
Monitoring Your Devices
with MQTT

The goal of this chapter is to extend the Chronotherm application built in the
previous chapters with a new feature that is capable of publishing the current
collected temperature to a cloud web service. Moreover, we will create a new mobile
monitoring application that shows published data to the users.

In this chapter, we will cover the following topics:

•	 Exploring the Internet of Things
•	 Working with the MQTT protocol
•	 Publishing Chronotherm data to a cloud web service
•	 Building a mobile app to read remote data

The Internet of Things
As an umbrella term, the Internet of Things (IoT) covers a broad number of applied
domains, protocols, and applications that are related to the interconnection of embedded
and smart objects. However, the IoT isn't just a set of technologies. We can see it as a
vision in which the Internet extends itself into the real world, with the capability to
control physical devices from the virtual world. Moreover, this grants users to query
interconnected devices in a short time, obtaining useful information about their
status and actions they're carrying out. This step is really important because it makes
the real world observable through applications.

Monitoring Your Devices with MQTT

[2]

We may consider this the evolution of the Internet, which is grounded in the belief
that in the foreseeable future, the number of connected devices will continue to grow
thanks	to	the	advances	in	engineering	and	microelectronics	fields.	Indeed,	because	
these kinds of devices become smaller, cheaper, and with less energy consumption,
they are already integrated in many everyday objects.

Imagine an alarm clock capable of sending a message to other home-connected
devices to alert them when we wake up. Maybe the Web Radio application we
built in Chapter 5, Managing Interactions with Physical Components, can switch on
automatically after a few minutes and start playing our favorite songs. Perhaps the
Chronotherm	we	finished	building	in	Chapter 8, Adding Network Capabilities, can send
the home temperature to our microwave oven, so it will change how hot to make our
cup of tea. These improvements are just examples of what we will obtain if smart
objects start to communicate with each other.

The MQTT protocol
We have many ways to interconnect our prototypes with other devices using private
or public networks, such as the Internet. Whatever the communication channel,
embedded	and	small	devices	need	a	well-defined	lightweight	protocol	with	a	small	
code	footprint,	bandwidth-efficient,	and	with	little	battery	consumption.	There	are	
many protocols capable of achieving the preceding requirements, but one of the
most widespread at the moment is the Message Queue Telemetry Transport
(MQTT) protocol.

This protocol uses the publish/subscribe paradigm in which the actors that send
messages, called publishers,	don't	connect	directly	to	specific	receivers,	called	
subscribers, but simply characterize their messages into classes without knowing
who the recipients are. Indeed, an MQTT message includes a topic	name	that	defines	
the message type, and this is used to distinguish this message among messages of
different types. This implies that the publisher should assign a topic to every sent
message,	while	the	subscriber	defines	its	interest	to	receive	messages	only	for	a	
particular topic.

Conversely to conventional point-to-point protocols, where a client interacts
directly with a server (for example, a web server), the publish/subscribe messaging
pattern makes it possible for two entities to exchange messages without being
necessarily simultaneously online. This characteristic is realized through a third
actor, called a message broker, with the responsibility to receive and dispatch
messages between actors.

Chapter 9

[3]

The broker could be a server, with or without authentication, that keeps track of
the registered devices. Every time a new device registers itself with a broker, a TCP
connection is kept alive until the subscriber or the publisher decides to disconnect.
During message delivery, the broker plays an important role to push messages to
all the subscribers that are interested in a particular message topic. The use of the
MQTT protocol on our Chronotherm results in the following interaction schema that
explains how messages are delivered between registered actors:

The Chronotherm, the laptop, and the mobile device register themselves with the
MQTT	broker,	declaring	their	unique	identifiers.	The	laptop	and	the	mobile	devices	
should provide their interest to listen to a particular topic that should be the same
used by the Chronotherm application during the publishing phase. The message
topic is a simple string that could have more hierarchy levels separated with a slash.
This means if we want to publish the temperature of our living room, we can use
a topic like this: /home/living-room/temperature. The hierarchy becomes really
relevant when we subscribe our devices to more topics. If we suppose that we have
another sensor in our kitchen, we will have a publisher that sends messages to the
topic like this: /home/kitchen/temperature. In this case, if another device needs to
subscribe to all temperature messages regardless of the location, we can subscribe it
to multiple topics using a wildcard. MQTT provides two different wildcards:

•	 The + operator is a single-level wildcard that allows arbitrary values for one
hierarchy. With the preceding example, the /home/+/temperature topic will
subscribe to all temperature updates, both for the kitchen and for the living
room.

Monitoring Your Devices with MQTT

[4]

•	 The # operator is a multilevel wildcard that allows subscribing to all the
underlying levels. With the preceding example, the /home/# topic will
subscribe to any topic that begins with the /home string.

In our case, the laptop and the mobile device must subscribe to the /home/living-
room/temperature topic in order to receive temperature updates. Every time the
Chronotherm detects a new temperature, it will publish the temperature to the
broker with the living room topic so that it can push the published message to all the
subscribed devices.

This	architecture	enables	highly	scalable	and	flexible	solutions	because	the	
publishers and the subscribers are decoupled, and the ones that consume data are
not directly related to the ones that produce data.

Preparing the cloud broker
The	first	step	to	let	the	Chronotherm	prototype	publish	collected	data	through	MQTT	
is	to	prepare	and	configure	a	message	broker	capable	of	managing	our	device's	
registrations and the publishing/subscribing phases. According to our needs, we can
choose to prepare the message broker in a private network or in a public one such
as the Internet. Whatever the performance and the network reliability that we need,
we have at our disposal many open source projects that provides the MQTT protocol
out of the box. If we want to manage a broker by ourselves, we can use Mosquitto,
which is an open source project with full support for the MQTT protocol. You can
find	more	information	about	the	project	at	http://mosquitto.org/.

Anyhow,	configuring	a	local	server	is	not	a	simple	task.	Even	if	we	are	tempted	to	
create our local broker in a self-hosted solution, we should take into account the
drawbacks	and	implications	of	proceeding	with	this	configuration.	The	installation	
of	Mosquitto	in	a	Windows	or	a	Linux	server	operating	system	is	greatly	simplified	
nowadays, but keeping the system working requires other important tasks. If we
want to access our broker when we aren't at home, our server should be reachable
from	the	Internet	using	a	proper	configuration	of	our	network	together	with	a	valid	
DNS entry. Furthermore, exposing a service to a public network could imply many
security	issues	that	require,	for	instance,	a	proper	firewall	configuration	while	
mitigating any other threats caused by malicious users.

Many of the preceding issues can be resolved using a cloud Virtual Private Server
(VPS)	that	simplifies	the	infrastructure	layer	of	exposed	services.	Unfortunately,	
this approach will not mitigate all security concerns and still requires many system
administration tasks to keep the software up to date while handling eventual
incompatibilities caused by major releases of installed packages.

Chapter 9

[5]

Whenever we're building our prototypes, to keep things simpler, it is always a good
idea to delegate responsibilities and issues management to other services available
on the Internet. For these reasons, and for the purpose of this chapter, we discard the
idea of using a private broker in favor of a cloud-hosted solution; in our case, we will
use the CloudMQTT web service.

The use of the CloudMQTT service is recommended for the purpose of
this chapter because it's easy to use and it offers a free-tier that is good
for the Chronotherm prototype. For your next project, you can freely
choose any other cloud service or you can start using Mosquitto or
any other open source projects to implement your own broker.

To	begin	the	broker	configuration,	we	have	to	register	to	the	CloudMQTT	service	
with the following steps:

1. Go to the service website http://www.cloudmqtt.com.
2. Select Control Panel, and in the Sign up form, write your e-mail before

clicking on the Sign up button.
3. After	a	few	minutes,	you	will	receive	the	CloudMQTT	service	confirmation	

e-mail in your mailbox. Be sure to open the right e-mail and click on the
confirmation link from your e-mail client.

4. You will be redirected to the Create an account form that you should compile
with your own data.

Because we're going to use the available free-tier, the registration
process will not require any sensitive information, such as your
credit card details.

5. After	the	registration	process	is	finished,	we	will	be	redirected	to	the	
CloudMQTT Instances screen, which lists all MQTT instances related to our
projects. There, click on the Create button.

6. In the Create new CloudMQTT Instance form, write Chronotherm in the
Name	field	and	select	the	Data center nearest to your location. In the Plan
field,	be	sure	to	select	the	Cute Cat plan, which is the free-tier version of the
service.	When	you've	finished,	click	on	the	Create button.

7. After the creation process, we will be redirected back to the instances list,
but	this	time,	we	should	find	the	Chronotherm instance. To get the access
parameters, click on the Details button.

Monitoring Your Devices with MQTT

[6]

There,	we	will	find	all	the	information	needed	to	let	our	publishers	and	subscribers	
connect to our broker. In particular, the values that we have to bear in mind are
the Username and the Password because CloudMQTT uses basic authentication to
provide access to their services. If you're going to use this service for your projects,
remember to keep these values safe. The following screenshot is an example of a
Chronotherm broker created with the CloudMQTT service:

Publishing Chronotherm data
With a working broker ready to accept connections, we can proceed with the
Chronotherm physical application and start publishing the collected temperatures.
This part consists of two main tasks:

•	 Implementing an abstraction to use the MQTT protocol
•	 Changing the DataReader class so that it will publish the temperature

updates periodically

The	first	task	could	be	easily	achieved	if	we	make	use	of	a	third-party	library	that	
implements	the	MQTT	flow.	For	the	scope	of	this	chapter,	we're	going	to	use	the	
Paho library, which is one of the most used open source client implementations for
the MQTT protocol. In our case, we declare the Paho dependency in the Gradle build
system, so the library classes will be available in the whole application.

One of the most interesting characteristics of the Paho library is that
it has many implementations for different programming languages.
Indeed, it's available in C, C++, Java, JavaScript, Python, Go, and C#. An
Android Service utility is also available, but we will use the plain Java
implementation to better understand how the MQTT protocol works.

Chapter 9

[7]

To add Paho to our dependencies, perform the following steps:

1. In the /build.gradle	file,	add	the	Eclipse	Maven	repository	inside	the	
repositories parameter of the allprojects property:
allprojects {
 repositories {
 jcenter()
 maven { url
 'https://repo.eclipse.org/content/repositories/paho-
 releases/' }
 }
}

2. In the /app/build.gradle	file,	add	the	Paho	dependency:
dependencies {
 compile fileTree(dir: 'libs', include: ['*.jar'])
 compile 'com.android.support:appcompat-v7:21.0.3'
 compile
 'org.eclipse.paho:org.eclipse.paho.client.mqttv3:1.0.1'
 compile 'me.palazzetti:adktoolkit:0.3.0'
}

3. Click on the Sync now button.

The next step is to create an abstraction for the Paho library, so we can easily
reuse the initialization code later. To begin the implementation of this utility class,
create a new package called mqtt in your namespace and add a new class named
MqttConnector. This class should contain all connection settings, as you can see in
the following code:

public class MqttConnector {
 private final static String BROKER_URL =
 "tcp://m20.cloudmqtt.com:12483";
 private static final String USERNAME = "abcdefgh";
 private static final String PASSWORD = "aB1CDEfGHiLM";
 private MqttConnectOptions mOptions;
 private MqttClient mClient;
 private String mTopic;
}

We set the BROKER_URL variable, according to the CloudMQTT parameters, using a
TCP connection with the port at the end of the string. We also declare the instance
credentials USERNAME and PASSWORD together with the mOptions, mClient, and
mTopic	parameters,	which	define	the	connection	options,	the	MqttClient instance
used to communicate with the broker, and the topic that will be used during the
publishing and subscribing phases.

Monitoring Your Devices with MQTT

[8]

We	proceed	with	the	class	constructor	that	should	be	defined	as	follows:

public MqttConnector(String clientId) throws MqttException {
 mOptions = new MqttConnectOptions();
 mOptions.setCleanSession(true);
 mOptions.setUserName(USERNAME);
 mOptions.setPassword(PASSWORD.toCharArray());
 MemoryPersistence persistence = new MemoryPersistence();
 mClient = new MqttClient(BROKER_URL, clientId, persistence);
}

We	expect	as	an	argument	a	unique	identifier	that	will	be	used	by	the	broker	
to	recognize	this	device	from	the	connection	pool.	We	proceed	by	defining	the	
connection	options	that	are	related	to	the	basic	authentication.	The	clean	session	flag	
is	used	during	the	connection	establishment	and	defines	how	the	broker	treats	the	
session with our client. It works as follows:

•	 If	the	flag	is	set	to	False, the system should persist the subscriptions between
sessions and the device doesn't have any need to resubscribe to the chosen
topics again during a reconnection

•	 If	the	flag	is	set	to	True, the client will have to resubscribe to the interested
topics every time they reconnect

For	the	purpose	of	our	application,	we	set	the	flag	to	True, avoiding the session
persistence in the broker. In the last part, we declare the persistence mechanism
used in the MqttClient instance to store the current session and MQTT messages
that	are	sent	or	received	to	avoid	duplicates.	Using	a	file	to	achieve	message	
persistency is a common approach followed by many applications that use the Paho
library. However, to keep our application simple but less reliable, we will use a
MemoryPersistence object.

Now, we should provide the following proxy methods to connect and disconnect
from the broker. At the end of the class, add the following methods:

public void connect() throws MqttException {
 mClient.connect(mOptions);
}

public void disconnect() throws MqttException {
 mClient.disconnect();
}

Chapter 9

[9]

In the connect() method, we have to be sure to use the mOptions object, otherwise
the CloudMQTT instance will deny access for missing credentials. We also need two
utilities	that	define	the	topic	we're	using	during	the	publishing	or	the	subscribing	
calls,	and	to	define	the	MqttCallback interface called by the Paho library when
our device receives a message from the broker. At the bottom of the class, add the
following utility methods:

public void setTopic(String topic) {
 mTopic = topic;
}

public void setCallback(MqttCallback callback) {
 mClient.setCallback(callback);
}

The use of the setTopic() method is only to simplify the usage
of our Paho wrapper. In real-world applications, you can publish
and subscribe to different topics using the same connection. Indeed,
your	device	could	subscribe	to	five	different	topics,	and	in	the	same	
instance, it could publish some computed values to other topics.

Now	we	should	put	the	two	missing	parts	into	the	class.	The	first	one	is	the	
publish() method that can be implemented with the following code:

public void publish(byte[] message) throws MqttException {
 MqttMessage mqttMessage = new MqttMessage();
 mqttMessage.setPayload(message);
 mqttMessage.setQos(0);
 mClient.publish(mTopic, mqttMessage);
}

Because the message payload is just a sequence of bytes, we expect a message
instance represented by an array of bytes. We initialize a new MqttMessage object
with the message payload and then publish the message to the broker using the
chosen mTopic variable. One of the most important features related to MQTT is the
capability to set the Quality of Service (QoS) on a per-message basis. Through this,
we can choose between three different types of message deliveries:

•	 The value 0 indicates that the message must be delivered at most once. The
message isn't persisted and will not be acknowledged across the network.
This is the fastest but least reliable QoS because it's possible that the message
isn't delivered due to a network error.

•	 The value 1 indicates that the message must be delivered at least once. The
message is persisted in the device and it will be acknowledged across the
network. This is the default QoS.

Monitoring Your Devices with MQTT

[10]

Under	some	circumstances	related	to	an	unreliable	network,	the	publisher	
could send duplicates to the broker multiple times. This occurs when
the connection drops after the broker sends back a PUBACK message to
the publisher stating that the message is received but before the client
receives it. In this case, the publisher will resend the message again after
the reconnection, and the broker will treat it as a new flow sending out
a duplicate. When we choose QoS 1 for our messages, we should always
bear in mind that this case could happen.

•	 The value 2 indicates that the message must be delivered exactly once.
The message is persisted in the device and it will be subject to a two-phase
acknowledgement across the network. This is the most reliable QoS but waits
for the two-phase acknowledgement with the broker.

Because we don't use any persistence mechanism and we don't need a high
reliability, we use the fastest but less reliable QoS. The last step to conclude the class
implementation is to add the subscribe() method for a chosen topic with the
following code:

public void subscribe() throws MqttException {
 mClient.subscribe(mTopic);
}

This concludes the MqttConnector class implementation, and now we can proceed
with	adding	the	MQTT	flow	to	our	Chronotherm	application.

We've implemented the MqttConnector class to provide an easy-to-read
class that shows how the Paho library works. In your next prototypes, you
could avoid creating this layer and use the library directly from your code.

Now we can proceed with publishing the collected temperatures while using the
MqttConnector class in the DataReader class. Our approach is to open the MQTT
broker connection just before the startup of our SensorThread() method so that it
can start sending detected temperatures after the value has been retrieved through
the ADK. We will close the broker connection after we shut down all schedulers.

Chapter 9

[11]

To achieve this implementation, we should update our code through the
following steps:

1. At the top of the DataReader class, add the highlighted declaration:
private AdkManager mAdkManager;
private MqttConnector mMqttClient;
private Context mContext;

2. In the start() method of the class, before the scheduler's initialization,
add the client connection with the broker that will identify this device as
a Chronotherm, while setting up the publishing topic for our hypothetical
living room:
public void start() {
 try {
 mMqttClient = new MqttConnector("chronotherm");
 mMqttClient.setTopic("/home/living-room/temperature");
 mMqttClient.connect();
 }
 catch (MqttException e) {
 // manage connection errors
 }
 // Start thread that listens to ADK
 // ...
}

3. Handle the disconnection in the stop() method, when the MQTT broker
connection is no longer required:
public void stop() {
 mSchedulerSensor.shutdown();
 mSchedulerWeather.shutdown();
 try {
 mMqttClient.disconnect();
 }
 catch (MqttException e) {
 // manage exceptions
 }
}

Monitoring Your Devices with MQTT

[12]

4. Inside the SensorThread run() method, add the highlighted code to publish
the detected temperature to our broker:
@Override
public void run() {
 Message message;
 // Reads from ADK and check boiler status
 AdkMessage response = mAdkManager.read();
 float temperature = response.getFloat();
 boolean status = isBelowSetpoint(temperature);
 try {
 mMqttClient.publish(response.getBytes());
 }
 catch (MqttException e) {
 // manage exceptions
 }
 // Updates temperature back to the main thread
 // ...
}

With this last step, we can update the physical application version to 0.4.0 in the /
app/build.gradle	file	and	upload	the	Chronotherm	application	to	start	publishing	
detected temperatures to the CloudMQTT broker.

Writing a mobile app to read published
data
Now that we have a Chronotherm application that publishes data to our cloud
broker, we can proceed with writing a mobile Android application that reads the
detected temperature published by the Chronotherm. To begin the implementation
of a simple monitoring system, we need to start a new Android project with the
following steps:

1. From Android Studio, select File and then New Project.
2. In the Application name option, choose ChronothermSub.
3. When you have to choose the current SDK, select a valid SDK for your

owned Android mobile device. If you don't own an Android device or if you
want to use the built-in Android emulator, choose the API level 19 option.

Chapter 9

[13]

If you don't own an Android device or you don't want to use it, you
can find more information about how to use the Android emulator
at http://developer.android.com/tools/devices/
emulator.html.

4. When you need to choose the activity type, select Blank Activity.
5. In the Activity name option, choose Subscriber and click on Finish.

Before we begin to work on the application layout, we should add to the
AndroidManifest.xml	file.	Just	before	the	<application> tag, add the following
permission to use the Internet in our application:

<uses-permission android:name="android.permission.INTERNET" />

We can now proceed with changing the default layout to realize an activity that
should provide all details regarding the current detected temperature in our living
room. All the required components can be summarized in the following mock-up
that	defines	in	which	order	the	elements	will	be	created:

According to the preceding layout, we should:

1. Create a background frame with a different color to provide a block in which
we can put the title of our application.

2. Add the title of this application at the top of the layout.
3. Provide the list of all the connected devices indicating the name where

they are located. In our case, we will only add one entry that indicates the
detected temperature for our living room. The degree value will be updated
using	the	MQTT	broker	connection	through	the	same	topic	defined	in	the	
Chronotherm application.

Monitoring Your Devices with MQTT

[14]

Keeping in mind this layout design, we can proceed with replacing the standard
theme with the following steps:

1. In the res/values/dimens.xml	resource	file,	add	the	following	definitions:
<resources>
 <dimen name="activity_frame_height">80dp</dimen>
 <dimen name="list_margins">16dp</dimen>
 <dimen name="title_size">30sp</dimen>
 <dimen name="body_size">20sp</dimen>
</resources>

2. In the res/values/styles.xml	resource	file,	add	the	following	colors:
<resources>
 <color name="picton_blue">#33B5E5</color>
 <color name="white">#FFFFFF</color>
 <style name="AppTheme"
 parent="Theme.AppCompat.Light.DarkActionBar">
 </style>
</resources>

3. In the res/layout/activity_subscriber.xml	file,	replace	the	default	
LinearLayout view with the following:
<LinearLayout
xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:tools="http://schemas.android.com/tools"
 android:orientation="vertical"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 tools:context=".Subscriber">
</LinearLayout>

4. Create a FrameLayout view nested in the root LinearLayout:
<FrameLayout
 android:layout_width="match_parent"
 android:layout_height="@dimen/activity_frame_height"
 android:background="@color/picton_blue">

 <TextView
 android:text="Home monitor"
 android:gravity="center"
 android:textColor="@color/white"
 android:textSize="@dimen/title_size"
 android:layout_width="match_parent"
 android:layout_height="match_parent" />
</FrameLayout>

Chapter 9

[15]

5. Create a new LinearLayout nested in the root LinearLayout that will
contain all the connected physical devices:
<LinearLayout
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:paddingLeft="@dimen/list_margins"
 android:paddingRight="@dimen/list_margins"
 android:paddingTop="@dimen/list_margins"
 android:paddingBottom="@dimen/list_margins">
</LinearLayout>

6. In the preceding LinearLayout, add the following views that show our
living room temperature:
<TextView
 android:text="Living room (°C): "
 android:textSize="@dimen/body_size"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content" />

<TextView
 android:id="@+id/living_room"
 android:text="0.0"
 android:textSize="@dimen/body_size"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content" />

According	to	the	previously	defined	styles,	the	following	is	the	expected	layout:

Monitoring Your Devices with MQTT

[16]

Subscribing to the Chronotherm topic
Now that we have a proper layout, we should start writing the code to register the
mobile application with our broker subscribing it to the temperature topic. Like we
did for the Chronotherm prototype in this chapter, we should add the Paho library
dependency through the following reminders:

1. In the /build.gradle	file,	add	the	Eclipse	Maven	repository.
2. In the /app/build.gradle	file,	add	the	Paho	dependency.
3. Click on the Sync now button.

Then, we should import the MqttConnector class we wrote for the Chronotherm
physical application so that we can reuse its code in the subscriber. To achieve this
step, create the mqtt package in your application namespace and copy and paste
the MqttConnector.java	file	from	the	Chronotherm	application	to	the	mobile	
application.

Like we did in the Chronotherm application, we should provide a different thread
that connects with the broker and listens to the incoming messages. We can achieve
this by creating an AsyncTask thread that will use the MqttConnector class.
However, when we subscribe the application to a particular topic, we should provide
a proper class instance that implements the MqttCallback interface, used when a
new message is received. For this purpose, we add this interface to our Subscriber
class through the highlighted code:

public class Subscriber extends ActionBarActivity implements
MqttCallback {
 private TextView mLivingRoom;
 private Handler mHandler;
 // ...
}

In	this	part,	we're	defining	an	mHandler object that we will use to dispatch the
message	from	the	background	thread	to	the	main	UI	thread.	During	the	activity	
creation, we can get the reference for the mLivingRoom TextView, providing the
implementation for the mHandler object at the same time. In the onCreate()
activity callback, add the highlighted code:

setContentView(R.layout.activity_subscriber);
mLivingRoom = (TextView) findViewById(R.id.living_room);
mHandler = new Handler(Looper.getMainLooper()) {
 @Override
 public void handleMessage(Message msg) {
 mLivingRoom.setText(msg.obj.toString());
 }
};

Chapter 9

[17]

When the mHandler object receives a new message from the background thread, we
will change the mLivingRoom text using the received Message object.

The Message object should not be confused with the MqttMessage
object that we will use next. The Handler and the Message classes
are part of the Android system's framework for managing threads and
are not related to the MQTT protocol. If you need more information
about	how	to	communicate	with	the	UI	thread,	you	can	find	the	official	
Android documentation at https://developer.android.com/
training/multiple-threads/communicate-ui.html.

To implement the MqttCallback interface, we should override the following
listed methods:

@Override
public void messageArrived(String topic, MqttMessage mqttMessage)
{
 Message message = mHandler.obtainMessage(0, mqttMessage);
 message.sendToTarget();
}

@Override
public void connectionLost(Throwable throwable) {
 Toast.makeText(this, "Connection lost with the broker",
 Toast.LENGTH_SHORT);
}

@Override
public void deliveryComplete(IMqttDeliveryToken token) {
 // noop
}

The messageArrived() method is called when we receive a new message and it
provides the received MQTT message with its topic. In our case, we should create
a Message object to dispatch the mqttMessage instance to the main thread. The
connectionLost() and the deliveryComplete() callbacks are called, respectively,
to manage any disconnections with the broker, and to manage all acknowledgments
received during network delivery, according to the chosen QoS.

Monitoring Your Devices with MQTT

[18]

The last step to complete our application is to create the AsyncTask class to
receive messages from the cloud broker. To achieve this missing part, perform
the following steps:

1. In the mqtt package, create the MqttReceiver class.
2. In the MqttReceiver class, add the highlighted code to extend the

AsyncTask class:
public class MqttReceiver extends AsyncTask<Void, Void, Void> {
 private Subscriber mCaller;
}

3. Add the following class constructor that stores the Subscriber activity
reference:
public MqttReceiver(Subscriber caller) {
 this.mCaller = caller;
}

4. Implement the following doInBackground() method:
@Override
protected Void doInBackground(Void... params) {
 try {
 MqttConnector client = new MqttConnector("receiver");
 client.setTopic("/home/living-room/temperature");
 client.connect();
 client.setCallback(mCaller);
 client.subscribe();
 }
 catch (MqttException e) {
 // manage connection errors
 }
 return null;
}

When the AsyncTask class is executed, we initialize the MqttConnector class
using the receiver	unique	identifier.	We	set	the	same	topic	name	used	in	the	
Chronotherm application, after which we connect to the broker. As last steps,
we set the MqttCallback parameter using the caller activity and then we
subscribe the device with the chosen topic.

Chapter 9

[19]

Now that our AsyncTask class is ready to receive MQTT messages, we should start
the background thread when the activity runs. In the Subscriber class, add the
following activity callback:

@Override
protected void onResume() {
 super.onResume();
 new MqttReceiver(this).execute();
}

If	two	devices	with	the	same	identifier	connect	to	the	broker,	the	last	
connected device will grab the connection, disconnecting the others.
Because we're reading MQTT messages through the MqttReceiver
thread, if multiple threads run together, only the last one will receive
the	proper	notifications	while	the	others	will	terminate	their	execution.

After	we've	finished	this	missing	part,	we	can	upload	this	application	to	our	Android	
smartphone or emulator, and if the Chronotherm and the mobile application are
connected to the Internet, we will see temperature updates from our mobile device.

Summary
In this chapter, we explored the world of the Internet of Things, in which physical
devices communicate with each other providing useful information to users and
a new kind of interaction when they aren't at home. We took a look at the MQTT
protocol, which is one of the most used protocols to exchange messages between
devices. Before starting the implementation of the protocol, we registered with a
cloud broker, compatible with MQTT, that provides basic authentication for our
clients out of the box.

Then, we used the Paho library as our MQTT implementation, and after a
little exploration of its powerful APIs, we added the MQTT capabilities to our
Chronotherm, while publishing temperature updates to subscribed devices. To
provide a simple monitoring system for our users, we built a new standalone mobile
application that is subscribed to the Chronotherm updates.

Now	that	we	have	accurately	designed	our	first	IoT	device,	we	may	start	thinking	
about our next prototype and how it can play a part in a larger ecosystem of devices.
An important step that we should take in account when we want to expose a feature
through a physical device and the MQTT protocol, is to provide a documentation for
our published data and topics. This approach will grant other developers the capability
to write their third-party applications or prototypes around your idea, and this could
be the key factor for the success of your devices.

