
6 2 | december 2009 www.l inux journa l .com

Reducing
Boot Time
in Embedded
Linux Systems
Using some reasonably
simple techniques, you
may be able to reduce
dramatically the boot
time of your embedded
Linux system.

Christopher Hallinan

I
t is no secret that Linux has won the race
in the embedded device marketplace.
Tremendous advantages in Linux have broken
almost every barrier to entry for using Linux

on embedded systems across a wide variety of
processor architectures. Today’s developers are
not asking, “Should I use Linux for my embedded
system?”, but instead are asking questions like,
“How can I get more performance out of my
embedded Linux design?” Reducing boot time has

become one of the more interesting discussions
taking place in the embedded Linux community.

As it turns out, it is relatively easy to save substantial
time on system boot. Without a significant expenditure
of engineering resources, savings of more than 80%
are possible with certain system configurations. Of
course, there is a point of diminishing returns. The
graph of engineering effort against boot time would
rapidly approach infinite effort as time reduced into
the milliseconds and lower.

Fast Boot Requires Definition
Before you can measure boot time, you must define what it
means. (I introduce measurement techniques later in this arti-
cle.) Most often, your customers or end users provide, or at
least influence, the definition. The type of product you design
certainly impacts your definition. Most systems that appear
to boot very quickly actually are just providing early feedback
to users in the form of graphical banners, audible feedback,
animation or some combination thereof. You as the system
designer must specify what it means for your embedded
device to be booted and exactly what the user experience
will be during power-on.

Do you define boot time as the time from power-on to
playing your favorite music? Or, maybe you design big iron,
and boot time eats into your annual “five-nines” reliability
budget. A cellular radio node controller that takes two
minutes to boot eats up almost half your annual downtime
budget! Yet, many systems we perceive as fast boot systems
are not actually booting from power-on. Consider a popular
cell-phone design, such as the BlackBerry Curve. The only time
these systems perform a full boot is when the battery is
removed and replaced. Power “on” is actually a resume from
a low-power system state that largely preserves its current
operational status.

It Starts with the Hardware
Although it may seem trivial to mention, sound hardware
design is a fundamental component of a fast boot system.
Many aspects of hardware design can have a marked influence
on 1) how quickly your first bits of code get to execute and 2)
how quickly that code can be read out of a nonvolatile storage
device during initial boot. Pay particular attention to power-on
reset circuitry and initial hardware strapping, which provides
default timings for external buses and chip selects on certain
processors. It is not uncommon to find “conservative” values
being employed here that often can be improved upon.

Your overall hardware architecture will set the stage for
what performance you will be able to achieve. Choice of
processor, clock speed, choice of nonvolatile storage used for
boot images and many other factors will influence how fast
your design can fetch and execute its startup image (usually a
bootloader) and then go on to load and execute an operating
system. Your hardware choices at design time must be
carefully considered if single-digit boot times are part of
your product requirements.

Typical Boot Sequence
To understand where time is being spent, it helps to visualize
the boot sequence of a typical embedded Linux system. Figure
1 shows the basic sequence.

Upon power-on, the hardware needs time for voltages (and
often clocks) to stabilize and for reset to be released. The first
code executed upon release of reset depends on the hardware
architecture and processor, but often it is your bootloader
running from nonvolatile memory, such as NOR Flash. A small
section of code performs some low-level initialization that
includes the memory controller and typically copies itself into
DRAM for further execution. This copy operation can consume
a significant portion of boot time. It is easy to see that keeping
the bootloader small and simple (the KISS principle) will help

keep boot time to a minimum. The bootloader’s primary
responsibility after hardware initialization is to locate, load
and pass control to your Linux kernel. Once the kernel has
completed its own initialization, it must locate and mount
a root filesystem. Your root filesystem will contain a set of
initialization scripts as well as your own applications. There
are numerous opportunities for optimization in all of these
steps, as I explain below.

Bootloader Considerations
Virtually every embedded system has some type of bootloader,
and there are many bootloaders from which to choose. Some
of the more popular include U-Boot for PowerPC, MIPS and
ARM processors, and RedBoot, which is frequently found on
ARM processors. Most popular bootloaders today contain
far more functionality than actually is required for the task
of initializing a system. Indeed, they have become valuable
tools used by developers during initial board bring-up and
system development.

Modern bootloaders are packed with features, such as
Flash erase and program utilities, memory management
utilities, network capabilities for loading images and for self-
configuring (DHCP and BOOTP for example), drivers for PCI,
IDE, USB and support for various partition types and filesys-
tems. Some even have scripting language support useful for

www. l inux journa l .com december 2009 | 6 3

Figure 1. Typical Boot Sequence of Events

development, manufacturing (production test, image load and
so on) and system upgrade.

These features make bootloaders an indispensable tool
during product development. However, the size of bootloader
images has significant impact on boot time. Bootloaders are
stored in nonvolatile storage media, most commonly NOR
Flash. However, embedded systems rarely execute code
directly from Flash, mostly because it is far too slow. Read
times of DRAM are orders of magnitude faster than read
times from Flash.

The first job of the bootloader is to load itself into DRAM
and continue execution from there. Consider the operating
environment of early boot code. There is no stack, no C
context (meaning all this code is written in the processor’s
native assembly language), and quite often, the processor’s
instruction and data caches are not yet enabled. This means
the size of the bootloader image, which needs to be copied
into RAM, will have a major impact on startup time.

The quickest path to performance improvement in your
bootloader is to keep it small. Remove features that are unnec-
essary in a production environment. Some bootloaders, such
as U-Boot, make it easy to do this. Its features are driven by a
board-specific configuration file that contains directives to
enable or disable features. Your requirements will ultimately
rule, but prudent trimming of all but the most essential
features will yield significant savings in boot time.

Uncompressed Kernel
When you build a Linux kernel image, it is virtually always
compressed as one of the final build steps. It is the responsibility
of your bootloader (or a small bootstrap decompression loader
that is appended to your kernel image) to decompress the
kernel image and place it into system memory. One of the
single largest easy gains you can achieve is to remove the
decompression stage. Some architecture/bootloader combi-
nations don’t bother to enable caches, making decompression
take much longer. It is not uncommon to find systems
that take several seconds to perform the decompression
and relocation stage. Using an uncompressed kernel can
significantly reduce your system boot time.

Eliminate initrd/initramfs
Linux distributions use initrd/initramfs (hereinafter referred
to as simply initramfs) primarily as a tool to enable a generic
kernel to be used across a huge variety of system configurations.
It is the job of the initramfs to provide the necessary device
drivers to enable the devices that are required to complete
system boot. Because embedded systems often are restricted
to limited well-known configurations, they usually can eliminate
initramfs with a corresponding reduction in boot time.
Furthermore, removing support for initramfs in the kernel
results in a smaller kernel (and, thus, faster boot.)

Smaller Kernels Boot Faster
If you compile a kernel with a “default” configuration, it often
contains a vast number of features your system may not need.
You may be surprised to discover how many features are
enabled by default that your embedded system does not need.
Spend some quality time with your favorite kernel configura-
tion editor (menuconfig, gconfig and so on), and go through

each and every kernel configuration parameter. Evaluate
whether your system requirements can do without it. Yes, it
may take you the better part of a day (or even more if you
add in some research time), but your savings in boot time
reduction can be substantial. Some examples of features found
in many default kernel configs include IPv6, RAID, support
for many filesystems you may not need, extended partition
support and many more. There also may be numerous device
drivers compiled into the kernel for devices that are not
present in your system. They are harmless, but each driver
runs initialization code, including registration functions, and
some spend lengthy milliseconds (or more) in device probe
routines for devices that are not present—precious boot time
can be spent probing for non-existent devices.

Calibration Routine
You may have seen the interesting “BogoMIPS” message
plastered on your screen or terminal during boot. Linux
calibrates its internal software timing loops to your processor
system clock on each boot, arriving at a constant value used
by the loops_per_jiffy variable (lpj). Although the technique
varies across different architectures, this can be a time-
consuming routine. It is easy to bypass this dynamic calibration
routine by “hard-coding” the time constant calculated by this
routine. This is quite easily passed to the kernel through the
kernel command line. Simply add lpj=xxxxx to your kernel
command line, where xxxxx is the lpj value printed to your
boot log during boot. This is what the boot message looks
like on the Intel Atom-based Netbook on which this article
is being drafted:

Calibrating delay using timer specific routine..

3194.85 BogoMIPS (lpj=6389712)

From this information, simply add the string lpj=6389712
to your kernel command line. This will bypass the often
lengthy calibration routine and instead use the fixed value
for loops_per_jiffy.

Filesystem Selection
One of the keys to achieving single-digit boot times is your
choice of root filesystems. Some filesystems designed for Flash
use, for example the ubiquitous JFFS2, can get into a state
that requires a significant and noticeable time delay while the
kernel reads the sequential journal entries and reconstructs the
files and directories on the filesystem. Consider using a small,
compact and fast root filesystem for your initial system boot,
and then mount a more general-purpose filesystem later in the
initialization sequence.

CRAMFS is a read-only, compressed filesystem that is
perfectly suited for this purpose. Configure a preliminary root
filesystem using CRAMFS, which contains all the executables
and libraries you need to get your system into a preliminary
operational state. Later, while other less critical tasks are
being executed, you can mount a writable JFFS2 partition
when time is not so critical. Also consider the liberal use of
tmpfs for volatile data such as /tmp, /var and others. Tmpfs
is fast and efficient, and dynamically resizes itself to meet
storage requirements. Remember, the contents of all tmpfs
filesystems are lost on power-down, so if there are any files

6 4 | december 2009 www.l inux journa l .com

FEATURE Reducing Boot Time in Embedded Linux Systems

(log files, configuration data and so on) that must be saved,
it will be up to your application to save this data periodically
to nonvolatile storage.

Udev Considerations
Udev has become an efficient and powerful system configuration
tool. Its primary role is to create device nodes for devices that
the kernel discovers. Virtually every modern Linux distribution
uses udev coupled with a set of rules for device naming. Udev
also has the capability to run external programs in response to
device detection. The most common example of this is to run
modprobe to install a device driver upon device detection. For
example, if you plug an SD card into an appropriate socket, a
properly configured udev-based Linux system will perform all
the actions required to enable the device. This includes loading
device drivers and creating the device nodes associated with
the device and driver.

This powerful and flexible scheme has one drawback.
Although udev itself is fast and efficient, some of the external
programs it runs may require significant time to complete.

When a Linux system is booted and reaches userland, udev
basically “plays back” all the device notification events gener-
ated by the kernel and performs the required actions (primarily
device node creation and module loading). This can take a
significant amount of time. One solution to this problem is to
configure your Linux system with statically generated device
nodes for critical system devices (those that you need to be
operational immediately) and defer the running of udev until
your fast-path boot chores are complete. For each device you
need to have immediately available at boot time, create a static
device node in /dev as part of your root filesystem. Later, when
udev takes over, your udev startup script can merge these static
devices with those devices that udev creates dynamically.

Measuring Boot Time
Several tools are available to help you identify the long paths
in your system boot. They vary in complexity and ease of use,
but most can be mastered quickly. The simplest tool (and per-
haps a good starting point) is to configure your kernel to add
timestamps to the kernel messages that are displayed on boot.
Select CONFIG_PRINTK_TIME in the Kernel Hacking section of
your kernel configuration to enable this feature. This lets you
see at a glance where significant time is being spent during
the actual kernel boot sequence.

Another easy tool to use is to enable printout of each
kernel initcall. An initcall is a special type of kernel function
call specifically related to subsystem initialization. This is
accomplished by adding the single parameter initcall_debug to
your kernel command line. When enabled, the kernel will dis-
play a line that lists the kernel virtual address of each initcall
together with return data and call duration. While you must
“decode” the kernel virtual address into its symbolic function
name, this data is readily available in the System.map file in
your Linux kernel source tree. If you have CONFIG_KALLSYMS
enabled (found under General setup→Configure standard kernel
features for small systems), the initcall line will be decoded for
you. A sample of the output from the system boot log with
initcall_debug enabled is displayed in Listing 1.

Using initcall_debug in this scenario reveals that almost
nine seconds could be saved by eliminating or deferring ide

Advertiser Index

ATTENTION ADVERTISERS

March 2010 Issue #191 Deadlines
Space Close: December 28; Material Close: January 5

Theme: System Administration

BONUS DISTRIBUTIONS:
Annual Linux Users Group Promotion

Call Joseph Krack to reserve your space
+1-713-344-1956 ext. 118, e-mail joseph@linuxjournal.com

Advertiser Page # Advertiser Page #

1&1 INTERNET, INC. 1

www.oneandone.com

ABERDEEN, LLC 13

www.aberdeeninc.com

ARCHIE MCPHEE 79

www.mcphee.com

ASA COMPUTERS, INC. 33

www.asacomputers.com

CARI.NET 39

www.cari.net

DIGI-KEY CORPORATION 78

www.digi-key.com

EMAC, INC. 61

www.emacinc.com

EMPERORLINUX 71

www.emperorlinux.com

GECAD TECHNOLOGIES/AXIGEN 79

www.axigen.com

GENSTOR SYSTEMS, INC. 29

www.genstor.com

GUTSY GEEKS 78

www.gutsygeeks.com

IXSYSTEMS, INC. 7

www.ixsystems.com

LOGIC SUPPLY, INC. 53

www.logicsupply.com

LULLABOT 21, 23

www.lullabot.com

MICROWAY, INC. C4, 3

www.microway.com

NATUBA 79

Natuba.com

PLATFORM COMPUTING 17, 78

www.platform.com

POLYWELL COMPUTERS, INC. 5, 79

www.polywell.com

RACKSPACE MANAGED HOSTING C3

www.rackspace.com

SAINT ARNOLD BREWING COMPANY 78

www.saintarnold.com

SERVERBEACH 57

www.serverbeach.com

SERVERS DIRECT 9

www.serversdirect.com

SILICON MECHANICS 27, 31

www.siliconmechanics.com

STRAYTATS 78

www.straytats.com

TECHNOLOGIC SYSTEMS 37

www.embeddedx86.com

TUXERA LTD. 19

tuxera.com

UBIQUITI NETWORKS, INC. C2

www.ubnt.com

UTILIKILTS 78

www.utilikilts.com

ZAREASON 77

www.zareason.com

CHECK OUT OUR BUYER'S GUIDE ON-LINE.
Go to www.linuxjournal.com/buyersguide where you can learn
more about our advertisers or link directly to their Web sites.

Thank you as always for supporting our advertisers by buying
their products!

www.l inux journa l .com december 2009 | 6 5

and IP auto configuration!

Using KFT for Boot Time Measurements
One of the more powerful tools for boot time measurement is
Kernel Function Trace. KFT instructs the compiler to generate
instrumentation for virtually all kernel function calls. When
enabled and triggered, data is logged for each function call
entry and exit, which allows you to identify functions that
consume large amounts of time. To use this tool, you will
need to apply the KFT patch to your kernel. Detailed
instructions and links to KFT kernel patches can be found
at elinux.org/Kernel_Function_Trace.

For each function call not specifically filtered out by
your trace configuration, a line is generated that contains a
timestamp at function entry, the function address, the address
of the caller, process ID and a delta. The raw data is accessed
by reading /proc/kft_data after the run has completed.

Several tools are available to post-process the raw data.
The addr2sym converts the kernel virtual address in the raw
data to symbolic addresses. It is simple to use:

addr2sym <kft_data.raw -m System.map >kft_data.sym

Above, kft_data.raw is the raw data copied from /proc.
System.map is produced by the kernel build and can be found
in the top-level kernel directory, and of course, kft_data.sym is
the output file.

The KFT dump (kd) utility can be found in
the Linux kernel scripts directory after the KFT
patch has been applied. Running kd on the
raw data produces a statistical summary of the
functions called. You can use kd to display the
most time-consuming functions or functions
with time greater than that specified in your
configuration and several other useful filters.
Listing 2 contains a partial listing (top ten) of
the most time-consuming functions on a typical
high-performance Power Architecture proces-
sor. The negative number associated with the
schedule call is due to the fact that schedule
changes context to another process—that is, it
never exits in the traditional manner that a
function call usually does.

Conclusion
Improving Linux boot time is moving from the
obscure corners of R&D labs to mainstream
product development. Driven by competitive
pressures in a wide variety of markets, system
developers are devoting an increasing amount
of effort to making sure their systems are ready
to use when users want them. Always a hot
topic, we are sure to see many more develop-
ments in the near future aimed at further
reducing Linux system boot time.■

Christopher Hallinan is the author of Embedded Linux Primer and a Field
Applications Engineer for MontaVista Software, Inc. He has been engaged
in Linux-related work and play since 2000. He currently resides in
sunny southwest Florida.

6 6 | december 2009 www.l inux journa l .com

FEATURE Reducing Boot Time in Embedded Linux Systems

Listing 1. initcalls Taking More than Nine Milliseconds to Complete

root@8548cds:~# dmesg | grep initcall | egrep '[0-9][0-9] msecs'

initcall pty_init+0x0/0x43c returned 0 after 57 msecs

initcall serial8250_init+0x0/0x138 returned 0 after 20 msecs

initcall gfar_init+0x0/0x58 returned 0 after 60 msecs

initcall cp_init+0x0/0x34 returned 0 after 16 msecs

initcall ide_scan_pcibus+0x0/0x14c returned 0 after 4246 msecs

initcall of_flash_init+0x0/0x34 returned 0 after 43 msecs

initcall uhci_hcd_init+0x0/0x104 returned 0 after 445 msecs

initcall ip_auto_config+0x0/0xefc returned 0 after 4597 msecs

Listing 2. Using kd

$./linux/scripts/kd -n 10 kft_data.sym

Function Count Time Average Local

----------------------------- ----- -------- -------- --------

_ _schedule 5208 22050824 4234 22046510

schedule 1921 10828704 5637 -10478620

setup_arch 1 6021110 6021110 29

tsc_init 1 6021081 6021081 79

set_cyc2ns_scale 1 6021002 6021002 6021002

kobject_uevent 389 1659254 4265 813013

mem_init 2 1223745 611872 111906

wait_for_completion 395 1192559 3019 14685

free_all_bootmem 1 1109561 1109561 53

free_all_bootmem_core 1 1109508 1109508 74651

Resources

Other tools are available to help reduce your system’s boot
time. Bootchart is a powerful tool useful for visualizing the
post-kernel initialization processes. Details can be found at
www.bootchart.org.

Readahead is designed to pre-fetch required boot files from
disk so that when they are needed, they can be read from the
buffer cache for faster boot. Readahead can be customized to
read specific files in a given order. You can find more about
readahead at https://fedorahosted.org/readahead.

For the ambitious, the Moblin distribution contains a
host of optimizations, which taken together, aim to
produce a five-second boot on a typical Netbook:
moblin.org/projects/fast-boot.

Elinux.org (elinux.org/Boot_Time) maintains a very useful
collection of data related to fast boot optimizations, including
more analysis and profiling tools, links to other articles and
much more.

