Embedded Linux system development

Embedded Linux system

development boot“’n

© Copyright 2004-2021, Bootlin.
Creative Commons BY-SA 3.0 license
Latest update: June 29, 2021.

Document updates and sources:
https://bootlin.com/doc/training/embedded- linux

Corrections, suggestions, contributions and translations are welcome! embedded Linux and kernel engineering

Send them to feedback@bootlin.com

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 1/537

https://bootlin.com/doc/training/embedded-linux
mailto:feedback@bootlin.com

Rights t
Q@ ights to copy

Jo%a]

© Copyright 2004-2021, Bootlin

License: Creative Commons Attribution - Share Alike 3.0
https://creativecommons.org/licenses/by-sa/3.0/legalcode
You are free:

» to copy, distribute, display, and perform the work
» to make derivative works
> to make commercial use of the work
Under the following conditions:
> Attribution. You must give the original author credit.

> Share Alike. If you alter, transform, or build upon this work, you may distribute the resulting work only

under a license identical to this one.
» For any reuse or distribution, you must make clear to others the license terms of this work.
» Any of these conditions can be waived if you get permission from the copyright holder.

Your fair use and other rights are in no way affected by the above.

Document sources: https://github.com/bootlin/training-materials/

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 2/537

https://creativecommons.org/licenses/by-sa/3.0/legalcode
https://github.com/bootlin/training-materials/

60 Hyperlinks in the document

Jo%a]

There are many hyperlinks in the document

» Regular hyperlinks:
https://kernel.org/

» Kernel documentation links:
dev-tools/kasan

» Links to kernel source files and directories:
drivers/input/
include/linux/fb.h
» Links to the declarations, definitions and instances of kernel symbols (functions,
types, data, structures):
platform_get_irq()
GFP_KERNEL
struct file_operations

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 3/537

https://kernel.org/
https://www.kernel.org/doc/html/latest/dev-tools/kasan.html
https://elixir.bootlin.com/linux/latest/source/drivers/input/
https://elixir.bootlin.com/linux/latest/source/include/linux/fb.h
https://elixir.bootlin.com/linux/latest/ident/platform_get_irq
https://elixir.bootlin.com/linux/latest/ident/GFP_KERNEL
https://elixir.bootlin.com/linux/latest/ident/file_operations

a Company at a glance
o)

Jo3e!

4
» Engineering company created in 2004, b O Otl I n

named "Free Electrons” until Feb. 2018.

No.1 Unknown 140019(15.26%)
k2 o s
> Locations: Orange, Toulouse, Lyon (France) o3 Hobbyists T an)
No.6 IBM 35085(3.82%)
: B3 e)
> Serving customers all around the world - st
it orate, B
» Head count: 13 - Only Free Software enthusiasts! il o et e
No.15 Mellanox Technologies 11477(1.25%)
No17 Acadenics 8560(0.97%
» Focus: Embedded Linux, Linux kernel, build systems and low R e
INo.26 Bootlin 7611(6.83%) |
level Free and Open Source Software for embedded and 173 nwrons o
real-time systems. o128 Line evdarion Bt i
L.) . . s 5?3?55'2:;2“@ and Routing s&iﬂié:ﬁ?}ss\,
Feb. 2021: Bootlin is the 20th all-time Linux kernel contributor Nl fuatem oo intosom
Noi37 Frecscate ioa(o
. o, No.33 Wolfson Microelectronics 4180(0.46%
Activities: development, training, consulting, technical support. tlo:3¢ Harvell aamaio.dsy
EEEL .. BiD
Added value: get the best of the user and development 13 et g e
. . No.41 ST Wicroelectronics 3188(0.35%
community and the resources it offers. llo42 Astaro amion

Top Linux contributors since git (2005)

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 4/537

*Bootlm on-line resources

| 2

» All our training materials and technical
presentations:
https://bootlin.com/docs/
Technical blog:
https://bootlin.com/

Quick news (Mastodon):
https://fosstodon.org/@bootlin
Quick news (Twitter):
https://twitter.com/bootlincom
Quick news (LinkedlIn):

https:
//www.linkedin.com/company/bootlin

Elixir - browse Linux kernel sources on-line:

https://elixir.bootlin.com

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

Qastodon

Mastodon is a free and decentralized
social network created in the best
interests of its users.

Image credits: Jin Nguyen - https://frama.link/bQwcWHTP

5/537

https://bootlin.com/docs/
https://bootlin.com/
https://fosstodon.org/@bootlin
https://twitter.com/bootlincom
https://www.linkedin.com/company/bootlin
https://www.linkedin.com/company/bootlin
https://elixir.bootlin.com
https://frama.link/bQwcWHTP

Generic course information

Generic course bOOtI IN

information

OO\ g

© Copyright 2004-2021, Bootlin. f . .
Creative Commons BY-SA 3.0 license embedded Linux and kernel engineering

Corrections, suggestions, contributions and translations are welcome!

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 6/537

60 Hardware used in this training session
o0

Jo3e!

Using Microchip (formerly Atmel) SAMA5D3 Xplained boards in all practical labs
» SAMAS5D36 (ARM 32 bit Cortex A5) CPU from
Microchip

256 MB DDR2 RAM, 256 MB NAND flash

2 Ethernet ports (Gigabit + 100 Mbit)

2 USB 2.0 host, 1 USB device

1 MMC/SD slot

3.3 V serial port (like Beaglebone Black)

Misc: Arduino R3-compatible header, JTAG, buttons,
LEDs

» Currently sold at 93 EUR + VAT at Mouser

vVVvyVvVvVvyyepy

Board and CPU documentation, design files, software: https://bit.ly/2Ghv10p

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 7/537

https://bit.ly/2Ghv10p

ao Shopping list: hardware for this course

Jo3e!

» Microchip SAMA5D3 Xplained board - Available from Microchip and
multiple distributors (Mouser, Digikey...). See
https://bit.1ly/2Ghv1@p (Microchip’s website)

> USB Serial Cable - 3.3 V - Female ends (for serial console): Olimex:
https://frama.link/zWJIDToXP

> Logitech USB H340 audio headsets (for cross-compiling labs)
https://support.logitech.com/en_us/product/usb-headset-h340

» An SD card with at least 128 MB of capacity

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 8/537

https://bit.ly/2Ghv10p
https://frama.link/zWJDToXP
https://support.logitech.com/en_us/product/usb-headset-h340

Labs proposed on another platform

After this course, you can also run most labs on the
STM32MP157A-DK1 Discovery board
(https://www.st.com/en/evaluation-
tools/stm32mp157a-dk1.html)

Lab instructions available on
https://bootlin.com/doc/training/embedded-1inux-4d/

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 9/537

https://www.st.com/en/evaluation-tools/stm32mp157a-dk1.html
https://www.st.com/en/evaluation-tools/stm32mp157a-dk1.html
https://bootlin.com/doc/training/embedded-linux-4d/

ao Labs proposed on another platform

Jo%a]

After this course, you can also run most labs on the
QEMU emulated ARM Versatile Express Cortex A9
board

EMU

Lab instructions available on
https://bootlin.com/doc/training/embedded-1inux-qgemu/

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 10/537

https://bootlin.com/doc/training/embedded-linux-qemu/

Jo%a]

Participate!
@0

During the lectures...

>

>

Don't hesitate to ask questions. Other people in the audience may have similar
questions too.

This helps the trainer to detect any explanation that wasn't clear or detailed
enough.

Don't hesitate to share your experience, for example to compare Linux with other
operating systems used in your company.

Your point of view is most valuable, because it can be similar to your colleagues’
and different from the trainer’s.

Your participation can make our session more interactive and make the topics
easier to learn.

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

11/537

a Practical lab guidelines
o)

Jo%a]

During practical labs...

» We cannot support more than 8 workstations at once (each with its board and
equipment). Having more would make the whole class progress slower,
compromising the coverage of the whole training agenda (exception for public
sessions: up to 10 people).

» So, if you are more than 8 participants, please form up to 8 working groups.

» Open the electronic copy of your lecture materials, and use it throughout the
practical labs to find the slides you need again.

» Don't hesitate to copy and paste commands from the PDF slides and labs.

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

12/537

a@ Advise: write down your commands!
o0

Jo%a]

During practical labs, write down all your commands in a text file.

» You can save a lot of time re-using commands
in later labs.

» This helps to replay your work if you make
significant mistakes.

» You build a reference to remember commands
in the long run.

» That's particular useful to keep kernel
command line settings that you used earlier.

» Also useful to get help from the instructor,
showing the commands that you run.

gedit ~/lab-history.txt

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

Lab commands

Cross-compiling kernel:

export ARCH=arm

export CROSS_COMPILE=arm-linux-
make sama5_defconfig

Booting kernel through tftp:
setenv bootargs console=ttyS0 root=/dev/nfs
setenv bootcmd tftp 0x21000000 zimage; tftp

0x22000000 dtb; bootz 0x21000000 - 0x2200...

Making ubifs images:
mkfs.ubifs -d rootfs -o root.ubifs -e 124KiB
-m 2048 -c 1024

Encountered issues:
Restart NFS server after editing /etc/exports!

13/537

Cooperate!
@

Jo%a]

@+ embedded-inuecnov2020

ECTD

As in the Free Software and Open Source community, cooperation
during practical labs is valuable in this training session:

» Use the dedicated Matrix channel for this session

» If you complete your labs before other people, don't hesitate to
help them and investigate the issues they face. The faster we
progress as a group, the more time we have to explore extra
topics.

» Explain what you understood to other participants when needed.
It also helps to consolidate your knowledge.

» Don't hesitate to report potential bugs to your instructor.

» Don't hesitate to look for solutions on the Internet as well.

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 14/537

Command memento sheet

» This memento sheet gives command examples
for the most typical needs (looking for files,
extracting a tar archive...)

» |t saves us 1 day of UNIX / Linux command
line training.

» Our best tip: in the command line shell, always
hit the Tab key to complete command names
and file paths. This avoids 95% of typing
mistakes.

» Get an electronic copy on
https://bootlin.com/doc/legacy/command-
line/command_memento.pdf

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 15/537

https://bootlin.com/doc/legacy/command-line/command_memento.pdf
https://bootlin.com/doc/legacy/command-line/command_memento.pdf

a vi basic commands
o)

038!

» The vi editor is very useful to make quick
changes to files in an embedded target.

» Though not very user friendly at first, vi is
very powerful and its main 15 commands are
easy to learn and are sufficient for 99% of
everyone's needs!

» Get an electronic copy on
https://bootlin.com/doc/legacy/command-
line/vi_memento.pdf

» You can also take the quick tutorial by running
vimtutor. This is a worthy investment!

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 16/537

https://bootlin.com/doc/legacy/command-line/vi_memento.pdf
https://bootlin.com/doc/legacy/command-line/vi_memento.pdf

Introduction to Embedded Linux

Introduction to
Embedded Linux

© Copyright 2004-2021, Bootlin
Creative Commons BY-SA 3.0 license

Corrections, suggestions, contributions and translations are welcome!

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

bootlin

OO\ g

embedded Linux and kernel engineering

17/537

a@ Birth of Free Software

» 1983, Richard Stallman, GNU project and the free
software concept. Beginning of the development of gcc,
gdb, glibc and other important tools

» 1991, Linus Torvalds, Linux kernel project, a UNIX-like
operating system kernel. Together with GNU software and
many other open-source components: a completely free
operating system, GNU/Linux

» 1995, Linux is more and more popular on server systems

» 2000, Linux is more and more popular on embedded

systems
» 2008, Linux is more and more popular on mobile devices Richard Stallman in 2019
Image credits (Wikipedia):
and phones https://frama.link/qC73jkk4

» 2012, Linux is available on cheap, extensible hardware:
Raspberry Pi, BeagleBone Black

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 18/537

https://frama.link/qC73jkk4

a Free software?
o)

Jo%a]

> A program is considered free when its license offers to all its users the following
four freedoms

» Freedom to run the software for any purpose

» Freedom to study the software and to change it
» Freedom to redistribute copies

» Freedom to distribute copies of modified versions

» These freedoms are granted for both commercial and non-commercial use

» They imply the availability of source code, software can be modified and
distributed to customers

» Good match for embedded systems!

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 19/537

ao What is embedded Linux?

Embedded Linux is the usage of the Linux
kernel and various open-source components
in embedded systems

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

a@ Introduction to Embedded Linux

Advantages of Linux and open-source for
embedded systems

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

Jo%a]

>

bootlin - Kernel, drive

a Re-using components
o)

The key advantage of Linux and open-source in embedded systems is the ability
to re-use components

The open-source ecosystem already provides many components for standard
features, from hardware support to network protocols, going through multimedia,
graphic, cryptographic libraries, etc.

As soon as a hardware device, or a protocol, or a feature is wide-spread enough,
high chance of having open-source components that support it.

Allows to quickly design and develop complicated products, based on existing
components.

No-one should re-develop yet another operating system kernel, TCP/IP stack,
USB stack or another graphical toolkit library.

Allows to focus on the added value of your product.

rs and embedded Linux - Development, consulting, training and support - https://bootlin.com

22/537

a Low cost
o)

g

» Free software can be duplicated on as many devices as you want, free of charge.

» If your embedded system uses only free software, you can reduce the cost of
software licenses to zero. Even the development tools are free, unless you choose
a commercial embedded Linux edition.

» Of course, using Linux is not free of cost. You still need substantial learning and
engineering efforts to achieve your goals.

> Allows to have a higher budget for the hardware or to increase the
company'’s skills and knowledge

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 23/537

a Full control
o)

Jo%a]

> With open-source, you have the source code for all components in your system

» Allows unlimited modifications, changes, tuning, debugging, optimization, for an
unlimited period of time

» Without lock-in or dependency from a third-party vendor

» To be true, non open-source components must be avoided when the system is
designed and developed

» Allows to have full control over the software part of your system and
secure your investment

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 24/537

ao Quality

Jo%a]

» Many open-source components are widely used, on millions of systems

» Usually higher quality than what an in-house development can produce, or even
proprietary vendors

» Of course, not all open-source components are of good quality, but most of the
widely-used ones are.

> Allows to design your system with high-quality components at the
foundations

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 25/537

a@ Eases testing of new features
o0

Jo%a]

» Open-source being freely available, it is easy to get a piece of software and
evaluate it

> Allows to easily study several options while making a choice

» Much easier than purchasing and demonstration procedures needed with most
proprietary products

> Allows to easily explore new possibilities and solutions

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 26/537

a Community support
o)

Jo%a]

» Open-source software components are developed by communities of developers
and users

» This community can provide high-quality support: you can directly contact the
main developers of the component you are using. The likelihood of getting an
answer doesn't depend what company you work for.

» Often better than traditional support, but one needs to understand how the
community works to properly use the community support possibilities

> Allows to speed up the resolution of problems when developing your system

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 27/537

a@ Taking part into the community
o0

Jo%a]

» Possibility of taking part into the development community of some of the
components used in the embedded systems: bug reporting, test of new versions or
features, patches that fix bugs or add new features, etc.

» Most of the time the open-source components are not the core value of the
product: it's the interest of everybody to contribute back.

» For the engineers: a very motivating way of being recognized outside the
company, communication with others in the same field, opening of new
possibilities, etc.

» For the managers: motivation factor for engineers, allows the company to be
recognized in the open-source community and therefore get support more easily
and be more attractive to open-source developers

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 28/537

a@ Introduction to Embedded Linux

A few examples of embedded systems running
Linux

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

Image credits: Evan Amos (https://bit.1ly/2JzDIkv)

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 30/537

https://bit.ly/2JzDIkv

Video systems

od)

Image credits: https://bit.1ly/2HbwyVq

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 31/537

https://bit.ly/2HbwyVq

Bike computers
"

Product from BLOKS (http://bloks.de). Permission to use this picture only in this document, in updates and in translations.

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 32/537

http://bloks.de

Robots

eduMIP robot (https://www.ucsdrobotics.org/edumip)

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 33/537

https://www.ucsdrobotics.org/edumip

In space

SpaceX Starlink satelites

]

Image credits: Wikipedia

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 34/537

a@ Introduction to Embedded Linux

Embedded hardware for Linux systems

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

a@ Processor and architecture (1)
o0

Jo%a]

The Linux kernel and most other architecture-dependent components support a wide
range of 32 and 64 bit architectures

> x86 and x86-64, as found on PC platforms, but also embedded systems
(multimedia, industrial)

» ARM, with hundreds of different System on Chips
(SoC: CPU + on-chip devices, for all sorts of products)

> RISC-V, the rising architecture with a free instruction set
(from high-end cloud computing to the smallest embedded systems)

PowerPC (mainly real-time, industrial applications)

MIPS (mainly networking applications)

Microblaze (Xilinx), Nios Il (Altera): soft cores on FPGAs
Others: ARC, m68k, Xtensa, SuperH...

vvyyy

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 36/537

a@ Processor and architecture (2)
o0

g

» Both MMU and no-MMU architectures are supported, even though no-MMU
architectures have a few limitations.

» Linux does not support small microcontrollers (8 or 16 bit)

P Besides the toolchain, the bootloader and the kernel, all other components are
generally architecture-independent

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 37/537

Q@ RAM and storage

Jo%a]

» RAM: a very basic Linux system can work within 8 MB of RAM, but a more
realistic system will usually require at least 32 MB of RAM. Depends on the type
and size of applications.

> Storage: a very basic Linux system can work within 4 MB of storage, but usually
more is needed.
> Block storage: SD/MMC/eMMC, USB mass storage, SATA, etc,
» Raw flash storage is supported too, both NAND and NOR flash, with specific
filesystems
» Not necessarily interesting to be too restrictive on the amount of RAM /storage:
having flexibility at this level allows to re-use as many existing components as
possible.

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 38/537

a Communication
o)

Jo%a]

» The Linux kernel has support for many common communication buses

> 12C

> SPI

> 1l-wire

> SDIO

> PCI

> USB

» CAN (mainly used in automotive)

» And also extensive networking support

» Ethernet, Wifi, Bluetooth, CAN, etc.
> |Pv4, IPv6, TCP, UDP, SCTP, DCCP, etc.
» Firewalling, advanced routing, multicast

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 39/537

ao Types of hardware platforms (1)

Jo3e!

» Evaluation platforms from the SoC vendor. Usually
expensive, but many peripherals are built-in. Generally
unsuitable for real products, but best for product
development.

» Component on Module, a small board with only
CPU/RAM/flash and a few other core components, with
connectors to access all other peripherals. Can be used to
build end products for small to medium quantities.

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

STM32MP157C-EV1

evaluation board
Image credits (st.com):
https://frama.link/NySnaxuV

PocketBeagle
Image credits (Beagleboard.org):
https://beagleboard.org/pocket

40/537

https://frama.link/NySnaxuV
https://beagleboard.org/pocket

ao Types of hardware platforms (2)

Jo3e!

» Community development platforms, to make a particular

SoC popular and easily available. These are ready-to-use
and low cost, but usually have fewer peripherals than
evaluation platforms. To some extent, can also be used for
real products.

» Custom platform. Schematics for evaluation boards or
development platforms are more and more commonly freely
available, making it easier to develop custom platforms.

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

Beaglebone Black board

Olimex Open hardware
ARM laptop main board
Image credits (Olimex):
https://www.olimex.com/Products/
DIY-Laptop/

41/537

https://www.olimex.com/Products/DIY-Laptop/
https://www.olimex.com/Products/DIY-Laptop/

6@ Criteria for choosing the hardware
o0

» Make sure the SoC you plan to use is already supported by the Linux kernel, and
has an open-source bootloader.

» Having support in the official versions of the projects (kernel, bootloader) is a lot
better: quality is better, new versions are available, and Long Term Support
releases are available.

» Some SoC vendors and/or board vendors do not contribute their changes back to
the mainline Linux kernel. Ask them to do so, or use another product if you can.
A good measurement is to see the delta between their kernel and the official one.

> Between properly supported hardware in the official Linux kernel and
poorly-supported hardware, there will be huge differences in development
time and cost.

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 42/537

a@ Introduction to Embedded Linux

Embedded Linux system architecture

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

43/537

05

Development PC (host)

Embedded system (target)

Userspace

Linux kernel

Bootloader

The bootloader disappears
after starting the kernel

a Software components
oo

Jo%a]

» Cross-compilation toolchain
» Compiler that runs on the development machine, but generates code for the target
» Bootloader

» Started by the hardware, responsible for basic initialization, loading and executing
the kernel

» Linux Kernel

» Contains the process and memory management, network stack, device drivers and
provides services to user space applications

» C library

» The interface between the kernel and the user space applications
» Libraries and applications

» Third-party or in-house

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 45/537

a@ Embedded Linux work

g

Several distinct tasks are needed when deploying embedded Linux in a product:

» Board Support Package development

» A BSP contains a bootloader and kernel with the suitable device drivers for the
targeted hardware
» Purpose of our Kernel Development course

> System integration

» Integrate all the components, bootloader, kernel, third-party libraries and
applications and in-house applications into a working system
» Purpose of this course

» Development of applications
» Normal Linux applications, but using specifically chosen libraries

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

46/537

https://bootlin.com/training/kernel

Embedded Linux
development
environment

© Copyright 2004-2021, Bootlin
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

a@ Embedded Linux development environment
o0

bootlin

OO\ g

embedded Linux and kernel engineering

47/537

a@ Embedded Linux solutions

g

> Two ways to switch to embedded Linux
» Use solutions provided and supported by vendors like MontaVista, Wind River or
TimeSys. These solutions come with their own development tools and environment.
They use a mix of open-source components and proprietary tools.
» Use community solutions. They are completely open, supported by the community.
» In Bootlin training sessions, we do not promote a particular vendor, and therefore
use community solutions
» However, knowing the concepts, switching to vendor solutions will be easy

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

48/537

a OS for Linux development
c.@
We strongly recommend to use GNU/Linux as the desktop operating system to
embedded Linux developers, for multiple reasons.
» All community tools are developed and designed to run on Linux. Trying to use
them on other operating systems (Windows, Mac OS X) will lead to trouble.
» As Linux also runs on the embedded device, all the knowledge gained from using
Linux on the desktop will apply similarly to the embedded device.
» If you are stuck with a Windows desktop, at least you should use GNU/Linux in a
virtual machine (such as VirtualBox which is open source), though there could be
a small performance penalty. With Windows 10, you can also run your favorite
native Linux distro through Windows Subsystem for Linux (WSL2)

-

<

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

49/537

a@ Desktop Linux distribution

Jo%a]

» Any good and sufficiently recent Linux desktop
distribution can be used for the development
workstation

» Ubuntu, Debian, Fedora, openSUSE, Red Hat, etc.
» We have chosen Ubuntu, as it is a widely used and U bu n tU@
easy to use desktop Linux distribution Image adits:
https://tinyLArl.com/F4zxj5kw

» The Ubuntu setup on the training laptops has
intentionally been left untouched after the normal
installation process. Learning embedded Linux is also
about learning the tools needed on the development
workstation!

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 50/537

https://tinyurl.com/f4zxj5kw

a Linux root and non-root users
od)

Jo%a]

» Linux is a multi-user operating system
» The root user is the administrator, and it can do privileged operations such as:
mounting filesystems, configuring the network, creating device files, changing the
system configuration, installing or removing software
> All other users are unprivileged, and cannot perform these administrator-level

operations
» On an Ubuntu system, it is not possible to log in as root, only as a normal user.

» The system has been configured so that the user account created first is allowed
to run privileged operations through a program called sudo.

» Example: sudo mount /dev/sda2 /mnt/disk

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 51/537

ao Software packages

Jo%a]

» The distribution mechanism for software in GNU/Linux is different from the one
in Windows

» Linux distributions provides a central and coherent way of installing, updating and
removing applications and libraries: packages

P> Packages contains the application or library files, and associated
meta-information, such as the version and the dependencies

» . deb on Debian and Ubuntu, .rpm on Red Hat, Fedora, openSUSE
P Packages are stored in repositories, usually on HTTP or FTP servers

» You should only use packages from official repositories for your distribution, unless
strictly required.

» Note: Snap and Flatpak offer new ways of packaging applications in a
self-contained way. See https://www.atechtown.com/flatpak-vs-snap/.

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 52/537

https://www.atechtown.com/flatpak-vs-snap/

60 Managing software packages (1)

Jo3e!

Instructions for Debian based GNU/Linux systems (Debian, Ubuntu...)
» Package repositories are specified in /etc/apt/sources.list and in files under
/etc/apt/sources.list.d/
» To update package repository lists:
sudo apt update

» To find the name of a package to install, the best is to use the search engine on
https://packages.debian.org or on https://packages.ubuntu.com. You may
also use:
apt-cache search <keyword>

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 53/537

https://packages.debian.org
https://packages.ubuntu.com

Managing software packages (2)

» To install a given package:
sudo apt install <package>
> To remove a given package:
sudo apt remove <package>
» To install all available package updates:
sudo apt dist-upgrade
» Get information about a package:
apt show <package>
» Graphical interfaces

» Synaptic for GNOME
» KPackageKit for KDE

Further details on package management:
https://www.debian.org/doc/manuals/debian-reference/ch02.en.html

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 54/537

https://www.debian.org/doc/manuals/debian-reference/ch02.en.html

Host vs. target
Go

g

» When doing embedded development, there is always a split between
» The host, the development workstation, which is typically a powerful PC
» The target, which is the embedded system under development
> They are connected by various means: almost always a serial line for debugging
purposes, frequently an Ethernet connection, sometimes a JTAG interface for
low-level debugging

Host Serial Target

A
Y

ARM, PowerPC, MIPS,
x86.. platform
Ethernet More minimalistic

Linux system

x86 or x86_64 PC
Full-featured Linux
desktop system

A
\ 4

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 55/537

ao Serial line communication program
o0

Jo3e!

» An essential tool for embedded development is a serial line communication
program, like HyperTerminal in Windows.

» There are multiple options available in Linux: Minicom, Picocom, Gtkterm, Putty,
screen and the new tio (https://github.com/tio/tio).

» In this training session, we recommend using the simplest of them: Picocom

» Installation with sudo apt install picocom
» Run with picocom -b BAUD_RATE /dev/SERIAL_DEVICE.
» Exit with [Ctrl1][a] [Ctr1]1[x]

> SERIAL_DEVICE is typically

» ttyUSBx for USB to serial converters
» ttySx for real serial ports

» Most frequent command: picocom -b 115200 /dev/ttyUSB0

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 56/537

https://github.com/tio/tio

a Command line tips
oo

Jo%a]

» Using the command line is mandatory for many operations needed for embedded
Linux development

» It is a very powerful way of interacting with the system, with which you can save
a lot of time.
» Some useful tips
» You can use several tabs in the Gnome Terminal
» Remember that you can use relative paths (for example: ../../linux) in addition
to absolute paths (for example: /home/user)
» In a shell, hit [Control] [r], then a keyword, will search through the command
history. Hit [Control] [r] again to search backwards in the history
» You can directly copy/paste paths from the file manager to Gnome Terminal by
drag-and-drop.

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

57/537

a@ Practical lab - Training Setup

Jo%a]

Prepare your lab environment

» Download and extract the lab archive

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 58/537

Cross-compiling toolchains

Cross-compiling bOOtI IN

toolchains

OO\ g

© Copyright 2004-2021, Bootlin. f . .
Creative Commons BY-SA 3.0 license embedded Linux and kernel engineering

Corrections, suggestions, contributions and translations are welcome!

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 59/537

a Cross-compiling toolchains
oo

Jo%a]

Definition and Components

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 60/537

ao Toolchain definition (1)

Jo%a]

» The usual development tools available on a GNU/Linux workstation is a native
toolchain

» This toolchain runs on your workstation and generates code for your workstation,
usually x86
» For embedded system development, it is usually impossible or not interesting to
use a native toolchain
» The target is too restricted in terms of storage and/or memory
» The target is very slow compared to your workstation
» You may not want to install all development tools on your target.

» Therefore, cross-compiling toolchains are generally used. They run on your
workstation but generate code for your target.

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 61/537

Source code

Compilation

c " machine
Native toolchain R
toolchain
_ Execution
x86 binary ARM binary machine
ARM

a@ Machines in build procedures

Jo%a]

» Three machines must be distinguished when discussing toolchain creation

» The build machine, where the toolchain is built.
» The host machine, where the toolchain will be executed.
» The target machine, where the binaries created by the toolchain are executed.

» Four common build types are possible for toolchains

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 63/537

Build Host Target

Native build

used to build the normal gcc
of a workstation

Build Host Target

Cross-native build

used to build a toolchain that runs on your
target and generates binaries for the target

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

Different toolchain build procedures

Build Host Target

Cross build

used to build a toolchain that runs
on your workstation but generates
binaries for the target

The most common case in embedded development

Build Host Target

Canadian cross build
used to build on architecture A a
toolchain that runs on architecture B
and generates binaries for architecture C

64/537

ao Components of gcc toolchains
o0

Jo%a]

Binutils Kernel headers

C/C++ libraries C/C++ compiler

GDB debugger
(optional)

Cross-compilation toolchain

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 65/537

Binutils
(5

Jo3e!

» Binutils is a set of tools to generate and manipulate binaries for a given CPU
architecture

as, the assembler, that generates binary code from assembler source code

1d, the linker

ar, ranlib, to generate .a archives (static libraries)

objdump, readelf, size, nm, strings, to inspect binaries. Very useful analysis tools!

objcopy, to modify binaries

strip, to strip parts of binaries that are just needed for debugging (reducing their

size).

» GNU Binutils: https://www.gnu.org/software/binutils/, GPL license

VVyVYVYYVYY

» The LLVM project now provides alternatives to GNU Binutils: 11vm-strip,
1lvm-readelf, 11d... (https://www.1llvm.org/docs/CommandGuide/)

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

66/537

https://www.gnu.org/software/binutils/
https://www.llvm.org/docs/CommandGuide/

Q@ Kernel headers (1)

Jo%a]

» The C library and compiled programs needs to interact
with the kernel

» Available system calls and their numbers
» Constant definitions
» Data structures, etc.

» Therefore, compiling the C library requires kernel
headers, and many applications also require them.

» Available in <linux/...> and <asm/...> and a few
other directories corresponding to the ones visible in
include/uapi/ and in arch/<arch>/include/uapi in
the kernel sources

» The kernel headers are extracted from the kernel sources
using the headers_install kernel Makefile target.

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

Kernel

Kernel headers
A

|
C library

Application

67/537

https://elixir.bootlin.com/linux/latest/source/include/uapi/

KerneI headers (2)

» System call numbers, in <asm/unistd.h>

#define __NR_exit 1
#define __NR_fork 2
#define __NR_read 3

» Constant definitions, here in <asm-generic/fcntl.h>, included from
<asm/fecntl.h>, included from <linux/fcntl.h>
#define O_RDWR 00000002
» Data structures, here in <asm/stat.h> (used by the stat command)
struct stat {
unsigned long st_dev;
unsigned long st_ino;
[...]
b

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

68/537

Q@ Kernel headers (3)

Jo%a]

The kernel to user space ABI is backward compatible

» ABI = Application Binary Interface - It's about binary compatibility

P Kernel developers are doing their best to never break existing programs when the
kernel is upgraded. Otherwise, users would stick to older kernels, which would be
bad for everyone.

» Hence, binaries generated with a toolchain using kernel headers older than the
running kernel will work without problem, but won’t be able to use the new
system calls, data structures, etc.

» Binaries generated with a toolchain using kernel headers newer than the running

kernel might work only if they don't use the recent features, otherwise they will
break.

What to remember: updating your kernel shouldn't break your programs; it's usually
fine to keep an old toolchain as long is it works fine for your project.

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

69/537

a@ C/C++ compiler

Jo%a]

» GCC: GNU Compiler Collection, the famous free software
compiler

» https://gcc.gnu.org/

» Can compile C, C++, Ada, Fortran, Java, Objective-C,
Objective-C++, Go, etc. Can generate code for a large number
of CPU architectures, including x86, ARM, RISC-V, and many
others.

» Available under the GPL license, libraries under the GPL with
linking exception.

» Alternative: Clang / LLVM compiler
(https://clang.1llvm.org/) getting increasingly popular and
able to compile most programs (license: MIT/BSD type). It can
offer better optimizations and make errors easier to interpret.

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 70/537

https://gcc.gnu.org/
https://clang.llvm.org/

C library

» The C library is an essential component of a
Linux system

» Interface between the applications and the
kernel

» Provides the well-known standard C API to
ease application development

» Several C libraries are available: glibc, uClibc,
musl, klibec, newlib...

» The choice of the C library must be made at
cross-compiling toolchain generation time, as
the GCC Compiler is Comp”ed against a SpeCiﬁC Source: Wikipedia (https://bit.ly/2zrGve2)

C library.
Comparing libcs by feature: https://www.etalabs.net/compare_libcs.html

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 71/537

https://bit.ly/2zrGve2
https://www.etalabs.net/compare_libcs.html

a Cross-compiling toolchains
oo

Jo%a]

C Libraries

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 72/537

a@ glibc

Jo%a]

» License: LGPL
» C library from the GNU project

» Designed for performance, standards compliance and
portability

v

Found on all GNU / Linux host systems

v

Of course, actively maintained

» By default, quite big for small embedded systems. On
armv7hf, version 2.31: libc: 1.5 MB, 1ibm: 432 KB,
source: https://toolchains.bootlin.com

» But some features not needed in embedded systems can
be configured out (merged from the old eglibc project).

» https://www.gnu.org/software/libc/

Image: https://bit.1ly/2EzH16m

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 73/537

https://toolchains.bootlin.com
https://www.gnu.org/software/libc/
https://bit.ly/2EzHl6m

Jo%a]

Clibc-
Q@ ibc-ng

» https://uclibc-ng.org/
» A continuation of the old uClibc project, license: LGPL

» Lightweight C library for small embedded systems

>

>

>
>

High configurability: many features can be enabled or disabled through a
menuconfig interface.

Supports most embedded architectures, including MMU-less ones (ARM Cortex-M,
Blackfin, etc.). The only library supporting ARM noMMU.

No guaranteed binary compatibility. May need to recompile applications when the
library configuration changes.

Some features may be implemented later than on glibc (real-time, floating-point
operations...)

Focus on size rather than performance

Size on armv7hf, version 1.0.34: 1libc: 712 KB, source:
https://toolchains.bootlin.com

> Actively supported, but Yocto Project stopped supporting it.

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

74/537

https://uclibc-ng.org/
https://toolchains.bootlin.com

Jo%a]

| C lib
Q@ mus ibrary

https://www.musl-1libc.org/

>

4
>
>

A lightweight, fast and simple library for embedded systems
Created while uClibc's development was stalled
In particular, great at making small static executables

More permissive license (MIT), making it easier to release static
executables. We will talk about the requirements of the LGPL license
(glibc, uClibc) later.

» Supported by build systems such as Buildroot and Yocto Project.

» Used by the Alpine Linux lightweight distribution

(https://www.alpinelinux.org/)

Size on armv7hf, version 1.2.0: 1ibc: 748 KB, source:
https://toolchains.bootlin.com

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

75/537

https://www.musl-libc.org/
https://www.alpinelinux.org/
https://toolchains.bootlin.com

60 glibc vs uclibc-ng vs musl - small static executables
o0

Jo%a]

Let's compile and strip a hello.c program statically and compare the size

» With musl 1.2.0:
9,084 bytes

> With uclibc-ng 1.0.34 :
21,916 bytes.

> With glibc 2.31:
431,140 bytes

Tests run with gcc 10.0.2 toolchains for armv7-eabihf
(from https://toolchains.bootlin.com)

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

76/537

https://toolchains.bootlin.com

a@ glibc vs uclibc vs musl - more realistic example
o0

Jo%a]

Let's compile and strip BusyBox 1.32.1 statically
(with the defconfig configuration) and compare the size
» With musl 1.2.0:
1,176,744 bytes

> With uclibc-ng 1.0.34 :
1,251,080 bytes.

> With glibc 2.31:
1,852,912 bytes

Notes:
» Tests run with gcc 10.0.2 toolchains for armv7-eabihf
» BusyBox is automatically compiled with -Os and stripped.

» Compiling with shared libraries will mostly eliminate size differences

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

77/537

a Other smaller C libraries
o)

Jo%a]

» Several other smaller C libraries have been developed, but none of them have the
goal of allowing the compilation of large existing applications

P> They can run only relatively simple programs, typically to make very small static
executables and run in very small root filesystems.
» Choices:
» Newlib, https://sourceware.org/newlib/, maintained by Red Hat, used mostly in
Cygwin, in bare metal and in small POSIX RTOS.
» Klibc, https://en.wikipedia.org/wiki/Klibc, from the kernel community,
designed to implement small executables for use in an initramfs at boot time.

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

78/537

https://sourceware.org/newlib/
https://en.wikipedia.org/wiki/Klibc

a@ Advise for choosing the C library

Jo%a]

» Advice to start developing and debugging your applications with glibc, which is
the most standard solution.

» Then, when everything works, if you have size constraints, try to compile your app
and then the entire filesystem with uClibc or musl.

» If you run into trouble, it could be because of missing features in the C library.

P In case you wish to make static executables, mus/ will be an easier choice in terms
of licensing constraints. The binaries will be smaller too. Note that static
executables built with a given C library can be used in a system with a different C
library.

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 79/537

a Cross-compiling toolchains
oo

Jo%a]

Toolchain Options

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 80/537

a@ ABI

Jo%a]

» When building a toolchain, the ABI used to generate binaries needs to be defined

» ABI, for Application Binary Interface, defines the calling conventions (how
function arguments are passed, how the return value is passed, how system calls
are made) and the organization of structures (alignment, etc.)

» All binaries in a system are typically compiled with the same ABI, and the kernel
must understand this ABI.

» On ARM, two main ABIls: OABI and EABI
» Nowadays everybody uses EABI

» On MIPS, several ABls: 032, 064, n32, n64
» https://en.wikipedia.org/wiki/Application_Binary_Interface

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 81/537

https://en.wikipedia.org/wiki/Application_Binary_Interface

a@ Floating point support

Jo%a]

» Some processors have a floating point unit, some others do not.
» For example, many ARMv4 and ARMv5 CPUs do not have a floating point unit.
Since ARMv7, a VFP unit is mandatory.
» For processors having a floating point unit, the toolchain should generate hard
float code, in order to use the floating point instructions directly
» For processors without a floating point unit, two solutions

» Generate hard float code and rely on the kernel to emulate the floating point
instructions. This is very slow.

P Generate soft float code, so that instead of generating floating point instructions,
calls to a user space library are generated

» Decision taken at toolchain configuration time

» Also possible to configure which floating point unit should be used

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 82/537

Jo%a]

ao CPU optimization flags

» A set of cross-compiling tools is specific to a CPU architecture (ARM, x86, MIPS,
PowerPC)

» However, gcc offers further options:

>
»
>
>

>

-march allows to select a specific target instruction set

-mtune allows to optimize code for a specific CPU

For example: -march=armv7 -mtune=cortex-a8

-mcpu=cortex-a8 can be used instead to allow gcc to infer the target instruction set
(-march=armv7) and cpu optimizations (-mtune=cortex-a8)
https://gcc.gnu.org/onlinedocs/gcc/ARM-Options.html

P> At the toolchain compilation time, values can be chosen. They are used:

» As the default values for the cross-compiling tools, when no other -march, -mtune,

-mcpu options are passed

» To compile the C library

» Even if the C library has been compiled for armvb5t, it doesn’t prevent from
compiling bare-metal programs or the kernel for armv7.

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

83/537

https://gcc.gnu.org/onlinedocs/gcc/ARM-Options.html

Jo%a]

DbOOtliN - Kernel, drivers and embedded Linux - Devel

lopr

ment, consul

a Cross-compiling toolchains
oo

Obtaining a Toolchain

Iting, training and support - https://bootlin.com

84/537

ao Building a toolchain manually
o0

Jo%a]

Building a cross-compiling toolchain by yourself is a difficult and painful task! Can
take days or weeks!

P Lots of details to learn: many components to build, complicated configuration.
Need to be familiar with building and configuring tools.

» Many decisions to make about the components (such as C library, gcc and binutils
versions, ABI, floating point mechanisms...). Not trivial to find working
combinations of such components!

» Need to be familiar with current gcc issues and patches on your platform
» See the Crosstool-NG docs/ directory for details on how toolchains are built.

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

85/537

ao Get a pre-compiled toolchain
o0

Jo%a]

» Solution that many people choose
» Advantage: it is the simplest and most convenient solution
» Drawback: you can't fine tune the toolchain to your needs
> Make sure the toolchain you find meets your requirements: CPU, endianness, C
library, component versions, ABI, soft float or hard float, etc.
» Possible choices
» Toolchains packaged by your distribution
For example, Ubuntu toolchains (glibc only):
sudo apt install gcc-arm-linux-gnueabihf
» Bootlin's GNU toolchains (for most architectures):
https://toolchains.bootlin.com

» ARM GNU toolchains released by ARM (previously shipped by Linaro):
https://tinyurl.com/2fkvvrju

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 86/537

https://toolchains.bootlin.com
https://tinyurl.com/2fkvvrju

60 Toolchain building utilities

Jo%a]

Another solution is to use utilities that automate the process of building the
toolchain

» Same advantage as the pre-compiled toolchains: you don't need to mess up with
all the details of the build process

» But also offers more flexibility in terms of toolchain configuration, component
version selection, etc.

» They also usually contain several patches that fix known issues with the different
components on some architectures

» Multiple tools with identical principle: shell scripts or Makefile that automatically
fetch, extract, configure, compile and install the different components

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

87/537

ao Toolchain building utilities (2)

Jo%a]

Crosstool-ng

» Rewrite of the older Crosstool, with a
menuconfig-like configuration system

» Feature-full: supports uClibc, glibc and musl,
hard and soft float, many architectures

» Actively maintained
» https://crosstool-ng.github.io/

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

.config - crosstool-NG Configuration
Target options

Target Architecture (arm) --->
*** Options for arm ***
Default instruction set mode (arm) --->
[] Use Thumb-interworking (READ HELP)
-*- Use EABI
[*] append 'hf' to the tuple (EXPERIMENTAL)
() Suffix to the arch-part
[] omit vendor part of the target tuple
*%% Generic target options ***
[] Build a multilib toolchain (READ HELP!!!)
[*] Attempt to combine libraries into a single directory
[*] Use the MMU
Endianness: (Little endian) --->
Bitness: (32-bit) --->
% Target optimisations ***
cortex-a5) Emit assembli for CPU
(vfpv4-d16) Use specific FPU
Floating point: (hardware (FPU)) --->
() Target CFLAGS
() Target LDFLAGS

88/537

https://crosstool-ng.github.io/

60 Toolchain building utilities (3)

Jo%a]

Many root filesystem build systems also allow the construction of a cross-compiling
toolchain

» Buildroot
» Makefile-based. Can build glibc, uClibc and musl based toolchains, for a wide range
of architectures. Use make sdk to only generate a toolchain.
» https://buildroot.org
> PTXdist
» Makefile-based, maintained mainly by Pengutronix. It only supports uClibc and glibc
(version 2021.03 status)
» https://www.ptxdist.org/
» OpenEmbedded / Yocto Project
» A featureful, but more complicated build system
» http://www.openembedded.org/
» https://www.yoctoproject.org/

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 89/537

https://buildroot.org
https://www.ptxdist.org/
http://www.openembedded.org/
https://www.yoctoproject.org/

ao Crosstool-NG: installation and usage
o0

» Installation of Crosstool-NG can be done system-wide, or just locally in the source
directory. For local installation:

./configure --enable-local
make
make install

» Some sample configurations for various architectures are available in samples, they
can be listed using
./ct-ng list-samples
» To load a sample configuration
./ct-ng <sample-name>
» To adjust the configuration
./ct-ng menuconfig or ./ct-ng nconfig (according to your preference)
» To build the toolchain
./ct-ng build

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 90/537

a Toolchain contents
o)

Jo%a]

» The cross compilation tool binaries, in bin/
» This directory should be added to your PATH to ease usage of the toolchain

» One or several sysroot, each containing

» The C library and related libraries, compiled for the target
» The C library headers and kernel headers

» There is one sysroot for each variant: toolchains can be multilib if they have
several copies of the C library for different configurations (for example: ARMv4T,
ARMV5T, etc.)

» Old CodeSourcery ARM toolchains were multilib, the sysroots in:
arm-none-linux-gnueabi/libc/armv4t/
arm-none-1linux-gnueabi/libc/thumb2/

» Crosstool-NG toolchains can be multilib too (CT_MULTILIB configuration parameter)

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

91/537

a@ Practical lab - Using Crosstool-NG

Time to build your toolchain
» Configure Crosstool-NG

» Run it to build your own cross-compiling
toolchain

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 92/537

Bootloaders

bootlin

Bootloaders

© Copyright 2004-2021, Bootlin. . . .
m Linux and kernel engineerin

Creative Commons BY-SA 3.0 license. € bedded uxa d ernel e g ee g

Corrections, suggestions, contributions and translations are welcome!

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 93/537

Bootloaders

Boot Sequence

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 94/537

a Bootloaders
o)

Jo%a]

» The bootloader is a piece of code responsible for

» Basic hardware initialization

» Loading of an application binary, usually an operating system kernel, from flash
storage, from the network, or from another type of non-volatile storage.

» Possibly decompression of the application binary

» Execution of the application

» Besides these basic functions, most bootloaders provide a shell with various
commands implementing different operations.

» Loading of data from storage or network, memory inspection, hardware diagnostics

and testing, etc.

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 95/537

ao Bootloaders on BIOS-based x86 (1)

» The x86 processors are typically bundled on a board with a
non-volatile memory containing a program, the BIOS.

» On old BIOS-based x86 platforms: the BIOS is responsible for
basic hardware initialization and loading of a very small piece of
code from non-volatile storage.

» This piece of code is typically a 1st stage bootloader, which will
load the full bootloader itself.

» |t typically understands filesystem formats so that the kernel file
can be loaded directly from a normal filesystem.

» This sequence is different for modern EFl-based systems.

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

BIOS
from ROM

l

Stage 1

512 bytes
from raw storage

l

Stage 2

from raw storage

l

Kernel

from filesystem

96/537

ao Bootloaders on x86 (2)

Jo%a]

» GRUB, Grand Unified Bootloader, the most powerful one.
https://www.gnu.org/software/grub/

» Can read many filesystem formats to load the kernel image and the configuration,
provides a powerful shell with various commands, can load kernel images over the
network, etc.

» See our dedicated presentation for details:
https://bootlin.com/doc/legacy/grub/

» Syslinux, for network and removable media booting (USB key, CD-ROM)
https://kernel.org/pub/linux/utils/boot/syslinux/

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 97/537

https://www.gnu.org/software/grub/
https://bootlin.com/doc/legacy/grub/
https://kernel.org/pub/linux/utils/boot/syslinux/

a@ Booting on embedded CPUs: case 1

g

Physical
memory

v

When powered, the CPU starts executing code at a fixed address

v

There is no other booting mechanism provided by the CPU Execution
starts = » NOR

here

» The hardware design must ensure that a NOR flash chip is wired
so that it is accessible at the address at which the CPU starts
executing instructions

» The first stage bootloader must be programmed at this address
in the NOR

» NOR is mandatory, because it allows random access, which
NAND doesn't allow

» Not very common anymore (unpractical, and requires NOR
flash)

RAM

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 98/537

a@ Booting on embedded CPUs: case 2

Jo%a]

» The CPU has an integrated boot code in ROM

» BootROM on AT91 CPUs, “"ROM code” on OMAP, etc.
» Exact details are CPU-dependent

» This boot code is able to load a first stage bootloader from a storage device into
an internal SRAM (DRAM not initialized yet)

> Storage device can typically be: MMC, NAND, SPI flash, UART (transmitting data
over the serial line), etc.

» The first stage bootloader is

> Limited in size due to hardware constraints (SRAM size)
» Provided either by U-Boot (called Secondary Program Loader - SPL), or by the CPU
vendor (usefully open-source).

» This first stage bootloader must initialize DRAM and other hardware devices and
load a second stage bootloader into RAM

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

99/537

Jo%a]

RomBoot

stored in ROM
in the CPU

l

U-Boot SPL

stored in MMC, NAND or SPI flash
runs from SRAM

l

U-Boot

stored in MMC, NAND or SPI flash
runs from DRAM

l

60 Booting on Microchip ARM SAMA5D3

RomBoot: tries to find a valid bootstrap image from various
storage sources, and load it into SRAM (DRAM not initialized
yet). Size limited to 64 KB. No user interaction possible in
standard boot mode.

U-Boot SPL: runs from SRAM. Initializes the DRAM, the NAND
or SPI controller, and loads the secondary bootloader into RAM
and starts it. No user interaction possible.

U-Boot: runs from RAM. Initializes some other hardware devices
(network, USB, etc.). Loads the kernel image from storage or
network to RAM and starts it. Shell with commands provided.

Linux Kernel: runs from RAM. Takes over the system completely
(the bootloader no longer exists).

Linux Kernel Note: same process on other Microchip AT91 SoCs, but the SRAM size

stored in MMC, NAND, network... is smaller on the older ones.

runs from DRAM

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 100/537

6@ Booting on Marvell SoCs

ROM Code
stored in ROM
in the CPU
» ROM Code: tries to find a valid bootstrap image from various
storage sources, and load it into RAM. The RAM configuration is
described in a CPU-specific header, prepended to the bootloader
Header image.
U-Boot » U-Boot: runs from RAM. Initializes some other hardware devices
stored in NAND or SD (network, USB, etc.). Loads the kernel image from storage or
runs from DRAM network to RAM and starts it. Shell with commands provided.

File called u-boot.kwb.
» Linux Kernel: runs from RAM. Takes over the system completely

(bootloaders no longer exists).

Linux Kernel

stored in NAND, SD, network
runs from DRAM

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 101/537

ao Generic bootloaders for embedded CPUs

There are several open-source generic bootloaders.
Here are the most popular ones:

» U-Boot, the universal bootloader by Denx

» The most used on ARM, also used on PPC,
MIPS, x86, m68k, RISC-V, etc.

» The de-facto standard nowadays. We will
study it in detail.

» https://www.denx.de/wiki/U-Boot

Bootloader: modern expectation

» Barebox, an architecture-neutral bootloader
created by Pengutronix.

» |t doesn't have as much hardware support as
U-Boot yet.

See the nice introduction to Barebox

» U-Boot has improved quite a lot thanks to from Ahmad Fatoum at ELCE 2020:

. . Video: https://youtu.be/0j71KbFtyMo
thIS Competltor' Slides: https://elinux.org/images/9/9d/Barebox-bells-

» https://www.barebox.org n-whistles.pdf

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 102/537

https://www.denx.de/wiki/U-Boot
https://www.barebox.org
https://youtu.be/Oj7lKbFtyM0
https://elinux.org/images/9/9d/Barebox-bells-n-whistles.pdf
https://elinux.org/images/9/9d/Barebox-bells-n-whistles.pdf

a Bootloaders
o)

Jo%a]

The U-boot bootloader

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 103/537

Jo3e!

ao U-Boot

U-Boot is a typical free software project

4
>
| 4

License: GPLv2 (same as Linux)
Freely available at https://www.denx.de/wiki/U-Boot

Documentation available at
https://www.denx.de/wiki/U-Boot/Documentation

The latest development source code is available in a Git
repository: https://gitlab.denx.de/u-boot/u-boot

Development and discussions happen around an open
mailing-list
https://lists.denx.de/pipermail/u-boot/

Follows a regular release schedule. Every 2 or 3 months,
a new version is released. Versions are named YYYY.MM.

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

U-Boot

Image credits:
https://frama.link/rwCUFc-T

104/537

https://www.denx.de/wiki/U-Boot
https://www.denx.de/wiki/U-Boot/Documentation
https://gitlab.denx.de/u-boot/u-boot
https://lists.denx.de/pipermail/u-boot/
https://frama.link/rwCUFc-T

a U-Boot configuration
oo

Jo%a]

» Get the source code from the website or from git, and uncompress it

» The configs/ directory contains one or several configuration file(s) for each
supported board
» |t defines the CPU type, the peripherals and their configuration, the memory
mapping, the U-Boot features that should be compiled in, etc.
» Examples:
configs/stm32mp15_basic_defconfig
configs/stm32mp15_trusted_defconfig
» Note: U-Boot is migrating from board configuration defined in C header files
(include/configs/) to defconfig like in the Linux kernel (configs/)
» Not all boards have been converted to the new configuration system.
» Many boards still have both hardcoded configuration settings in .h files, and
configuration settings in defconfig files that can be overriden with configuration
interfaces.

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

105/537

https://elixir.bootlin.com/u-boot/latest/source/configs/
https://elixir.bootlin.com/u-boot/latest/source/configs/stm32mp15_basic_defconfig
https://elixir.bootlin.com/u-boot/latest/source/configs/stm32mp15_trusted_defconfig
https://elixir.bootlin.com/u-boot/latest/source/include/configs/
https://elixir.bootlin.com/u-boot/latest/source/configs/

U-Boot configuration file

CHIP_defconfig

CONFIG_ARM=y
CONFIG_ARCH_SUNXI=y

CONFIG_MACH_SUNS5I=y
CONFIG_DRAM_TIMINGS_DDR3_80QE_1066G_1333J=y
CONFIG_MMC is not set
CONFIG_USB@_VBUS_PIN="PB10"
CONFIG_VIDEO_COMPOSITE=y
CONFIG_DEFAULT_DEVICE_TREE="sun5i-r8-chip”
CONFIG_SPL=y
CONFIG_SYS_EXTRA_OPTIONS="CONS_INDEX=2"

CONFIG_CMD_IMLS is not set
CONFIG_CMD_DFU=y
CONFIG_CMD_USB_MASS_STORAGE=y
CONFIG_AXP_ALDO3_VOLT=3300
CONFIG_AXP_ALDO4_VOLT=3300
CONFIG_USB_MUSB_GADGET=y
CONFIG_USB_GADGET=y
CONFIG_USB_GADGET_DOWNLOAD=y
CONFIG_G_DNL_MANUFACTURER="Allwinner Technology"”
CONFIG_G_DNL_VENDOR_NUM=0x1f3a
CONFIG_G_DNL_PRODUCT_NUM=0x1010@
CONFIG_USB_EHCI_HCD=y

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 106/537

a Configuring and compiling U-Boot
o)
» U-Boot must be configured before being compiled

» Configuration stored in a .config file

» make BOARDNAME_defconfig

»> Where BOARDNAME is the name of a configuration, as visible in the configs/

directory.
» You can then run make menuconfig to further customize U-Boot's configuration!

> Make sure that the cross-compiler is available in PATH

» Compile U-Boot, by specifying the cross-compiler prefix.
Example, if your cross-compiler executable is arm-1linux-gcc:
make CROSS_COMPILE=arm-linux-

» The main result is a u-boot.bin file, which is the U-Boot image. Depending on
your specific platform, or what storage device you're booting from (NAND or
MMC), there may be other specialized images: u-boot.img, u-boot.kub...

» This also generates the U-Boot SPL image to be flashed together with U-Boot.
The exact file name can vary too, depending on what the romcode expects.

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 107/537

a Installing U-Boot
o)

Jo%a]

U-Boot must usually be installed in flash memory to be executed by the hardware.
Depending on the hardware, the installation of U-Boot is done in a different way:

» The CPU provides some kind of specific boot monitor with which you can
communicate through the serial port or USB using a specific protocol

» The CPU boots first on removable media (MMC) before booting from fixed media
(NAND). In this case, boot from MMC to reflash a new version

» U-Boot is already installed, and can be used to flash a new version of U-Boot.
However, be careful: if the new version of U-Boot doesn’t work, the board is
unusable

» The board provides a JTAG interface, which allows to write to the flash memory

remotely, without any system running on the board. It also allows to rescue a
board if the bootloader doesn't work.

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 108/537

U-boot t
Qo oot promp

» Connect the target to the host through a serial console.
» Power-up the board. On the serial console, you will see something like:

U-Boot 2020.04 (May 26 2020 - 16:05:43 +0200)

CPU: SAMA5D36

Crystal frequency: 12 MHz
CPU clock : 528 MHz
Master clock : 132 MHz

DRAM: 256 MiB

NAND: 256 MiB

MMC: Atmel mci: @, Atmel mci: 1
Loading Environment from NAND... OK

In: serialeffffee0o
Out: serialeffffee0o
Err: serialeffffee0o

Net: etho: ethernet@f0028000
Error: ethernet@f802c000 address not set.

Hit any key to stop autoboot: @
=

» The U-Boot shell offers a set of commands. We will study the most important
ones, see the documentation for a complete reference or the help command.

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 109/537

Information commands (1)

Flash information (NOR and SPI flash)

=> flinfo

DataFlash:AT45DB021

Nb pages: 1024

Page Size: 264

Size= 270336 bytes

Logical address: 0xC0000000

Area 0: CQ000000 to COQQ1FFF (RO) Bootstrap
Area 1: C0002000 to CO003FFF Environment
Area 2: (C0004000 to COQ41FFF (RO) U-Boot

NAND flash information

=> nand info

Device @: nand@, sector size 128 KiB

Page size 2048 b
00B size 64 b
Erase size 131072 b
subpagesize 2048 b
options 0x40004200

bbt options 0x00008000

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

110/537

Version details

=> version
U-Boot 2020.04 (May 26 2020 - 16:05:43 +0200)

arm-linux-gcc (crosstool-NG 1.24.0.105_5659366) 9.2.0
GNU 1d (crosstool-NG 1.24.0.105_5659366) 2.34

*Important commands (1)

A\

| 2

P> The exact set of commands depends on the U-Boot configuration

help and help command
fatload, loads a file from a FAT filesystem to RAM

» Example: fatload usb 0:1 0x21000000 zImage
» And also fatinfo, fatls, fatsize, fatwrite...

ext2load, loads a file from an ext2 filesystem to RAM
» And also ext2info, ext2ls, ext2size, ext2write...

Similar commands for other filesystems: ext4load, ext4ls, sgfsload, sqfsls...

(SquashFS support contributed by Bootlin)...
tftp, loads a file from the network to RAM (example given later)
ping, to test the network

bootd (can be abbreviated as boot), runs the default boot command, stored in
bootcmd

bootz <address>, starts a kernel image loaded at the given address in RAM

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

112/537

https://bootlin.com/blog/bootlin-contributes-squashfs-support-to-u-boot/

a Important commands (2)
o)

Jo%a]

» loadb, loads, loady, load a file from the serial line to RAM

» usb, to initialize and control the USB subsystem, mainly used for USB storage
devices such as USB keys

» mmc, to initialize and control the MMC subsystem, used for SD and microSD cards

» nand, to erase, read and write contents to NAND flash

> crase, protect, cp, to erase, modify protection and write to NOR flash

» md, displays memory contents. Can be useful to check the contents loaded in
memory, or to look at hardware registers.

» mm, modifies memory contents. Can be useful to modify directly hardware

registers, for testing purposes.

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 113/537

@0 U-Boot bdinfo command

=> bdinfo

arch number = 0x00000000

boot params = 0x20000100

DRAM bank = 0x00000000 Allow to find valid RAM

:i :E:Zt _ 8ziggggggg addresses without needing
the SoC datasheet or

baudrate = 115200 bps b d manual

TLB addr = 0x2FFF0000 oar

relocaddr = 0x2FF27000

reloc off = 0x09027000

irq sp = 0x2FB1DC40

sp start = 0x2FB1DC30

Early malloc usage: 135c / 2000
fdt_blOb = 2fb1ldc50 Source: U-Boot 2018.01

on Microchip SAMA5D3 Xplained

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 114/537

a Environment variables: principle
o)

g

» U-Boot can be configured through environment variables
» Some specific environment variables impact the behavior of the different commands
» Custom environment variables can be added, and used in scripts
» Environment variables are loaded from persistent storage to RAM at U-Boot
startup. They can be defined or modified and saved back to storage for
persistence.

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

115/537

a@ Environment variables: implementation
o0

Jo%a]

.config - U-Boot 26020.07 Configuration

Depending on the configuration, the — Environnent
U-Boot environment is typically stored in: [] Environment fs not stored
.) [*] Environment is in a FAT filesystem
» At a fixed offset in NAND flash

1 Environment is in a EXT4 filesystem
Environment in flash memory

> At a fixed offset on MMC or USB

storage, before the beginning of the

]
1 Environment in an MMC device

1 Environment in a NAND device

1 Environment in a non-volatile RAM

] Environment is in OneNAND

1 Environment is in remote memory space
] Environment in a UBI volume

H L (mmc) Name of the block device for the environment
fII’St partltlon (0) Device and partition for where to store the environemt in FAT
(uboot.env) Name of the FAT file to use for the environment

. (6x4000) Environment Size
» In a file (uboot.env) on a FAT or ext4 [+] Relotate gd-senv addr
[] Create default environment from file
111 [1 Add run-time information to the environment
partltlon [1 Block forced environment operations

» |n a UBI volume

U-Boot environment configuration menu

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 116/537

ao Environment variables commands
o0

Jo3e!

Commands to manipulate environment variables:

» printenv
Shows all variables

» printenv <variable-name>
Shows the value of a variable

» setenv <variable-name> <variable-value>
Changes the value of a variable or defines a new one, only in RAM

» editenv <variable-name>
Edits the value of a variable in-place, only in RAM

> saveenv
Saves the current state of the environment to storage for persistence.

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 117/537

u-boot # printenv
baudrate=19200
ethaddr=00:40:95:36:35:33
netmask=255.255.255.0
ipaddr=10.0.0.11
serverip=10.0.0.1
stdin=serial

stdout=serial
stderr=serial

u-boot # printenv serverip
serverip=10.0.0.1

u-boot # setenv serverip 10.0.0.100
u-boot # saveenv

60 Important U-Boot env variables
o0

Jo%a]

» bootcmd, specifies the commands that U-Boot will automatically execute at boot
time after a configurable delay (bootdelay), if the process is not interrupted. See
next page for an example.

v

bootargs, contains the arguments passed to the Linux kernel, covered later

v

serverip, the IP address of the server that U-Boot will contact for network
related commands

ipaddr, the IP address that U-Boot will use
netmask, the network mask to contact the server

ethaddr, the MAC address, can only be set once

vvyyypy

filesize, the size of the latest copy to memory (from tftp, fatload,
nand read...)

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 119/537

Scripts in environment variables

» Environment variables can contain small scripts, to execute several commands and
test the results of commands.
» Useful to automate booting or upgrade processes
» Several commands can be chained using the ; operator
P Tests can be done using if command ; then ... ; else ... ; fi
» Scripts are executed using run <variable-name>
» You can reference other variables using ${variable-name}

> Examples
» setenv bootcmd 'tftp 0x21000000 zImage; tftp 0x22000000 dtb; bootz
0x21000000 - 0x22000000'
» setenv mmc-boot 'if fatload mmc @ 80000000 boot.ini; then source; else
if fatload mmc @ 80000000 zImage; then run mmc-do-boot; fi; fi'

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 120/537

a@ Transferring files to the target
OC

Jo%a]

> U-Boot is mostly used to load and boot a kernel image, but it also allows to
change the kernel image and the root filesystem stored in flash.

» Files must be exchanged between the target and the development workstation.
This is possible:

» Through the network (Ethernet if a network port is available, Ethernet over USB
device...), if U-Boot has drivers for such networking. This is the fastest and most
efficient solution.

» Through a USB key, if U-Boot supports the USB controller of your platform

» Through a SD or microSD card, if U-Boot supports the MMC controller of your
platform

» Through the serial port (Loadb, loadx or loady command)

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

121/537

(), TFTP

Jo%a]

» Network transfer from the development workstation to U-Boot on the target takes
place through TFTP
» Trivial File Transfer Protocol
» Somewhat similar to FTP, but without authentication and over UDP
» A TFTP server is needed on the development workstation
» sudo apt install tftpd-hpa
> All files in /var/lib/tftpboot orin /srv/tftp (if /srv exists) are then visible
through TFTP
> A TFTP client is available in the tftp-hpa package, for testing
> A TFTP client is integrated into U-Boot
» Configure the ipaddr, serverip, and ethaddr environment variables
> Use tftp <address> <filename> to load file contents to the specified RAM
address
> Example: tftp 0x21000000 zImage

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 122/537

6 Practical lab - U-Boot
o)

Time to start the practical lab!

» Communicate with the board using a serial
console

» Configure, build and install U-Boot
» Learn U-Boot commands
» Set up TFTP communication with the board

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 123/537

Linux kernel introduction

Linux kernel
introduction

© Copyright 2004-2021, Bootlin.
Creative Commons BY-SA 3.0 license

Corrections, suggestions, contributions and translations are welcome!

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

bootlin

OO\ g

embedded Linux and kernel engineering

124/537

a Linux kernel introduction
o)

g

Linux features

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 125/537

History

» The Linux kernel is one component of a system, which also
requires libraries and applications to provide features to end
users.

» The Linux kernel was created as a hobby in 1991 by a Finnish
student, Linus Torvalds.

» Linux quickly started to be used as the kernel for free software
operating systems

» Linus Torvalds has been able to create a large and dynamic
developer and user community around Linux.

Linus Torvalds in 2014
» Nowadays, more than one thousand people contribute to each Image credits (Wikipedia):

https://bit.1ly/2UIalTD
kernel release, individuals or companies big and small.

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 126/537

https://bit.ly/2UIa1TD

a Linux kernel key features
o)

Jo%a]

» Portability and hardware support.
Runs on most architectures
(see arch/ in the source code).

» Scalability. Can run on super
computers as well as on tiny devices
(4 MB of RAM is enough).

» Compliance to standards and
interoperability.

» Exhaustive networking support.

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

Security. It can't hide its flaws. Its
code is reviewed by many experts.
Stability and reliability.

Modularity. Can include only what a
system needs even at run time.

Easy to program. You can learn from

existing code. Many useful resources
on the net.

127/537

https://elixir.bootlin.com/linux/latest/source/arch/

a Linux kernel in the system
o)

>as

User app B
Library A User app A
C library
Call to services Event notification,
information exposition
Linux kernel
Manage hardware Event notification
Hardware

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

128/537

a Linux kernel main roles
o)

Jo%a]

» Manage all the hardware resources: CPU, memory, 1/0.

» Provide a set of portable, architecture and hardware independent APIs to
allow user space applications and libraries to use the hardware resources.
» Handle concurrent accesses and usage of hardware resources from different
applications.
» Example: a single network interface is used by multiple user space applications
through various network connections. The kernel is responsible for “multiplexing”
the hardware resource.

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

129/537

System calls
@

Jo%a]

» The main interface between the kernel and user space is
the set of system calls

» About 400 system calls that provide the main kernel
services

» File and device operations, networking operations,
inter-process communication, process management,
memory mapping, timers, threads, synchronization
primitives, etc.

» This interface is stable over time: only new system calls
can be added by the kernel developers

» This system call interface is wrapped by the C library, _ o
i i Image credits (Wikipedia):
and user space applications usually never make a system \t¢05.//bit.1y/202rdoB
call directly but rather use the corresponding C library
function

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 130/537

https://bit.ly/2U2rdGB

a Pseudo filesystems
o)

Jo%a]

» Linux makes system and kernel information available in user space through
pseudo filesystems, sometimes also called virtual filesystems

» Pseudo filesystems allow applications to see directories and files that do not exist
on any real storage: they are created and updated on the fly by the kernel
» The two most important pseudo filesystems are
» proc, usually mounted on /proc:
Operating system related information (processes, memory management
parameters...)
» sysfs, usually mounted on /sys:
Representation of the system as a tree of devices connected by buses. Information
gathered by the kernel frameworks managing these devices.

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

131/537

Inside the Linux kernel

Linux Kernel

Device drivers

Memory n
management .
& driver frameworks
Low level Device Trees
Scheduler . i _
architecture specific (HW description),
Task management :
code on some architectures

Filesystem layer
and drivers

Network stack

v
DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support -

https://bootlin.com

132/537

a Linux license
o)

Jo%a]

» The whole Linux sources are Free Software released under the GNU General
Public License version 2 (GPL v2).
» For the Linux kernel, this basically implies that:

» When you receive or buy a device with Linux on it, you should receive the Linux
sources, with the right to study, modify and redistribute them.

» When you produce Linux based devices, you must release the sources to the
recipient, with the same rights, with no restriction.

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

133/537

ao Supported hardware architectures
o0

Jo%a]

See the arch/ directory in the kernel sources
» Minimum: 32 bit processors, with or without MMU, supported by gcc

» 32 bit architectures (arch/ subdirectories)
Examples: arm, arc, m68k, microblaze (soft core on FPGA)...
P 64 bit architectures:
Examples: alpha, arm64, ia64...
» 32/64 bit architectures
Examples: mips, powerpc, riscv, sh, sparc, x86...
> Note that unmaintained architectures can also be removed when they have
compiling issues and nobody fixes them.

» Find details in kernel sources: arch/<arch>/Kconfig, arch/<arch>/README, or
Documentation/<arch>/

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 134/537

https://elixir.bootlin.com/linux/latest/source/arch/
https://elixir.bootlin.com/linux/latest/source/arch/
https://elixir.bootlin.com/linux/latest/source/arch/arm/
https://elixir.bootlin.com/linux/latest/source/arch/arc/
https://elixir.bootlin.com/linux/latest/source/arch/m68k/
https://elixir.bootlin.com/linux/latest/source/arch/microblaze/
https://elixir.bootlin.com/linux/latest/source/arch/alpha/
https://elixir.bootlin.com/linux/latest/source/arch/arm64/
https://elixir.bootlin.com/linux/latest/source/arch/ia64/
https://elixir.bootlin.com/linux/latest/source/arch/mips/
https://elixir.bootlin.com/linux/latest/source/arch/powerpc/
https://elixir.bootlin.com/linux/latest/source/arch/riscv/
https://elixir.bootlin.com/linux/latest/source/arch/sh/
https://elixir.bootlin.com/linux/latest/source/arch/sparc/
https://elixir.bootlin.com/linux/latest/source/arch/x86/

6 Linux kernel introduction
o)

Linux versioning scheme and development
process

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 135/537

a Linux versioning scheme
oo

Jo%a]

» Until 2003, there was a new stable release branch of Linux every 2 or 3 years (2.0,
2.2, 2.4). New development branches took 2-3 years to become stable (too slow!).
» Since 2003, there is a new stable release of Linux about every 10 weeks:
» Versions 2.6 (Dec. 2003) to 2.6.39 (May 2011)
> Versions 3.0 (Jul. 2011) to 3.19 (Feb. 2015)
> Versions 4.0 (Apr. 2015) to 4.20 (Dec. 2018)
» Version 5.0 was released in Mar. 2019.
» Features are added to the kernel in a progressive way. Since 2003, kernel
developers have managed to do so without having to introduce a massively
incompatible development branch.

» For each release, there are bugfix and security updates: 5.0.1, 5.0.2, etc.

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 136/537

Jo%a]

a Linux development model
o)

Using merge and bug fixing windows

2 weeks

6-10 weeks

<

> <

Merge window

Bug-fixing period

Linus
development
process

51

5.2-rcl 5.2-rc2 5.2-rc3 5.2-rc4 5.2-rc5

(rc: Release Candidates)

52

Bug-fix
versions

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

>

— 71

5.2.1

137/537

Jo%a]

a@ Need for long term support (1)

Issue: bug and security fixes only released for most recent stable kernel versions.
Only the last release of each year is made an LTS (Long Term Support) release,

Captured on https://kernel.org in Feb.
2021, following the Releases link.

>
>
and is supposed to be supported for up to 6 years.

Version Maintainer Released Projected EOL
5.10 Greg Kroah-Hartman & Sasha Levin 2020-12-13 Dec, 2026
5.4 Greg Kroah-Hartman & Sasha Levin 2019-11-24 Dec, 2025
4.19 Greg Kroah-Hartman & Sasha Levin 2018-10-22 Dec, 2024
4.14 Greg Kroah-Hartman & Sasha Levin 2017-11-12 Jan, 2024
4.9 Greg Kroah-Hartman & Sasha Levin 2016-12-1 Jan, 2023
4.4 Greg Kroah-Hartman & Sasha Levin 2016-01-10 Feb, 2022

» Example at Google: starting from Android O (2017), all new Android devices will
have to run such an LTS kernel.

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

138/537

https://kernel.org
https://www.kernel.org/category/releases.html

ao Need for long term support (2)

Jo%a]

» You could also get long term support from a commercial embedded Linux
provider.

» Wind River Linux can be supported for up to 15 years.
» Ubuntu Core can be supported for up to 10 years.
» "If you are not using a supported distribution kernel, or a stable / longterm kernel,
you have an insecure kernel” - Greg KH, 2019
Some vulnerabilities are fixed in stable without ever getting a CVE.

» The Civil Infrastructure Platform project is an industry / Linux Foundation effort
to support selected LTS versions (starting with 4.4) much longer (> 10 years).
See https://bit.ly/2hy1QYC.

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 139/537

https://bit.ly/2hy1QYC

ao What's new in each Linux release? (1)
oQ

g

The official list of changes for each Linux release is just a huge list of individual
patches!

Very difficult to find out the key changes and to get the global picture out of individual
changes.

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 140/537

Jo3e!

ao What's new in each Linux release? (2)
oQ

Fortunately, there are some useful resources available

» https://kernelnewbies.org/LinuxChanges
In depth coverage of the new features in each kernel release

» https://lwn.net/Kernel

Coverage of the features accepted in each merge window

January 18, 2021
January 15, 2021
January 14, 2021
January 11, 2021
January 7, 2021
January 5, 2021

Resource limits in user namespaces

Fast commits for ext4

MAINTAINERS truth and fiction

Old compilers and old bugs

Restricted DMA

Portable and reproducible kernel builds with TuxMake

—> December 28, 2020 5.11 Merge window, part 2
— December 18, 2020 5.11 Merge window, part 1

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 141/537

https://kernelnewbies.org/LinuxChanges
https://lwn.net/Kernel

a Linux kernel introduction
o)

g

Linux kernel sources

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 142/537

a Location of kernel sources
o)

Jo%a]

» The official (mainline) versions of the Linux kernel, as released by Linus Torvalds,
are available at https://kernel.org
» These versions follow the development model of the kernel
» However, they may not contain the latest development from a specific area yet.
Some features in development might not be ready for mainline inclusion yet.
» Many chip vendors supply their own kernel sources
» Focusing on hardware support first
» Can have a very important delta with mainline Linux

» Useful only when mainline hasn’t caught up yet. Many vendors invest in the
mainline kernel at the same time.

> Many kernel sub-communities maintain their own kernel, with usually newer but
fewer stable features
» Architecture communities (ARM, MIPS, PowerPC, etc.), device drivers communities
(12C, SPI, USB, PCI, network, etc.), other communities (real-time, etc.)

» No official releases, only meant for sharing work and contributing to the mainline
version.

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

143/537

https://kernel.org

a Getting Linux sources
oo

Jo3e!

» The kernel sources are available from https://kernel.org/pub/linux/kernel
as full tarballs (complete kernel sources) and patches (differences between two
kernel versions).

» However, more and more people use the git version control system. Absolutely
needed for kernel development!
» Fetch the entire kernel sources and history
git clone git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
» Create a branch that starts at a specific stable version
git checkout -b <name-of-branch> v5.6
» Web interface available at
https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/tree/
» Read more about Git at https://git-scm.com/

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

144/537

https://kernel.org/pub/linux/kernel
https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/tree/
https://git-scm.com/

Linux kernel size (1
Q@ inux kernel size (1)

Jo%a]

» Linux 5.10.11 sources:

> 70,639 files (git 1s-files | wc -1)
» 20,746,102 lines (git ls-files | xargs cat | wec -1)
> 062,810,769 bytes (git ls-files | xargs cat | wc -c)

> A minimum uncompressed Linux kernel just sizes 1-2 MB

» Why are these sources so big?
Because they include thousands of device drivers, many network protocols,
support many architectures and filesystems...

» The Linux core (scheduler, memory management...) is pretty small!

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 145/537

Linux kernel size (2
Q@ inux kernel size (2)

>as

As of kernel version 5.7 (in percentage of total number of lines).

drivers/: 60.1% lib/: 0.6%
arch/: 12.9% mm/: 0.5%

fs/: 4.7% scripts/: 0.4%
sound/: 4.2% crypto/: 0.4%
net/: 4.0% security/: 0.3%

include/: 3.6%
tools/: 3.2%
Documentation/: 3.2%
kernel/: 1.3%

block/: 0.2%
samples/: 0.1%
virt/: 0.1%

vVvvyvvyVvyVvyYvyy
vVVvVvvVYyVvyVvVYVYyVvVYvYyYy

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 146/537

https://elixir.bootlin.com/linux/latest/source/drivers/
https://elixir.bootlin.com/linux/latest/source/arch/
https://elixir.bootlin.com/linux/latest/source/fs/
https://elixir.bootlin.com/linux/latest/source/sound/
https://elixir.bootlin.com/linux/latest/source/net/
https://elixir.bootlin.com/linux/latest/source/include/
https://elixir.bootlin.com/linux/latest/source/tools/
https://elixir.bootlin.com/linux/latest/source/Documentation/
https://elixir.bootlin.com/linux/latest/source/kernel/
https://elixir.bootlin.com/linux/latest/source/lib/
https://elixir.bootlin.com/linux/latest/source/mm/
https://elixir.bootlin.com/linux/latest/source/scripts/
https://elixir.bootlin.com/linux/latest/source/crypto/
https://elixir.bootlin.com/linux/latest/source/security/
https://elixir.bootlin.com/linux/latest/source/block/
https://elixir.bootlin.com/linux/latest/source/samples/
https://elixir.bootlin.com/linux/latest/source/virt/

Jo%a]

> Full
>

>

| 4

a Getting Linux sources
oo

tarballs

Contain the complete kernel sources: long to download and uncompress, but must
be done at least once

Example:

https://kernel.org/pub/linux/kernel/v4.x/1linux-4.20.13.tar.xz

Extract command:

tar xf linux-4.20.13.tar.xz

» Incremental patches between versions

>

>

It assumes you already have a base version and you apply the correct patches in the
right order to upgrade to the next one. Quick to download and apply

Examples:

https://kernel.org/pub/linux/kernel/v4.x/patch-4.20.xz

(from 4.19 to 4.20)

https://kernel.org/pub/linux/kernel/v4.x/patch-4.20.13.xz

(from 4.20 to 4.20.13)

» All previous kernel versions are available in
https://kernel.org/pub/linux/kernel/

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 147/537

https://kernel.org/pub/linux/kernel/v4.x/linux-4.20.13.tar.xz
https://kernel.org/pub/linux/kernel/v4.x/patch-4.20.xz
https://kernel.org/pub/linux/kernel/v4.x/patch-4.20.13.xz
https://kernel.org/pub/linux/kernel/

Patch

> A patch is the difference between two source trees
» Computed with the diff tool, or with more elaborate version control systems
» They are very common in the open-source community.
See https://en.wikipedia.org/wiki/Diff
» Excerpt from a patch:

diff -Nru a/Makefile b/Makefile

--- a/Makefile 2005-03-04 09:27:15 -08:00
+++ b/Makefile 2005-03-04 09:27:15 -08:00
@@ -1,7 +1,7 @@

VERSION = 2

PATCHLEVEL = 6

SUBLEVEL = 11
-EXTRAVERSION =
+EXTRAVERSION N
NAME=Woozy Numbat

*DOCUMENTATION=

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 148/537

https://en.wikipedia.org/wiki/Diff

Contents of a patch

» One section per modified file, starting with a header

diff -Nru a/Makefile b/Makefile
--- a/Makefile 2005-03-04 09:27:15 -08:00
+++ b/Makefile 2005-03-04 09:27:15 -08:00

» One sub-section (hunk) per modified part of the file, starting with a header with the
starting line number and the number of lines the change hunk applies to

ee -1,7 +1,7 ee
» Three lines of context before the change

VERSION = 2
PATCHLEVEL = 6
SUBLEVEL = 11

» The change itself

-EXTRAVERSION =
+EXTRAVERSION = .1

» Three lines of context after the change
NAME=Woozy Numbat

DOCUMENTATION

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 149/537

60 Using the patch command

038!

The patch command:
» Takes the patch contents on its standard input
» Applies the modifications described by the patch into the current directory
patch usage examples:
» patch -p<n> < diff_file
cat diff_file | patch -p<n>
xzcat diff_file.xz | patch -p<n>
zcat diff_file.gz | patch -p<n>

Notes:

» n: number of directory levels to skip in the file paths
» You can reverse apply a patch with the -R option
» You can test a patch with --dry-run option

>
>
>
>

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 150/537

60 Applying a Linux patch

Jo3e!

» Two types of Linux patches:
» Either to be applied to the previous
stable version
(from x.<y-1> to x.y)
» Or implementing fixes to the current
stable version
(from x.y to x.y.z)
» Can be downloaded in gzip or xz
(much smaller) compressed files.

» Always produced for patch -pi

» Need to run the patch command
inside the toplevel kernel source
directory

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

patch-5.9
(patch -R)

Linux 5.7

patch-5.8

Linux patching examples

patch-5.8.7

Linux 5.8.7

patch-5.8.6
(patch -R)

cd linux-5.7
From 5.7 to 5.8.6

xzcat
xzcat

../patch-5.8.xz | patch -pi
../patch-5.8.6.xz | patch -p1

Back to 5.8 from 5.8.6

xzcat

../patch-5.8.6.xz | patch -R -pi

From 5.8 to 5.8.7

xzcat

../patch-5.8.7.xz | patch -p1

Renaming directory

cd ..;

)

mv linux-5.7 linux-5.8.7

151/537

6 Practical lab - Kernel sources
o)

Time to start the practical lab!
» Get the Linux kernel sources

» Apply patches

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 152/537

a Linux kernel introduction
o)

g

Building the kernel

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

a Linux kernel introduction
o)

g

Kernel configuration

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 154/537

a Kernel configuration
o)

Jo%a]

» The kernel contains thousands of device drivers, filesystem drivers, network
protocols and other configurable items

» Thousands of options are available, that are used to selectively compile parts of
the kernel source code

» The kernel configuration is the process of defining the set of options with which
you want your kernel to be compiled
» The set of options depends

» On the target architecture and on your hardware (for device drivers, etc.)
» On the capabilities you would like to give to your kernel (network capabilities,
filesystems, real-time, etc.). Such generic options are available in all architectures.

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 155/537

a@ Kernel configuration and build system
o0

Jo%a]

» The kernel configuration and build system is based on multiple Makefiles

» One only interacts with the main Makefile, present at the top directory of the
kernel source tree

» Interaction takes place

» using the make tool, which parses the Makefile
» through various targets, defining which action should be done (configuration,
compilation, installation, etc.). Run make help to see all available targets.
» Example

» cd linux-4.14.x/
» make <target>

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 156/537

https://elixir.bootlin.com/linux/latest/source/Makefile

ao Specifying the target architecture

Jo%a]

First, specify the architecture for the kernel to build
P> Set ARCH to the name of a directory under arch/:
export ARCH=arm
» By default, the kernel build system assumes that the kernel is configured and built
for the host architecture (x86 in our case, native kernel compiling)
» The kernel build system will use this setting to:

» Use the configuration options for the target architecture.
» Compile the kernel with source code and headers for the target architecture.

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

157/537

https://elixir.bootlin.com/linux/latest/source/arch/

a Choose a compiler
oo

Jo%a]

The compiler invoked by the kernel Makefile is $(CROSS_COMPILE)gcc

» Specifying the compiler is already needed at configuration time, as some kernel
configuration options depend on the capabilities of the compiler.
» When compiling natively
» Leave CROSS_COMPILE undefined and the kernel will be natively compiled for the host
architecture using gcc.
» When using a cross-compiler
» To make the difference with a native compiler, cross-compiler executables are
prefixed by the name of the target system, architecture and sometimes library.
Examples:
mips-linux-gcc: the prefix is mips-1linux-
arm-1linux-gnueabi-gcc: the prefix is arm-1linux-gnueabi-
» So, you can specify your cross-compiler as follows:
export CROSS_COMPILE=arm-1linux-gnueabi-
CROSS_COMPILE is actually the prefix of the cross compiling tools
(gcc, as, 1d, objcopy, strip...).

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 158/537

a@ Specifying ARCH and CROSS_COMPILE

Jo%a]

There are actually two ways of defining ARCH and CROSS_COMPILE:

» Pass ARCH and CROSS_COMPILE on the make command line:
make ARCH=arm CROSS_COMPILE=arm-linux-
Drawback: it is easy to forget to pass these variables when you run any make
command, causing your build and configuration to be screwed up.

» Define ARCH and CROSS_COMPILE as environment variables:
export ARCH=arm
export CROSS_COMPILE=arm-linux-
Drawback: it only works inside the current shell or terminal. You could put these
settings in a file that you source every time you start working on the project. If
you only work on a single architecture with always the same toolchain, you could
even put these settings in your ~/.bashrc file to make them permanent and
visible from any terminal.

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 159/537

60 Kernel configuration details
o0

Jo%a]

» The configuration is stored in the .config file at the root of kernel sources
» Simple text file, CONFIG_PARAM=value (included by the kernel Makefile)
> As options have dependencies, typically never edited by hand, but through
graphical or text interfaces:
» make xconfig, make gconfig (graphical)
» make menuconfig, make nconfig (text)

» You can switch from one to another, they all load/save the same .config file, and
show the same set of options

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 160/537

a Initial configuration
o)

Jo%a]

Difficult to find which kernel configuration will work with your hardware and root
filesystem. Start with one that works!

» Desktop or server case:
» Advisable to start with the configuration of your running kernel, usually available in
/boot:
cp /boot/config-‘uname -r' .config
» Embedded platform case (at least on ARM 32 bit):
» Default configuration files are available, usually for each CPU family.
» They are stored in arch/<arch>/configs/, and are just minimal .config files (only
settings different from default ones).
» Run make help to find if one is available for your platform
» To load a default configuration file, just run
make cpu_defconfig
» This will overwrite your existing .config file!

Now, you can make configuration changes (make menuconfig...).

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

161/537

ao Create your own default configuration
o0

Jo3e!

To create your own default configuration file:

» make savedefconfig
This creates a minimal configuration (non-default settings)

» mv defconfig arch/<arch>/configs/myown_defconfig
This way, you can share a reference configuration inside the kernel sources.

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 162/537

a Kernel or module?
o)

Jo%a]

» The kernel image is a single file, resulting from the linking of all object files that
correspond to features enabled in the configuration
» This is the file that gets loaded in memory by the bootloader
> All included features are therefore available as soon as the kernel starts, at a time
where no filesystem exists

» Some features (device drivers, filesystems, etc.) can however be compiled as
modules

» These are plugins that can be loaded/unloaded dynamically to add/remove features
to the kernel

» Each module is stored as a separate file in the filesystem, and therefore access
to a filesystem is mandatory to use modules

P This is not possible in the early boot procedure of the kernel, because no filesystem
is available

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 163/537

a Kernel option types
o)

Jo%a]

There are different types of options, defined in Kconfig files:
> bool options, they are either

» true (to include the feature in the kernel) or
> false (to exclude the feature from the kernel)

> tristate options, they are either

» true (to include the feature in the kernel image) or
» module (to include the feature as a kernel module) or
> false (to exclude the feature)

> int options, to specify integer values

P> hex options, to specify hexadecimal values
Example: CONFIG_PAGE_OFFSET=0xC0000000

> string options, to specify string values
Example: CONFIG_LOCALVERSION=-no-network
Useful to distinguish between two kernels built from different options

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 164/537

https://elixir.bootlin.com/linux/latest/K/ident/CONFIG_PAGE_OFFSET
https://elixir.bootlin.com/linux/latest/K/ident/CONFIG_LOCALVERSION

a@ Kernel option dependencies
o0

Jo%a]

There are dependencies between kernel options
» For example, enabling a network driver requires the network stack to be enabled
> Two types of dependencies:
» depends on dependencies. In this case,

option B that depends on option A is not
visible until option A is enabled

tate "Serial ATA and Parallel ATA drivers (libata)"
on HAS_TOMEM
on BLOCK

If you want to use an ATA hard disk, ATA tape drive, ATA CD-ROM or

> select dependencies. In this case, with
option B depending on option A, when R R
. . . - ecause you will be asked for it.
option A is enabled, option B is peceuse v
automatically enabled. In particular, such
dependencies are used to declare what
features a hardware architecture supports.

Kconfig file excerpt

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 165/537

a make xconfig
o)

Jo%a]

make xconfig
» The most common graphical interface to configure the kernel.
> File browser: easier to load configuration files
» Search interface to look for parameters
» Required Debian / Ubuntu packages: gt5-default

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 166/537

* make xconfig screenshot

x
Ele Edit Option Help
© @

0 Kernel Configuration

Option Value iffoston Value
@ Patch physical to virtual translations at runtime v
O NEED_MACH 10_H N B SAMcortexm? family N
O NEED_MACH MEMORY_H N O sauasoz omily (vew) N
Physical address of main memory Al 7
© GENERIC | v O SAMASD4 fa.mly (NEW) N
PGTABLE LEVELS 2 0 AT91RM9200 N
- System Type 0 AT915AMS N
Multiple platform selection M N
O Actions Semi SoCs. N Clocksource driver selection
O Axis Communications ARM based ARTPEC SoCs N Periodic Interval Timer (PIT) support (NEW) Y
O Aspeed BMC architect N Timer Counter locks(1C0) support (W) ¥
© HAVE_ATS1_UTMI
0 Broadcom SoC Support N @ HAVE_ATS1_USB_CLK v
O Marvell Berlin SoCs N OMMON_CLK_AT91 Y
O Cirrus Logic EP721x/EP731x-based N HAVE_ATS1_SMD Y
O Cavium Networks CNS3XXX family N O HAVE_ATS1_H321 N
O TiDavindi N O HAVE_AT91_GENERATED_CLK N
Marvell Dove Implementations O HAVE_AT91_AUDIO_PLL N
Gimus Ep93ccmplementaton Optons 0 HAVE_AT91_125_MUX_CLK N
O samsung Exyn N O HAVE_ATS1 SAMOX60.PLL N
Footbridge Impltmentﬂlvuns T SoC_5AM V4 V5 N
s Gemi N S0C_sAM V7 Y
B ettty N 2 soc s Y
10P32x Implementat !
Intel IXPaxx \mplementauon options
ediaTek SoC Suppor N
3 Amlogic eson Socs N
O Socionext Milbeaut SocCs N

SAMASD3 family (soc_saMASD3)
CONFIG_SOC_SAMASD3:

Select thisif you are using one of Microchip's SAMASDS family SoC.
This support covers SAMASD31, SAMASD33, SAMASD34, SAMASD3S, SAMASD36.

Symbol: SOC_SAMASDS3 [=y]
Type : bool

Defined atarch/arm/mach at91/Keonfig3s
Prompe: SAMASDS o

/] && ARCH_MULTI_V7

Locatior
> System Type

> ATO1/Microchip SoCs (ARCH_AT1 [=y])
Selects: SOC_SAMAS [=y] &

)
HAVE_ATS1_UTMI [=y] && HAVE_ATS1_SMD [-y] && HAVE_AT91_USB_CLK

)| 88 PINCTRL_ATS1

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

167/537

make xconfig search interface

Looks for a keyword in the parameter name (shortcut: [Ctrl] + [f]).
Allows to set values to found parameters.

Search Conflg

Find: |ftrace Search

Option
Tracers
enable/disable function tracing dynamically
O Perform a startup test on ftrace
Trace syscalls
O Persistent function tracer
B Copy the output from kernel Ftrace to STM engine

Persistent Function tracer (PSTORE_FTRACE)
CONFIG_PSTORE_FTRACE:

with this option kernel traces function callsinto a persistent

ram buffer that can be decoded and dumped after reboot through
pstore filesystem. It can be used to determine what function

was last called before a reset or panic.

IFunsure, say N.

Symbol: PSTORE_FTRACE [=n]

Type : boolean

Prompt: Persistent function tracer

Location:

-> File systems

-> Miscellaneous filesystems (MISC_FILESYSTEMS [=y])

-> Persistent store support (PSTORE [=y])

Defined at fs/pstore/Kconfig:61

Depends on: MISC_FILESYSTEMS [=y] && PSTORE [=y] && FUNCTION_TRACER [=y] && DEBUG_FS
=1

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 168/537

KerneI configuration options

Compiled as a module (separate file)
CONFIG_IS09660_FS=m

Driver options \ EISO 9660 CDROM file system support
CONFIG_JOLIET=y ~ —3» .@Microsoft Joliet CDROM extensions
CONFIG_ZISOFS=y ~ —» | @Transparent decompression extension

_aUDF file system support

Compiled statically into the kernel
CONFIG_UDF_FS=y

Values in resulting .config file Parameter values as displayed in make xconfig

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 169/537

Corresponding .config file excerpt

Options are grouped by sections and are prefixed with CONFIG_.

#

CD-ROM/DVD Filesystems
#

CONFIG_IS09660_FS=m
CONFIG_JOLIET=y
CONFIG_ZISOFS=y
CONFIG_UDF_FS=y
CONFIG_UDF_NLS=y

#

DOS/FAT/NT Filesystems

#

CONFIG_MSDOS_FS is not set
CONFIG_VFAT_FS is not set
CONFIG_NTFS_FS=m

CONFIG_NTFS_DEBUG is not set
CONFIG_NTFS_RW=y

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 170/537

make gconfi
Sl

make gconfig

» GTK based graphical configuration
interface. Functionality similar to that
of make xconfig.

» Just lacking a search functionality.

» Required Debian packages:
libglade2-dev

/bootlin.com

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - http:

File Options Help

« @ 8 | Il
Ba Load swe singe split

Options

GCOV-based kernelprofiling
GCCplugins
Enable loadable modle support
9 Enable the block layer
PartitionTypes
105chedulers
Executable fle formats
Memory Management options
Networking support
~ Networking options
~ @ Network packet filtering framework (Netfil
CoreNetfiler Configuration
1Pset support
1P virtual server support
1P: Netfilter Configuration
1Pv6: Netfilter Configuration

Unux/arm

0 Kernel Conflguration

= g
Collapse Expand

Options.

1Pva socket lookup support
© 1Pvatprowysupport
Netfilter IPva packet duplication to alternate destination
ARP packet logging
1 1Pva pacet logging
1Pv4 packet rejection
1P tables support (required for Fitering/masa/NAT)
AR tables support

1pva packet logging

‘Thereis no help available for this optior
Symbol: NF_LOG_IPVa [-m]
Type :tristate
Defined at net/ipvé/netfilter/Kconfig:81

i +tlogging
Depends on: NET [=y] && INET [=y] && NETFILTER [=y]
Location:

‘The DCCP Protocol
The SCTP Protocol

The TIPC Protocol

Layer Two Tunneling Protocol (L2TP)
Distributed Switch Architecture

6LOWPAN Support

1EEE Std 802.15.4 Low-Rate Wireless Personal A

(NET[=])
> Networking options
> Network packet filtering framework (Netfilter) (NETFILTER [-y])
tfiter Configuration
0G_COMMON [=r]

Name
NF_SOCKET_IPV4
NF_TPROXY_IPVA.
NF_DUP_IPV4
NF_LOG_ARP
NF_LOG_IPVa
NF_REJECT_IPV4
1P_NF_IPTABLES
1P_NF_ARPTABLES

XT_TARGET_LOG [=n] 8& NET [=y] 8& INET [=y] 8& NETFILTER [-y] 8&
]

NETFILTER_XTABLES [-n]

171/537

make menuconfig

make menuconfig

» Useful when no graphics are available.
Very efficient interface.

» Same interface found in other tools:
BusyBox, Buildroot...

» Convenient number shortcuts to jump
directly to search results.

» Required Debian packages:
libncurses-dev

v
DBOOtlN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 172/537

a make nconfig
o)

Jo3e!

make nconfig
» A newer, similar text interface

» More user friendly (for example, easier
to access help information).

» However, lacking the shortcuts that
menuconfig offers in search results.
Therefore, much less convenient than
menuconfig.

» Required Debian packages:
libncurses-dev

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

.config - Linux/arm 5.11.0 Kernel Configuration

— Linux/arn 5.11.0 Kernel Configuration

General setup
(8) Maximum PncE STZ€ order of alignment for DMA IOMMU buffers
System Type --->
Bus support --->
Kernel Features --->
Boot options --->
CPU Power Management --->
Floating point emulation --->
Power management options --->
Firmware Drivers --->
[*] ARM Accelerated Cryptographic Algorithms --->
General architecture-dependent options --->
[*] Enable loadable module support --->
[*] Enable the block layer --->
10 Schedulers --->
Executable file formats --->
Memory Management options --->
[*] Networking support --->
Device Drivers --
File systems -
Security option:
-*. Cryptographic API --
Library routines --->
Kernel hacking --->

2 HieLoB S ninfogEHe o Z8iShouAL LIRS ackadeSave il acaiisynsear chadticyi LAY

173/537

ke oldconfi
ma e oldconfig

Jo%a]

make oldconfig
> Needed very often!
» Useful to upgrade a .config file from an earlier kernel release
» Asks for values for new parameters.

» ... unlike make menuconfig and make xconfig which silently set default values
for new parameters.

If you edit a .config file by hand, it's useful to run make oldconfig afterwards, to set
values to new parameters that could have appeared because of dependency changes.

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 174/537

60 Undoing configuration changes

Jo%a]

A frequent problem:

> After changing several kernel configuration settings, your kernel no longer works.

> If you don't remember all the changes you made, you can get back to your
previous configuration:
$ cp .config.old .config

» All the configuration interfaces of the kernel (xconfig, menuconfig,
oldconfig...) keep this .config.old backup copy.

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 175/537

6 Linux kernel introduction
o)

Compiling and installing the kernel

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

a Kernel compilation
o)

Jo%a]

make

» Run it in the main kernel source directory!

» Remember to run multiple jobs in parallel if you have
multiple CPU cores / threads. Our advice: ncpus * 2
or ncpus + 2, to fully load the CPU and 1/Os at all
times.

Example: make -j 8
» No need to run as root!
» To recompile faster (7x according to some benchmarks),

use the ccache compiler cache:
export CROSS_COMPILE="ccache riscv64-linux-"

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

Benefits on parallel make

Tests on Linux 5.11 on arm
gnome-system-monitor showing the load of the 4 CPUs
make allnoconfig configuration

make
total time: 129 s

make -38
total time: 67 s

177/537

a Kernel compilation results
oo

Jo%a]

» vmlinux, the raw uncompressed kernel image, in the ELF format, useful for
debugging purposes, but cannot be booted
» arch/<arch>/boot/*Image, the final, usually compressed, kernel image that can

be booted
> bzImage for x86, zImage for ARM, Image.gz for RISC-V, vmlinux.bin.gz for ARC,
etc.

» arch/<arch>/boot/dts/*.dtbh, compiled Device Tree files (on some
architectures)

» All kernel modules, spread over the kernel source tree, as . ko (Kernel Object) files.

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 178/537

a Kernel installation: native case
o)

Jo%a]

» make install
» Does the installation for the host system by default, so needs to be run as root.
> Installs
» /boot/vmlinuz-<version>
Compressed kernel image. Same as the one in arch/<arch>/boot
» /boot/System.map-<version>
Stores kernel symbol addresses for debugging purposes (obsolete: such information is
usually stored in the kernel itself)
» /boot/config-<version>
Kernel configuration for this version

» In GNU/Linux distributions, typically re-runs the bootloader configuration utility
to make the new kernel available at the next boot.

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 179/537

a@ Kernel installation: embedded case
o0

Jo%a]

> make install is rarely used in embedded development, as the kernel image is a
single file, easy to handle.

» Another reason is that there is no standard way to deploy and use the kernel
image.

» Therefore making the kernel image available to the target is usually manual or
done through scripts in build systems.

» |t is however possible to customize the make install behavior in
arch/<arch>/boot/install.sh

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 180/537

Module installation: native case

» make modules_install

» Does the installation for the host system by default, so needs to be run as root
» Installs all modules in /1ib/modules/<version>/

» kernel/

Module .ko (Kernel Object) files, in the same directory structure as in the sources.

» modules.alias, modules.alias.bin
Aliases for module loading utilities. Used to find drivers for devices. Example line:
alias usb:v@66Bp20F9d*xdcxdsc*dp*xicxiscxip*in* asix
» modules.dep, modules.dep.bin
Module dependencies
» modules.symbols, modules.symbols.bin
Tells which module a given symbol belongs to.

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

181/537

ao Module installation: embedded case
o0

Jo3e!

P> In embedded development, you can't directly use make modules_install as it
would install target modules in /1ib/modules on the host!

» The INSTALL_MOD_PATH variable is needed to generate the module related files
and install the modules in the target root filesystem instead of your host root

filesystem:
make INSTALL_MOD_PATH=<dir>/ modules_install

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

182/537

Kernel cleanup targets

» Clean-up generated files (to force re-compilation):
make clean

» Remove all generated files. Needed when switching from one
architecture to another. Caution: it also removes your .config
file!
make mrproper

» Also remove editor backup and patch reject files (mainly to

generate patches):
make distclean

» If you are in a git tree, remove all files not tracked (and ignored)

by git:
git clean -fdx

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 183/537

Kernel building overview

Environment setup Kernel building
and configuration and deployment
Specify target architecture
(if different from host)
Kernel
export ARCH=arm — coneiling
Specify cross-compiler e
(if cross-compiling)
export CROSS_COMPILE=arm-linux-
Kernel
configuration .
Installing modules Installing the kernel
Get reference configuration:

make soc_defconfig (ARM example) make modules_install make install
- or manual copy

Customize configuration:
make menuconfig

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 184/537

a Linux kernel introduction
o)

g

Booting the kernel

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 185/537

Device T 1
Q@ evice Tree (1)

Jo%a]

» Many embedded architectures have a lot of non-discoverable hardware (serial,
Ethernet, 12C, Nand flash, USB controllers...)

» Depending on the architecture, such hardware is either described in BIOS ACPI
tables (x86), using C code directly within the kernel, or using a special hardware
description language in a Device Tree.

» The Device Tree (DT) was created for PowerPC, and later was adopted by other
architectures (ARM, ARC...). Now Linux has DT support in most architectures,
at least for specific systems (for example for the OLPC on x86).

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 186/537

Device Tree (2
Q@ evice Tree (2)

Jo%a]

» A Device Tree Source, written by kernel developers, is compiled into a binary
Device Tree Blob, and needs to be passed to the kernel at boot time.
» There is one different Device Tree for each board/platform supported by the kernel,
available in arch/arm/boot/dts/<board>.dtb.
» See arch/arm/boot/dts/at91-sama5d3_xplained.dts for example.

» The bootloader must load both the kernel image and the Device Tree Blob in
memory before starting the kernel.

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 187/537

https://elixir.bootlin.com/linux/latest/source/arch/arm/boot/dts/at91-sama5d3_xplained.dts

ao Customize your board device tree!
o0

Jo%a]

Often needed for embedded board users:

» To describe external devices attached to
non-discoverable busses (such as 12C) and configure
them.

» To configure pin muxing: choosing what SoC signals are
made available on the board external connectors. See
http://linux.tanzilli.com/ for a web service doing
this interactively.

» To configure some system parameters: flash partitions,
kernel command line (other ways exist)

» Device Tree 101 webinar, Thomas Petazzoni (2021):
Slides: https://bootlin.com/blog/device-tree-
101-webinar-slides-and-videos/

Video: https://youtu.be/a9CZ1Uk30YQ

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

188/537

http://linux.tanzilli.com/
https://bootlin.com/blog/device-tree-101-webinar-slides-and-videos/
https://bootlin.com/blog/device-tree-101-webinar-slides-and-videos/
https://youtu.be/a9CZ1Uk3OYQ

60 Booting with U-Boot

Jo%a]

» Recent versions of U-Boot can boot the zImage binary.
» Older versions require a special kernel image format: uImage

» ulmage is generated from zImage using the mkimage tool. It is done automatically
by the kernel make uImage target.

» On some ARM platforms, make ulmage requires passing a LOADADDR environment
variable, which indicates at which physical memory address the kernel will be
executed.

» In addition to the kernel image, U-Boot can also pass a Device Tree Blob to the
kernel.
» The typical boot process is therefore:

1. Load zImage or ulmage at address X in memory

2. Load <board>.dtb at address Y in memory

3. Start the kernel with bootz X - Y (zImage case), or bootm X - Y (uImage case)
The - in the middle indicates no initramfs

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

189/537

Jo%a]

» In addition to the compile time configuration, the kernel behavior can be adjusted

a Kernel command line
o)

with no recompilation using the kernel command line

» The kernel command line is a string that defines various arguments to the kernel

>

>
>
>
>

It is very important for system configuration

root= for the root filesystem (covered later)

console= for the destination of kernel messages

Example: console=ttyS@ root=/dev/mmcblk@p2 rootwait
Many more exist. The most important ones are documented in
admin-guide/kernel-parameters in kernel documentation.

» This kernel command line can be, in order of priority (highest to lowest):

>

>
| 4
>

Passed by the bootloader. In U-Boot, the contents of the bootargs environment
variable is automatically passed to the kernel.

Specified in the Device Tree (for architectures which use it)

Built into the kernel, using the CONFIG_CMDLINE option.

A combination of the above depending on the kernel configuration.

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

190/537

https://www.kernel.org/doc/html/latest/admin-guide/kernel-parameters.html
https://elixir.bootlin.com/linux/latest/K/ident/CONFIG_CMDLINE

ao Practical lab - Kernel cross-compiling
o0

Jo%a]

» Set up the cross-compiling environment

» Configure and cross-compile the kernel for an
arm platform

» On this platform, interact with the bootloader
and boot your kernel

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 191/537

a Linux kernel introduction
o)

g

Using kernel modules

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

>

a Advantages of modules
oo

Jo%a]

Modules make it easy to develop drivers without
rebooting: load, test, unload, rebuild, load...

Useful to keep the kernel image size to the minimum
(essential in GNU/Linux distributions for PCs).

Also useful to reduce boot time: you don't spend time
initializing devices and kernel features that you only
need later.

Caution: once loaded, have full control and privileges in
the system. No particular protection. That's why only
the root user can load and unload modules.

To increase security, possibility to allow only signed
modules, or to disable module support entirely.

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

Using kernel modules to support

many different devices and setups

Kernel

Intermediate root filesystem (initramfs)

No special driver required to access it
Contains all the modules to access the specific
storage and filesytem of the device
Load such modules
and mount the new root filesystem

b

Final root filesystem

Regular system startup

The modules in the initramfs are updated every time
a kernel upgrade is available.

193/537

Module dependencies

» Some kernel modules can depend on other modules, which need to be loaded first.

» Example: the ubifs module depends on the ubi and mtd modules.

» Dependencies are described both in
/1lib/modules/<kernel-version>/modules.dep and in
/1lib/modules/<kernel-version>/modules.dep.bin (binary hashed format)
These files are generated when you run make modules_install.

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

194/537

Kernel log
@0

Jo%a]

When a new module is loaded, related information is available in the kernel log.

» The kernel keeps its messages in a circular buffer (so that it doesn't consume
more memory with many messages)

» Kernel log messages are available through the dmesg command (diagnostic
message)

» Kernel log messages are also displayed in the system console (console messages
can be filtered by level using the loglevel kernel command line parameter, or
completely disabled with the quiet parameter). Example:
console=ttyS@ root=/dev/mmcblk@p2 loglevel=5

» Note that you can write to the kernel log from user space too:
echo "<n>Debug info" > /dev/kmsg

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

195/537

Q@ Module utilities (1)

Jo3e!

<module_name>: name of the module file without the trailing . ko
» modinfo <module_name> (for modules in /1ib/modules)
modinfo <module_path>.ko

Gets information about a module without loading it: parameters, license,
description and dependencies.

» sudo insmod <module_path>.ko

Tries to load the given module. The full path to the module object file must be
given.

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 196/537

Understanding module loading issues

» When loading a module fails, insmod often doesn't give you enough details!
» Details are often available in the kernel log.

> Example:
$ sudo insmod ./intr_monitor.ko
insmod: error inserting './intr_monitor.ko': -1 Device or resource busy
$ dmesg

[17549774.552000] Failed to register handler for irqg channel 2

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

197/537

Qo Module utilities (2)

Jo%a]

» sudo modprobe <module_name>
Most common usage of modprobe: tries to load all the modules the given module
depends on, and then this module. Lots of other options are available. modprobe
automatically looks in /1ib/modules/<version>/ for the object file
corresponding to the given module name.

» 1lsmod
Displays the list of loaded modules
Compare its output with the contents of /proc/modules!

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 198/537

Qo Module utilities (3)

Jo%a]

» sudo rmmod <module_name>
Tries to remove the given module.
Will only be allowed if the module is no longer in use (for example, no more
processes opening a device file)

» sudo modprobe -r <module_name>
Tries to remove the given module and all dependent modules (which are no longer
needed after removing the module)

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 199/537

Passing parameters to modules

» Find available parameters:
modinfo usb-storage

» Through insmod:
sudo insmod ./usb-storage.ko delay_use=0

» Through modprobe:
Set parameters in /etc/modprobe.conf or in any file in /etc/modprobe.d/:
options usb-storage delay_use=0

» Through the kernel command line, when the driver is built statically into the
kernel:
usb-storage.delay_use=0
P> usb-storage is the driver name
» delay_use is the driver parameter name. It specifies a delay before accessing a USB
storage device (useful for rotating devices).
» 0 is the driver parameter value

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 200/537

ao Check module parameter values
o0

Jo%a]

How to find/edit the current values for the parameters of a loaded module?
» Check /sys/module/<name>/parameters.
» There is one file per parameter, containing the parameter value.

» Also possible to change parameter values if these files have write permissions
(depends on the module code).

> Example:
echo @ > /sys/module/usb_storage/parameters/delay_use

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 201/537

Useful reading

Linux Kernel in a Nutshell, Dec. 2006

» By Greg Kroah-Hartman, O'Reilly
http://www.kroah.com/1kn/

» A good reference book and guide on configuring,
compiling and managing the Linux kernel sources.

» Freely available on-line!
Great companion to the printed book for easy electronic
searches!
Available as single PDF file on
https://bootlin.com/community/kernel/lkn/

» Getting old but still containing useful content. R

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 202/537

http://www.kroah.com/lkn/
https://bootlin.com/community/kernel/lkn/

Linux Root Filesystem

Linux Root Filesystem

© Copyright 2004-2021, Bootlin.
Creative Commons BY-SA 3.0 license

Corrections, suggestions, contributions and translations are welcome!

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

bootlin

OO\ g

embedded Linux and kernel engineering

203/537

a Linux Root Filesystem
o)

g

Principle and solutions

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 204/537

Filesystems
@

Jo%a]

> Filesystems are used to organize data in directories and files on storage devices or
on the network. The directories and files are organized as a hierarchy

» In UNIX systems, applications and users see a single global hierarchy of files and
directories, which can be composed of several filesystems.
» Filesystems are mounted in a specific location in this hierarchy of directories
» When a filesystem is mounted in a directory (called mount point), the contents of
this directory reflects the contents of the storage device
> When the filesystem is unmounted, the mount point is empty again.
» This allows applications to access files and directories easily, regardless of their
exact storage location

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 205/537

Filesystems (2)

» Create a mount point, which is just a directory
$ sudo mkdir /mnt/usbkey

> It is empty
$ 1s /mnt/usbkey
$

> Mount a storage device in this mount point
$ sudo mount -t vfat /dev/sdal /mnt/usbkey
$

» You can access the contents of the USB key
$ 1s /mnt/usbkey
docs prog.c picture.png movie.avi
$

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 206/537

g

mount / umount
(7) mount /

> mount allows to mount filesystems

>
>
>
>

>

mount -t type device mountpoint

type is the type of filesystem (optional for non-virtual filesystems)

device is the storage device, or network location to mount

mountpoint is the directory where files of the storage device or network location will
be accessible

mount with no arguments shows the currently mounted filesystems

» umount allows to unmount filesystems

>

This is needed before rebooting, or before unplugging a USB key, because the Linux
kernel caches writes in memory to increase performance. umount makes sure that
these writes are committed to the storage.

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

207/537

Root filesystem
@

Jo%a]

» A particular filesystem is mounted at the root of the hierarchy, identified by /

» This filesystem is called the root filesystem
» As mount and umount are programs, they are files inside a filesystem.
» They are not accessible before mounting at least one filesystem.

» As the root filesystem is the first mounted filesystem, it cannot be mounted with
the normal mount command

» It is mounted directly by the kernel, according to the root= kernel option
» When no root filesystem is available, the kernel panics:

Please append a correct "root=" boot option
Kernel panic - not syncing: VFS: Unable to mount root fs on unknown block(@,0)

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 208/537

a@ Location of the root filesystem
o0

Jo%a]

» It can be mounted from different locations

From the partition of a hard disk

From the partition of a USB key

From the partition of an SD card

From the partition of a NAND flash chip or similar type of storage device
From the network, using the NFS protocol

From memory, using a pre-loaded filesystem (by the bootloader)

etc.

VVYyVVYYVYYVYY

» It is up to the system designer to choose the configuration for the system, and
configure the kernel behavior with root=

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 209/537

60 Mounting rootfs from storage devices
o0

Jo%a]

» Partitions of a hard disk or USB key

» root=/dev/sdXY, where X is a letter indicating the device, and Y a number
indicating the partition

» /dev/sdb2 is the second partition of the second disk drive (either USB key or ATA
hard drive)

» Partitions of an SD card

» root=/dev/mmcblkXpY, where X is a number indicating the device and Y a number
indicating the partition
» /dev/mmcblkOp?2 is the second partition of the first device
» Partitions of flash storage
» root=/dev/mtdblockX, where X is the partition number

» /dev/mtdblock3 is the fourth flash partition in the system (there could be multiple
flash chips)

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

210/537

ao Mounting rootfs over the network (1)
>\

Once networking works, your root filesystem could be a directory on your GNU/Linux
development host, exported by NFS (Network File System). This is very convenient for

system development:
> Makes it very easy to update files on the root filesystem, without rebooting.
» Can have a big root filesystem even if you don’t have support for internal or
external storage yet.

» The root filesystem can be huge. You can even build native compiler tools and
build all the tools you need on the target itself (better to cross-compile though).

Host Target
Ethernet
NFS client
7 ST built into the kernel

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

211/537

Mounting rootfs over the network (2)

On the development workstation side, a NFS server is needed

» Install an NFS server (example: Debian, Ubuntu)
sudo apt install nfs-kernel-server
> Add the exported directory to your /etc/exports file:
/home/tux/rootfs 192.168.1.111(rw,no_root_squash, no_subtree_check)
> 192.168.1.111 is the client IP address
» rw,no_root_squash,no_subtree_check are the NFS server options for this
directory export.
> Start or restart your NFS server (example: Debian, Ubuntu)
sudo /etc/init.d/nfs-kernel-server restart

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

212/537

Jo%a]

60 Mounting rootfs over the network (3)
o0

» On the target system

> The
>
>
>

» The

>
>
>
>

kernel must be compiled with
CONFIG_NFS_FS=y (NFS client support)
CONFIG_IP_PNP=y (configure IP at boot time)
CONFIG_ROOT_NFS=y (support for NFS as rootfs)

kernel must be booted with the following parameters:

root=/dev/nfs (we want rootfs over NFS)

ip=192.168.1.111 (target IP address)
nfsroot=192.168.1.110:/home/tux/rootfs/ (NFS server details)

You may need to add ", nfsvers=3, tcp” to the nfsroot setting, as an NFS version
2 client and UDP may be rejected by the NFS server in recent GNU/Linux
distributions.

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

213/537

https://elixir.bootlin.com/linux/latest/K/ident/CONFIG_NFS_FS
https://elixir.bootlin.com/linux/latest/K/ident/CONFIG_IP_PNP
https://elixir.bootlin.com/linux/latest/K/ident/CONFIG_ROOT_NFS

Host

NFS server

/home/tux/rootfs;
/home/tux/rootfs;
/home/tux/rootf's;
/home/tux/rootf's;

/home/tux/rootf's;
/home/tux/rootf's;
/home/tux/rootfs;

Ethernet

a@ Root filesystem in memory: initramfs
o0

Jo%a]

It is also possible to boot the system with a filesystem in memory: initramfs
» Either from a compressed CPIO archive integrated into the kernel image
» Or from such an archive loaded by the bootloader into memory
> At boot time, this archive is extracted into the Linux file cache

> |t is useful for two cases:

» Fast booting of very small root filesystems. As the filesystem is completely loaded at
boot time, application startup is very fast.

» As an intermediate step before switching to a real root filesystem, located on devices
for which drivers not part of the kernel image are needed (storage drivers, filesystem
drivers, network drivers). This is always used on the kernel of desktop/server
distributions to keep the kernel image size reasonable.

» Details (in kernel sources):
filesystems/ramfs-rootfs-initramfs

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 215/537

https://www.kernel.org/doc/html/latest/filesystems/ramfs-rootfs-initramfs.html

External initramfs

» To create one, first create a compressed CPIO archive:

cd rootfs/
find . | cpio -H newc -o > ../initramfs.cpio
cd ..

gzip initramfs.cpio
» If you're using U-Boot, you'll need to include your archive in a U-Boot container:

mkimage -n 'Ramdisk Image' -A arm -0 linux -T ramdisk -C gzip \
-d initramfs.cpio.gz ulnitramfs

» Then, in the bootloader, load the kernel binary, DTB and uInitramfs in RAM
and boot the kernel as follows:

bootz kernel-addr initramfs-addr dtb-addr

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 216/537

Built-in initramfs
(5

g

To have the kernel Makefile include an initramfs archive in the ()
kernel image: use the CONFIG_INITRAMFS_SOURCE option. femel code and data

» It can be the path to a directory containing the root

filesystem contents

» It can be the path to a ready made cpio archive

» It can be a text file describing the contents of the initramfs e e
See the kernel documentation for details: arehive
driver-api/early-userspace/early_userspace_support (Z,m’?g:'ft');“maf;m)

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 217/537

https://elixir.bootlin.com/linux/latest/K/ident/CONFIG_INITRAMFS_SOURCE
https://www.kernel.org/doc/html/latest/driver-api/early-userspace/early_userspace_support.html

Contents

a@ Root filesystem organization
o0

Jo%a]

» The organization of a Linux root filesystem in terms of directories is well-defined
by the Filesystem Hierarchy Standard
» https://wiki.linuxfoundation.org/lsb/fhs
> Most Linux systems conform to this specification
» Applications expect this organization

P |t makes it easier for developers and users as the filesystem organization is similar in
all systems

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 219/537

https://wiki.linuxfoundation.org/lsb/fhs

g

/bin
/boot

/dev
/etc
/home
/lib
/media
/mnt
/proc

a Important directories (1)
o)

Basic programs

Kernel images, configurations and initramfs (only when the kernel is
loaded from a filesystem, not common on non-x86 architectures)

Device files (covered later)
System-wide configuration

Directory for the users home directories
Basic libraries

Mount points for removable media
Mount points for static media

Mount point for the proc virtual filesystem

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

220/537

a Important directories (2)
o)

Jo%a]

/root Home directory of the root user

/sbin Basic system programs

/sys Mount point of the sysfs virtual filesystem
/tmp Temporary files

/usr /usr/bin Non-basic programs
/usr/lib Non-basic libraries
/usr/sbin Non-basic system programs

/var Variable data files. This includes spool directories and files,
administrative and logging data, and transient and temporary files

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

221/537

ao Separation of programs and libraries
o0

Jo%a]

» Basic programs are installed in /bin and /sbin and basic libraries in /1ib

» All other programs are installed in /usr/bin and /usr/sbin and all other libraries
in /usr/lib

» In the past, on UNIX systems, /usr was very often mounted over the network,
through NFS

» In order to allow the system to boot when the network was down, some binaries
and libraries are stored in /bin, /sbin and /1ib

» /bin and /sbin contain programs like 1s, ip, cp, bash, etc.

v

/1ib contains the C library and sometimes a few other basic libraries

» All other programs and libraries are in /usr

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 222/537

Linux Root Filesystem

Device Files

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 223/537

a Devices
o)

Jo%a]

» One of the kernel important roles is to allow applications to access hardware
devices

» In the Linux kernel, most devices are presented to user space applications through
two different abstractions

» Character device
» Block device

» Internally, the kernel identifies each device by a triplet of information

» Type (character or block)
> Major (typically the category of device)
» Minor (typically the identifier of the device)

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 224/537

T f devi
@0 ypes of devices

Jo%a]

» Block devices
» A device composed of fixed-sized blocks, that can be read and written to store data
» Used for hard disks, USB keys, SD cards, etc.
» Character devices
» Originally, an infinite stream of bytes, with no beginning, no end, no size. The pure
example: a serial port.
» Used for serial ports, terminals, but also sound cards, video acquisition devices,
frame buffers
» Most of the devices that are not block devices are represented as character devices
by the Linux kernel

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 225/537

a Devices: everything is a file
o)

Jo%a]

> A very important UNIX design decision was to represent most system objects as
files

> It allows applications to manipulate all system objects with the normal file API
(open, read, write, close, etc.)

» So, devices had to be represented as files to the applications
» This is done through a special artifact called a device file

> It is a special type of file, that associates a file name visible to user space
applications to the triplet (type, major, minor) that the kernel understands

» All device files are by convention stored in the /dev directory

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 226/537

Device files examples

Example of device files in a Linux system

$ 1s -1 /dev/ttySe /dev/ttyl /dev/sda /dev/sdal /dev/sda2 /dev/sdcl /dev/zero
brw-rw---- 1 root disk 8, 0 2011-05-27 08:56 /dev/sda

brw-rw---- 1 root disk 8, 1 2011-05-27 08:56 /dev/sdal

brw-rw---- 1 root disk 8, 2 2011-05-27 08:56 /dev/sda2

brw-rw---- 1 root disk 8, 32 2011-05-27 08:56 /dev/sdc

Crw-—------ 1 root root 4, 1 2011-05-27 08:57 /dev/ttyl

crw-rw---- 1 root dialout 4, 64 2011-05-27 08:56 /dev/ttySo

crw-rw-rw- 1 root root 1, 5 2011-05-27 08:56 /dev/zero

Example C code that uses the usual file API to write data to a serial port

int fd;

fd = open("/dev/ttySe"”, O_RDWR);
write(fd, "Hello"”, 5);
close(fd);

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 227/537

a Creating device files
oo

Jo%a]

» Before Linux 2.6.32, on basic Linux systems, the device files had to be created
manually using the mknod command

» mknod /dev/<device> [c|b] major minor

» Needed root privileges

» Coherency between device files and devices handled by the kernel was left to the

system developer
» The devtmpfs virtual filesystem can be mounted on /dev and contains all the

devices registered to kernel frameworks. The CONFIG_DEVTMPFS_MOUNT kernel
configuration option makes the kernel mount it automatically at boot time, except
when booting on an initramfs.

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

228/537

https://elixir.bootlin.com/linux/latest/K/ident/CONFIG_DEVTMPFS_MOUNT

a Linux Root Filesystem
o)

g

Pseudo Filesystems

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 229/537

a proc virtual filesystem
oo

g

» The proc virtual filesystem exists since the beginning of Linux

> |t allows

» The kernel to expose statistics about running processes in the system
» The user to adjust at runtime various system parameters about process
management, memory management, etc.

» The proc filesystem is used by many standard user space applications, and they
expect it to be mounted in /proc

» Applications such as ps or top would not work without the proc filesystem

» Command to mount proc:
mount -t proc nodev /proc

> filesystems/proc in the kernel sources

» man proc

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 230/537

https://www.kernel.org/doc/html/latest/filesystems/proc.html

a proc contents
ody)

038!

» One directory for each running process in the system
» /proc/<pid>
» cat /proc/3840/cmdline
» |t contains details about the files opened by the process, the CPU and memory
usage, etc.
» /proc/interrupts, /proc/devices, /proc/iomem, /proc/ioports contain
general device-related information

» /proc/cmdline contains the kernel command line

» /proc/sys contains many files that can be written to adjust kernel parameters

» They are called sysctl. See admin-guide/sysctl/ in kernel sources.
» Example (free the page cache and slab objects):
echo 3 > /proc/sys/vm/drop_caches

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 231/537

https://www.kernel.org/doc/html/latest/admin-guide/sysctl/

fs filesyst
Q@ sysfs filesystem

Jo3e!

> It allows to represent in user space the vision that the kernel has of the buses,
devices and drivers in the system

» It is useful for various user space applications that need to list and query the
available hardware, for example udev or mdev.

> All applications using sysfs expect it to be mounted in the /sys directory

» Command to mount /sys:
mount -t sysfs nodev /sys

» $ 1s /sys/
block bus class dev devices firmware
fs kernel module power

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 232/537

a Linux Root Filesystem
o)

g

Minimal filesystem

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 233/537

a Basic applications
o)

Jo%a]

» In order to work, a Linux system needs at least a few applications

» An init application, which is the first user space application started by the kernel after
mounting the root filesystem (see https://en.wikipedia.org/wiki/Init):
» The kernel tries to run the command specified by the init= command line
parameter if available.
» Otherwise, it tries to run /sbin/init, /bin/init, /etc/init and /bin/sh.
» In the case of an initramfs, it will only look for /init. Another path can be supplied
by the rdinit= kernel argument.
» If none of this works, the kernel panics and the boot process is stopped.
» The init application is responsible for starting all other user space applications and
services
» A shell, to implement scripts, automate tasks, and allow a user to interact with the system

» Basic UNIX executables, for use in system scripts or in interactive shells: mv, cp, mkdir,
cat, modprobe, mount, ip, etc.

» These basic components have to be integrated into the root filesystem to make it usable

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

234/537

https://en.wikipedia.org/wiki/Init

Overall booting process

od)

Bootloader
Loads the DTB and kernel to RAM, starts the kernel

|

Kernel

Initializes hardware devices and kernel subsystems
Mounts the root filesystem indicated by root=
Starts the init application, /sbin/init by default

4 \ 4 N\
/sbin/init
Starts other user space services and applications

I
\ L 4

Shell Other applications

Root filesystem

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 235/537

5 Overall booting process with initramfs

Bootloader

Loads the initramfs archive to RAM (if separate)
Loads DTB + kernel to RAM, starts the kernel

v

Kernel
Initializes hardware devices and kernel subsystems
Extracts the initramfs archive to the file cache
Starts the /init executable if found
(Y N\
/init

Starts early user space commands
(show splashscreen, start time critical application...)
Loads drivers needed to access the final root filesystem
Mounts the root filesystem and switches to it

L Intermediate root fil|esystem (initramfs))
e \ 4 B
/sbin/init
Regular system startup
L Root filesystem)

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 236/537

Busybox

bootlin

© Copyright 2004-2021, Bootlin. . . .
m Linux and kernel engineerin

Creative Commons BY-SA 3.0 license. € bedded uxa d ernel e g ee g

Corrections, suggestions, contributions and translations are welcome!

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 237/537

?
Q@ Why Busybox

Jo%a]

> A Linux system needs a basic set of programs to work
» An init program
> A shell
» Various basic utilities for file manipulation and system configuration
» In normal GNU/Linux systems, these programs are provided by different projects

» coreutils, bash, grep, sed, tar, wget, modutils, etc. are all different projects

» A lot of different components to integrate

» Components not designed with embedded systems constraints in mind: they are not
very configurable and have a wide range of features

> Busybox is an alternative solution, extremely common on embedded systems

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 238/537

General purpose toolbox: BusyBox

https://www.busybox.net/
» Rewrite of many useful UNIX command line utilities

P> Created in 1995 to implement a rescue and installer system
for Debian, fitting in a single floppy disk (1.44 MB)

» Integrated into a single project, which makes it easy to work
with

» Designed with embedded systems in mind: highly
configurable, no unnecessary features

» Called the Swiss Army Knife of Embedded Linux

» License: GNU GPLv2

» Alternative: Toybox, BSD licensed
(https://en.wikipedia.org/wiki/Toybox)

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

230/537

https://www.busybox.net/
https://en.wikipedia.org/wiki/Toybox

a@ BusyBox in the root filesystem
OC

Jo%a]

» All the utilities are compiled into a single
executable, /bin/busybox

» Symbolic links to /bin/busybox are created for
each application integrated into Busybox
» For a fairly featureful configuration, less than 500
KB (statically compiled with uClibc) or less than 1
MB (statically compiled with glibc).

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

rootfs
— bin
ash -> busybox
busybox
cat -> busybox
1s -> busybox
mount -> busybox
sh -> busybox
— sbin
halt -> ../bin/busybox
ifconfig -> ../bin/busybox
init -> ../bin/busybox

L— usr
L— sbin
L— httpd -> ../../bin/busybox

240/537

[, [[, acpid, add-shell, addgroup, adduser, adjtimex, ar, arch, arp, arping, awk, base64, basename, bbconfig, bc, beep,
blkdiscard, blkid, blockdev, bootchartd, brctl, bunzip2, busybox, bzcat, bzip2, cal, cat, chat, chattr, chcon, chgrp, chmod,
chown, chpasswd, chpst, chroot, chrt, chvt, cksum, clear, cmp, comm, conspy, cp, cpio, crond, crontab, cryptpw, cttyhack, cut,
date, dc, dd, deallocvt, delgroup, deluser, depmod, devmem, df, diff, dirname, dmesg, dnsd, dnsdomainname, dos2unix, dpkg, dpkg-
deb, du, dumpkmap, dumpleases, echo, ed, egrep, eject, env, envdir, envuidgid, ether-wake, expand, expr, factor, fakeidentd,
fallocate, false, fatattr, fbset, fbsplash, fdflush, fdformat, fdisk, fgconsole, fgrep, find, findfs, flash_eraseall, flash_lock,
flash_unlock, flashcp, flock, fold, free, freeramdisk, fsck, fsck.minix, fsfreeze, fstrim, fsync, ftpd, ftpget, ftpput, fuser,
getenforce, getopt, getsebool, getty, grep, groups, gunzip, gzip, halt, hd, hdparm, head, hexdump, hexedit, hostid, hostname,
httpd, hush, hwclock, id, ifconfig, ifdown, ifenslave, ifplugd, ifup, inetd, init, insmod, install, ionice, iostat, ip, ipaddr,
ipcalc, ipcrm, ipcs, iplink, ipneigh, iproute, iprule, iptunnel, kbd_mode, kill, killall, killall5, klogd, last, less, link,
linux32, linux64, linuxrc, 1ln, load_policy, loadfont, loadkmap, logger, login, logname, logread, losetup, lpd, lpg, lpr, ls,
lsattr, lsmod, lsof, lspci, lsscsi, lsusb, lzcat, lzma, lzop, lzopcat, makedevs, makemime, man, matchpathcon, md5sum, mdev, mesg,
microcom, minips, mkdir, mkdosfs, mke2fs, mkfifo, mkfs.ext2, mkfs.minix, mkfs.reiser, mkfs.vfat, mknod, mkpasswd, mkswap, mktemp,
modinfo, modprobe, more, mount, mountpoint, mpstat, mt, mv, nameif, nanddump, nandwrite, nbd-

client, nc, netcat, netstat, nice, nl, nmeter, nohup, nologin, nproc, nsenter, nslookup, ntpd, nuke, od, openvt, partprobe,
passwd, paste, patch, pgrep, pidof, ping, ping6, pipe_progress, pivot_root, pkill, pmap, popmaildir, poweroff, printenv, printf,
ps, pscan, pstree, pwd, pwdx, raidautorun, rdate, rdev, readahead, readlink, readprofile, realpath, reboot, reformime, remove-
shell, renice, reset, resize, restorecon, resume, rev, rfkill, rm, rmdir, rmmod, route, rpm, rpm2cpio, rtcwake, run-init, run-
parts, runcon, runlevel, runsv, runsvdir, rx, script, scriptreplay, sed, selinuxenabled, sendmail, seq, sestatus, setarch,
setconsole, setenforce, setfattr, setfiles, setfont, setkeycodes, setlogcons, setpriv, setsebool, setserial, setsid, setuidgid,
sh, shalsum, sha256sum, sha3sum, sha512sum, showkey, shred, shuf, slattach, sleep, smemcap, softlimit, sort, split, ssl_client,
start-stop-daemon, stat, strings, stty, su, sulogin, sum, sv, svc, svlogd, svok, swapoff, swapon, switch_root, sync, sysctl,
syslogd, tac, tail, tar, taskset, tc, tcpsvd, tee, telnet, telnetd, test, tftp, tftpd, time, timeout, top, touch, tr, traceroute,
traceroute6, true, truncate, ts, tty, ttysize, tunctl, tune2fs, ubiattach, ubidetach, ubimkvol, ubirename, ubirmvol, ubirsvol,
ubiupdatevol, udhcpc, udhcpd, udpsvd, uevent, umount, uname, uncompress, unexpand, uniq, unit, unix2dos, unlink, unlzma, unlzop,
unxz, unzip, uptime, users, usleep, uudecode, uuencode, vconfig, vi, vlock, volname, w, wall, watch, watchdog, wc, wget, which,
who, whoami, whois, xargs, xxd, xz, xzcat, yes, zcat, zcip

Source: run /bin/busybox

ao Configuring BusyBox

Jo%a]

P> Get the latest stable sources from https://busybox.net
» Configure BusyBox (creates a .config file):
» make defconfig
Good to begin with BusyBox.
Configures BusyBox with all options for regular users.
» make allnoconfig
Unselects all options. Good to configure only what you need.
» make menuconfig (text)
Same configuration interfaces as the ones used by the Linux kernel (though older
versions are used, causing make xconfig to be broken in recent distros).

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

242/537

https://busybox.net

BusyBox make menuconfig

Coreutils

Arrow keys navigate the menu. <Enter> selects submenus --->. Highlighted
letters are hotkeys. Pressing <Y> includes, <N> excludes, <M> modularizes
features. Press <Esc><Esc> to exit, <?> for Help, </> for Search. Legend

[*] built-in [] excluded <M> module < > module capable
(=)
. [] link (3.2 kb)
You can choose: () link 3.2 K
[] logname (1.1 kb)

. L

» the commands to compile, T bt Filetyping options (-p and -F)
[1 Enable symlinks dereferencing (-L)
[*] Enable recursion (-R)

» and even the command options and [*] Enable -w WIDTH and window size autodetection

[*1 Sort the file names

[*] Show file timestamps
featu res that yOU need! [*] Show username/groupnames
[1 Allow use of color to identify file types
[*] md5sum (6.5 kb)
H(+)

<s >} < Exit > < Help >

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 243/537

Compiling BusyBox

» Set the cross-compiler prefix in the configuration interface:
Settings -> Build Options -> Cross Compiler prefix
Example: arm-1linux-

> Set the installation directory in the configuration interface:
Settings -> Installation Options -> BusyBox installation prefix
» Add the cross-compiler path to the PATH environment variable:
export PATH=$HOME/x-tools/arm-unknown-linux-uclibcgnueabi/bin:$PATH
» Compile BusyBox:
make
» Install it (this creates a UNIX directory structure with symbolic links to the

busybox executable):
make install

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 244/537

ao Applet highlight: Busybox init

Jo%a]

» Busybox provides an implementation of an init program

» Simpler than the init implementation found on desktop/server systems (SysV init
or systemd)
> A single configuration file: /etc/inittab
» Each line has the form <id>::<action>:<process>
> Allows to run services at startup, and to make sure that certain services are always
running on the system

> See examples/inittab in Busybox for details on the configuration

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 245/537

https://elixir.bootlin.com/busybox/latest/source/examples/inittab

Applet highlight - BusyBox vi

] cmp (4.9 kb)
] diff (13 kb)
] ed (21 kb)
1
1

» If you are using BusyBox, adding vi support E
only adds about 20K |{]

patch (9.4 kb)
sed (12 kb)

. . (4096) Maximum screen width
» You can select which exact features to compile I R R o KA i
. [*] Enable yank/put commands and mark cmds
In [*] Enable search and replace cmds
. [1 Enable regex in search and replace

[*] catch signals
[*1 Remember previous cmd and "." cmd

» Users hardly realize that they are using a (] Enable ' option and *view mode

[*] Enable settable options, ai ic showmatch
[*] Support :set

lightweight vi version! {1 Handle window resize
[] Use 'tell me cursor position' ESC sequence to measure window
[*] Support undo command "u"

» Tip: you can learn vi on the desktop, by (336) haxinun. undo-charactor auce size
[1 Allow vi and awk to execute shell commands
running the vimtutor command.

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 246/537

v

vvyyy

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

a@ Practical lab - A tiny embedded system

Jo%a]

Make Linux boot on a directory on your
workstation, shared by NFS

Create and configure a minimalistic Linux
embedded system

Install and use BusyBox
System startup with /shin/init
Set up a simple web interface

Use shared libraries

247/537

Block filesystems

Block filesystems

© Copyright 2004-2021, Bootlin.
Creative Commons BY-SA 3.0 license

Corrections, suggestions, contributions and translations are welcome!

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

bootlin

OO\ g

embedded Linux and kernel engineering

248/537

Block filesystems

Block devices

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 249/537

Qo Block vs. flash

Jo%a]

» Storage devices are classified in two main types: block devices and flash devices
» They are handled by different subsystems and different filesystems
» Block devices can be read and written to on a per-block basis, in random order,
without erasing.
» Hard disks, RAM disks
» USB keys, SSD, SD cards, eMMC: these are based on flash storage, but have an
integrated controller that emulates a block device, managing the flash in a
transparent way.

» Raw flash devices are driven by a controller on the SoC. They can be read, but
writing requires prior erasing, and often occurs on a larger size than the “block”
size.

» NOR flash, NAND flash

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 250/537

Block device list

» The list of all block devices available in the system can be found in
/proc/partitions

$ cat /proc/partitions
major minor #blocks name

179 0 3866624 mmcblko
179 1 73712 mmcblkopT
179 2 3792896 mmcblkop2

8 © 976762584 sda

8 1 1060258 sdal

8 2 975699742 sda2

> /sys/block/ also stores information about each block device, for example
whether it is removable storage or not.

DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 251/537

Partitioning
9o

Jo%a]

» Block devices can be partitioned to store different parts of a system

» The partition table is stored inside the device itself, and is read and analyzed
automatically by the Linux kernel

» mmch1ko is the entire device
» mmch1k@p?2 is the second partition of mmch1ko

> Two partition table formats:

» MBR, the legacy format
» GPT, the new format, not used everywhere yet, supporting disks bigger than 2 TB.

» Numerous tools to create and modify the partitions on a block device: fdisk,
cfdisk, sfdisk, parted, etc.

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 252/537

60 Transfering data to a block device
o0

g

> |t is often necessary to transfer data to or from a block device in a raw way
» Especially to write a filesystem image to a block device
» This directly writes to the block device itself, bypassing any filesystem layer.
P> The block devices in /dev/ allow such raw access
» dd (disk duplicate) is the tool of choice for such transfers:
» dd if=/dev/mmcblkopl of=testfile bs=1M count=16
Transfers 16 blocks of 1 MB from /dev/mmcblkopl to testfile
» dd if=testfile of=/dev/sda2 bs=1M seek=4
Transfers the complete contents of testfile to /dev/sda2, by blocks of 1 MB, but
starting at offset 4 MB in /dev/sda2
» Typical mistake: copying a file to a filesystem without mounting it first:
dd if=zImage of=/dev/sdel
Instead, you should use:
sudo mount /dev/sdel /boot
cp zImage /boot/

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 253/537

g

DbOOtliN - Kernel, drivers and embedded Linux - Devel

lopr

ment, consul

Block filesyst
Q@ ock filesystems

Available block filesystems

Iting, training and support - https://bootlin.com

ao Standard Linux filesystem format: ext2, ext3, ext4
od

Jo%a]

» The standard filesystem used on Linux systems is the series of ext{2, 3,4}
filesystems

» ext2
P> ext3, brought journaling compared to ext2, now obsoleted by ext4.
» ext4, mainly brought performance improvements and support for very big partitions.

» It supports all features Linux needs in a root filesystem: permissions, ownership,
device files, symbolic links, etc.

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 255/537

a Journaled filesystems
oo

Jo%a]

» Unlike simpler filesystems (ext2, vfat...),
designed to stay in a coherent state even after
system crashes or a sudden poweroff.

» Writes are first described in the journal before
being committed to files (can be all writes, or
only metadata writes depending on the
configuration)

» Allows to skip a full disk check at boot time
after an unclean shutdown.

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

Application

User space Modify the filesystem

Kernel-space %
(filesystem)
Writes an entry in the journal,
describing the modification

l

Perform the modification
in the filesystem

l

Clear journal entry

256/537

Jo%a]

Reboot

No Journal
empty ?

A 4

Discard incomplete
Jjournal entries

A

Execute journal

—> Filesystem OK

60 Filesystem recovery after crashes
o0

» Thanks to the journal, the recovery at boot
time is quick, since the operations in progress
at the moment of the unclean shutdown are
clearly identified. There's no need for a full
filesystem check.

» Does not mean that the latest writes made it
to the storage: this depends on syncing the
changes to the filesystem.

See https://en.wikipedia.org/wiki/
Journaling_file_system for further details.

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

257/537

https://en.wikipedia.org/wiki/Journaling_file_system
https://en.wikipedia.org/wiki/Journaling_file_system

ao Other journaled Linux/UNIX filesystems

Jo%a]

» btrfs, intended to become the next standard filesystem for Linux. Integrates
numerous features: data checksuming, integrated volume management,
snapshots, etc.

» XFS, high-performance filesystem inherited from SGI IRIX, still actively developed.

» JFS, inherited from IBM AIX. No longer actively developed, provided mainly for
compatibility.

> reiserFS, used to be a popular filesystem, but its latest version Reiser4 was
never merged upstream.

» 7FS, provides standard and advanced filesystem and volume management (CoW,
snapshot, etc.). Due to license it cannot be mainlined into Linux but present into
few distributions (see OpenZFs).

All those filesystems provide the necessary functionalities for Linux systems: symbolic
links, permissions, ownership, device files, etc.

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 258/537

Jo%a]

60 F2FS: filesystem for flash-based storage

https://en.wikipedia.org/wiki/F2FS

| 2

v

bootlin - Kernel, drive

Filesystem that takes into account the characteristics of flash-based storage:
eMMC, SD cards, SSD, etc.

Developed and contributed by Samsung
Now supporting transparent compression (LZO, LZ4, zstd) and encryption.

For optimal results, need a number of details about the storage internal behavior
which may not easy to get

Benchmarks: best performer on flash devices most of the time:
See https://1lwn.net/Articles/520003/

Technical details: https://lwn.net/Articles/518988/
Not as widely used as ext4 and btrfs, even on flash-based storage.

rs and embedded Linux - Development, consulting, training and support - https://bootlin.com

250/537

https://en.wikipedia.org/wiki/F2FS
https://lwn.net/Articles/520003/
https://lwn.net/Articles/518988/

ao SquashFS: read-only filesystem

Jo%a]

» Read-only, compressed filesystem for block devices. Fine for parts of a filesystem
which can be read-only (kernel, binaries...)

» Great compression rate, which generally brings improved read performance

» Used in most live CDs and live USB distributions

» Supports several compression algorithms (LZO, XZ, etc.)

» Benchmarks: roughly 3 times smaller than ext3, and 2-4 times faster
(https://elinux.org/Squash_Fs_Comparisons)

» New alternative to SquashFS: EROFS

https://en.wikipedia.org/wiki/EROFS

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 260/537

https://elinux.org/Squash_Fs_Comparisons
https://en.wikipedia.org/wiki/EROFS

ao Our advice for choosing the best filesystem

Jo%a]

» Some filesystems will work better than others depending on how you use them.

» For example, reiserFS had the reputation to be best at handling many small files.

» Fortunately, filesystems are easy to benchmark, being transparent to applications:
» Format your storage with each filesystem
» Copy your data to it
» Run your system on it and benchmark its performance.
» Keep the one working best in your case.

» For read/write partitions, the best choices are probably btrfs and f2fs.

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 261/537

ao Compatibility filesystems

Jo%a]

Linux also supports several other filesystem formats, mainly to be interoperable with
other operating systems:

> vfat for compatibility with the FAT filesystem used in the Windows world and on
numerous removable devices

> Also convenient to store bootloader binaries (FAT easy to understand for ROM code)

» This filesystem does not support features like permissions, ownership, symbolic links,
etc. Cannot be used for a Linux root filesystem.

» Linux now supports the exFAT filesystem too (exfat).

> ntfs for compatibility with the NTFS filesystem used on Windows
» hfs for compatibility with the HFS filesystem used on Mac OS

> 1509660, the filesystem format used on CD-ROMs, obviously a read-only
filesystem

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

262/537

ao tmpfs: filesystem in RAM

Jo%a]

> Not a block filesystem of course!

> Perfect to store temporary data in RAM: system log files, connection data,
temporary files...

> More space-efficient than ramdisks: files are directly in the file cache, grows and
shrinks to accommodate stored files

» How to use: choose a name to distinguish the various tmpfs instances you have
(unlike in most other filesystems, each tmpfs instance is different). Examples:
mount -t tmpfs run /var/run
mount -t tmpfs shm /dev/shm

> See filesystems/tmpfs in kernel sources.

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 263/537

https://www.kernel.org/doc/html/latest/filesystems/tmpfs.html

Block filesyst
Q@ ock filesystems

g

Using block filesystems

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 264/537

ao Creating ext2/ext4 filesystems

Jo%a]

» To create an empty ext2/ext4 filesystem on a block device or inside an
already-existing image file
» mkfs.ext2 /dev/hda3
» mkfs.ext4 /dev/sda3
» mkfs.ext2 disk.img

» To create a filesystem image from a directory containing all your files and
directories
» Use the genext2fs tool, from the package of the same name
» This tool only supports ext2. Alternative for other filesystems: create a disk image,
format it, mount it (see next slides), copy contents and umount.
» genext2fs -d rootfs/ rootfs.img
» Your image is then ready to be transferred to your block device

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 265/537

Jo%a]

>

>

| 2

60 Mounting filesystem images
o0

Once a filesystem image has been created, one can access and modifies its
contents from the development workstation, using the loop mechanism
Example:

genext2fs -d rootfs/ rootfs.img

mkdir /tmp/tst

mount -t ext2 -o loop rootfs.img /tmp/tst

In the /tmp/tst directory, one can access and modify the contents of the
rootfs.img file.

This is possible thanks to loop, which is a kernel driver that emulates a block
device with the contents of a file.

Note: -0 loop no longer necessary with recent versions of mount from GNU
Coreutils. Not true with BusyBox mount.

Do not forget to run umount before using the filesystem image!

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

266/537

ao Creating squashfs filesystems

Jo3e!

> Need to install the squashfs-tools package

» Can only create an image: creating an empty squashfs filesystem would be
useless, since it's read-only.

> To create a squashfs image:

» mksquashfs rootfs/ rootfs.sqfs -noappend
P> -noappend: re-create the image from scratch rather than appending to it

» Examples mounting a squashfs filesystem:

» Same way as for other block filesystems
» mount -o loop rootfs.sqfs /mnt (filesystem image on the host)
» mount /dev/<device> /mnt (on the target)

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

267/537

a@ Mixing read-only and read-write filesystems
o0

Jo%a]

Good idea to split your block storage into:

» A compressed read-only partition (SquashFS)
Typically used for the root filesystem (binaries,
kernel...).

Compression saves space. Read-only access protects
your system from mistakes and data corruption.

» A read-write partition with a journaled filesystem (like
ext4)
Used to store user or configuration data.
Guarantees filesystem integrity after power off or
crashes.

» Ram storage for temporary files (tmpfs)

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

squashfs
/

read-only
compressed
root filesystem

ext4
/data

read-write
user and
configuration
data

tmpfs
/var

read write
volatile data

A

Block storage

RAM

268/537

Jo%a]

>

>

a@ Issues with flash-based block storage

Flash storage made available only through a block interface.
Hence, no way to access a low level flash interface and use the Linux filesystems
doing wear leveling.

No details about the layer (Flash Translation Layer) they use. Details are kept as
trade secrets, and may hide poor implementations.

Not knowing about the wear leveling algorithm, it is highly recommended to limit
the number of writes to these devices.

Using industrial grade storage devices (MMC/SD, USB) is also recommended.

See the Optimizing Linux with cheap flash drives article from Arnd Bergmann and try
his flashbench tool (http://git.linaro.org/people/arnd/flashbench.git/about/)
for finding out the erase block and page size for your storage, and optimizing your
partitions and filesystems for best performance.

bootlin - Kernel, drive

rs and embedded Linux - Development, consulting, training and support - https://bootlin.com

260/537

https://lwn.net/Articles/428584/
http://git.linaro.org/people/arnd/flashbench.git/about/

6@ Practical lab - Block filesystems
o0

» Creating partitions on your block storage

» Booting your system with a mix of filesystems:
SquashFS for the root filesystem (including
applications), ext4 for configuration and user
data, and tmpfs for temporary system files.

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 270/537

Flash storage and filesystems

Flash storage and
filesystems

© Copyright 2004-2021, Bootlin.
Creative Commons BY-SA 3.0 license
Corrections, suggestions, contributions and translations are welcome!

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

bootlin

OO\ g

embedded Linux and kernel engineering

271/537

a@ Block devices vs flash devices: reminder
o0

Jo%a]

» Block devices:

» Allow for random data access using fixed size blocks
» Do not require special care when writing on the media
» Block size is relatively small (minimum 512 bytes, can be increased for performance
reasons)
> Considered as reliable (if the storage media is not, some hardware or software parts
are supposed to make it reliable)
» Flash devices:

» Allow for random data access too

> Require special care before writing on the media (erasing the region you are about to
write on)

» Erase, write and read operations might not use the same block size

» Reliability depends on the flash technology

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

272/537

ao NAND flash chips: how they work?

Jo%a]

» Encode bits with voltage levels

» SLC: Single Level Cell - 1 bit per memory cell
» MLC: Multi Level Cell - Multiple bits per cell

» Start with all bits set to 1

» Writing implies changing some bits from 1 to 0 (assuming 1 bit per cell)
» Restoring bits to 1 is done via the ERASE operation
>
>

Writing and erasing are not done on a per bit or per byte basis
Organization

» Page: minimum unit for PROGRAM operation. Example size: 4 K.
» Block: minimum unit for ERASE operation. Example size: 128 K.

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

273/537

NAND flash storage: organization

Page (e]6}

3 &
L

™

\4

A

Erase

g block

Chip
Example sizes on
Microchip SAMA5D3 Xplained:

- Page size: 2048 b
-00OB size: 64 b
v - Erase block size: 131072 b

Out-Of-Band data @ In-band data

v
DOOLIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 274/537

a@ NAND flash storage: constraints

Jo%a]

P Reliability
» Far less reliable than NOR flash
> Reliability depends on the NAND flash technology (SLC, MLC)

» Require mechanisms to recover from bit flips: ECC (Error Correcting Code)
» ECC information stored in the OOB (Out-of-band area)
> Lifetime
» Short lifetime compared to other storage media
> Lifetime depends on the NAND flash technology (SLC, MLC): between 1000000 and
1000 erase cycles per block
» Wear leveling mechanisms are required to erase blocks evenly
» Bad block detection/handling required too
» Despite the number of constraints brought by NAND they are widely used in
embedded systems for several reasons:
» Cheaper than other flash technologies
» Provide high capacity storage
» Provide good performance (both in read and write access)

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com

275/537

Q@ NAND flash: ECC

Jo%a]

ECC partly addresses the reliability problem on NAND flash

Operates on chunks of usually 512 or 1024 bytes

ECC data are stored in the OOB area
Three algorithms:
» Hamming: can fixup a single bit per block
» Reed-Solomon: can fixup several bits per block
» BCH: can fixup several bits per block
» BCH and Reed-Solomon strength depends on the size allocated for ECC data,
which in turn depends on the OOB size

vvyyy

» NAND manufacturers specify the required ECC strength in their datasheets:
ignoring these requirements might compromise data integrity

DOOtIIN - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 276/537

a@ The MTD subsystem (1)

Jo%a]

» MTD stands for Memory Technology Devices
» Generic subsystem in Linux dealing with all types of storage media that are not
fitting in the block subsystem
» Supported media types: RAM, ROM, NOR flash, NAND flash, Dataflash
» Independent of the communication interface (drivers available for parallel, SPI,
direct memory mapping, ...)
P> Abstract storage media characteristics and provide a simple API to access MTD
devices
» MTD