2.6 kernel, but up to date documentation is now readily available
in Linux Weekly News making it possible to have this document synchronized with the newest kernel.
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Fortunately enough, PCs still come with a built-in parallel port, despite the actual trend of changing
everything inside a PC to render it obsolete in no time. Let us hope that PCs still continue to have built-in
parallel ports for some time in the future, or that at least, parallel port PCI cards are still being sold.

This tutorial has been originally typed using a text editor (i.e. emacs) in noweb format. This text is then
processed with the noweb tool to create a LaTeX file ( .tex ) and the source code files ( .c ). All this can
be done using the supplied makefile.document with the command make -f
makefile.document.
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