
By Thomas Besemer

A significant difference between
the Linux execution environment
and typical real-time operating
systems is the memory model.
Linux, natively, executes with pro-
tected memory space: processes
are isolated from other processes
through the kernel and underly-
ing hardware memory manage-
ment unit (MMU). Processes are
also isolated from the underlying
hardware-application code can’t
directly read and write peripheral
registers. Figure 1 provides a vi-
sual representation of the Linux
execution environment.

Almost all embedded operat-
ing systems can be depicted as in
Figure 1; the primary difference
with Linux is that each “layer” in
this figure is truly isolated from
the others. With just a handful
of exceptions, embedded op-
erating systems typically use a
“flat” memory model, in which
all software components in the

system (OS, application tasks,
device drivers, and so on) are able
to read and write from and to any
location in memory. Device driv-
ers may or may not be employed

in typical environments, because
the developer has the choice of
either using a device driver or
communicating directly with
hardware devices from within the
application code itself.

In a Linux environment, ap-
plication code runs as a set of
processes and/or group of POSIX
threads within one process. In or-
der for the processes and threads
to communicate with underlying
hardware, the developer must
install one or more device drivers
to support the various hardware
peripherals. There are two basic
schemes for communication with
hardware in a Linux environment.
The first is to place the peripher-
als on a PCI bus. The second ap-
proach is to memory- or I/O-map
the peripherals. Both approaches
require a device driver.

With PCI-based peripherals,
the application-level processes
or threads may share an under-
lying PCI driver to communicate
with one or more peripherals,

supporting and interfacing with
them through this common
driver. In this configuration, the
PCI driver provides support for
interrupts from the peripherals.

Application processes or threads
read or write the peripheral, and
may be blocked within the kernel
space until the driver services an
interrupt.

With memory- or I/O-mapped
peripherals, the developer must
design and implement a specific
driver to support each peripheral.
Interrupts from peripherals are
handled at the driver level, and it
is important that the application
developer understand how to
approach servicing the interrupt
from the application (process)
level.

This article discusses how
to work with memory- or I/O-
mapped peripherals. It concen-
trates on the basic structure of
a device driver that supports
interrupts.

Hardware interface
When PCI is not employed, the
system designers must map
the hardware’s registers into
a space that is accessible to
device driver code. The reg-
isters may be mapped into
memory space, with the pe-
ripheral appearing as a chunk
of “memory” in the system. Or,
if the processor architecture
supports it, the registers may
be mapped into a dedicated
I/O space. For example, x86
processors provide an I/O
space that can be accessed
through the assembly lan-
guage instructions in and out.
A basic understanding of both
memory and I/O-mapped pe-
ripherals is extremely helpful.

The PC platform provides a
convenient foundation for experi-
mentation with Linux. All driver
and code examples in this article
were tested on a PC running Red
Hat Linux.

Figure 2 provides a block
diagram of the basic PC platform
memory layout. The most notable
aspect of this block diagram is
the memory region below 1MB.
This region has ties back to the
original IBM PC and 8086 archi-
tecture, which had only 20 bits

of address space. A “hole” sits
in memory, between 640K and
the start of the boot ROM (also
known as the BIOS). This “hole”
is where VGA cards and other
memory-mapped PC peripherals
placed their shared buffers in the
pre-PCI era.

This is important because
designers planning to use a stan-
dard PC-style platform for their
product must keep the following
in mind:

• The ISA/EISA bus has only
20 address bits, so memory-
mapped peripherals must
reside below 1MB

• Memory-mapped I/O must
fit into the location between
640K and the bottom of the
boot ROM, and must not over-
lap in memory space with any
other hardware present in the
system

The Linux kernel ignores this
region of low memory in that it
does not try to use it. However,
device drivers are able to read
and write from and to this space,
allowing communication with
any potential hardware devices
that decode in this region of
memory. When working with
custom hardware, or processors
such as the PowerPC, hardware
designers will be required to
implement specialised decode
and mapping circuitry to map
peripherals into memory space.
Additionally, there may be re-
quirements to change the Linux
kernel MMU page tables and
mappings to allow addressing of
these memory regions.

For example, if the hardware
designer designs a PC-com-
pliant motherboard, yet plac-
es specialised peripherals at
0xA0000000, the MMU tables
will need to be updated to allow
access to that physical location.
Since Linux is distributed with
source code, this is a relatively mi-
nor issue. It’s just important that
the developer be aware of it.

Figure 1: Linux execution environment

� eetindia.com | August 2000 | EE Times-India

Linux, interrupted
LINUX

http://www.eetindia.co.in

Another approach, when us-
ing a PC-style platform, is to
map peripherals into I/O space.
I/O space is for peripherals that
respond to special bus cycles
from the processor. These cycles
are generated through special-
purpose assembly language
instructions. This article is based
on a hardware environment that
resides in I/O space.

Figure 3 provides a block dia-
gram of the hardware and con-
figuration used for the examples
in this article. This hardware test
bed consists of a pushbutton that
is debounced through a 74LS221
Monostable Multivibrator on a
breadboard, and an off-the-shelf
counter/timer board (CIO-CTR05)
from Computer Boards (www.
computerboards.com). The CIO-
CTR05 contains an AMD 9513
counter/timer device, which has
five 16-bit counter/timers. Addi-
tionally, the CIO-CTR05 provides
eight digital inputs and eight
digital outputs, as well as the
ability to assert an interrupt to
the system.

In my experiments, I used one
of the 9513’s 16-bit counters and
the logic on the CIO-CTR05 to
generate an interrupt. When the
pushbutton is depressed, the
Monostable generates a 300ms
pulse. This pulse, on its active
edge, asserts an interrupt to the

processor and starts the timer
counting. The counter is clocked
at 1MHz.

A Linux device driver services
the interrupt. When its interrupt
handler is called-from the Linux
kernel’s “low-level interrupt han-
dler”-it notes the value in the
counter and then potentially
alerts application code that the
interrupt has been asserted. If the
application code has provided an
“interrupt” handler, that handler
will execute in process space and
perform a read of the device driv-
er to stop the counter and read its
value. Through this scheme, the
following is accomplished:

• A driver is implemented to
support the interrupt and
counter , and provides a
means to alert application

level code
• Instrumentation is put in place

to characterise and provide
timing analysis of interrupt
operation in Linux

Driver basics
Linux device driver constructs
and implementation details are
beyond the scope of this article.
This information may be found
in books such as Linux Device
Drivers by Alessandro Rubini
(O’Reilly & Associates, 1998).

As a foundation for this article,
a driver for the CIO-CTR05 was
located at a site at North Caro-
lina State University (ftp://lx10.
tx.ncsu.edu/pub/Linux/drivers).
This driver provided me with a
head start for putting the test
fixture in place. (One of the great
things about working with Linux
is the tremendous amount of
source code that’s already out
there to supplement it.)

The driver from NCSU is fair-
ly robust, supporting many of
the functions of the CIO-CTR05
board. In order to present the
concepts within the bounds of
this article, the basic driver was
scaled down to support only the
topics discussed within. As each
aspect of the driver is discussed,
working source code is presented
to support the discussed con-
cepts. It is also important to note
that several types of drivers exist
in the Linux environment char-
acter, block, and network. The

driver discussed in this article is
a character device driver.

Linux device drivers are con-
sidered “modules,” and these
modules may be loaded dy-
namically at runtime. This means
that the developer is able to
implement, compile, load, test,
and then unload the driver. This
cycle may be repeated over and
over without rebooting the Linux
machine, providing a suitable
environment for developing a
driver.

The list of installed modules
can be obtained with the lsmod
command. This command dis-
plays what modules are loaded,
and what components in the
system are using each module.
Listing 1 provides the output
from lsmod in the system on
which the driver in this article was
developed.

The module tulip is the device
driver for a PCI network card,
while the module ctr05 is the
driver for the CIO-CTR05. The
module ctr05 was installed with
the following command:

/sbin/insmod -f ctr05.o

This module can be removed
during runtime with the follow-
ing command:

/sbin/rmod ctr05

Every device driver module has
two key functions:

Listing 1 Output from lsmod
Module Size Used by
ctr05 1688 0 (unused)
tulip 25252 1 (autoclean)

Figure 2: PC memory layout

Figure 3: Test fixture configuration

� eetindia.com | August 2000 | EE Times-India

http://www.computerboards.com/
http://www.computerboards.com/
ftp://lx10.tx.ncsu.edu/pub/Linux/drivers
ftp://lx10.tx.ncsu.edu/pub/Linux/drivers
http://www.eetindia.co.in

• init_module() -Responsible
for installing the driver in the
kernel; called by the kernel
when the module is loaded

• cleanup_module() -Respon-
sible for doing any hardware
shutdown or internal cleanup
when a module is removed
from the kernel

Listing 2 CIO-CTR05 module
initialisation ,static struct
file_operations ctr05_fops = {
NULL,
/* ctr05_seek */
ctr05_read, /* ctr05_
read */
ctr05_write, /* ctr05_
write */
NULL, /* ctr05_readdir
*/
NULL, /* ctr05_select
*/
ctr05_ioctl, /* ctr05_
ioctl */
NULL,
ctr05_open,
NULL,
ctr05_close,
NULL /* fsync */
};
int init_module(void
) {
int err;
BYTE bReg;
/* Register as a device
with kernel.
*/
err = register_chrdev(
MajorNumber, 3ctr052,
&ctr05_fops);
if (check_region(
CTR05_BASE, BOARD_SIZE
) != 0)
{
unregister_
chrdev(MajorNumber,
3ctr052) != 0);
return(-ENODEV);
} else
{
request_region(CTR05_
BASE, BOARD_SIZE,
3ctr052);
}
/* Register interrupt
handler
*/
request_irq(CTR05_
IRQ, ctr05_interrupt,
SA_INTERRUPT, 3ctr052,
NULL));

/* Initialize the 9513
chip; Master Reset,
Select
* Master Mode Register
*/
outb_p(MASTER_RESET,
CMD_REG);
outb_p(MASTER_MODE_
REG,
CMD_REG);
/* Write lower byte of
MMR, followed by upper
*/
bReg = 0x70;
outb_p(bReg, DATA_REG
);
bReg = 0x00;
outb_p(bReg, DATA_REG);
return 0;

},,

The procedure init_module()
registers the driver with the ker-
nel, telling the kernel about other
internal functions such as read()
, write() , or ioctl() . Additionally,
if the driver supports interrupts,
it requests that the kernel call an
internal function when the speci-
fied interrupt is asserted. Finally,
this procedure is responsible for
configuring and initializing the
hardware. Listing 2 shows the
initialisation function for the
CIO-CTR05. Note that to keep the
listing short for this article, most
of the error checking has been re-
moved. However, this listing does
present the basics of the initialisa-
tion of the module. The following
key steps are performed:

1. Registering the module as a
character device driver. After
this, application code running
in user space may perform
open() , close() , read() ,
write() , or ioctl() operations
on the module

2. Checking for and requesting
a “region.” This allows the
driver to communicate with
the physical hardware device
(which is, in this case, the CIO-
CTR05 board)

3. Registering an interrupt han-
dler with the kernel. This op-
eration associates a physical
interrupt level with a module-
based handler

4. Configuring the hardware
Removing a module from
the kernel requires that the
reverse be done: release the
region, release the interrupt,
and un-register the device.

Listing 3 CIO-CTR05 module
removal ,
void cleanup_
module(void)
{
if (MOD_IN_USE)
{
printk(3%s: device busy,
remove delayed.\n2,
ADAPTER_ID);
return;
}
release_region(CTR05_
BASE , BOARD_SIZE);
if (CTR05_IRQ >= 2 &&
CTR05_IRQ
<
= 7)
{
free_irq(CTR05_IRQ,
NULL);
}
if (unregister_chrdev(
MajorNumber, 3ctr052)
!= 0)
{
printk(3%s: cleanup_
module failed.\n2,
ADAPTER_ID);
}
},,

Listing 3 shows the procedure

cleanup_module() used in the
CIO-CTR05 driver. When review-
ing this listing, note the function
printk() . This function is identical
to printf() , with the exception
that it operates at the kernel level.
Diagnostic messages generated
with printk() are sent to the Linux
console. For all practical purposes,
this is the most useful debug tool
for implementing Linux drivers
and interrupt handlers.

Application code
To this point, we have discussed
the concept and basics of a Linux
device driver. The important
points to note are as follows:

• Interrupts must be serviced by
a driver

• Hardware may only be com-

municated with through a
driver

Specific operation on an in-
terrupt will be discussed in a bit.
First, we need to understand how
application-level (process) code
running in user-mode interacts
with the kernel-mode driver.
Device drivers look like files to
application code. Their primary
interface is through special files
called device files, which are
generally located in the /dev
directory in the Linux file system.
Device drivers have associated
with them major and minor de-
vice numbers. The major device
number is used to associate a
device file with a device driver
(module). Listing 2 shows that
when the module is registered
with the kernel, it passes in a
major device number.

Device files in the /dev direc-
tory are created by the module
developer using the Linux com-
mand mknod. Listing 4 shows
the device files for the CIO-CTR5
module. This listing was made
by issuing the command ls -rtl
/dev/ctr*.

The first field indicates that the
module is a character device (c)
that can be both read and writ-
ten (rw-) by users or processes
running as root, but only read
(r--) by other users. The fifth field,
50 in this example, is the major
device number, while the sixth
field, 0 and 1 for these device
files, is the minor device number.
Minor numbers may be selected
in any way that makes sense to
the driver developer. In the CIO-
CTR05 driver, they represent and
specify one of the five counters
in the AMD 9513 contained on
the I/O board.

Finally, /dev/ctr05_DIO and
/dev/ctr05_CTR1 are device file
names. These names generally
represent something meaning-
ful to the developer. In this case,
ctr05 identifies the module, while
DIO states that this file is for oper-
ating on the digital I/O portion of
the driver, and CTR1 is for counter
1 control. These device files were
created by executing the follow-
ing commands:

� eetindia.com | August 2000 | EE Times-India

http://www.eetindia.co.in

/bin/mknod /dev/ctr05_
DIO c 50 0
/bin/mknod /dev/ctr05_
CTR1 c 50 1

Application code operates on
these by first performing either an
open() or fopen() on the device
file. After that, the returned file
descriptor or stream pointer may
be used to read() , write() , ioctl()
, or close() the specified device
(module). Internal to the module
are procedures to support each
of these functions. These pro-
cedures behave in a consistent
way through standardised call-
ing conventions, but internally
perform operations specific to
the peripheral.

Interrupt delivery
When an interrupt is asserted,
the developer has two choices
for processing it:

• In the driver, at kernel level

• In user space, in the applica-
tion process or processes

Most applications will perform
processing of an interrupt in both
places. The driver must contain
some logic for handling the inter-
rupt, as the context of the driver
is the only location that the inter-
rupt handling code may execute.
The driver services the interrupt,
possibly doing some minor op-
erations on the peripheral, and
then alerts the application.

Getting the message to the
application must be done in
a unique fashion under Linux,
as the driver cannot call inter-
rupt handlers running in user
(process) space. The driver may
only execute in kernel space. It's
important to note that the ap-
plication must be expecting and
waiting for the interrupt to occur,
in order to respond to it.

The best approach is often
to use an interrupt dispatch pro-
cess or thread that waits for all
interrupts serviced by the driver
module (as the module may ser-
vice hardware devices capable
of generating several different
interrupt types through the same
IRQ line).

When an interrupt occurs and
the dispatch process is placed
into execution, it sends a mes-
sage to the appropriate process
or thread, based on the inter-
rupt type serviced by the driver
ISR. The process or thread then
handles the interrupt, while the
dispatch process waits for the
next interrupt. In practical op-
eration, this process opens the
appropriate module device file,
then makes (typically) an ioctl()
or read() call that “blocks,” sus-
pending the caller and allowing
other processes and threads to
run while the “dispatch” process
waits for the interrupt.

Figure 4 shows the sequence
of events for the following discus-
sions. Each block in this figure is
described in detail in subsequent
paragraphs.

The interrupt handler in the
driver module executes when an
interrupt is asserted. It does minor
processing of the interrupt, then
checks to see if an application
process is waiting for that inter-
rupt. If one is waiting, the inter-
rupt handler alerts the process,
and the Linux scheduler places it
into execution based on its prior-
ity within the system.

Listing 5 CIO-CTR05 module
interrupt handler ,
static void ctr05_
interrupt(int irq)
{
int data;
data = read_counter(1
);
intCntValue = data;
if (waitqueue_active(
&int_wq))
{
wake_up_interruptible(
&int_wq);
}
else
{
printk(3Wait Queue is
NOT ACTIVE!!\n2);
}

},,

Listing 5 shows the interrupt
handler used in the CIO-CTR05
device driver module. It is ex-
tremely important to note that
this interrupt handler executes

in the context of the kernel. This
interrupt handler performs the
following functions:

• Reads the counter value (the
counter started counting at
the moment the interrupt was
asserted to the processor)

• Makes a call to kernel func-
tion waitqueue_active() .
This function checks to see
if an application process has
blocked on a user-specified
Wait Queue called int_wq

• If a process is blocked on
the Wait Queue, waiting for
the interrupt, a call is made
to wake_up_interruptible()
. This function unblocks the
process, and the kernel will
place it into execution based
on its specific scheduling rules
(regular Linux process vs. real-
time Linux process)

Listing 6
CIO-CTR05 module
ioctl() function ,
static int ctr05_
ioctl(struct inode
*iNode, struct file
*filePtr,
unsigned int cmd, LONG
arg)
{
int size = _IOC_
SIZE(cmd);
int err = 0;
if (_IOC_TYPE(cmd) !=
IOCTL_MAGIC) return -
EINVAL;
if (_IOC_NR(cmd) >
IOCTL_MAXNR) return -
EINVAL;
if (_IOC_DIR(cmd) &
_IOC_READ)
{
err = verify_
area(VERIFY_WRITE,
(void *)arg, size);
}
else if (_IOC_DIR(cmd)
& _IOC_WRITE)
{
err =
verify_area(VERIFY_

READ, (void *)arg,
size);
}
if(err) return(err);
if (cmd == WAIT_FOR_
INTERRUPT)
{
arm_counter(1, 11);
interruptible_sleep_on(
&int_wq);
return(0);
}
else
{
return(-EINVAL);
}

},,

Listing 6 shows the CIO-
CTR05 module logic (which al-
lows user processes to block)
waiting for the interrupt. This
logic is implemented as an ioctl()
operation in the driver. Like the
interrupt handler, this procedure
executes in the context of the
Linux kernel.

The core logic in Listing 6
follows the if statement to see
if the ioctl() operation specified
by cmd is WAIT_FOR_INTER-
RUPT . In this case, the following
occurs:

1. The counter is armed and its
value is reset to zero, and it
is configured to wait for the
edge transition from the mo-
nostable, which occurs when
the pushbutton is depressed.
When this edge transition
occurs, the counter begins
counting at a 1MHz rate

2. The counter makes a call to
interruptible_sleep_on() , a
kernel function that blocks the
calling process until wake_
up_interruptible() is called

Listing 7 Application process
for interrupt ,
interrupt type serviced
by the driver
ISR. The process or
thread then han-dles
the interrupt, while
the dispatch

Listing 4 CIO-CTR05 device files
crw-r--r-- 1 root root 50, 0 May 18 08:23 /dev/ctr05_DIO
crw-r--r-- 1 root root 50, 0 May 18 08:23 /dev/ctr05_CTR1

� eetindia.com | August 2000 | EE Times-India

http://www.eetindia.co.in

process waits for the
next interrupt. In
practical operation,
this process opens
the appropriate module
device file,
then makes (typically)
an ioctl()or
read()call that
“blocks,” suspending
the caller and allowing
other processes
and threads to run
while the “dispatch”
process waits for the
interrupt.
void waitForInt()
{
unsigned int allData;
printf(“waitForInt():
called,doing ioctl()\n
“);
ioctl(fd_ioctl,WAIT_
FOR_INTERRUPT);
read(fd_read,&allData,1
);
printf(“waitForInt():
Intererupt count =%d \n
“,(allData &0x0000FFFF));
printf(“waitForInt():
Application count=%d
\n “,
((allData
&0xFFFF0000)>>16));

},,

After returning from wake_
up_interruptible() , the ioctl()
call returns to the user’s process,
resuming execution in the user’s
process at the location following
the ioctl() call. Listing 7 shows
the application process that
makes the ioctl() call. This code
fragment executes in the context
of Linux user space.

In the function waitForInt()
, the ioctl() function is called,
which blocks the caller until the
interrupt occurs. Upon return
(interrupt asserted), a read() is
done on the module to get the

current value of the counter. This
integer data contains two fields;
the counter’s value at the time
the interrupt handler executed,
and the value at the time the
read() function was called.

Listing 8 open() on /dev
devices ,
void DoOpenDevices()
{
fd_ioctl =
open(3/dev/ctr05_DIO2,
0666);
if (fd_ioctl
<
1)
{
perror(3can1t open
DIO2);
exit(2);
}
fd_read = open(3/dev/
ctr05_CTR12, 0666);
if (fd_ioctl
<
1)
{
perror(3can1t open
counter2);
exit(2);
}

},,

Listing 9 CIO-CTR05 read()
function ,
static ssize_t ctr05_
read(struct file
*filePtr, char *buf,
size_t count, loff_t
*off)
{
unsigned int allData;
int minor;
WORD data;
struct inode *iNode =
filePtr->f_dentry->d_
inode;
minor = MINOR(iNode-
>i_rdev);
data = read_counter(
minor);

allData = ((data
<
<
16) | intCntValue);
put_user(allData,
(unsigned int *) buf);
return 0;

},,

The file descriptors used for
the ioctl() and read() calls were
acquired from a standard open()
call. Listing 8 shows the applica-
tion code that opened these
descriptors. Listing 9 shows the
read() function as implemented
in the CIO-CTR05 module. Like
the ioctl() and interrupt han-
dler fragments, this fragment
executes in the context of the
Linux kernel.

The function ctr05_read()
p e r f o r m s t h e f o l l o w i n g
functions:

• Reads the current value of the
counter through the func-
tion read_counter(minor).
The minor number is 1 in
this case from the device file
/dev/ctr05_CTR1 , indicating
Counter 1

• Combines the data with the
counter value saved when the
interrupt handler executed

• Copies the data into user pro-
cess space (isolated from ker-
nel and other process space
by the MMU) and returns

It is important to note that this
call does not block, and returns
immediately to the calling ap-
plication process after transfer-
ring the data into the user buffer
identified as buf .

Interrupt characterisation
The test fixture presented in this
article provides for basic char-
acterisation of response times
within Linux. The examples were
tested on a 100MHz Pentium pro-
cessor with 80MB of RAM. Table 1
shows the response times for five
back-to-back interrupts (initiated
through the pushbutton) with no
load on the system. The numbers
represent the number of ticks
from the time the interrupt was
asserted to the processor. The
ticks increment at 1MHz, repre-
senting time in microseconds.

Listing 10 Processor loading
script ,
!/bin/sh
#
Simple Processor
Loading Script
ping -f tbcorp1 &

Table 1 Timing data, no load
Assertion # Count at ISR execution Count from read()

1 10 154
2 9 50

3 9 55

4 8 54

5 9 64

Figure 4: Sequence of events

� eetindia.com | August 2000 | EE Times-India

http://www.eetindia.co.in

while [true]
do
tar cvf tmp.tar /usr;
rm tmp.tar

done,,

Listing 10 shows a simple
shell script that was used to place
a load on the processor.

The command:

ping -f tbcorp1 &

causes the local machine to
ping the machine tbcorp1 as

quickly as the network interface
is able to send and receive pack-
ets. In the test environment, this
causes heavy PCI activity, heavy
interrupt activity, and mild CPU
loading.

The “while” loop tars up /usr
into a file, then removes it, over
and over. The tar command
operates verbose, which causes
a considerable amount of text
information to be sent to the
console. Additionally, the tar
command itself causes lots of disc
activity, which causes interrupts

and heavy traffic on the bus.

Table 2 shows the results of five
back-to-back interrupts through
the test fixture while this load
executed. The lack of consistency
is notable. With some interrupts,
such as Assertion 5, the numbers
are almost as low as when the
tests were run without load. In
other cases, such as Assertion 1,
interrupt latency was not terrible,
but the amount of time before the
application process executed was
lengthy. The worst case measure-
ment is Assertion 3, which shows
long interrupt latency and long
latency to process execution.

These numbers provide some
starting points for analysis. These
were taken using standard Red
Hat Linux, with no real-time
extensions in place. The applica-
tion process was a regular Linux

process vs. a real-time Linux pro-
cess. (Real-time Linux processes
execute at a higher priority than
any other process. Because of
this, interrupt latency is an issue,
whereas latency time in process
execution is not.) Additionally, a
real-time Linux project is under
way which solves interrupt off-
time problems, and has improved
scheduling. Regardless of what
version or flavour of Linux you
use, if you have hardware devices
that your application code must
communicate with, and these
devices have interrupts, you
will need to design, implement,
and install a driver module as
discussed in this article.

Email Send inquiry

Table 2 Timing data, system loaded
Assertion # Count at ISR execution Count from read()

1 226 17404
2 624 705
3 21793 47086
4 18 14
5 14 152

� eetindia.com | August 2000 | EE Times-India

http://www.eetindia.co.in/article/email_friend.php3?article_id=8800505101&type=TA&cat_id=1800001&back_url=%2Farticle%2Farticle_content.php3%3Fin_param%3D8800505101_1800001_TA_29537037%26
http://www.eetindia.co.in/inquiry/send_inquiry.php3?article_id=8800505101&type=TA&title=Linux%2C+interrupted&cat_id=1800001
http://www.eetindia.co.in

