
It all started when I ordered an ARM-based development board

for my FemtoLinux project, which is a Linux flavor specifically

designed for ultra-small systems. Initially, I played with the idea

of simply using a Linksys WRT router supported by an OpenWrt

open-source project for development. But eventually, I decided

that because it is a commercial project and development time is

important, I was going to spend an extra $100–$200 for a real

development board with official Linux support, which would come

with everything that an embedded Linux developer would need:

cross-compiler toolchain, Linux sources and embedded Linux distri-

bution (at least, that’s what I thought I would be getting). If you’re

on a budget and looking for a cheap embedded board for your

hobby project, using a Linksys WRT router is not such a bad idea.

Choosing the right embedded Linux development board

deserves an article of its own, but for now, suffice it to say

that when you decide to use WRT, you should be prepared to

build your software development environment yourself and

expect to get support from the community. With a commercial

board, I was expecting to receive it from the vendor, but I didn’t.

The vendor’s idea of Linux support turned out to be just a list

of kernel patches, forcing me to evaluate, choose and configure

an embedded Linux development environment for this board

by myself, which turned out to be quite an interesting and

educational experience.

Embedded Linux Distributions
First, let’s start with some basic terminology. An embedded Linux

distribution is quite different from the PC distributions you are

used to, such as Ubuntu or Fedora Core. It typically includes at

least the following components:

■ Cross-compiler toolchain for your target architecture,

which is at least gcc, g++ and ld. It usually runs on one

architecture, but produces binaries for a different architec-

ture—x86 and ARM, respectively, in my case, hence the

term cross-compiler toolchain.

■ Kernel sources with a BSP (Board Support Package) for

your board.

■ Filesystem skeleton—that is, /bin, /etc with all the standard

configuration files, such as /etc/fstab, /etc/inittabe and so on.

■ Applications—init and shell as a bare minimum, but most

people will need more in order to do something useful.

Currently, the two most widely used embedded Linux distributions

are OpenEmbedded and Buildroot. This article is about Buildroot,

as that’s the one I am most familiar with and naturally the one I

used in my project. Buildroot’s biggest advantage is its simplicity

and flexibility, which are important if you are going to do

some kernel hacking or other low-level development. If, on

the other hand, you are an embedded application developer,

OpenEmbedded certainly is a viable choice as well.

Buildroot
Even though you may not have heard of Buildroot before, it’s

actually not a new project. It has been around for many years,

most of the time under the name of uClinux. Initially, uClinux was

an effort to port the Linux kernel to processors without an MMU,

such as the Motorola MC68328. However, it eventually expanded

beyond that, adding support for more processors, a binary format

for MMU-less systems and more userland capabilities, including a

libc flavor specifically designed for low memory systems—uClibc.

Eventually, it evolved into one of the more-advanced and easy-to-

use embedded Linux distributions.

This is where the confusion started, as people used the name

uClinux to refer both to the MMU-less CPU kernel support and

the embedded distribution, which were two quite different things.

The fact that many MMU-less patches (the whole armnommu

architecture support, for instance) eventually were included in the

standard kernel tree added to the confusion as well. Finally, the

embedded Linux distribution part was split into a different project

7 2 | june 2011 www.l inux journa l .com

INDEPTH

Roll Your Own Embedded
Linux System with Buildroot
The time between getting a new piece of hardware and seeing a first shell prompt
can be one of the most frustrating experiences for embedded Linux developers.
Buildroot can help reduce your frustration. ALEXANDER SIROTKIN

Figure 1. Buildroot Main Menu

called Buildroot. uClibc development continued separately, and the

parent uClinux Project somewhat lost its momentum.

From the Buildroot Web site: “Buildroot is a set of Makefiles

and patches that makes it easy to generate a cross-compilation

toolchain and root filesystem for your target Linux system using

the uClibc C library.” This is not entirely correct, as it also supports

(to some extent, as you will see later) other libc flavors, such as

glibc. It works with many embedded CPUs, including ARM, MIPS

and PowerPC.

If you want to get started with Buildroot, download the tarball,

extract it and run make help from its root directory. If this all

looks familiar to you, wait till you run make menuconfig.

As you already may have guessed, Buildroot uses the same

Makefile infrastructure as the Linux kernel to configure and build

everything, including applications and libraries. The usual sequence

of commands is:

make clean

make menuconfig

make

The first one is important if you are going to change some

configuration parameters—incremental building may or may not

work in this case. Initially, I was going to recommend that you

start working with some default configuration, by running, for

instance, make integrator926_defconfig, which should configure

Buildroot for the Integrator ARM reference board. However, it

turns out that as Buildroot development moved forward, most of

the default configurations somehow lagged behind and currently

do not work out of the box. I suggest you run make menuconfig,

and choose the following options manually:

■ Target architecture: arm.

■ Target Architecture Variant: arm926t.

■ Kernel: same version as Linux headers.

And, go over the other parameters and check for others that

you may want or need to modify. Be careful when you do so, and

always save your latest working configuration (the .config file). It

is very easy to end up with a nonworking configuration.

Buildroot configuration options can be divided roughly

into hardware-, build-process- and software-related, while

software-related options can be divided further into kernel,

toolchain and packages.

Hardware options are the “Target Architecture” that defines

your CPU core (ARM, MIPS and so on). “Target Architecture

Variant” defines the exact CPU you are using, and “Target

Options” defines board-related parameters, such as UART baud

rate and so on. You hopefully should know your hardware

parameters, and there is not much to add here, except that

for the ARM architecture, I suggest using EABI and making

sure you use the same ABI convention everywhere.

If you are running Buildroot for the first time, you probably

should avoid changing the “Build options”. These options proba-

bly are okay the way they are; the only thing you may want to

®

www.1and1.ca

www.1and1.com

*Monthly dual hosting prices based on 36 month upfront billing term, for a total of $107.64

for Basic and $179.64 for Advanced package. No refunds. Domain offers valid first year only.

After first year, standard pricing applies. Visit www.1and1.com for full promotional offer

details. Program and pricing specifications and availability subject to change without notice.

1&1 DUAL HOSTING

&

1&1 and the 1&1 logo are trademarks of 1&1 Internet AG, all other trademarks are the property

of their respective owners. © 2011 1&1 Internet, Inc. All rights reserved.

More special offers
available online.

1&1 DUAL BASIC
���1 FREE Domain

��10 GB Web Space

��UNLIMITED Traffic

���NEW! 5 FTP Accounts

���NEW! 1&1 SiteAnalytics

$2.99
per month*
(36 month term)

$3.99/month (24 month term)
$4.99/month (12 month term)
$6.99/month (3 month term)

1&1 DUAL ADVANCED
��2 FREE Domains

��150 GB Web Space

��UNLIMITED Traffic

���NEW! 50 FTP Accounts

���NEW! 1&1 SiteAnalytics

$4.99
per month*
(36 month term)

$5.99/month (24 month term)
$6.99/month (12 month term)
$8.99/month (3 month term)

Starting at

$3.99
fi rst year*

1&1 DOMAINS

Now only $7.99/fi rst year*

.com

.biz
Now only $3.99/fi rst year* FREE Private Registration!

7 4 | june 2011 www.l inux journa l .com

change is the “Number of jobs to run simultaneously” if your

build PC is a multicore system. Also, choose “build packages

with debugging symbols” if you want to debug some of the

pre-installed applications.

Remember, in order to build the kernel and software pack-

ages, Buildroot first needs to build the cross-compiler toolchain for

your hardware. The Toolchain menu allows you to choose the gcc

version and other toolchain-related parameters. The wrong

toolchain configuration can lead to some very weird errors, so be

careful. By default, Buildroot builds its own toolchain and works

with uClibc. There is an option to work with an external toolchain,

which can be glibc-based, but that’s beyond the scope of this

article, so you should set “Toolchain type” to “Buildroot toolchain”.

You can change the gcc, binutils, uClibc and kernel headers (but

not the kernel itself) versions from this menu. You also can decide

to compile the C++ (g++) compiler and gdb support (gdbserver

for the target and gdb client for the host or a standalone gdb for

the target), which is probably something you are going to need.

All the other options are better left alone at this stage.

“Package selection for the target” is where you get to choose

what software components you want as part of your embedded

filesystem image. This is where you can experiment relatively

freely—even if you select an application that’s not supported on

your hardware or with the particular Linux and gcc versions that you

chose, it’s easy to find the problematic application and disable it.

First, there is BusyBox. It deserves an article of its own, but

basically, it’s a collection of standard Linux utilities (such as shell

and init), optimized for low memory footprint systems. You can

start by creating a filesystem with just BusyBox. It contains every-

thing you need in order to boot and verify that your system is

working. Later, you can add more packages, ranging from the

MySQL or SQLite databases to the VLC and MPlayer media

players, as well as Perl, Python and many others.

The “Target filesystem options” allow you to choose the type

of filesystem image. Pretty much all the commonly used (in the

embedded world) filesystems are supported, including: cramfs,

squashfs, jffs2, romfs and ext2.

If you just want to experiment or prefer to create the filesystem

image manually (if you are using some rare unsupported filesystem,

such as yaffs2), you can choose the “tar the root filesystem”

option, which will create a tar archive with your filesystem. For

some unknown reason, bootloader configuration also is found

under this menu (only Das U-Boot is supported for now), but I’ll

skip this one, assuming you have a working bootloader already.

The last menu is “Kernel”, which is optional. In case you are

interested only in application development, choosing the right

kernel headers (see above) is enough. If you decide to modify

the kernel, remember to keep the kernel version and the kernel

headers version (in the Toolchain menu) in sync.

When you are finished, exit menuconfig, and run make.

Buildroot automatically will download everything it needs, compile

it and eventually create the filesystem image in the output/images/

directory. If you want to modify something in the filesystem

image, for example, to change the IP address of your system, you

can modify the filesystem skeleton directory tree, which is usually

located in target/generic/target_busybox_skeleton. Note that if

you are not using BusyBox, or if your hardware platform has its

own filesystem tree skeleton, this location can be different.

uClibc, BusyBox and Kernel Configuration
When you gain enough experience with Buildroot and decide you

are brave enough to modify some of the uClibc, BusyBox and/or

kernel parameters, the way to do it is to compile Buildroot with

default settings for all three, and after that, run the following com-

mands to modify the parameters and eventually recompile everything:

make uclibc-menuconfig

make busybox-menuconfig

make linux26-menuconfig

Note that the last one will work only after you enable the

Linux kernel option in the main Buildroot configuration menu.

Chances are that you already know how to configure the kernel,

and uClibc configuration rarely requires tweaking, unless you

want to compile out some functionality in order to save memory,

so I’m going to look at BusyBox configuration only.

The BusyBox menu can be divided into settings and applets. I

concentrate on the latter, as that’s probably what you would want

to modify first. Applets are applications in BusyBox parlance, with

one small difference. In order to save space, BusyBox usually is

installed as a single binary that includes all the utilities you decided

to compile: shell, ping, gzip and so on. You can launch an individ-

ual applet either by giving its name as an argument to BusyBox—

busybox ping, for instance—or you can create a symbolic link,

ln -s /bin/ping /bin/busybox, and BusyBox will choose the

correct applet automatically, depending on the link from which it

was executed. BusyBox installation automatically creates links for all

INDEPTH

You can start by creating a filesystem with just BusyBox. It contains everything
you need in order to boot and verify that your system is working.

BSP

BSP stands for Board Support Package. The term is some-

how associated with RTOSes, such as VxWorks. Therefore,

some people prefer the more “politically correct” LSP (Linux

Support Package). Anyhow, the BSP is a set of usually small

kernel and bootloader modifications specific to your hard-

ware. Intel x86 developers take for granted that all x86 sys-

tems have the same basic hardware and peripheral interface,

which is not the case on embedded systems. BSP develop-

ment usually includes fixing memory mappings, configuring

interrupt controllers and development of at least the following

basic drivers: serial (for console), network and Flash.

www.l inux journa l .com june 2011 | 7 5

the compiled applets. If you are curious, you can run it without any

parameters to see what applets were compiled in. You should have

no difficulty in choosing the right set of applets for your project. The

only thing worth mentioning is the shell. BusyBox does not support

standard shells such as bash or tcsh; instead, you get to choose

between ash, hush and msh with ash being the closest to bash and

the one I always work with. Note that even though standard bash is

not part of BusyBox, it is supported by Buildroot if you need it.

When you are finished configuring your embedded system, run

make to compile everything. Now you are ready to program your

newly compiled kernel and filesystem images to your board and

boot. Actual Flash programming depends on your system, bootloader,

type of Flash and so on, and it is beyond the scope of this article.

If you want to compile your own applications, you can (and

should) use the toolchain created by Buildroot. You can get (or

build) a different toolchain, but if it is not based on uClibc or if it

was compiled with different kernel headers, it may not work. All

you have to do in order to use the Buildroot toolchain is add the

output/staging/usr/bin/ directory to your path and then simply

run arm-linux-uclibcgnueabi-gcc.

The important point to remember is that Buildroot is not fool-

proof in the sense that it is relatively easy to create a configuration

that won’t work or even compile. You should not expect every

parameter combination to work, and always keep your last working

configuration file. The upside is that there is a large and active

community behind this project, which will be happy to help.■

Alexander (Sasha) Sirotkin has been an active Linux user and developer for more then 15 years.

One of the projects he’s worked on is FemtoLinux, which improves performance on low-end

embedded systems and eases porting from legacy RTOSes. He lives in Tel-Aviv, Israel, and can

be reached at “sasha AT femtolinux.com”.

ARM ABI

An Application Binary Interface (ABI) describes the low-level

interface between an application and an operating system

and hardware. ARM Linux supports Old ABI (OABI) and

Embedded ABI (EABI). OABI is deprecated, and it is recom-

mended that you use EABI. As this parameter affects the

kernel, the compiler and the standard libraries, it is important

to use the same ABI everywhere, even though mixing ABIs

may be supported. Compared to OABI, EABI defines a more-

efficient system call convention, improves floating-point per-

formance, changes structure packing, removes the minimal

four-byte size limitation and some other minor improvements.

Figure 2. BusyBox Configuration Menu

Resources

FemtoLinux: femtolinux.com

uClinux: www.uclinux.org

uClibc: www.uclibc.org

Buildroot: buildroot.uclibc.org

OpenEmbedded: www.openembedded.org

