
90 / OCTOBER 2013 / WWW.LINUXJOURNAL.COM

FEATURE A Handy U-Boot Trick

Deploy and test new builds quickly with no more
than rebooting the board.

BHARATH BHUSHAN LOHRAY

A
HANDY
U-BOOT
TRICK

LJ234-Oct2013.indd 90 9/18/13 4:09 PM

 WWW.LINUXJOURNAL.COM / OCTOBER 2013 / 91

Embedded developers working
on kernels or bare-metal
programs often go through

several development cycles. Each
time the developer modifies the
code, the code has to be compiled,
the ELF (Executable and Linkable
Format)/kernel image has to be
copied onto the SD card, and the
card then has to be transferred from
the PC to the development board
and rebooted. In my experience as
a developer, I found the last two
steps to be a major bottleneck. Even
copying files to the fastest SD cards
is slower than copying files between
hard drives and sometimes between
computers across the network.

Moreover, by frequently inserting
and removing the SD card from the
slot, one incurs the risk of damaging
the fragile connectors on the
development boards. Believe me! I
lost a BeagleBoard by accidentally
applying too much force while holding
the board and pulling out the SD card.
The pressure caused the I2C bus to
fail. Because the power management
chip was controlled by I2C, nothing
other than the serial terminal worked
after that. Setting aside the cost of
the board, a board failure at a critical
time during a project is catastrophic if
you do not have a backup board.

After losing the BeagleBoard, I hit
upon the idea to load my bare-metal
code over the LAN via bootp and
TFTP and leave the board untouched.
This not only reduced the risk of
mechanically damaging my board, but
it also improved on my turn-around
times. I no longer needed to copy files
to the SD card and move it around.

In this article, I present a brief
introduction to U-Boot and then
describe the necessary configurations
to set up a development environment
using DHCP and TFTP. The setup
I present here wil l let you deploy
and test new builds quickly with
no more than rebooting the board.
I use the BeagleBone Black
(http://beagleboard.org/Products/
BeagleBone%20Black) as the
target platform and Ubuntu as
the development platform for my
examples in this article. You may,
however, use the methods presented
here to work with any board that
uses U-Boot or Barebox as its
stage-2 bootloader.

U-Boot
U-Boot is a popular bootloader used
by many development platforms.
It supports multiple architectures
including ARM, MIPS, AVR32, Nios,
Microblaze, 68K and x86. U-Boot

LJ234-Oct2013.indd 91 9/18/13 4:09 PM

92 / OCTOBER 2013 / WWW.LINUXJOURNAL.COM

FEATURE A Handy U-Boot Trick

has support for several filesystems
as well, including FAT32, ext2, ext3,
ext4 and Cramfs built in to it. It also
has a shell where it interactively
can take input from users, and it
supports scripting. It is distributed
under the GPLv2 license. U-Boot is a
stage-2 bootloader.

The U-Boot project also includes
the x-loader. The x-loader is a small
stage-1 bootloader for ARM. Most
modern chips have the ability to read
a FAT32 filesystem built in to the
ROM. The x-loader loads the U-Boot
into memory and transfers control
to it. U-Boot is a pretty advanced

Listing 1. The Serial Console Output from the Stage-1 Bootloader

U-Boot SPL 2013.04-rc1-14237-g90639fe-dirty (Apr 13 2013 - 13:57:11)

musb-hdrc: ConfigData=0xde (UTMI-8, dyn FIFOs, HB-ISO Rx,

 ➥HB-ISO Tx, SoftConn)

musb-hdrc: MHDRC RTL version 2.0

musb-hdrc: setup fifo_mode 4

musb-hdrc: 28/31 max ep, 16384/16384 memory

USB Peripheral mode controller at 47401000 using PIO, IRQ 0

musb-hdrc: ConfigData=0xde (UTMI-8, dyn FIFOs, HB-ISO Rx,

 ➥HB-ISO Tx, SoftConn)

musb-hdrc: MHDRC RTL version 2.0

musb-hdrc: setup fifo_mode 4

musb-hdrc: 28/31 max ep, 16384/16384 memory

USB Host mode controller at 47401800 using PIO, IRQ 0

OMAP SD/MMC: 0

mmc_send_cmd : timeout: No status update

reading u-boot.img

reading u-boot.img

U-Boot is a pretty advanced bootloader that is
capable of loading the kernel and ramdisk image
from the NAND, SD card, USB drive and even the

Ethernet via bootp, DHCP and TFTP.

LJ234-Oct2013.indd 92 9/18/13 4:09 PM

 WWW.LINUXJOURNAL.COM / OCTOBER 2013 / 93

bootloader that is capable of loading
the kernel and ramdisk image from
the NAND, SD card, USB drive and
even the Ethernet via bootp, DHCP
and TFTP.

Figure 1 shows the default boot
sequence of the BeagleBone Black.
This sequence is more or less
applicable to most embedded systems.
The x-loader and U-Boot executables

Figure 1. Boot Sequence

LJ234-Oct2013.indd 93 9/18/13 4:09 PM

94 / OCTOBER 2013 / WWW.LINUXJOURNAL.COM

FEATURE A Handy U-Boot Trick

are stored in the files called MLO and
uboot.img, respectively. These files are
stored in a FAT32 partition. The serial
port outputs of the BeagleBone are

shown in Listings 1–3. The x-loader
is responsible for the output shown
in Listing 1. Once the execution is
handed over to U-Boot, it offers you

Listing 2. The Serial Console Output from the Stage-2 Bootloader

U-Boot 2013.04-rc1-14237-g90639fe-dirty (Apr 13 2013 - 13:57:11)

I2C: ready

DRAM: 512 MiB

WARNING: Caches not enabled

NAND: No NAND device found!!!

0 MiB

MMC: OMAP SD/MMC: 0, OMAP SD/MMC: 1

*** Warning - readenv() failed, using default environment

musb-hdrc: ConfigData=0xde (UTMI-8, dyn FIFOs, HB-ISO Rx,

 ➥HB-ISO Tx, SoftConn)

musb-hdrc: MHDRC RTL version 2.0

musb-hdrc: setup fifo_mode 4

musb-hdrc: 28/31 max ep, 16384/16384 memory

USB Peripheral mode controller at 47401000 using PIO, IRQ 0

musb-hdrc: ConfigData=0xde (UTMI-8, dyn FIFOs, HB-ISO Rx,

 ➥HB-ISO Tx, SoftConn)

musb-hdrc: MHDRC RTL version 2.0

musb-hdrc: setup fifo_mode 4

musb-hdrc: 28/31 max ep, 16384/16384 memory

USB Host mode controller at 47401800 using PIO, IRQ 0

Net: <ethaddr> not set. Validating first E-fuse MAC

cpsw, usb_ether

Hit any key to stop autoboot: 0

LJ234-Oct2013.indd 94 9/18/13 4:09 PM

 WWW.LINUXJOURNAL.COM / OCTOBER 2013 / 95

a few seconds to interrupt the boot
sequence, as shown in Listing 2. If
you choose not to interrupt, U-Boot
executes an environment variable

called bootcmd. bootcmd holds the
search sequence for a file called
uImage. This is the kernel image.
The kernel image is loaded into the

Listing 3. The Serial Console Output from the Stage-2 Bootloader and Kernel

gpio: pin 53 (gpio 53) value is 1

Card did not respond to voltage select!

.

.

.

gpio: pin 54 (gpio 54) value is 1

SD/MMC found on device 1

reading uEnv.txt

58 bytes read in 4 ms (13.7 KiB/s)

Loaded environment from uEnv.txt

Importing environment from mmc ...

Running uenvcmd ...

Booting the bone from emmc...

gpio: pin 55 (gpio 55) value is 1

4215264 bytes read in 778 ms (5.2 MiB/s)

gpio: pin 56 (gpio 56) value is 1

22780 bytes read in 40 ms (555.7 KiB/s)

Booting from mmc ...

Booting kernel from Legacy Image at 80007fc0 ...

 Image Name: Angstrom/3.8.6/beaglebone

 Image Type: ARM Linux Kernel Image (uncompressed)

 Data Size: 4215200 Bytes = 4 MiB

 Load Address: 80008000

 Entry Point: 80008000

 Verifying Checksum ... OK

Flattened Device Tree blob at 80f80000

 Booting using the fdt blob at 0x80f80000

 XIP Kernel Image ... OK

OK

 Using Device Tree in place at 80f80000, end 80f888fb

Starting kernel ...

Uncompressing Linux... done, booting the kernel.

[0.106033] pinctrl-single 44e10800.pinmux: prop pinctrl-0

 ➥index 0 invalid phandle

.

.

.

[9.638448] net eth0: phy 4a101000.mdio:01 not found on slave 1

.---O---.

| | .-. o o

| | |-----.-----.-----.| | .----..-----.-----.

| | | __ | ---'| '--.| .-'| | |

| | | | | |--- || --'| | | ' | | | |

'---'---'--'--'--. |-----''----''--' '-----'-'-'-'

 -' |

 '---'

The Angstrom Distribution beaglebone ttyO0

Angstrom v2012.12 - Kernel 3.8.6

beaglebone login:

LJ234-Oct2013.indd 95 9/18/13 4:09 PM

96 / OCTOBER 2013 / WWW.LINUXJOURNAL.COM

FEATURE A Handy U-Boot Trick

Listing 4. Well Formatted Content of the Variable bootcmd

01 gpio set 53;

02 i2c mw 0x24 1 0x3e;

03 run findfdt;

04 mmc dev 0;

05 if mmc rescan ;

06 then

07 echo micro SD card found;

08 setenv mmcdev 0;

09 else

10 echo No micro SD card found, setting mmcdev to 1;

11 setenv mmcdev 1;

12 fi;

13 setenv bootpart ${mmcdev}:2;

14 mmc dev ${mmcdev};

15 if mmc rescan;

16 then

17 gpio set 54;

18 echo SD/MMC found on device ${mmcdev};

19 if run loadbootenv;

20 then

21 echo Loaded environment from ${bootenv};

22 run importbootenv;

23 fi;

24 if test -n $uenvcmd;

25 then

26 echo Running uenvcmd ...;

27 run uenvcmd;

28 fi;

29 gpio set 55;

30 if run loaduimage;

31 then

32 gpio set 56;

33 run loadfdt;

34 run mmcboot;

35 fi;

36 fi;

LJ234-Oct2013.indd 96 9/18/13 4:09 PM

 WWW.LINUXJOURNAL.COM / OCTOBER 2013 / 97

memory, and the execution finally is
transferred to the kernel, as shown
in Listing 3.

The search sequence defined in the
bootcmd variable and the filename
(uImage) are hard-coded in the U-Boot
source code (see Listing 9). Listing
4 shows the formatted content of
the environment variable bootcmd.
The interesting parts of bootcmd are

lines 19–28. This part of the script
checks for the existence of a file
called uEnv.txt. If the file is found,
the file is loaded into the memory
(line 19). Then, it is imported to the
environment ready to be read or
executed (line 22). After this, the
script checks to see if the variable
uenvcmd is defined (line 24). If it is
defined, the script in the variable is
executed. The uEnv.txt file is a method
for users to insert scripts into the
environment. Here, we’ll use this to
override the default search sequence
and load the kernel image or an ELF
file from the TFTP server.

For better insight into the workings
of U-Boot, I recommend interrupting
the execution and dropping to the

U-Boot shell. At the shell, you can
see a list of supported commands
by typing help or ?. You can list all
defined environment variables with
the env print command. These
environment variables are a powerful
tool for scripting. To resume the boot
sequence, you either can issue the
boot command or run bootcmd. A
good way to understand what the

bootcmd is doing is to execute each
command one at a time from the
U-Boot shell and see its effect. You may
replace the if...then...else...fi
blocks by executing the conditional
statement without the if part and
checking its output by typing echo $?.

DHCP
The DHCP (Dynamic Host
Configuration Protocol) is a protocol
to provide hosts with the necessary
information to access the network on
demand. This includes the IP address
for the host, the DNS servers, the
gateway server, the time servers, the
TFTP server and so on. The DHCP
server also can provide the name
of the file containing the kernel

The uEnv.txt file is a method for users to insert
scripts into the environment.

LJ234-Oct2013.indd 97 9/18/13 4:09 PM

98 / OCTOBER 2013 / WWW.LINUXJOURNAL.COM

FEATURE A Handy U-Boot Trick

image that the host must get from
the TFTP server to continue booting.
The DHCP server can be set up to
provide a configuration either for the
entire network or on a per-host basis.
Configuring the filename (Listing 5)
for the entire network is not a good
idea, as one kernel image or ELF file
will execute only on the architecture
for which it was built. For instance,
the vmlinuz image built for an x86_64
will not work on a system with an
ARM-based processor.

The Ubuntu apt repository
offers two DHCP servers:
isc-dhcp-server and dhcpcd .
I prefer to use isc-dhcp-server.

The isc-dhcpd-server from
the Ubuntu repository is pretty
advanced and implements all the
necessary features. I recommend using
Webmin to configure it. Webmin
is a Web-based configuration tool
that supports configuring several
Linux-based services and dæmons. I

recommend installing Webmin from
the apt repository. See the Webmin
documentation for instructions for
adding the Webmin apt repository to
Ubuntu (http://www.webmin.com/
deb.html).

Once you have your DHCP server

IMPORTANT NOTE:

Be extremely careful while using the DHCP server. A network must not
have more than a single DHCP server. A second DHCP server will cause
serious problems on the network. Other users will lose network access.
If you are on a corporate or a university network, you will generate a
high-priority incident inviting the IT department to come looking for you.

Listing 5. The Host Configuration Section for
a DHCP Server

subnet 192.168.0.0 netmask 255.255.0.0 {

 next-server 192.168.146.1;

 option domain-name-servers 192.168.146.1;

 option routers 192.168.146.1;

 range 192.168.145.1 192.168.145.254;

 # The BeagleBone Black 1

 host BBB-1 {

 next-server 192.168.146.1;

 filename "/BI/uImage";

 hardware ethernet C8:A0:30:B0:88:EB;

 fixed-address 192.168.146.4;

 }

}

LJ234-Oct2013.indd 98 9/18/13 4:09 PM

 WWW.LINUXJOURNAL.COM / OCTOBER 2013 / 99

installed, you need to configure
a subnet and select a pool of IP
addresses to be dished out to hosts
on the network on request. After
this, add the lines corresponding to
the host from Listing 5 into your
/etc/dhcp/dhcpcd.conf file, or do
the equivalent from Webmin’s
intuitive interface. In Listing 5,
C8:A0:30:B0:88:EB corresponds to
the BeagleBone’s Ethernet address.
The next-server is the address of
the TFTP server from which to fetch
the kernel image of ELF. The /BI/
uImage filename is the name of the
kernel image. Rename the image to
whatever you use.

TFTP
TFTP (Trivial File Transfer Protocol) is
a lightweight file-transfer protocol.
It does not support authentication
methods. Anyone can connect and
download any file by name from the
server or upload any file to the server.
You can, however, protect your server
to some extent by setting firewall
rules to deny IP addresses out of a
particular range. You also can make
the TFTP home directory read-only
to the world. This should prevent
any malicious uploads to the server.
The Ubuntu apt repository has two
different TFTP servers: atftp and

tftp-hpa. I recommend tftp-hpa,
as development of atftp has seized
since 2004.

tftpd-hpa is more or less ready
to run just after installation. The
default file store is usually /var/lib/
tftpboot/, and the configuration files
for tftp-can may be found in /etc/
default/tftpd-hpa. You can change
the location of the default file store
to any other location of your choice
by changing the TFTP_DIRECTORY
option. The TFTP installation creates a
user and a group called tftp. The tftp
server runs as this user. I recommend
adding yourself to the tftp group and
changing permissions on the tftp data
directory to 775. This will let you read
and write to the tftp data directory
without switching to root each time.
Moreover, if files in the tftp data
directory are owned by root, the tftp
server will not be able to read and
serve them over the network. You
can test your server by placing a file
there and attempting to get it using
the tftp client:

$ tftp 192.168.146.1 -c get uImage[COMMAND]

Some common problems you may
face include errors due to permission.
Make sure that the files are readable
by the tftp user or whichever user the

LJ234-Oct2013.indd 99 9/18/13 4:09 PM

100 / OCTOBER 2013 / WWW.LINUXJOURNAL.COM

FEATURE A Handy U-Boot Trick

tftpd runs as. Additionally, directories
must have execute permission, or tftp
will not be able to descend and read
the content of that directory, and
you’ll see a “Permission denied” error
when you attempt to get the file.

U-Boot Scripting
Now that you have your DHCP and
TFTP servers working, let’s write
a U-Boot script that will fetch the
kernel image and boot it. I’m going
to present two ways of doing this:
using DHCP and using only TFTP. As I

mentioned before, running a poorly
configured DHCP server will cause a
network-wide disruption of services.
However, if you know what you are
doing and have prior experience with
setting up network services, this is the
simplest way to boot the board.

A DHCP boot can be initiated
simply by adding or modifying the
uenvcmd variable in the uEnv.txt file,
as shown in Listing 6. uEnv.txt is
found in the FAT32 partition of the
BeagleBone Black. This partition is
available to be mounted when the

Listing 6. An Example of the uenvcmd Variable for DHCP Booting

echo Booting the BeagleBone Black from LAN (DHCP)...

dhcp ${kloadaddr}

tftpboot ${fdtaddr} /BI/${fdtfile}

setenv bootargs console=${console} ${optargs} root=${mmcroot}

 ➥rootfstype=${mmcrootfstype} optargs=quiet

bootm ${kloadaddr} - ${fdtaddr}

Listing 7. An Example of uenvcmd Variable for TFTP Booting

echo Booting the BeagleBone Black from LAN (TFTP)...

env set ipaddr 192.168.146.10

env set serverip 192.168.146.1

tftpboot ${kloadaddr} /BI/${bootfile}

tftpboot ${fdtaddr} /BI/${fdtfile}

setenv bootargs console=${console} ${optargs} root=${mmcroot}

 ➥rootfstype=${mmcrootfstype} optargs=quiet

bootm ${kloadaddr} - ${fdtaddr}

LJ234-Oct2013.indd 100 9/18/13 4:09 PM

 WWW.LINUXJOURNAL.COM / OCTOBER 2013 / 101

BeagleBone Black is connected to
your computer via USB cable.

For a TFTP-only boot, you manually
specify an IP address for the
development board and the TFTP server.
This is a much safer process, and you
incur very little risk of interfering with
other users on the network. As in the
case of configuring to boot with DHCP,
you must modify the uenvcmd variable
in the uEnv.txt file. The script shown in
Listing 7 is an example of how to set up
your BeagleBone Black to get a kernel
image from the TFTP server and pass on
the execution to it.

Both Listing 6 and 7 are formatted
to give a clear understanding of the
process. The actual uEnv.txt file should
look something like the script shown
in Listing 8. For more information
about U-Boot scripting, refer to the
U-Boot�FAQ�(http://www.denx.de/
wiki/DULG/Faq) and U-Boot Manual

(http://www.denx.de/wiki/DULG/
Manual). The various commands in
the uenvcmd variable must be on the
same line separated by a semicolon.
You may notice that I place my script
in uenvcmdx instead of uenvcmd.
This is because test -n throws an
error to the console based on the
content of the variable it is testing.
Certain variable contents, especially
long complicated scripts, cause the
test -n to fail with an error message
to the console. Therefore, I put a
simple command to run uenvcmdx
in uenvcmd. If you find that your
script from the uEnv.txt is not being
executed, look for an error on the
serial console like this:

test - minimal test like /bin/sh

Usage:

test [args..]

Listing 8. An Example of uEnv.txt for TFTP Booting

optargs=quiet

uenvcmdx=echo Booting the bone from emmc...; env set ipaddr

 ➥192.168.146.10; env set serverip 192.168.146.1; tftpboot

 ➥${kloadaddr} /BI/${bootfile}; tftpboot ${fdtaddr}

 ➥/BI/${fdtfile}; setenv bootargs console=${console}

 ➥${optargs} root=${mmcroot} rootfstype=${mmcrootfstype}

 ➥optargs=quiet; bootm ${kloadaddr} - ${fdtaddr}

uenvcmd=run uenvcmdx

LJ234-Oct2013.indd 101 9/18/13 4:09 PM

102 / OCTOBER 2013 / WWW.LINUXJOURNAL.COM

FEATURE A Handy U-Boot Trick

On some development
boards like the BeagleBoard xM
(http://beagleboard.org/Products/
BeagleBoard-xM), the Ethernet
port is implemented on the USB bus.
Therefore, it is necessary to start the
USB subsystem before attempting
any network-based boot. If your
development board does not hold a
Flash memory on board, it may not
have a MAC address either. In this
case, you will have to set a MAC
address before you can issue any
network requests. You can do that
by setting the environment variable

ethaddr along with the rest of the
uEnv.txt script.

An alternative but cumbersome
way to change the default boot
sequence is to modify the U-Boot
source code. Modifying the source
code gives you greater versatility for
booting your development board.
When you interrupt the U-Boot boot
sequence, drop to the U-Boot shell
and issue the env print command,
you’ll see a lot of environment
variables that are defined by default.
These environment variables are
defined as macros in the source

Listing 9. Part of the u-Boot/include/configs/am335x_evm.h File Responsible for the Default
Script in the bootcmd Variable

#define CONFIG_BOOTCOMMAND \

 "mmc dev ${mmcdev}; if mmc rescan; then " \

 "echo SD/MMC found on device ${mmcdev};" \

 "if run loadbootenv; then " \

 "echo Loaded environment from ${bootenv};" \

 "run importbootenv;" \

 "fi;" \

 "if test -n $uenvcmd; then " \

 "echo Running uenvcmd ...;" \

 "run uenvcmd;" \

 "fi;" \

 "if run loaduimage; then " \

 "run mmcboot;" \

 "fi;" \

 "fi;" \

LJ234-Oct2013.indd 102 9/18/13 4:09 PM

 WWW.LINUXJOURNAL.COM / OCTOBER 2013 / 103

code. Modifying the source code
aims at modifying these variables.
As shown in Figure 1, U-Boot begins
loading the kernel by executing the
script in bootcmd. Hence, this is the
variable that must be modified.

To begin, you’ll need the source code
to U-Boot from the git repository:

$ git clone git://git.denx.de/u-boot.git

Before making any modifications, I
recommend compiling the unmodified
source code as a sanity check:

$ make ARCH=arm CROSS_COMPILE=arm-linux-gnueabihf- distclean

$ make ARCH=arm CROSS_COMPILE=arm-linux-gnueabihf- am335x_evm_config

$ make -j 8 ARCH=arm CROSS_COMPILE=arm-linux-gnueabihf-

This most likely will work without
a hitch. Now you can modify the
u-Boot/include/configs/am335x_evm.h
file. In this file, you’ll find code similar
to Listing 9. Modify this as you please
and re-compile. Depending on your
target board, you will have to modify
a different file. The files to some
common target platforms are:

■ Panda Board
(http://pandaboard.org): u-Boot/
include/configs/omap4_common.h

■ BeagleBoard: u-Boot/include/
configs/omap3_beagle.h

Conclusion
I hope the instructions provided here
help you create a system to develop
and deploy bare-metal programs
and kernel images quickly. You
also may want to look into
u-boot-v2, also known as Barebox
(http://barebox.org). The most
helpful code modification that
I suggest here is to compile the
U-Boot with an elaborate boot
sequence that you can tailor to your
needs with the least modifications.
You can try out some fancy scripts
to check and update firmware
over LAN—I would consider that
really cool. Write to me at bharath
(you-know-what) lohray (you-know-
what) com.■

Bharath Bhushan Lohray is a PhD student working on

his dissertation on image compression techniques at the

Department of Electrical and Computer Engineering, Texas

Tech University. He is interested in machine learning and

considers building a terminator the echelon of human

advancement—at least until we build the terminator.

Send comments or feedback via
http://www.linuxjournal.com/contact
or to ljeditor@linuxjournal.com.

LJ234-Oct2013.indd 103 9/18/13 4:09 PM

