INTRODUCTION:

A TYPICAL
EMBEDDED

SYSTEM

It's not always clear what separates ordinary Linux from embedded Linux. This
article takes a look at the parts that make up a typical embedded system, starting
with the bootloader and ending with end-user applications. JOHAN THELIN

The very first step in starting an embedded Linux system
does not involve Linux at all. Instead, the processor is reset
and starts executing code from a given location. This location
contains a bootloader that initializes the device and sets up
the basic necessities. When everything has been prepared, the
Linux kernel is loaded and started. The kernel then initializes
all the devices before mounting the filesystems and starting
the userspace applications.

The Linux kernel and userspace are not merely a simple
blob that is loaded and run. The kernel consists of a system-
specific configuration and usually some tweaked initialization
code. The userspace holds software libraries, data and several
applications, all interacting to form a system. Each of these
components is handpicked for the task and device in question
in order to get a compact and well-performing system.
Figure 1 shows the basic sequence of events.

Bootloader Environment

CPU jumps to Loads and starts

/\ /\

Linux System

Userspace Applications

Hardware

Figure 1. An Embedded Linux System Booting

50 | december 2009 www.linuxjournal.com



THE BOOTLOADER

The bootloader is among the first pieces
of software to run on the system. It basi-
cally has two tasks: initialize the system
and load the kernel. The initialization can
be to set up a UART to be used as a
serial debug console and to configure the
system’s memory controller. For instance,
if your system is using an SDRAM, you
probably will have to set up the controller
with regard to the memory’s physical
features. This includes page sizes, the
number of columns, supported read and
write widths, latencies and so on. In
these days of portable devices, there is
usually a plethora of settings for saving
power when it comes to memory.

In addition to the basic tasks required
by the bootloader, it is typical to provide
some sort of command prompt where
common low-level tasks can be carried
out. These tasks usually include peeking
and poking at random memory addresses,
downloading and storing a Linux kernel
image in Flash and setting bootargs for
the kernel to interpret.

Examples of common bootloaders
for embedded systems are Das U-Boot
and RedBoot. Both support the basic
tasks—meaning they can manage Flash,
networking and serial communication.
They also are available for several
processor platforms, such as x86, ARM,
PowerPC and more. You can add your
own commands to both of them as
well. This makes it possible to debug
custom hardware without involving
Linux, reducing the complexity of the
system during the testing phase.

THE LINUX KERNEL

The kernel itself is not very different from
an ordinary desktop kernel. However,
there are two major differences. First is
the initialization, which often is system-
specific. Second is that you probably
know exactly what hardware will be
used, so you can include all the drivers
as part of the kernel and avoid the
need for modules (unless you have
proprietary drivers, of course).

When starting a desktop or a server
system, the common scenario is that the
kernel probes for hardware and loads
the corresponding drivers as modules.
This makes it possible to add hardware
and still have a working system. You
also can add drivers for new hardware
without having to recompile the entire
kernel. On an embedded system, you

can optimize boot time by including all
drivers in the kernel, but also by hard-
coding parts of the available hardware,
avoiding the need to probe for all
devices and settings.

Returning to the standard PC, each
machine starts and looks about the
same during initialization. In the embed-
ded case, each piece of hardware is
unique, and you generally have to ini-
tialize the custom hardware. This means
you actually will have to write code to
set up your kernel for your board,
which is usually easier than you think.
For starters, lots of boards already are
supported in the Linux kernel, and you
usually can choose one of those as a
starting point. Second, there are drivers
for the most common peripherals, and
again, you typically can find a good
starting point, even when you have to
create something of your own. So, the
process is more or less to study the data

sheets for your board and express what
you learn to the kernel (something that
can be both intimidating and daunting).
Embedded systems often are more
limited than your average computer
when it comes to system resources,
so it is important to keep your kernel’s
footprint small. That, in turn, makes
the kernel configuration stage impor-
tant. By limiting configuration to a
minimum, you can save those extra
bytes needed to fit everything in.

THE C LIBRARY

The standard C library is one of the key
components of any Linux system. It
provides the userspace applications with
a predefined interface, making them
portable across different versions of
the Linux kernel, as well as between
different UNIX dialects. It basically acts
as a bridge between the userspace
applications and the kernel.

www.linuxjournal.com december 2009 | 51



52 | december 2009 www.linuxjournal.com

The version of the C library you
usually find on your desktop machine is
the GNU C library, glibc. It is a full-fledged
C library, and, thus, a very large piece
of software. For embedded systems,

a few smaller alternatives are available:
uClibc, newlib, dietlibc and others.
These libraries try to implement the most
commonly used interfaces in a minimalist
way. This means they are mostly
compatible with glibc, but not fully.

So, what does the C library contain
that can be removed? uClibc, for exam-
ple, skips the database library, limits the
number of authentication methods that
are supported, does not fully implement
locale support, limits the math library
mostly to doubles and leaves out some
encryption functions. In addition, the ker-
nel's structures are used directly whenever
possible. Those and other things
significantly reduce the size of the library.

What does this mean to you as an
embedded developer? Most important,
it means you can save quite a bit of
memory, although you do so at the cost
of compatibility. For instance, the decision
to use the kernel’s structures when appli-
cable means the stat structure is different
from the one used by glibc. You also have
to limit yourself to flat password files and
shared password files, unless you want
to add a third-party library to handle
authentication. More limitations exist,
but generally speaking, most software
compiles happily without patching.

BUSYBOX
When you have a bootloader, a kernel and
a standard library, the next thing on the
wish list usually is @ command prompt.
One of the big stars in the embedded
Linux world is BusyBox. The idea behind
the project is that most standard applica-
tions, such as Is, cd, mkdir, ping and so
on, share a lot of code. Compiling each
program separately means that code
handling things such as command-line
arguments is repeated in each application.
BusyBox solves this problem by providing a
single program, busybox, that can handle
all the tasks provided by all the standard
applications. By creating symbolic links for
all the individual commands and pointing
them to BusyBox, the user can still
enter the expected commands and
get the expected results.

As with everything else in the
embedded world, tuning and tweaking
is important. When it comes to BusyBox,




you can handpick which commands to
include, and for some commands, you
even can handpick which command-line
arguments are supported. If you don't
need a particular command, simply don't
include it in BusyBox. For instance, why
keep ifconfig if you don't have a network?

When building a dynamically linked,
default configured BusyBox on a desk-
top PC, it results in a binary that is just
less than 700KB. This binary represents
more than 200 commands and occupies
more than 6MB of disk space on my
Kubuntu-based system.

ADDING MORE
Once you have all the key components
in place, you can start building and pop-
ulating a root filesystem. This involves
adding BusyBox, device files and expect-
ed directories. You also might want to
add /etc/password and /etc/shadow, init
scripts and so on. All this is necessary,
but to get your device to do something,
you need to add your own applications.
When developing for embedded
devices, you might find yourself in a sys-
tem completely without a graphical inter-
face. This usually means implementing
your functionality as some sort of server.

As more and more devices are networked,
a Web server often takes the place of a
user interface. Because Apache is a large
piece of software, a common solution is
to use a lightweight server, such as Boa,
for configuration and information.

If you happen to have a display, you
likely will want to put graphics on it.
An X sever might sound like a solution,
but the two most common toolkits for
building graphical interfaces, Qt and
GTK+, also support using the frame-
buffer directly—again, saving both
memory and computing resources.

And, that is what engineering
embedded devices is all about: making
the most with as little as possible. Being
able to fit the coolest features into a
small system means bringing an attractive
device, at a good price, to consumers.
Using embedded Linux to do that
means you can get done more quickly,
cheaply and be more hackable than
with a closed-source system.m

Johan Thelin has worked with software development since
1995 and Qt since 2000. Having seen server-side enterprise
software, desktop applications and Web solutions, he now
works as a consultant focusing on embedded systems. He
can be contacted at johan@thelins.se.

Resources

Crosstool: www.kegel.com/crosstool

Das U-Boot: www.denx.de/wiki/U-Boot
RedBoot: www.sourceware.org/redboot
uClibc: www..uclibc.org

newlib: www.sourceware.org/newlib
dietlibc: www.fefe.de/dietlibc

Buildroot: buildroot.uclibc.org

Angstrém Distribution:
www.angstrom-distribution.org

ScratchBox: www.scratchbox.org
BusyBox: www.busybox.net

Boa: www.boa.org

Qt: qt.nokia.com

GTK+: www.gtk.org

GS-Lo8 Fanless Pico-ITX System
Ultra-Compact, Full-Featured Computer

Excellent for Industrial Applications

DISCOVER THE ADVANTAGE OF MINI-ITX.

LOGIC

I SUPPLY

www.logicsupply.com




