
The X Window System has been around for more
than a decade. It’s a tried and tested graphics
interface for Linux desktop computers and other
Unix workstations. Resource usage isn’t a great
concern in that environment, but it has been the
main obstacle to the development of Linux as an
embedded OS for handheld computers (PDAs,
organisers and so on). In these tiny computers every
megabyte saved counts.

In the past few years several toolkits have been
developed to help create applications with more
efficient graphical user interfaces. Many of these are
based on the ”kernel framebuffer device” originally
developed for Linux/M68K. The graphics
subsystems of these platforms (Amiga, Atari,
Macintosh) offer little in the way of hardware
acceleration but share a very similar representation

Fig. 1: One is not enough: the generic console driver
allows several consoles per computer.

KNOWHOW EMBEDDED GRAPHICS

66 LINUX MAGAZINE 3 · 2000

How to use framebuffer devices

SMALL IS
BEAUTIFUL

DENNIS SCHÖN AND BERNHARD KUHN

Linux handhelds have

become all the rage

now that framebuffer

graphics have become

available as an

alternative to the

resource-hungry X

Window System. In this

article we look at how

to use this display

technology.

066framebuffer .qxd 20.10.2000 12:48 Uhr Seite 66

format. It seemed appropriate to produce a generic
graphics driver.

From kernel 2.1.107 on, the framebuffer device
for all platforms (x86, Alpha and so on) is integrated
into the standard kernel. As in Figure 1, the generic
driver for the text console runs as desired on either
the ordinary VGA driver or on the fbcon for the
underlying framebuffer devices (fbdev).

Configuration of the kernel

When using the framebuffer it is advisable to
employ the latest stable kernel. The kernel 2.4.0-
test* is currently experimental. As such, it should
only be used if the kernel 2.2.x has no support for
the desired graphics card. This situation should be
an exception.

The framebuffer device for the VESA-BIOS is
usually found in IBM-compatible PCs. Special drivers
such as those for products from 3dfx, ATI or Matrox
allow for higher resolutions and image repetition
frequencies than the VESA driver.

After downloading, the kernel sources can be
unpacked (while running with root privileges) under
/usr/src and then configured using make
menuconfig or make xconfig.

You must activate the menu item ”Prompt for
development and/or incomplete code/drivers”
under ”Code maturity level options”. If this isn’t
done, the option ”Support for frame buffer
devices” will not appear in the ”Console Drivers”
menu later on.

KNOWHOWEMBEDDED GRAPHICS

3 · 2000 LINUX MAGAZINE 67

In the traditional X-Windows system, the application
communicates with the X Server via the network layer. This then
accesses the graphics hardware in the user-space. In the
framebuffer device, the application accesses the graphics
memory via the device files /dev/fb*.

Advantages of the framebuffer device subsystem
• The framebuffer is an powerful and efficient alternative to the X-

Server;
• Many graphics cards are switched into graphics mode by firmware

and therefore provide no hardware text mode. For such graphics
cards, framebuffer-type drivers would nevertheless be necessary;

• The framebuffer allows very flexible use of the graphics card. It
offers various resolutions, refresh rates, colour depths and type
sizes, either with X-Windows (XF68_FBDev) or on the console. The
console can be run at a resolution of 1600x1200 at 90 Hz (200x150
text lines) with powerful enough hardware. Even at 1024x768 / 75
Hz, economy is noticeably increased compared to standard VGA
(normally used with 640x480 pixels at 60 Hz).

• With the framebuffer there is no limit for the console on the
number of symbols in a line of text.

• There isn’t a dedicated X-Server in existence for a framebuffer card.
However, the device does have VESA-BIOS (established in the PC
environment for about five years). With the aid of the framebuffer
X-Server (or the corresponding XFree86-4.0 driver module) an X-
Window system can be used.

• A kernel equipped with a framebuffer can display a ”tux” or other
logo (in multiprocessor machines) in the top part of the screen
during the boot procedure, instead of a plain black screen.

• The framebuffer architecture is very simple. An experienced
programmer can implement a new driver in a single afternoon.

Framebuffer vs. X Server

X-Server: flexible but complex. It’s simpler with a
framebuffer device

Table 1: List of graphics chipsets supported.
Graphics cards chipset Kernel Kernel

2.2.16 2.4.0-test1
VGA 16 X X
VESA 2.0 compatible X X
Permedia2 X X
Matrox X X
ATI Mach64 X X
nVidia Riva X
Cirrus Logic GD542x/543x X
ATI Rage128 X
SiS630/540 X

Fig. 2: Economical
with resources: this
static linked
framebuffer version
of a Tetris clone is
just 11Kb.

066framebuffer .qxd 20.10.2000 12:48 Uhr Seite 67

The following options must be activated:

[*] VGA text console
[*] Video mode selection support
....
[*] Support for frame buffer devices

Extended options will follow. Apart from the driver
for the graphics card (such as VESA 2.0, ATI
Mach64, 3Dfx Banshee/Voodoo3) the following
options can still be activated:

[*] Advanced low level driver options
....
8 bpp packed pixels support
16 bpp packed pixels support
24 bpp packed pixels support
32 bpp packed pixels support
....
[*] Select compiled-in fonts
....
[*] VGA 8x16 font

Using ”x bpp packed pixel support”, select the
possible colour depths with which the framebuffer
device can be operated. Under ”Select compiled-in
fonts” you can choose the fonts for the console.
Activating more than one font makes it possible

later on to select which one should be used for the
console as a boot parameter.

Configuring the bootloader

Depending on the bootloader used, the files
/etc/lilo.conf for lilo or /boot/grub/menu.lst for grub
can be modified – once the kernel has been
compiled and the module installed. This must be
done in order to activate the framebuffer device at
the next reboot. Here are two examples:

LILO configuration file
boot = /dev/hda3
Linux bootable partition config begins
image = /vmlinuz
append = "video=atyfb:1024x768-8@76,font:SUU
N8x16"
root = /dev/hda3
label = Linux
read-only
GRUB configuration file
For booting Linux
title GNU/Linux (experimental 2.4.0-test1 "U
1024x768@76")
kernel (hd0,0)/vmlinuz video=atyfb:1024x768-U
8@76,font:SUN8x16
root=/dev/sda1

KNOWHOW EMBEDDED GRAPHICS

68 LINUX MAGAZINE 3 · 2000

One of the main applications for the framebuffer, apart from the
graphical console is the X Server XF68_FBDev. It’s name doesn’t
mean that this is a number cruncher – this X-server was originally
developed for platforms with Motorola 68000 processors.
XFree86 from version 4.0 on gives the driver module fbdev_drv.o
of the generic X-server direct access to the graphics hardware. But
now every current distribution includes the framebuffer server in
pre-compiled form. After installing the software package for the
respective distribution or compiling and installing the source
package (only advisable in exceptional cases) a few small
alterations have to be made to the configuration file for the X
server (version 3.x) (/etc/X11/XF86Config or /etc/XF86Config). The
”Screen” section might look like this:

Section "Screen"
Driver "FBDev"
device "Primary Card"
Monitor "Primary Monitor"
SubSection "Display"
Modes "default"

EndSubSection
EndSection

In XFree86 4.0 and later versions, only the driver module
fbdev_drv.o has to be taken into account:

Section "device"
Identifier "3dfx"
Driver "fbdev"

EndSection

Section "Screen"
Identifier "Screen 1"
device "3dfx"
...

EndSection

With these configurations the X-server starts in the
resolution at which the framebuffer has been most recently
set (either by boot parameter or with the command line
fbset). Resolutions can also be specified in the XF86Config
file. This makes it possible to modify the resolution of the X
server at run time. Unfortunately the timing values of the
video mode have to be specified in a different format than in
the normal XF86Config.

There are two ways to find out the correct values:
Either convert the existing XF86Config values into the new
framebuffer values. This can be performed using the formulas
given in /usr/src/linux/Documentation/fb/framebuffer.txt Section
6. ”Converting XFree86 timing values in frame buffer device
timings”, or by switching to the resolution desired for X-
Windows using the command fbdev and the observing the
timing values displayed when you run fbset -x.

fbset -x

Mode "1024x768"
D: 84.991 MHz, H: 62.493 kHz, V: 75.933 Hz
DotClock 84.992
HTimings 1024 1032 1152 1360
VTimings 768 784 787 823
Flags "-HSync" "-VSync" # Warning: XFree86 doesn’t sU

upport
accel
EndMode

This mode specification can now be used easily by means of
copy and paste in the ”Monitor” section” of XF86Config. Apart
from this the XF68FBDev server can be used like any other: using
the ”virtual” keyword, a virtual resolution can be set.

Configuration of the X Server XF68_FBDev

066framebuffer .qxd 20.10.2000 12:48 Uhr Seite 68

The meaning of the kernel parameter ”video”
should be self-explanatory. The ATI driver should
be loaded at a resolution of 1024x768 pixels with
a colour depth of 8 bits per pixel and a refresh
rate of 76 Hz. The font compiled into the kernel is
SUN 8x16.

Depending on the graphics card driver the
kernel parameter may be omitted or look
completely different. The VESA-BIOS and the
Matrox driver, for example, have to be given a VESA
mode number (such as append =
”video=matrox:vesa:440”).

More details on these drivers can be found in
the directory /usr/src/linux/Documentation/fb/. This
is also where special options for the drivers are
explained (for example ypan and ywrap to increase
scroll rate).

Until now almost every framebuffer driver has
used its own video modes. A good way of avoiding
this chaotic waste of resources can be found in the
recent kernel series 2.4. Here, the drivers for Amiga
(ami), ATI Mach64 (atyfb), ATI Rage128 (aty128fb)
and Voodoo3 (tdfx) all share a single video mode
database (modedb). The following self-explanatory
format specifies a valid video mode:

"video=<driver>:<xres>x<yres>[-<bpp>][@<reU
fresh>]"

Other configuration

If no device files have yet been created in the /dev
directory for the framebuffer devices this must be
done by hand:

for i in 0 1 2 3 4 5 6 7; do
mknod /dev/fb$i c 29 $[$i * 32]
done

A restart a message, similar to the one below,
should appear during the boot procedure:

atyfb: 3D RAGE PRO (BGA, AGP) [0x4742 rev 0xU
7c] 8M SGRAM, 14.31818 MHz
XTAL,
230 MHz PLL, 100 MHz MCLK
Console: switching to colour frame buffer deU
vice 128x48
fb0: ATY Mach64 frame buffer device on PCI

The graphics card immediately switches to graphics
mode. The tux logo should appear during the
operating system boot-up.

Troubleshooting

If problems arise, the first thing to do is to consult
the documentation under
/usr/src/linux/Documentation/fb/. The texts on the
various drivers used (aty128fb, tdfx, …) are
particularly good sources of information.

Another good place to start if there are
problems is the Linux framebuffer project
homepage (listed below). Here you’ll find a link to

the Linux framebuffer HOWTO (which
unfortunately has not been updated for a year).
There is also a mailing list, which can be found at
linux-fbdev@vu.union.edu. There can be many
different problems. Typical approaches to solutions
are listed below:

• If the framebuffer does not start (Error messages
in the boot procedure!) the wrong driver has
probably been compiled or the card is not yet
supported. It may be that the ESA-BIOS-
framebuffer or the experimental kernel (2.4.0-
text*) should be tried.

• If the framebuffer does start, but does not switch
to the specified mode, all the options which are
not vital (ypan, ywrap, font) should be
deactivated and then a lower-resolution mode
(for example 800x600) tried.

KNOWHOWEMBEDDED GRAPHICS

3 · 2000 LINUX MAGAZINE 69

Fig. 3: Microwindows is
delighted by the ever-growing
popularity of Linux handhelds.
Apart from alpha blending it
also controls TrueType fonts
with anti-aliasing.

066framebuffer .qxd 20.10.2000 12:48 Uhr Seite 69

Tools and applications

The fbset program by Geert Uytterhoeven makes it
possible to alter the resolution of the framebuffer
during operation. It manages its own database of
video modes (in /etc/fb.modes). This can obviously
be extended as desired. A whole range of sample
modes accompany the sources of the program, for
example, for ATI graphics cards, Atari Falcon or
video modes to control NTSC or PAL TV monitors.
Another useful tool is fbview. Image files can be
displayed on the console with this program. It now
runs with almost all framebuffer drivers.

If you don’t like seeing the penguin when
booting, take a look at fblogo. Images in Tiff format
can be converted into your own boot logo header
files for the kernel with this program.

Tomas Berndtsson has begun a very interesting
project with Zen. This is a web browser with various
interfaces (plain text, oFBis, ncurses, GTK). The
interface of interest here is the oFBis interface. This
consists of a library of graphics routines for the
framebuffer device. With the aid of this library, Zen
is able to display images on the console. This project

is still alpha software, but will be worth watching
out for.

Microwindows is a portable and extremely
efficient windowing system (see Figure 3) which
runs on a whole range of hardware and software
environments. It was developed for the handheld
and pocket PC market (LinuxCE). Hence it needs, on
a 16 Bit system (ELKS) for mouse, keyboard and
screen driver, less than 64Kb of memory.

But Microwindows also runs on modern PC
systems under Linux with a bit of help from the
framebuffer devices, the SVGAlib library or under X-
Windows in a separate window. The latter makes
application development a great deal easier. With
Nano-X Microwindows has an API very similar to
that of the X-Window system. This means the
resource-sparing yet powerful Fast Lightning Tool
Kit (FLTK, see Figure 4) can be used and applications
such as the web browser ViewML (see Figure 5)
developed. The latter uses the highly refined HTML
engine of KFM (the KDE file manager). Because of
its extremely low resource requirements it is of
particular interest for handhelds.

Last, but not least, ”Qt Embedded” deserves a
mention: The object-oriented GUI toolkit, already
well known as the basis of the KDE desktop (in
version 2.2.0) is also available in a variant which
allows direct access to the graphics hardware. All
class definitions are fully compatible with the X-
Window version. This is why Qt/KDE applications
can be used without any porting costs even without
an X server.

KNOWHOW EMBEDDED GRAPHICS

70 LINUX MAGAZINE 3 · 2000

Fig. 4:
Small but a bit of all right:

The FLTK-GUI-TK leaves little
to be desired for PDA and

organiser applications.

Table 2: Framebuffer-based windowing systems and GUI toolkits
Microwindows WindowsCE-look-alike API www.microwindows.org
Nano-X X-Window-look-alike network

-transparent API. Based on Microwindows -”-
FLTK object-oriented GUI-TK for Nano-X -”-
Tiny-X Trimmed down X-Server with limited

functionality www.xfree86.org
Qt Embedded Framebuffer variants of Qt www.troll.no

066framebuffer .qxd 20.10.2000 12:49 Uhr Seite 70

KNOWHOWEMBEDDED GRAPHICS

3 · 2000 LINUX MAGAZINE 71

Fig. 5:
The ViewML browser is
happy with just 700Kb ROM
and 2MB RAM

The framebuffer device of the first graphics
card in the computer can be addressed via the
device file /dev/fb0. For compatibility reasons
there are often links from /dev/fb0current or
/dev/fb to this file. With a command such as cat
/dev/fb0 > /tmp/fbdump the complete memory
(yes, all of it!) of the graphics card can be read
out. The visible area of the ”graphical text
console” in that case always begins at the file
position 0. Modification of the screen contents
using seek, read and write is tedious and
relatively slow in execution. Therefore, the
framebuffer device can be embedded with the
aid of mmap in the data memory segment of
the application (see listing, line 25). Note, by
the way, that other graphics cards can be
controlled using the device files /dev/fb1 to
/dev/fb7.

The following sample program colours the
console blue (at eight bit colour depth the
defaults for the colours 0 to 15 correspond to
the usual 4-bit VGA palette). The program can
be compiled using g++ -o fbdemo fbdemo.cpp.

01 // Read in header files
02 #include <sys/types.h>
03 #include <sys/stat.h>
04 #include <fcntl.h>
05 #include <linux/fb.h>
06 #include <unistd.h>

07 #include <sys/mman.h>
08 #include <sys/ioctl.h>
09
10 main() {
11
12 // open framebuffer device and read out info
13 int fd = open("/dev/fb0", O_RDWR);
14 struct fb_var_screeninfo screeninfo;
15 ioctl(fd, FBIOGET_VSCREENINFO, &screeniU
nfo);
16
17 // continue only if 8 bit colour depth
18 if (screeninfo.bits_per_pixel == 8) {
19
20 // determine size
21 int width = screeninfo.xres;
22 int height = screeninfo.yres;
23
24 // embed framebuffer into memory
25 unsigned char *data = (unsigned char*)
26 mmap(0, width * height ,
27 PROT_READ|PROT_WRITE, MAP_SHARED, fU
d, 0);
28
29 // process screen content line by line
30 for(int row=0; row<height; row++) {
31 for(int column=0; column<width; coluU
mn++) {
32 data[column + row * width] = 0x01;
33 };
34 };
35
36 // mask framebuffer out of memory
37 munmap(data, width * height);
38
39 };
40 };

Framebuffer device programming with C and C++

066framebuffer .qxd 20.10.2000 12:49 Uhr Seite 71

As an especially neat and useful gimmick, Qt
Embedded has a widget for inputting and recognition
of handwriting (see our test in the previous issue). But
for commercial use, one-off developer licence fees

have to be paid for each workstation. These are
roughly within the same price range as Windows
variants. There are also costs for run-time licences ($2
per device,assuming high numbers of items).

Framebuffer goes into action

In comparison with the tried and true graphics
version aided by a hardware-accelerated X server,
applications based on framebuffer devices are
noticeably slower at high desktop resolutions such
as 1280x1024 or greater. The displays of pocket PCs
and handhelds, however have considerably fewer
pixels (320x240 or less). Windows are smaller and
are represented by less data, so the lower
performance is scarcely noticed.

Memory consumption is another matter. A few
megabytes can be saved by doing without an X-
server. Thanks to the framebuffer device and its
associated GUI toolkits it seems likely that more
mobile Linux PDAs will be coming on to the market
in the near future. ■

KNOWHOW EMBEDDED GRAPHICS

72 LINUX MAGAZINE 3 · 2000

Info

Framebuffer Home page: http://www.linux-fbdev.org
Framebuffer Howto: http://www.linuxdoc.org/HOWTO/framebuffer-HOWTO.html

Framebuffer Mailing List: http://www.linux-fbdev.org/mlist.html
XFree86 Homepage: http://www.xfree86.org

Various Framebuffer Tools: home.tvd.be/cr26864/Linux/fbdev/
fbview Home page: http://www.nocrew.org/software/fbview/

Zen Web-browser: http://www.nocrew.org/software/zen/
User-Space Graphics functions for the framebuffer device:

http://osis.nocrew.org/ofbis/
fblogo Homepage: http://home.sol.no/~dvedoy/

Microwindows / Nano-X Homepage: http://www.microwindows.org
ViewML Website: www.viewml.com

Homepage of the GGI Project: http://www.ggi-project.org/

■

Table 3: ioctl functions of the framebuffer device

FBIOGET_VSCREENINFO determine variable dimensions of the framebuffer
FBIOPUT_VSCREENINFO define variable dimensions of the framebuffer
FBIOGET_FSCREENINFO determine fixed dimensions of the framebuffer
FBIOGETCMAP determine colour palette
FBIOPUTCMAP define colour palette
FBIOPAN_DISPLAY move physical display within the virtual
FBIOGET_CON2FBMAP salvage content of console
FBIOPUT_CON2FBMAP restore content of console
FBIOBLANK delete content of console
FBIOGET_VBLANK determine current raster beam position
FBIO_ALLOC allocate graphics memory for own purposes (e.g. dual buffer)
FBIO_FREEF free graphics memory

GGI: Alternative to the framebuffer?

At one time a majority of kernel developers were against the idea of
implementing graphics drivers at kernel level. The driver software

including 3D functions rapidly exceeded the complexity of the
operating system core and as it increased in size it

jeopardised the stability of the system. The necessary text
emulation for the Atari, Amiga and friends, however,

forced at least a rudimentary mechanism to
be included, which was then steadily
built up. The framebuffer device has

thus achieved integration in the standard
kernel through the back door.

The ”Generic Graphics Interface” (GGI for short) was not
so lucky with its ”Kernel Graphics Interface” (KGI). The
embedding of complex 2D and 3D interfaces, including

multi-input and multi-head support was going too far in the view of the hard-line core
developers. What was once considered ”Not a Bad Idea” is now eking out a shadowy
existence, although there is a big ”fan club” for it and therefore also a whole range of
impressive demos and applications (GGI X server, games).

066framebuffer .qxd 20.10.2000 12:49 Uhr Seite 72

