
Copyright © 2000, 2001 ARM Limited. All rights reserved.
ARM DDI 0151C

ARM920T
(Rev 1)

Technical Reference Manual



 

ii Copyright © 2000, 2001 ARM Limited. All rights reserved. ARM DDI 0151C

ARM920T
Technical Reference Manual

Copyright © 2000, 2001 ARM Limited. All rights reserved.

Release Information

Proprietary Notice

Words and logos marked with ® or ™ are registered trademarks or trademarks owned by ARM Limited, except 
as otherwise stated below in this proprietary notice. Other brands and names mentioned herein may be the 
trademarks of their respective owners.

Neither the whole nor any part of the information contained in, or the product described in, this document 
may be adapted or reproduced in any material form except with the prior written permission of the copyright 
holder.

The product described in this document is subject to continuous developments and improvements. All 
particulars of the product and its use contained in this document are given by ARM in good faith. However, 
all warranties implied or expressed, including but not limited to implied warranties of merchantability, or 
fitness for purpose, are excluded.

This document is intended only to assist the reader in the use of the product. ARM Limited shall not be liable 
for any loss or damage arising from the use of any information in this document, or any error or omission in 
such information, or any incorrect use of the product.

Figure 9-5 on page 9-12 reprinted with permission IEEE Std 1149.1-1990, IEEE Standard Test Access Port 
and Boundary-Scan Architecture Copyright 2000, by IEEE. The IEEE disclaims any responsibility or liability 
resulting from the placement and use in the described manner

Confidentiality Status

This document is Open Access. This document has no restriction on distribution.

Product Status

The information in this document is final (information on a developed product).

Web Address

http://www.arm.com

Change history

Date Issue Change

31st January 2000 A First release

5th September 2000 B Second release

18th April 2001 C Third release



ARM DDI 0151C Copyright © 2000, 2001 ARM Limited. All rights reserved. iii

Contents
ARM920T Technical Reference Manual

Preface
About this document .................................................................................... xvi
Further reading ............................................................................................. xx
Feedback ..................................................................................................... xxi

Chapter 1 Introduction
1.1 About the ARM920T ...................................................................................  1-2
1.2 Processor functional block diagram ............................................................  1-3

Chapter 2 Programmer’s Model
2.1 About the programmer’s model ...................................................................  2-2
2.2 About the ARM9TDMI programmer’s model ...............................................  2-3
2.3 CP15 register map summary ......................................................................  2-5

Chapter 3 Memory Management Unit
3.1 About the MMU ...........................................................................................  3-2
3.2 MMU program accessible registers .............................................................  3-4
3.3 Address translation .....................................................................................  3-6
3.4 MMU faults and CPU aborts .....................................................................  3-21
3.5 Fault address and fault status registers ....................................................  3-22
3.6 Domain access control ..............................................................................  3-23
3.7 Fault checking sequence ..........................................................................  3-25



Contents

iv Copyright © 2000, 2001 ARM Limited. All rights reserved. ARM DDI 0151C

3.8 External aborts .........................................................................................  3-28
3.9 Interaction of the MMU and caches ..........................................................  3-29

Chapter 4 Caches, Write Buffer, and Physical Address TAG (PA TAG) RAM
4.1 About the caches and write buffer ..............................................................  4-2
4.2 ICache ........................................................................................................  4-4
4.3 DCache and write buffer .............................................................................  4-9
4.4 Cache coherence .....................................................................................  4-17
4.5 Cache cleaning when lockdown is in use .................................................  4-20
4.6 Implementation notes ...............................................................................  4-21
4.7 Physical address TAG RAM .....................................................................  4-22
4.8 Drain write buffer ......................................................................................  4-23
4.9 Wait for interrupt .......................................................................................  4-24

Chapter 5 Clock Modes
5.1 About ARM920T clocking ...........................................................................  5-2
5.2 FastBus mode ............................................................................................  5-3
5.3 Synchronous mode .....................................................................................  5-4
5.4 Asynchronous mode ...................................................................................  5-6

Chapter 6 Bus Interface Unit
6.1 About the ARM920T bus interface .............................................................  6-2
6.2 Unidirectional AMBA ASB interface ............................................................  6-3
6.3 Fully-compliant AMBA ASB interface .........................................................  6-5
6.4 AMBA AHB interface ................................................................................  6-21
6.5 Level 2 cache support and performance analysis ....................................  6-23

Chapter 7 Coprocessor Interface
7.1 About the ARM920T coprocessor interface ................................................  7-2
7.2 LDC/STC ....................................................................................................  7-5
7.3 MCR/MRC ..................................................................................................  7-9
7.4 Interlocked MCR .......................................................................................  7-11
7.5 CDP ..........................................................................................................  7-13
7.6 Privileged instructions ...............................................................................  7-15
7.7 Busy-waiting and interrupts ......................................................................  7-17

Chapter 8 Trace Interface Port
8.1 About the ETM interface .............................................................................  8-2

Chapter 9 Debug Support
9.1 About debug ...............................................................................................  9-2
9.2 Debug systems ...........................................................................................  9-3
9.3 Debug interface signals ..............................................................................  9-5
9.4 Scan chains and JTAG interface ..............................................................  9-11
9.5 The JTAG state machine ..........................................................................  9-12
9.6 Test data registers ....................................................................................  9-19



Contents

ARM DDI 0151C Copyright © 2000, 2001 ARM Limited. All rights reserved. v

9.7 ARM920T core clocks ...............................................................................  9-42
9.8 Clock switching during debug ...................................................................  9-43
9.9 Clock switching during test ........................................................................  9-44
9.10 Determining the core state and system state ............................................  9-45
9.11 Exit from debug state ................................................................................  9-48
9.12 The behavior of the program counter during debug ..................................  9-51
9.13 EmbeddedICE macrocell ..........................................................................  9-54
9.14 Vector catching .........................................................................................  9-62
9.15 Single-stepping .........................................................................................  9-63
9.16 Debug communications channel ...............................................................  9-64

Chapter 10 TrackingICE
10.1 About TrackingICE ....................................................................................  10-2
10.2 Timing requirements .................................................................................  10-3
10.3 TrackingICE outputs .................................................................................  10-4

Chapter 11 AMBA Test Interface
11.1 About the AMBA test interface ..................................................................  11-2
11.2 Entering and exiting AMBA Test ...............................................................  11-3
11.3 Functional test ...........................................................................................  11-4
11.4 Burst operations ......................................................................................  11-11
11.5 PA TAG RAM test ...................................................................................  11-12
11.6 Cache test ...............................................................................................  11-15
11.7 MMU test .................................................................................................  11-19

Chapter 12 Instruction Cycle Summary and Interlocks
12.1 About the instruction cycle summary ........................................................  12-2
12.2 Instruction cycle times ...............................................................................  12-3
12.3 Interlocks ...................................................................................................  12-6

Chapter 13 AC Characteristics
13.1 ARM920T timing diagrams ........................................................................  13-2
13.2 ARM920T timing parameters ..................................................................  13-16
13.3 Timing definitions for the ARM920T Trace Interface Port .......................  13-26

Appendix A Signal Descriptions
A.1 AMBA signals .............................................................................................. A-2
A.2 Coprocessor interface signals ..................................................................... A-5
A.3 JTAG and TAP controller signals ................................................................ A-7
A.4 Debug signals ........................................................................................... A-10
A.5 Miscellaneous signals ............................................................................... A-12
A.6 ARM920T Trace Interface Port signals ..................................................... A-13

Appendix B CP15 Test Registers
B.1 About the test registers ............................................................................... B-2
B.2 Test state register ....................................................................................... B-3



Contents

vi Copyright © 2000, 2001 ARM Limited. All rights reserved. ARM DDI 0151C

B.3 Cache test registers and operations ...........................................................  B-8
B.4 MMU test registers and operations ...........................................................  B-18
B.5 StrongARM backwards compatibility operations ......................................  B-30

Glossary



ARM DDI 0151C Copyright © 2000, 2001 ARM Limited. All rights reserved. vii

List of Tables
ARM920T Technical Reference Manual

Change history .............................................................................................................. ii
Table 2-1 ARM9TDMI implementation options .........................................................................  2-3
Table 2-2 CP15 register map ....................................................................................................  2-5
Table 2-3 Address types in ARM920T ......................................................................................  2-6
Table 2-4 CP15 abbreviations ...................................................................................................  2-6
Table 2-5 Register 0, ID code ...................................................................................................  2-8
Table 2-6 Cache type register format ......................................................................................  2-10
Table 2-7 Cache size encoding (M=0) ....................................................................................  2-11
Table 2-8 Cache associativity encoding (M=0) .......................................................................  2-11
Table 2-9 Line length encoding ...............................................................................................  2-12
Table 2-10 Control register 1 bit functions ................................................................................  2-12
Table 2-11 Clocking modes .......................................................................................................  2-14
Table 2-12 Register 2, translation table base ............................................................................  2-14
Table 2-13 Register 3, domain access control ..........................................................................  2-15
Table 2-14 Fault status register .................................................................................................  2-16
Table 2-15 Function descriptions register 7 ..............................................................................  2-17
Table 2-16 Cache operations register 7 ....................................................................................  2-18
Table 2-17 TLB operations register 8 ........................................................................................  2-19
Table 2-18 Accessing the cache lockdown register 9 ...............................................................  2-22
Table 2-19 Accessing the TLB lockdown register 10 ................................................................  2-23
Table 3-1 CP15 register functions .............................................................................................  3-4
Table 3-2 Level one descriptor bits ...........................................................................................  3-9
Table 3-3 Interpreting level one descriptor bits [1:0] ...............................................................  3-10



List of Tables

viii Copyright © 2000, 2001 ARM Limited. All rights reserved. ARM DDI 0151C

Table 3-4 Section descriptor bits ............................................................................................  3-11
Table 3-5 Coarse page table descriptor bits ...........................................................................  3-12
Table 3-6 Fine page table descriptor bits ................................................................................  3-13
Table 3-7 Level two descriptor bits .........................................................................................  3-16
Table 3-8 Interpreting page table entry bits [1:0] ....................................................................  3-16
Table 3-9 Priority encoding of fault status ...............................................................................  3-22
Table 3-10 Interpreting access control bits in domain access control register .........................  3-23
Table 3-11 Interpreting access permission (AP) bits ................................................................  3-24
Table 4-1 DCache and write buffer configuration ...................................................................  4-11
Table 5-1 Clock selection for external memory accesses .........................................................  5-4
Table 6-1 Relationship between bidirectional and unidirectional ASB interface .......................  6-3
Table 6-2 ARM920T input/output timing ...................................................................................  6-4
Table 6-3 AMBA ASB transfer types .........................................................................................  6-6
Table 6-4 Burst transfers ..........................................................................................................  6-7
Table 6-5 Use of WRITEOUT signal .........................................................................................  6-8
Table 6-6 Noncached LDR and fetch ......................................................................................  6-12
Table 6-7 Data eviction of 4 or 8 words ..................................................................................  6-18
Table 6-8 ARM920T supported bus access types ..................................................................  6-23
Table 7-1 Handshake encoding ................................................................................................  7-8
Table 9-1 Public instructions ...................................................................................................  9-14
Table 9-2 ID code register ......................................................................................................  9-20
Table 9-3 Scan chain number allocation .................................................................................  9-23
Table 9-4 Scan chain 0 bit order .............................................................................................  9-24
Table 9-5 Scan chain 1 bit function .........................................................................................  9-28
Table 9-6 Scan chain 2 bit function .........................................................................................  9-29
Table 9-7 Scan chain 15 format and access modes ...............................................................  9-32
Table 9-8 Scan chain 15 physical access mode bit format .....................................................  9-33
Table 9-9 Physical access mapping to CP15 registers ...........................................................  9-33
Table 9-10 Scan chain 15 interpreted access mode bit format .................................................  9-34
Table 9-11 Interpreted access mapping to CP15 registers .......................................................  9-35
Table 9-12 Interpreted access mapping to the MMU ................................................................  9-36
Table 9-13 Interpreted access mapping to the caches .............................................................  9-36
Table 9-14 Scan chain 4 format ................................................................................................  9-39
Table 9-15 ARM9TDMI EmbeddedICE macrocell register map ...............................................  9-54
Table 9-16 Watchpoint control register, data comparison bit functions ....................................  9-57
Table 9-17 Watchpoint control register for instruction comparison bit functions .......................  9-59
Table 9-18 Debug status register bit functions .........................................................................  9-60
Table 9-19 Debug comms control register bit functions ............................................................  9-65
Table 10-1 ARM920T in TrackingICE mode .............................................................................  10-4
Table 11-1 AMBA test modes ...................................................................................................  11-3
Table 11-2 AMBA functional test locations ...............................................................................  11-4
Table 11-3 Construction of A920Inputs location .......................................................................  11-5
Table 11-4 Construction of A920Status1 location .....................................................................  11-6
Table 11-5 Construction of A920Status2 location .....................................................................  11-7
Table 11-6 Burst locations ......................................................................................................  11-11
Table 11-7 PA TAG RAM locations ........................................................................................  11-12
Table 11-8 Construction of data pattern write data .................................................................  11-12



List of Tables

ARM DDI 0151C Copyright © 2000, 2001 ARM Limited. All rights reserved. ix

Table 11-9 Cache test locations ..............................................................................................  11-15
Table 11-10 CAM write data ......................................................................................................  11-15
Table 11-11 CAM match write data ...........................................................................................  11-16
Table 11-12 CAM match read data ...........................................................................................  11-16
Table 11-13 Invalidate by VA write data ....................................................................................  11-16
Table 11-14 Lockdown victim and base data ............................................................................  11-17
Table 11-15 MMU test locations ................................................................................................  11-19
Table 11-16 Invalidate by VA data ............................................................................................  11-19
Table 11-17 Match write data ....................................................................................................  11-20
Table 11-18 CAM data ..............................................................................................................  11-20
Table 11-19 CAM data Size_C encoding ..................................................................................  11-20
Table 11-20 RAM1 data ............................................................................................................  11-21
Table 11-21 RAM1 data access permission bits .......................................................................  11-21
Table 11-22 RAM2 data ............................................................................................................  11-22
Table 11-23 RAM2 data Size_R2 encoding ..............................................................................  11-22
Table 12-1 Symbols used in tables ...........................................................................................  12-3
Table 12-2 Instruction cycle bus times ......................................................................................  12-3
Table 12-3 Data bus instruction times .......................................................................................  12-4
Table 13-1 ARM920T timing parameters ................................................................................  13-16
Table 13-2 ARM920T Trace Interface Port timing definitions .................................................  13-26
Table A-1 AMBA signals ............................................................................................................ A-2
Table A-2 Coprocessor interface signals ................................................................................... A-5
Table A-3 JTAG and TAP controller signals .............................................................................. A-7
Table A-4 Debug signals ......................................................................................................... A-10
Table A-5 Miscellaneous signals ............................................................................................. A-12
Table A-6 Trace signals ........................................................................................................... A-13
Table B-1 Test state register ..................................................................................................... B-3
Table B-2 Clocking mode selection ........................................................................................... B-5
Table B-3 Register 7 operations ................................................................................................ B-8
Table B-4 Register 9 operations ................................................................................................ B-8
Table B-5 Register 15 operations .............................................................................................. B-9
Table B-6 CP15 MCR and MRC instructions ............................................................................. B-9
Table B-7 Register 7, 9, and 15 operations ............................................................................. B-10
Table B-8 Write cache victim and lockdown operations .......................................................... B-14
Table B-9 TTB register operations ........................................................................................... B-18
Table B-10 DAC register operations .......................................................................................... B-19
Table B-11 FSR register operations .......................................................................................... B-19
Table B-12 FAR register operations .......................................................................................... B-20
Table B-13 Register 8 operations .............................................................................................. B-20
Table B-14 Register 10 operations ............................................................................................ B-20
Table B-15 CAM, RAM1, and RAM2 register 15 operations ..................................................... B-20
Table B-16 Register 2, 3, 5, 6, 8, 10, and 15 operations ........................................................... B-21
Table B-17 CAM memory region size ........................................................................................ B-24
Table B-18 Access permission bit setting .................................................................................. B-25
Table B-19 Miss and fault encoding .......................................................................................... B-25
Table B-20 RAM2 memory region size ...................................................................................... B-26
Table B-21 Write TLB lockdown operations .............................................................................. B-27



List of Tables

x Copyright © 2000, 2001 ARM Limited. All rights reserved. ARM DDI 0151C



ARM DDI 0151C Copyright © 2000, 2001 ARM Limited. All rights reserved. xi

List of Figures
ARM920T Technical Reference Manual

Figure P-1 Key to timing diagram conventions ............................................................................ xix
Figure 1-1 ARM920T functional block diagram ..........................................................................  1-3
Figure 2-1 CP15 MRC and MCR bit pattern ...............................................................................  2-7
Figure 2-2 Cache type register format ........................................................................................  2-9
Figure 2-3 Dsize and Isize field format .......................................................................................  2-9
Figure 2-4 Register 7 MVA format ............................................................................................  2-19
Figure 2-5 Register 7 index format ...........................................................................................  2-19
Figure 2-6 Register 8 MVA format ............................................................................................  2-20
Figure 2-7 Register 9 ................................................................................................................  2-22
Figure 2-8 Register 10 ..............................................................................................................  2-23
Figure 2-9 Register 13 ..............................................................................................................  2-24
Figure 2-10 Address mapping using CP15 Register 13 .............................................................  2-25
Figure 3-1 Translation table base register ..................................................................................  3-6
Figure 3-2 Translating page tables .............................................................................................  3-7
Figure 3-3 Accessing translation table level one descriptors .....................................................  3-8
Figure 3-4 Level one descriptor ..................................................................................................  3-9
Figure 3-5 Section descriptor ...................................................................................................  3-10
Figure 3-6 Coarse page table descriptor ..................................................................................  3-11
Figure 3-7 Fine page table descriptor .......................................................................................  3-12
Figure 3-8 Section translation ...................................................................................................  3-14
Figure 3-9 Level two descriptor ................................................................................................  3-15
Figure 3-10 Large page translation from a coarse page table ....................................................  3-17
Figure 3-11 Small page translation from a coarse page table ....................................................  3-18



List of Figures

xii Copyright © 2000, 2001 ARM Limited. All rights reserved. ARM DDI 0151C

Figure 3-12 Tiny page translation from a fine page table ...........................................................  3-19
Figure 3-13 Domain access control register format ...................................................................  3-23
Figure 3-14 Sequence for checking faults ..................................................................................  3-25
Figure 4-1 Addressing the 16KB ICache ....................................................................................  4-5
Figure 5-1 ARM920T clocking ....................................................................................................  5-2
Figure 5-2 Synchronous mode FCLK to BCLK zero phase delay ..............................................  5-5
Figure 5-3 Synchronous mode FCLK to BCLK one phase delay ...............................................  5-5
Figure 5-4 Asynchronous mode FCLK to BCLK zero cycle delay ..............................................  5-6
Figure 5-5 Asynchronous mode FCLK to BCLK one cycle delay ...............................................  5-7
Figure 6-1 Output buffer for bidirectional signals .......................................................................  6-5
Figure 6-2 Output buffer for unidirectional signals .....................................................................  6-6
Figure 6-3 Instruction fetch after reset .....................................................................................  6-11
Figure 6-4 Example LDR from address 0x108 .........................................................................  6-12
Figure 6-5 Example LDM of 5 words from 0x108 .....................................................................  6-13
Figure 6-6 Example nonbuffered STR .....................................................................................  6-14
Figure 6-7 Example nonbuffered STM .....................................................................................  6-15
Figure 6-8 Example linefill from 0x100 .....................................................................................  6-16
Figure 6-9 Example 4-word data eviction .................................................................................  6-17
Figure 6-10 Example swap operation ........................................................................................  6-19
Figure 7-1 ARM920T coprocessor clocking ...............................................................................  7-3
Figure 7-2 ARM920T LDC/STC cycle timing .............................................................................  7-5
Figure 7-3 ARM920T MCR/MRC transfer timing .......................................................................  7-9
Figure 7-4 ARM920T interlocked MCR ....................................................................................  7-12
Figure 7-5 ARM920T late canceled CDP .................................................................................  7-14
Figure 7-6 ARM920T privileged instructions ............................................................................  7-15
Figure 7-7 ARM920T busy waiting and interrupts ....................................................................  7-18
Figure 9-1 Typical debug system ...............................................................................................  9-3
Figure 9-2 Breakpoint timing ......................................................................................................  9-5
Figure 9-3 Watchpoint entry with data processing instruction ....................................................  9-8
Figure 9-4 Watchpoint entry with branch ...................................................................................  9-9
Figure 9-5 Test access port (TAP) controller state transitions .................................................  9-12
Figure 9-6 External scan chain multiplexor ..............................................................................  9-22
Figure 9-7 Write back physical address format ........................................................................  9-40
Figure 9-8 Clock switching on entry to debug state .................................................................  9-43
Figure 9-9 Debug exit sequence ..............................................................................................  9-49
Figure 9-10 Debug state entry ...................................................................................................  9-50
Figure 9-11 ARM9TDMI EmbeddedICE macrocell overview .....................................................  9-56
Figure 9-12 Watchpoint control register for data comparison ....................................................  9-57
Figure 9-13 Watchpoint control register for instruction comparison ...........................................  9-58
Figure 9-14 Debug control register ............................................................................................  9-60
Figure 9-15 Debug status register ..............................................................................................  9-60
Figure 9-16 Vector catch register ...............................................................................................  9-61
Figure 9-17 Debug comms control register ................................................................................  9-64
Figure 10-1 Using TrackingICE ..................................................................................................  10-2
Figure 11-1 AMBA functional test state machine .......................................................................  11-9
Figure 11-2 Write data format ..................................................................................................  11-13
Figure 12-1 Single load interlock timing .....................................................................................  12-6



List of Figures

ARM DDI 0151C Copyright © 2000, 2001 ARM Limited. All rights reserved. xiii

Figure 12-2 Two cycle load interlock ..........................................................................................  12-7
Figure 12-3 LDM interlock ..........................................................................................................  12-8
Figure 12-4 LDM dependent interlock ......................................................................................  12-10
Figure 13-1 ARM920T FCLK timed coprocessor interface .........................................................  13-2
Figure 13-2 ARM920T BCLK timed coprocessor interface ........................................................  13-3
Figure 13-3 ARM920T FCLK related signal timing .....................................................................  13-4
Figure 13-4 ARM920T BCLK related signal timing .....................................................................  13-5
Figure 13-5 ARM920T SDOUTBS to TDO relationship ..............................................................  13-5
Figure 13-6 ARM920T nTRST to other signals relationship .......................................................  13-6
Figure 13-7 ARM920T JTAG output signal timing ......................................................................  13-7
Figure 13-8 ARM920T JTAG input signal timing ........................................................................  13-8
Figure 13-9 ARM920T FCLK related debug output timing .........................................................  13-8
Figure 13-10 ARM920T BCLK related debug output timing .........................................................  13-9
Figure 13-11 ARM920T TCK related debug output timing .........................................................  13-10
Figure 13-12 ARM920T EDBGRQ to DBGRQI relationship .......................................................  13-10
Figure 13-13 ARM920T DBGEN to output relationship ..............................................................  13-11
Figure 13-14 ARM920T BCLK related Trace Interface Port timing ............................................  13-11
Figure 13-15 ARM920T FCLK related Trace Interface Port timing .............................................  13-12
Figure 13-16 ARM920T BnRES timing .......................................................................................  13-12
Figure 13-17 ARM920T ASB slave transfer timing .....................................................................  13-13
Figure 13-18 ARM920T ASB master transfer timing ..................................................................  13-14
Figure 13-19 ARM920T ASB master transfer timing ..................................................................  13-15
Figure B-1 CP15 MRC and MCR bit pattern ............................................................................... B-2
Figure B-2 Rd format, CAM read .............................................................................................. B-12
Figure B-3 Rd format, CAM write .............................................................................................. B-12
Figure B-4 Rd format, RAM read .............................................................................................. B-12
Figure B-5 Rd format, RAM write .............................................................................................. B-13
Figure B-6 Rd format, CAM match RAM read .......................................................................... B-13
Figure B-7 Data format, CAM read ........................................................................................... B-13
Figure B-8 Data format, RAM read ........................................................................................... B-13
Figure B-9 Data format, CAM match RAM read ....................................................................... B-14
Figure B-10 Rd format, write I or D cache victim and lockdown base ......................................... B-15
Figure B-11 Rd format, write I or D cache victim ........................................................................ B-15
Figure B-12 Rd format, CAM write and data format, CAM read .................................................. B-24
Figure B-13 Rd format, RAM1 write ............................................................................................ B-24
Figure B-14 Data format, RAM1 read ......................................................................................... B-25
Figure B-15 Rd format, RAM2 write and data format, RAM2 read .............................................. B-26
Figure B-16 Rd format, write I or D TLB lockdown ..................................................................... B-27



List of Figures

xiv Copyright © 2000, 2001 ARM Limited. All rights reserved. ARM DDI 0151C



ARM DDI 0151C Copyright © 2000, 2001 ARM Limited. All rights reserved. xv

Preface

This preface introduces the ARM920T processor and its reference documentation. It 
contains the following sections:

• About this document on page xvi

• Further reading on page xx

• Feedback on page xxi.



Preface 

xvi Copyright © 2000, 2001 ARM Limited. All rights reserved. ARM DDI 0151C

About this document

This document is the technical reference manual for the ARM920T processor.

Intended audience

This document has been written for hardware and software engineers who want to 
design or develop products based upon the ARM920T processor. It assumes no prior 
knowledge of ARM products.

Using this manual

This document is organized into the following chapters:

Chapter 1 Introduction 

Read this chapter for an introduction to the ARM920T.

Chapter 2 Programmer’s Model 

Read this chapter for a description of the programmer’s model for the 
ARM920T.

Chapter 3 Memory Management Unit 

Read this chapter for a description of the memory management unit and 
the memory interface, including descriptions of the instruction and data 
interfaces.

Chapter 4 Caches, Write Buffer, and Physical Address TAG (PA TAG) RAM 

Read this chapter for descriptions of cache, write buffer, and PA TAG 
RAM operation.

Chapter 5 Clock Modes 

Read this chapter for a description of the processor clock modes.

Chapter 6 Bus Interface Unit 

Read this chapter for a description of the bus interface unit and the 
AMBA ASB and AHB interface.

Chapter 7 Coprocessor Interface 

Read this chapter for a description of the ARM920T coprocessor 
interface. 



Preface 

ARM DDI 0151C Copyright © 2000, 2001 ARM Limited. All rights reserved. xvii

Chapter 8 Trace Interface Port 

Read this chapter for a description of the Trace Interface Port of the 
ARM920T.

Chapter 9 Debug Support 

Read this chapter for a description of the debug interface.

Chapter 10 TrackingICE 

Read this chapter for a description of how the ARM920T uses 
TrackingICE mode.

Chapter 11 AMBA Test Interface 

Read this chapter for a description of the AMBA test interface.

Chapter 12 Instruction Cycle Summary and Interlocks 

Read this chapter for details of instruction cycle times. This chapter 
contains timing diagrams for interlock timing.

Chapter 13 AC Characteristics 

Read this chapter for a description of the timing parameters used in the 
ARM920T.

Appendix A Signal Descriptions 

Read this chapter for a detailed description of the signals used in the 
ARM920T.

Appendix B CP15 Test Registers 

Read this chapter for a detailed description of the CP15 test register used 
in the ARM920T.



Preface 

xviii Copyright © 2000, 2001 ARM Limited. All rights reserved. ARM DDI 0151C

Typographical conventions

The following typographical conventions are used in this book:

bold Highlights ARM processor signal names, and interface elements, such as 
menu names and buttons. Also used for terms in descriptive lists, where 
appropriate.

italic Highlights special terminology, cross-references, and citations.

typewriter Denotes text that can be entered at the keyboard, such as commands, file 
and program names, and source code.

typewriter Denotes a permitted abbreviation for a command or option. The 
underlined text may be entered instead of the full command or option 
name.

typewriter italic 

Denotes arguments to commands or functions, where the argument is to 
be replaced by a specific value.

typewriter bold 

Denotes language keywords when used outside example code.



Preface 

ARM DDI 0151C Copyright © 2000, 2001 ARM Limited. All rights reserved. xix

Timing diagram conventions

This manual contains a number of timing diagrams. Figure P-1 explains the components 
used in these diagrams. Any variations are clearly labeled when they occur. Therefore, 
you must not attach any additional meaning unless specifically stated.

Figure P-1 Key to timing diagram conventions

Shaded bus and signal areas are undefined, so the bus or signal can assume any value 
within the shaded area at that time. The actual level is unimportant and does not affect 
normal operation.

Clock

Bus stable

HIGH to LOW

Transient

Bus to high impedance

Bus change

HIGH/LOW to HIGH

High impedance to stable bus



Preface 

xx Copyright © 2000, 2001 ARM Limited. All rights reserved. ARM DDI 0151C

Further reading

This section lists publications by ARM Limited, and by third parties.

If you would like further information on ARM products, or if you have questions not 
answered by this document, please contact info@arm.com or visit our web site at 
http://www.arm.com.

ARM publications

This document contains information that is specific to the ARM920T processor. Refer 
to the following documents for other relevant information:

• ARM Architecture Reference Manual (ARM DDI 0100)

• ARM9TDMI Data Sheet (ARM DDI 0029).

Other publications

This section lists relevant documents published by third parties.

• IEEE Std. 1149.1- 1990, Standard Test Access Port and Boundary-Scan 
Architecture.



Preface 

ARM DDI 0151C Copyright © 2000, 2001 ARM Limited. All rights reserved. xxi

Feedback

ARM Limited welcomes feedback both on the ARM920T processor, and on the 
documentation.

Feedback on the ARM920T

If you have any comments or suggestions about this product, please contact your 
supplier giving:

• the product name

• a concise explanation of your comments.

Feedback on the ARM920T Technical Reference Manual

If you have any comments about this document, please send email to errata@arm.com 
giving:

• the document title

• the document number

• the page number(s) to which your comments refer

• a concise explanation of your comments.

General suggestions for additions and improvements are also welcome.



Preface 

xxii Copyright © 2000, 2001 ARM Limited. All rights reserved. ARM DDI 0151C



ARM DDI 0151C Copyright © 2000, 2001 ARM Limited. All rights reserved. 1-1

Chapter 1 
Introduction

This chapter introduces the ARM920T processor. It contains the following sections:

• About the ARM920T on page 1-2

• Processor functional block diagram on page 1-3.



Introduction 

1-2 Copyright © 2000, 2001 ARM Limited. All rights reserved. ARM DDI 0151C

1.1 About the ARM920T

The ARM920T processor is a member of the ARM9TDMI family of general-purpose 
microprocessors, which includes:

• ARM9TDMI (core)

• ARM940T (core plus cache and protection unit)

• ARM920T (core plus cache and MMU).

The ARM9TDMI processor core is a Harvard architecture device implemented using a 
five-stage pipeline consisting of Fetch, Decode, Execute, Memory, and Write stages. It 
can be provided as a standalone core that can be embedded into more complex devices. 
The standalone core has a simple bus interface that allows you to design your own 
caches and memory systems around it. 

The ARM9TDMI family of microprocessors supports both the 32-bit ARM and 16-bit 
Thumb instruction sets, allowing you to trade off between high performance and high 
code density. 

The ARM920T processor is a Harvard cache architecture processor that is targeted at 
multiprogrammer applications where full memory management, high performance, and 
low power are all-important. The separate instruction and data caches in this design are 
16KB each in size, with an 8-word line length. The ARM920T processor implements 
an enhanced ARM architecture v4 MMU to provide translation and access permission 
checks for instruction and data addresses.

The ARM920T processor supports the ARM debug architecture and includes logic to 
assist in both hardware and software debug. The ARM920T processor also includes 
support for coprocessors, exporting the instruction and data buses along with simple 
handshaking signals.

The ARM920T interface to the rest of the system is over unified address and data buses. 
This interface enables implementation of either an Advanced Microcontroller Bus 
Architecture (AMBA) Advanced System Bus (ASB) or Advanced High-performance 
Bus (AHB) bus scheme either as a fully-compliant AMBA bus master, or as a slave for 
production test. The ARM920T processor also has a Tracking ICE mode which allows 
an approach similar to a conventional ICE mode of operation.

The ARM920T processor supports the addition of an Embedded Trace Macrocell 
(ETM) for real-time tracing of instructions and data.



Introduction 

ARM DDI 0151C Copyright © 2000, 2001 ARM Limited. All rights reserved. 1-3

1.2 Processor functional block diagram

Figure 1-1 shows the functional block diagram of the ARM920T processor.

Figure 1-1 ARM920T functional block diagram

The blocks shown in Figure 1-1 are described as follows:

• The ARM9TDMI core is described in the ARM9TDMI Technical Reference 
Manual.

• Register 13 and coprocessor 15 are described in Chapter 2 Programmer’s Model.

• The instruction and data MMUs are described in Chapter 3 Memory Management 
Unit.

• The instruction and data caches, the write buffer, and the write-back PA TAG 
RAM are described in Chapter 4 Caches, Write Buffer, and Physical Address TAG 
(PA TAG) RAM.

External
coprocessor

interface

ARM9TDMI
Processor core

(Integral EmbeddedICE)

Write
buffer

ID[31:0]

IMVA[31:0]

WBPA[31:0]

DPA[31:0]

IPA[31:0]

ASB

Write back
PA TAG RAM

CP15

R13

IVA[31:0]

DVA[31:0]

JTAG

DD[31:0]

Instruction
cache

Instruction
MMU

Data
MMU

Data
cache

R13

DINDEX[5:0]

Trace
interface

port

AMBA
bus

interface

DMVA[31:0]



Introduction 

1-4 Copyright © 2000, 2001 ARM Limited. All rights reserved. ARM DDI 0151C

• The AMBA bus interface is described in Chapter 6 Bus Interface Unit.

• The external coprocessor interface is described in Chapter 7 Coprocessor 
Interface.

• The trace interface port is described in Chapter 8 Trace Interface Port.



ARM DDI 0151C Copyright © 2000, 2001 ARM Limited. All rights reserved. 2-1

Chapter 2 
Programmer’s Model

This chapter describes the ARM920T registers and provides details required when 
programming the microprocessor. It contains the following sections:

• About the programmer’s model on page 2-2

• About the ARM9TDMI programmer’s model on page 2-3

• CP15 register map summary on page 2-5.



Programmer’s Model 

2-2 Copyright © 2000, 2001 ARM Limited. All rights reserved. ARM DDI 0151C

2.1 About the programmer’s model

The ARM920T processor incorporates the ARM9TDMI integer core, which 
implements the ARM architecture v4T. It executes the ARM and Thumb instruction 
sets, and includes EmbeddedICE JTAG software debug features.

The programmer’s model of the ARM920T processor consists of the programmer’s 
model of the ARM9TDMI core (see About the ARM9TDMI programmer’s model on 
page 2-3) with the following additions and modifications:

• The ARM920T processor incorporates two coprocessors: 

— CP14, which allows software access to the debug communications channel. 
You can access the registers defined in CP14 using MCR and MRC instructions. 
These are described in Debug communications channel on page 9-64.

— The system control coprocessor, CP15, which provides additional registers 
that are used to configure and control the caches, MMU, protection system, 
the clocking mode, and other system options of the ARM920T, such as big 
or little-endian operation. You can access the registers defined in CP15 
using MCR and MRC instructions. These are described in CP15 register map 
summary on page 2-5.

• The ARM920T processor also features an external coprocessor interface that 
allows the attachment of a closely-coupled coprocessor on the same chip, for 
example, a floating-point unit. You can access registers and operations provided 
by any coprocessors attached to the external coprocessor interface using 
appropriate coprocessor instructions.

• Memory accesses for instruction fetches and data loads and stores can be cached 
or buffered. Cache and write buffer configuration and operation is described in 
detail in Chapter 4 Caches, Write Buffer, and Physical Address TAG (PA TAG) 
RAM.

• The MMU page tables that reside in main memory describe the virtual to physical 
address mapping, access permissions, and cache and write buffer configuration. 
These are created by the operating system software and accessed automatically by 
the ARM920T MMU hardware whenever an access causes a TLB miss.

• The ARM920T has a Trace Interface Port that allows the use of Trace hardware 
and tools for real-time tracing of instructions and data.



Programmer’s Model 

ARM DDI 0151C Copyright © 2000, 2001 ARM Limited. All rights reserved. 2-3

2.2 About the ARM9TDMI programmer’s model

The ARM9TDMI processor core implements ARM architecture v4T, and executes the 
ARM 32-bit instruction set and the compressed Thumb 16-bit instruction set. The 
programmer’s model is fully described in the ARM Architecture Reference Manual. The 
ARM9TDMI Technical Reference Manual gives implementation details, including 
instruction execution cycle times.

ARMv4T specifies a small number of implementation options. The options selected in 
the ARM9TDMI implementation are listed in Table 2-1. For comparison, the options 
selected for the ARM7TDMI implementation are also shown.

The ARM9TDMI is code-compatible with the ARM7TDMI, with two exceptions:

• The ARM9TDMI core implements the base restored Data Abort model. This 
significantly simplifies the software Data Abort handler. 

• The ARM9TDMI fully implements the instruction set extension spaces added to 
the ARM (32-bit) instruction set in ARMv4 and ARMv4T.

These differences are explained in more detail in the following sections:

• Data Abort model on page 2-3

• Instruction set extension spaces on page 2-4.

2.2.1 Data Abort model

The base restored Data Abort model differs from the base updated Data Abort model 
implemented by ARM7TDMI.

The difference in the Data Abort models affects only a very small section of operating 
system code, the Data Abort handler. It does not affect user code. With the base restored 
Data Abort model, when a Data Abort exception occurs during the execution of a 
memory access instruction, the base register is always restored by the processor 
hardware to the value the register contained before the instruction was executed. This 
removes the requirement for the Data Abort handler to unwind any base register update 
that might have been specified by the aborted instruction.

Table 2-1 ARM9TDMI implementation options

Processor 
core

Architecture
Data Abort 
model

Value stored by direct STR, 
STRT, and STM of PC

ARM7TDMI ARMv4T Base updated Address of instruction + 12

ARM9TDMI ARMv4T Base restored Address of instruction + 12



Programmer’s Model 

2-4 Copyright © 2000, 2001 ARM Limited. All rights reserved. ARM DDI 0151C

2.2.2 Instruction set extension spaces

All ARM processors implement the undefined instruction space as one of the entry 
mechanisms for the undefined instruction exception. That is, ARM instructions with 
opcode[27:25] = 0b011 and opcode[4] = 0b1 are undefined on all ARM processors 
including the ARM9TDMI and ARM7TDMI. 

ARMv4 and ARMv4T also introduce a number of instruction set extension spaces to 
the ARM instruction set. These are:

• arithmetic instruction extension space

• control instruction extension space

• coprocessor instruction extension space

• load/store instruction extension space.

Instructions in these spaces are undefined, and cause an undefined instruction 
exception. The ARM9TDMI core fully implements all the instruction set extension 
spaces defined in ARMv4T as undefined instructions, allowing emulation of future 
instruction set additions.



Programmer’s Model 

ARM DDI 0151C Copyright © 2000, 2001 ARM Limited. All rights reserved. 2-5

2.3 CP15 register map summary

CP15 defines 16 registers. The register map for CP15 is shown in Table 2-2.

Table 2-2 CP15 register map

Register Read Write

0 ID code a

a. Register location 0 provides access to more than one 
register. The register accessed depends on the value of the 
opcode_2 field. See the register description for details.

Unpredictable

0 Cache type a Unpredictable

1 Control Control

2 Translation table base Translation table base

3 Domain access control Domain access control

4 Unpredictable Unpredictable

5 Fault status b

b. Separate registers for instruction and data. See the register 
description for details.

Fault status b

6 Fault address Fault address

7 Unpredictable Cache operations

8 Unpredictable TLB operations

9 Cache lockdown b Cache lockdown b

10 TLB lockdown b TLB lockdown b

11 Unpredictable Unpredictable

12 Unpredictable Unpredictable

13 FCSE PID FCSE PID

14 Unpredictable Unpredictable

15 Test configuration Test configuration



Programmer’s Model 

2-6 Copyright © 2000, 2001 ARM Limited. All rights reserved. ARM DDI 0151C

2.3.1 Addresses in ARM920T

Three distinct types of address exist in an ARM920T system:

• Virtual Address (VA)

• Modified Virtual Address (MVA)

• Physical Address (PA).

Below is an example of the address manipulation when the ARM9TDMI core requests 
an instruction (see Figure 2-10 on page 2-25).

1. The Instruction VA (IVA) is issued by the ARM9TDMI core.

2. This is translated by the ProcID to the Instruction MVA (IMVA). It is the IMVA 
that the Instruction Cache (ICache) and MMU see.

3. If the protection check carried out by the IMMU on the IMVA does not abort, and 
the IMVA tag is in the ICache, the instruction data is returned to the ARM9TDMI 
core.

4. If the ICache misses (the IMVA tag is not in the ICache), then the IMMU 
performs a translation to produce the Instruction PA (IPA). This address is given 
to the AMBA bus interface to perform an external access.

2.3.2 Accessing CP15 registers

The terms and abbreviations shown in Table 2-4 are used throughout this section.

Table 2-3 Address types in ARM920T

Domain ARM9TDMI Caches and TLBs AMBA bus

Address Virtual (VA) Modified Virtual (MVA) Physical (PA)

Table 2-4 CP15 abbreviations

Term Abbreviation Description

Unpredictable UNP For reads, the data returned when reading from this 
location is unpredictable. It can have any value.

For writes, writing to this location causes unpredictable 
behavior, or an unpredictable change in device 
configuration.

Should be zero SBZ When writing to this location, all bits of this field should 
be 0.



Programmer’s Model 

ARM DDI 0151C Copyright © 2000, 2001 ARM Limited. All rights reserved. 2-7

In all cases, reading from, or writing any data values to any CP15 registers, including 
those fields specified as unpredictable or should be zero, does not cause any permanent 
damage.

All CP15 register bits that are defined and contain state, are set to zero by BnRES 
except the V bit in register 1, which takes the value of macrocell input VINITHI when 
BnRES is asserted.

You can only access CP15 registers with MRC and MCR instructions in a privileged mode. 
The instruction bit pattern of the MCR and MRC instructions is shown in Figure 2-1. The 
assembler for these instructions is:

MCR/MRC{cond} P15,opcode_1,Rd,CRn,CRm,opcode_2

Figure 2-1 CP15 MRC and MCR bit pattern

Instructions CDP, LDC, and STC, together with unprivileged MRC and MCR instructions to 
CP15, cause the undefined instruction trap to be taken. The CRn field of MRC and MCR 
instructions specifies the coprocessor register to access. The CRm field and opcode_2 
fields specify a particular action when addressing registers. The L bit distinguishes 
between an MRC (L=1) and an MCR (L=0).

Note

 Attempting to read from a nonreadable register, or to write to a nonwritable register 
causes unpredictable results.

The opcode_1, opcode_2, and CRm fields should be zero, except when the values specified 
are used to select the desired operations, in all instructions that access CP15. Using 
other values results in unpredictable behavior.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 1 1 1

CRmopcode_2RdCRn

L

opcode_1Cond



Programmer’s Model 

2-8 Copyright © 2000, 2001 ARM Limited. All rights reserved. ARM DDI 0151C

2.3.3 Register 0, ID code register

This is a read-only register that returns a 32-bit device ID code.

You can access the ID code register by reading CP15 register 0 with the opcode_2 field 
set to any value other than 1 (the CRm field should be zero when reading). For example:

MRC p15,0,Rd,c0,c0,0 ; returns ID register

The contents of the ID code are shown in Table 2-5.

2.3.4 Register 0, cache type register

This is a read-only register that contains information about the size and architecture of 
the caches, allowing operating systems to establish how to perform such operations as 
cache cleaning and lockdown. All ARMv4T and later cached processors contain this 
register, allowing RTOS vendors to produce future-proof versions of their operating 
systems.

You can access the cache type register by reading CP15 register 0 with the opcode_2 field 
set to 1. For example:

MRC p15,0,Rd,c0,c0,1 ; returns cache details

Table 2-5 Register 0, ID code

Register bits Function Value

31:24 Implementer 0x41

23:20 Specification revision 0x1

19:16 Architecture (ARMv4T) 0x2

15:4 Part number 0x920

3:0 Layout revision Revision



Programmer’s Model 

ARM DDI 0151C Copyright © 2000, 2001 ARM Limited. All rights reserved. 2-9

The format of the cache type register is shown in Figure 2-2.

Figure 2-2 Cache type register format

ctype The ctype field determines the cache type.

S bit Specifies whether the cache is a unified cache or separate instruction and 
data caches.

Dsize Specifies the size, line length, and associativity of the data cache.

Isize Specifies the size, line length, and associativity of the instruction cache.

The Dsize and Isize fields in the cache type register have the same format. This is shown 
in Figure 2-3.

Figure 2-3 Dsize and Isize field format

size The size field determines the cache size in conjunction with the M bit.

assoc The assoc field determines the cache associativity in conjunction with the 
M bit.

M bit The multiplier bit. Determines the cache size and cache associativity 
values in conjunction with the size and assoc fields. 

len The len field determines the line length of the cache.

31 30 29 28 25 24 23 12 11 0

0 0 0 ctype S Dsize Isize

11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 size assoc M len

23 22 21 20 19 18 17 16 15 14 13 12



Programmer’s Model 

2-10 Copyright © 2000, 2001 ARM Limited. All rights reserved. ARM DDI 0151C

The register values for the ARM920T cache type register are listed in Table 2-6.

Bits [28:25] indicate which major cache class the implementation falls into. 0x6 means 
that the cache provides:

• cache-clean-step operation

• cache-flush-step operation

• lockdown facilities.

Table 2-6 Cache type register format

Function Register bits Value

Reserved 31:29 0b000

ctype 28:25 0b0110

S 24 0b1 = Harvard cache

Dsize Reserved 23:21 0b000

size 20:18 0b101 = 16KB

assoc 17:15 0b110 = 64-way

M 14 0b0

len 13:12 0b10 = 8 words per line (32 bytes)

Isize Reserved 11:9 0b000

size 8:6 0b101 = 16KB

assoc 5:3 0b110 = 64-way

M 2 0b0

len 1:0 0b10 = 8 words per line (32 bytes)



Programmer’s Model 

ARM DDI 0151C Copyright © 2000, 2001 ARM Limited. All rights reserved. 2-11

The size of the cache is determined by the size field and the M bit. The M bit is 0 for 
the data and instruction caches. Bits [20:18] for the Data Cache (DCache) and bits [8:6] 
for the Instruction Cache (ICache) are the size field. Table 2-7 shows the cache size 
encoding.

The associativity of the cache is determined by the assoc field and the M bit. The M bit 
is 0 for the data and instruction caches. Bits [17:15] for the DCache and bits [5:3] for 
the ICache are the assoc field. Table 2-8 shows the cache associativity encoding. 

Table 2-7 Cache size encoding (M=0)

size field Cache size

0b000 512B

0b001 1KB

0b010 2KB

0b011 4KB

0b100 8KB

0b101 16KB

0b110 32KB

0b111 64KB

Table 2-8 Cache associativity encoding (M=0)

assoc field Associativity

0b000 Direct mapped

0b001 2-way

0b010 4-way

0b011 8-way

0b100 16-way

0b101 32-way

0b110 64-way

0b111 128-way



Programmer’s Model 

2-12 Copyright © 2000, 2001 ARM Limited. All rights reserved. ARM DDI 0151C

The line length of the cache is determined by the len field. Bits [13:12] for the DCache 
and bits [1:0] for the ICache are the len field. Table 2-9 shows the line length encoding.

2.3.5 Register 1, control register

This register contains the control bits of the ARM920T. All reserved bits must either be 
written with 0 or 1, as indicated, or written using read-modify-write. The reserved bits 
have an unpredictable value when read. Use the following instructions to read and write 
this register:

MRC p15, 0, Rd, c1, c0, 0 ; read control register
MCR p15, 0, Rd, c1, c0, 0 ; write control register

All defined control bits are set to 0 on reset, except the V bit. The V bit is set to 0 at reset 
if the VINITHI pin is LOW, or 1 if the VINITHI pin is HIGH. The functions of the 
control bits are shown in Table 2-10.

Table 2-9 Line length encoding

len field Cache line length

00 2 words (8 bytes)

01 4 words (16 bytes)

10 8 words (32 bytes)

11 16 words (64 bytes)

Table 2-10 Control register 1 bit functions

Register
bits

Name Function Value

31 iA bit Asynchronous clock select See Table 2-11 on page 2-14.

30 nF bit notFastBus select See Table 2-11 on page 2-14.

29:15 - Reserved Read = Unpredictable.

Write = Should be zero.

14 RR bit Round robin replacement 0 = Random replacement.

1 = Round-robin replacement.

13 V bit Base location of exception

registers

0 = Low addresses = 0x00000000.

1 = High addresses = 0xFFFF0000.



Programmer’s Model 

ARM DDI 0151C Copyright © 2000, 2001 ARM Limited. All rights reserved. 2-13

12 I bit ICache enable 0 = ICache disabled.

1 = ICache enabled.

11:10 - Reserved Read = 00.

Write = 00.

9 R bit ROM protection This bit modifies the MMU protection 
system. See Domain access control on 
page 3-23.

8 S bit System protection This bit modifies the MMU protection 
system. See Domain access control on 
page 3-23.

7 B bit Endianness 0 = Little-endian operation.

1 = Big-endian operation.

6:3 - Reserved Read = 1111.

Write = 1111.

2 C bit DCache enable 0 = DCache disabled.

1 = DCache enabled.

1 A bit Alignment fault enable Data address alignment fault checking.

0 = Fault checking disabled.

1 = Fault checking enabled.

0 M bit MMU enable 0 = MMU disabled.

1 = MMU enabled.

Table 2-10 Control register 1 bit functions (continued)

Register
bits

Name Function Value



Programmer’s Model 

2-14 Copyright © 2000, 2001 ARM Limited. All rights reserved. ARM DDI 0151C

Register 1 bits [31:30] select the clocking mode of the ARM920T, as shown in 
Table 2-11.

Enabling the MMU

You must take care with the address mapping of the code sequence used to enable the 
MMU (see Enabling the MMU on page 3-29).

See Enabling and disabling the ICache on page 4-6 and Enabling and disabling the 
DCache and write buffer on page 4-10 for the restrictions and the effects of having 
caches enabled with the MMU disabled.

2.3.6 Register 2, translation table base (TTB) register

This is the Translation Table Base (TTB) register, for the currently active first-level 
translation table. The contents of register 2 are shown in Table 2-12.

Reading from register 2 returns the pointer to the currently active first-level translation 
table in bits [31:14]. Writing to register 2 updates the pointer to the first-level translation 
table from bits [31:14] of the written value.

Bits [13:0] should be zero when written, and are unpredictable when read.

Table 2-11 Clocking modes

Clocking mode iA nF

FastBus mode 0 0

Synchronous 0 1

Reserved 1 0

Asynchronous 1 1

Table 2-12 Register 2, translation table base

Register
bits

Function

31:14 Pointer to first-level translation 
table base. Read/write.

13:0 Reserved:

Read = Unpredictable.

Write = Should be zero.



Programmer’s Model 

ARM DDI 0151C Copyright © 2000, 2001 ARM Limited. All rights reserved. 2-15

You can use the following instructions to access the TTB:

MRC p15, 0, Rd, c2, c0, 0 ; read TTB register
MCR p15, 0, Rd, c2, c0, 0 ; write TTB register

2.3.7 Register 3, domain access control register

Register 3 is the read and write domain access control register, consisting of 16 2-bit 
fields. Each of these 2-bit fields defines the access permissions for the domains shown 
in Table 2-13.

Table 2-13 Register 3, domain access control

Register
bits

Domain

31:30 D15

29:28 D14

27:26 D13

25:24 D12

23:22 D11

21:20 D10

19:18 D9

17:16 D8

15:14 D7

13:12 D6

11:10 D5

9:8 D4

7:6 D3

5:4 D2

3:2 D1

1:0 D0



Programmer’s Model 

2-16 Copyright © 2000, 2001 ARM Limited. All rights reserved. ARM DDI 0151C

The encoding of the two bit domain access permission field is given in Domain access 
control on page 3-23. You can use the following instructions to access the domain 
access control register:

MRC p15, 0, Rd, c3, c0, 0 ; read domain 15:0 access permissions
MCR p15, 0, Rd, c3, c0, 0 ; write domain 15:0 access permissions

2.3.8 Register 4, reserved

You must not access (read or write) this register because it causes unpredictable 
behavior.

2.3.9 Register 5, fault status registers

Register 5 is the Fault Status Register (FSR). The FSR contains the source of the last 
data fault, indicating the domain and type of access being attempted when the Data 
Abort occurred. Table 2-14 shows bit allocations for the FSR.

The fault type encoding is shown in Fault address and fault status registers on 
page 3-22.

The data FSR is defined in ARMv4T. Additionally, a pipelined prefetch FSR is 
available, for debug purposes only. The pipeline matches that of the ARM9TDMI.

You can use the following instructions to access the data and prefetch FSR:

MRC p15, 0, Rd, c5, c0, 0 ;read data FSR value
MCR p15, 0, Rd, c5, c0, 0 ;write data FSR value
MRC p15, 0, Rd, c5, c0, 1 ;read prefetch FSR value
MCR p15, 0, Rd, c5, c0, 1 ;write prefetch FSR value

Table 2-14 Fault status register

Bit Description

31:9 UNP when read

SBZ for write

8 0 when read

SBZ for write

7:4 Domain being accessed when fault 
occurred (D15 - D0)

3:0 Fault type



Programmer’s Model 

ARM DDI 0151C Copyright © 2000, 2001 ARM Limited. All rights reserved. 2-17

The ability to write to the FSR is useful for a debugger to restore the value of the FSR. 
You must write to the register using the read-modify-write method. Bits[31:8] should 
be zero.

2.3.10 Register 6, fault address register 

Register 6 is the Fault Address Register (FAR). This contains the MVA of the access 
being attempted when the last fault occurred. The FAR is only updated for data faults, 
not for prefetch faults. (You can find the address for a prefetch fault in R14.)

You can use the following instructions to access the FAR:

MRC p15, 0, Rd, c6, c0, 0 ;read FAR data
MCR p15, 0, Rd, c6, c0, 0 ;write FAR data

The ability to write to the FAR is provided to allow a debugger to restore a previous 
state.

2.3.11 Register 7, cache operations register

Register 7 is a write-only register used to manage the ICache and DCache.

The cache operations provided by register 7 are described in Table 2-15.

Table 2-15 Function descriptions register 7

Function Description

Invalidate cache Invalidates all cache data, including any dirty data.a Use with 
caution.

a. Dirty data is data that has been modified in the cache but not yet written to main memory.

Invalidate single entry using 
MVA

Invalidates a single cache line, discarding any dirty data.a Use 
with caution.

Clean D single entry using 
either index or MVA

Writes the specified cache line to main memory, if the line is 
marked valid and dirty, and marks the line as not dirty.a The 
valid bit is unchanged.

Clean and Invalidate D entry 
using either index or MVA

Writes the specified cache line to main memory, if the line is 
marked valid and dirty.a The line is marked not valid.

Prefetch cache line Performs an ICache lookup of the specified MVA.

If the cache misses, and the region is cachable, a linefill is 
performed.



Programmer’s Model 

2-18 Copyright © 2000, 2001 ARM Limited. All rights reserved. ARM DDI 0151C

The function of each cache operation is selected by the opcode_2 and CRm fields in the 
MCR instruction used to write CP15 register 7. Writing other opcode_2 or CRm values is 
unpredictable.

Reading from CP15 register 7 is unpredictable.

Table 2-16 shows instructions that you can use to perform cache operations with 
register 7.

Table 2-16 Cache operations register 7

Function Data Instruction

Invalidate ICache and DCache SBZ MCR p15,0,Rd,c7,c7,0

Invalidate ICache SBZ MCR p15,0,Rd,c7,c5,0

Invalidate ICache single entry (using MVA) MVA 
format

MCR p15,0,Rd,c7,c5,1

Prefetch ICache line (using MVA) MVA 
format

MCR p15,0,Rd,c7,c13,1

Invalidate DCache SBZ MCR p15,0,Rd,c7,c6,0

Invalidate DCache single entry (using 
MVA)

MVA 
format

MCR p15,0,Rd,c7,c6,1

Clean DCache single entry (using MVA) MVA 
format

MCR p15,0,Rd,c7,c10,1

Clean and Invalidate DCache entry (using 
MVA)

MVA 
format

MCR p15,0,Rd,c7,c14,1

Clean DCache single entry (using index) Index 
format

MCR p15,0,Rd,c7,c10,2

Clean and Invalidate DCache entry (using 
index)

Index 
format

MCR p15,0,Rd,c7,c14,2

Drain write buffer a

a. Stops execution until the write buffer has drained.

SBZ MCR p15,0,Rd,c7,c10,4

Wait for interrupt b

b. Stops execution in a LOW power state until an interrupt occurs.

SBZ MCR p15,0,Rd,c7,c0,4



Programmer’s Model 

ARM DDI 0151C Copyright © 2000, 2001 ARM Limited. All rights reserved. 2-19

The operations that you can carry out on a single cache line identify the line using the 
data passed in the MCR instruction. The data is interpreted using one of the formats shown 
in Figure 2-4 or Figure 2-5.

Figure 2-4 Register 7 MVA format

Figure 2-5 Register 7 index format

The use of register 7 is described in Chapter 4 Caches, Write Buffer, and Physical 
Address TAG (PA TAG) RAM.

2.3.12 Register 8, TLB operations register

Register 8 is a write-only register used to manage the Translation Lookaside Buffers 
(TLBs), the instruction TLB, and the data TLB.

Five TLB operations are defined and you can select the function to be performed with 
the opcode_2 and CRm fields in the MCR instruction used to write CP15 register 8. Writing 
other opcode_2 or CRm values is unpredictable. Reading from CP15 register 8 is 
unpredictable.

Table 2-17 shows instructions that you can use to perform TLB operations using 
register 8.

31 5 4 0

Modified virtual address SBZ

31 26 25 8 7 5 4 0

Index SBZ SBZSeg

Table 2-17 TLB operations register 8

Function Data Instruction

Invalidate TLB(s) SBZ MCR p15,0,Rd,c8,c7,0

Invalidate I TLB SBZ MCR p15,0,Rd,c8,c5,0



Programmer’s Model 

2-20 Copyright © 2000, 2001 ARM Limited. All rights reserved. ARM DDI 0151C

Note
 These functions invalidate all the unpreserved entries in the TLB. Invalidate TLB single 
entry functions invalidate any TLB entry corresponding to the MVA given in Rd, 
regardless of its preserved state. See Register 10, TLB lockdown register on page 2-22.

Figure 2-6 shows the MVA format used for operations on single entry TLB lines using 
register 8.

Figure 2-6 Register 8 MVA format

2.3.13 Register 9, cache lockdown register

Register 9 is the cache lockdown register. The cache lockdown register is 0x0 on reset. 
The cache lockdown register allows software to control which cache line in the ICache 
or DCache respectively is loaded for a linefill and to prevent lines in the ICache or 
DCache from being evicted during a linefill, locking them into the cache.

There is a register for each of the ICache and DCache. The value of opcode_2 determines 
which cache register to access:

• opcode_2 = 0x0 accesses the DCache register

• opcode_2 = 0x1 accesses the ICache register.

The Opcode_1 and CRm fields should be zero. 

Reading CP15 register 9 returns the value of the cache lockdown register, which is the 
base pointer for all cache segments. 

Invalidate I TLB single entry (using MVA) MVA 
format

MCR p15,0,Rd,c8,c5,1

Invalidate D TLB SBZ MCR p15,0,Rd,c8,c6,0

Invalidate D TLB single entry (using MVA) MVA 
format

MCR p15,0,Rd,c8,c6,1

Table 2-17 TLB operations register 8 (continued)

Function Data Instruction

31 10 9 0

Modified virtual address SBZ



Programmer’s Model 

ARM DDI 0151C Copyright © 2000, 2001 ARM Limited. All rights reserved. 2-21

Note
 Only bits [31:26] are returned. Bits [25:0] are unpredictable.

Writing CP15 register 9 updates the cache lockdown register, both the base and the 
current victim pointer for all cache segments. Bits [25:0] should be zero.

The victim counter specifies the cache line to be used as the victim for the next linefill. 
This is incremented using either a random or round-robin replacement policy, 
determined by the state of the RR bit in register 1. The victim counter generates values 
in the range (base to 63). This locks lines with index values in the range (0 to base-1). 
If base = 0, there are no locked lines.

Writing to CP15 register 9 updates the base pointer and the current victim pointer. The 
next linefill uses, and then increments, the victim pointer. The victim pointer continues 
incrementing on linefills, and wraps around to the base pointer. For example, setting the 
base pointer to 0x3 prevents the victim pointer from selecting entries 0x0 to 0x2, locking 
them into the cache. Example 2-1 shows how you can load a cache line into ICache line 
0 and lock it down.

Example 2-1 Load a cache line into ICache line 0 and lock it down

MCR to CP15 register 9, opcode_2 = 0x1, Victim=Base=0x0
MCR I prefetch. Assuming the ICache misses, a linefill occurs to line 0.
MCR to CP15 register 9, opcode_2 = 0x1, Victim=Base=0x1

More ICache linefills now occur into lines 1-63.

Example 2-2 shows how you can load a cache line into DCache line 0 and lock it down.

Example 2-2 Load a cache line into DCache line 0 and lock it down

MCR to CP15 register 9, opcode_2 = 0x0, Victim=Base=0x0
Data load (LDR/LDM). Assuming the DCache misses, a linefill occurs to line 0.
MCR to CP15 register 9, opcode_2 = 0x0, Victim=Base=0x1

More DCache linefills now occur into lines 1-63.



Programmer’s Model 

2-22 Copyright © 2000, 2001 ARM Limited. All rights reserved. ARM DDI 0151C

Note
 Writing CP15 register 9, with the CRm field set to b0001, updates the current victim 
pointer only for the specified segment. Bits [31:26] specify the victim. Bits [7:5] specify 
the segment (for a 16KB cache). All other bits should be zero. This encoding is intended 
for debug use. You are not recommended to use this encoding.

Figure 2-7 shows the format of bits in register 9.

Figure 2-7 Register 9

Table 2-18 shows the instructions you can use to access the cache lockdown register.

2.3.14 Register 10, TLB lockdown register

Register 10 is the TLB lockdown register. The TLB lockdown register is 0x0 on reset. 
There is a TLB lockdown register for each of the TLBs, the value of opcode_2 
determines which TLB register to access:

• opcode_2 = 0x0 accesses the D TLB register

• opcode_2 = 0x1 accesses the I TLB register.

Reading CP15 register 10 returns the value of the TLB lockdown counter base register, 
the current victim number, and the preserve bit (P bit). Bits [19:1] are unpredictable 
when read. 

Writing CP15 register 10 updates the TLB lockdown counter base register, the current 
victim pointer, and the state of the preserve bit. Bits [19:1] should be zero when written.

31 26 25 0

Index UNP/SBZ

Table 2-18 Accessing the cache lockdown register 9

Function Data Instruction

Read DCache lockdown base Base MRC p15,0,Rd,c9,c0,0

Write DCache victim and lockdown base Victim=Base MCR p15,0,Rd,c9,c0,0

Read ICache lockdown base Base MRC p15,0,Rd,c9,c0,1

Write ICache victim and lockdown base Victim=Base MCR p15,0,Rd,c9,c0,1



Programmer’s Model 

ARM DDI 0151C Copyright © 2000, 2001 ARM Limited. All rights reserved. 2-23

Table 2-19 shows the instructions you can use to access the TLB lockdown register.

Figure 2-8 shows the format of bits in register 10.

Figure 2-8 Register 10

The entries in the TLBs are replaced using a round-robin replacement policy. This is 
implemented using a victim counter that counts from entry 0 up to 63, and then wraps 
back round to the base value and continues counting, wrapping around to the base value 
from 63 each time.

There are two mechanisms available for ensuring entries are not removed from the TLB:

• Locking an entry down prevents it from being selected for overwriting during a 
table walk. You can do this by programming the base value to which the victim 
counter reloads. For example, if the bottom 3 entries (0–2) are to be locked down, 
you must program the base counter to 3.

• You can preserve an entry during an Invalidate All instruction. You can do this 
by ensuring the P bit is set when the entry is loaded into the TLB. Examples that 
show how you can load a single entry into the I and D TLBs at location 0, make 
it immune to Invalidate All, and lock it down are shown in Example 2-3 on 
page 2-24 and Example 2-4 on page 2-24.

Table 2-19 Accessing the TLB lockdown register 10

Function Data Instruction

Read D TLB lockdown TLB lockdown MRC p15,0,Rd,c10,c0,0

Write D TLB lockdown TLB lockdown MCR p15,0,Rd,c10,c0,0

Read I TLB lockdown TLB lockdown MRC p15,0,Rd,c10,c0,1

Write I TLB lockdown TLB lockdown MCR p15,0,Rd,c10,c0,1

31 26 25 20 19 1 0

Base SBZ/UNP PVictim



Programmer’s Model 

2-24 Copyright © 2000, 2001 ARM Limited. All rights reserved. ARM DDI 0151C

Example 2-3 Load a single entry into I TLB location 0, make it immune to Invalidate
All and lock it down

MCR to CP15 register 10, opcode_2 = 0x1, Base Value = 0, 
Current Victim = 0, P = 1
MCR I prefetch. Assuming an I TLB miss occurs, then entry 0 is loaded.
MCR to CP15 register 10, opcode_2 = 0x1, Base Value = 1, Current Victim = 1, P = 
0

Example 2-4 Load a single entry into D TLB location 0, make it immune to
Invalidate All and lock it down

MCR to CP15 register 10, opcode_2 = 0x0, Base Value = 0, 
Current Victim = 0, P = 1
Data load (LDR/LDM) or store (STR/STM). Assuming a D TLB miss occurs, then entry 
0 is loaded.
MCR to CP15 register 10, opcode_2 = 0x0, Base Value = 1, Current Victim = 1, P = 
0

2.3.15 Registers 11, 12, and 14, reserved

Accessing (reading or writing) any of these registers causes unpredictable behavior.

2.3.16 Register 13, FCSE PID register

Register 13 is the Fast Context Switch Extension (FCSE) Process Identifier (PID) 
register. The FCSE PID register is 0x0 on reset.

Reading from CP15 register 13 returns the value of the FCSE PID. Writing CP15 
register 13 updates the FCSE PID to the value in bits [31:25]. Bits [24:0] should be zero.

Register 13 bit assignments are shown in Figure 2-9.

Figure 2-9 Register 13

31 25 24 0

FCSE PID SBZ



Programmer’s Model 

ARM DDI 0151C Copyright © 2000, 2001 ARM Limited. All rights reserved. 2-25

You can access register 13 using the following instructions:

MRC p15, 0, Rd, c13, c0, 0 ;read FCSE PID
MCR p15, 0, Rd, c13, c0, 0 ;write FCSE PID

Using the FCSE process identifier (FCSE PID)

Addresses issued by the ARM9TDMI core in the range 0 to 32MB are translated by 
CP15 register 13, the FCSE PID register. Address A becomes A + (FCSE_PID x 32MB). 
It is this translated address that is seen by both the caches and MMU. See Processor 
functional block diagram on page 1-3. Addresses above 32MB undergo no translation. 
This is shown in Figure 2-10 on page 2-25.

The FCSE_PID is a 7-bit field, enabling 128 x 32MB processes to be mapped.

Note
 If FCSE_PID is zero, as it is on reset, then there is a flat mapping between the 
ARM9TDMI and the caches and MMU.

Figure 2-10 Address mapping using CP15 Register 13

0

1

2

127

C13

Virtual address (VA)
issued by ARM9TDMI

Modified virtual address (MVA)
input to caches and MMU

0

4GB

0

32MB

4GB

32MB

64MB



Programmer’s Model 

2-26 Copyright © 2000, 2001 ARM Limited. All rights reserved. ARM DDI 0151C

Changing the FCSE PID, performing a fast context switch

To do a fast context switch, write to CP15 register 13. The contents of the caches and 
TLBs do not have to be flushed after a fast context switch because they still hold valid 
address tags. The two instructions after the MCR to write the FCSE_PID are fetched with 
the old FCSE_PID value:

{FCSE_PID = 0}
MOV r0, #1:SHL:25 ; Fetched with FCSE_PID = 0
MCR p15,0,r0,c13,c0,0 ; Fetched with FCSE_PID = 0
A1 ; Fetched with FCSE_PID = 0
A2 ; Fetched with FCSE_PID = 0
A3 ; Fetched with FCSE_PID = 1

2.3.17 Register 15, test configuration register

Register 15 is used for test purposes. Accessing (reading or writing) this register causes 
the ARM920T to have unpredictable behavior.



ARM DDI 0151C Copyright © 2000, 2001 ARM Limited. All rights reserved. 3-1

Chapter 3 
Memory Management Unit

This chapter describes the Memory Management Unit (MMU). It contains the following 
sections:

• About the MMU on page 3-2

• MMU program accessible registers on page 3-4

• Address translation on page 3-6

• MMU faults and CPU aborts on page 3-21

• Fault address and fault status registers on page 3-22

• Domain access control on page 3-23

• Fault checking sequence on page 3-25

• External aborts on page 3-28

• Interaction of the MMU and caches on page 3-29.



Memory Management Unit 

3-2 Copyright © 2000, 2001 ARM Limited. All rights reserved. ARM DDI 0151C

3.1 About the MMU

ARM920T processor implements an enhanced ARM architecture v4 MMU to provide 
translation and access permission checks for the instruction and data address ports of 
the ARM9TDMI core. The MMU is controlled from a single set of two-level page tables 
stored in main memory, that are enabled by the M bit in CP15 register 1, providing a 
single address translation and protection scheme. You can independently lock and flush 
the instruction and data TLBs in the MMU.

The MMU features are:

• standard ARMv4 MMU mapping sizes, domains, and access protection scheme

• mapping sizes are 1MB (sections), 64KB (large pages), 4KB (small pages), and 
1KB (tiny pages)

• access permissions for sections

• access permissions for large pages and small pages can be specified separately for 
each quarter of the page (these quarters are called subpages)

• 16 domains implemented in hardware

• 64 entry instruction TLB and 64 entry data TLB

• hardware page table walks

• round-robin replacement algorithm (also called cyclic) 

• invalidate whole TLB, using CP15 register 8

• invalidate TLB entry, selected by MVA, using CP15 register 8

• independent lockdown of instruction TLB and data TLB, using CP15 register 10.

3.1.1 Access permissions and domains

For large and small pages, access permissions are defined for each subpage (1KB for 
small pages, 16KB for large pages). Sections and tiny pages have a single set of access 
permissions. 

All regions of memory have an associated domain. A domain is the primary access 
control mechanism for a region of memory. It defines the conditions necessary for an 
access to proceed. The domain determines if:

• the access permissions are used to qualify the access

• the access is unconditionally allowed to proceed

• the access is unconditionally aborted.



Memory Management Unit 

ARM DDI 0151C Copyright © 2000, 2001 ARM Limited. All rights reserved. 3-3

In the latter two cases, the access permission attributes are ignored. 

There are 16 domains. These are configured using the domain access control register.

3.1.2 Translated entries

Each TLB caches 64 translated entries. During CPU memory accesses, the TLB 
provides the protection information to the access control logic. 

If the TLB contains a translated entry for the MVA, the access control logic determines 
if access is permitted:

• if access is permitted and an off-chip access is required, the MMU outputs the 
appropriate physical address corresponding to the MVA 

• if access is permitted and an off-chip access is not required, the cache services the 
access 

• if access is not permitted, the MMU signals the CPU core to abort.

If a TLB misses (it does not contain an entry for the VA) the translation table walk 
hardware is invoked to retrieve the translation information from a translation table in 
physical memory. When retrieved, the translation information is written into the TLB, 
possibly overwriting an existing value. 

The entry to be written is chosen by cycling sequentially through the TLB locations. To 
enable use of TLB locking features, you can specify the location to write using CP15 
register 10, TLB lockdown. 

When the MMU is turned off, as happens on reset, no address mapping occurs and all 
regions are marked as noncachable and nonbufferable. See About the caches and write 
buffer on page 4-2.



Memory Management Unit 

3-4 Copyright © 2000, 2001 ARM Limited. All rights reserved. ARM DDI 0151C

3.2 MMU program accessible registers

Table 3-1 lists the CP15 registers that are used in conjunction with page table 
descriptors stored in memory to determine the operation of the MMU.

Table 3-1 CP15 register functions

Register Number Bits Register description

Control register 1 M, A, S, R Contains bits to enable the MMU (M bit), enable data address 
alignment checks (A bit), and to control the access protection 
scheme (S bit and R bit).

Translation table 
base register

2 31:14 Holds the physical address of the base of the translation table 
maintained in main memory. This base address must be on a 16KB 
boundary and is common to both TLBs.

Domain access 
control register

3 31:0 Comprises 16 2-bit fields. Each field defines the access control 
attributes for one of 16 domains (D15–D0). 

Fault status 
register

5 (I and D) 7:0 Indicates the cause of a Data or Prefetch Abort, and the domain 
number of the aborted access, when an abort occurs. Bits 7:4 specify 
which of the 16 domains (D15–D0) was being accessed when a fault 
occurred. Bits 3:0 indicate the type of access being attempted. The 
value of all other bits is unpredictable. The encoding of these bits is 
shown in Table 3-9 on page 3-22.

Fault address 
register

6 (D) 31:0 Holds the MVA associated with the access that caused the Data 
Abort. See Table 3-9 on page 3-22 for details of the address stored 
for each type of fault. 

You can use ARM9TDMI register 14 to determine the MVA 
associated with a Prefetch Abort.

TLB operations 
register

8 31:0 You can write to this register to make the MMU perform TLB 
maintenance operations. These are either invalidating all the 
(unpreserved) entries in the TLB, or invalidating a specific entry.

TLB lockdown 
register

10 (I and D) 31:20 and 0 Allows specific page table entries to be locked into the TLB and the 
TLB victim index to be read or written:

• opcode 2 = 0x0 accesses the D TLB lockdown register

• opcode 2 = 0x1 accesses the I TLB lockdown register.

Locking entries in the TLB guarantees that accesses to the locked 
page or section can proceed without incurring the time penalty of a 
TLB miss. This allows the execution latency for time-critical pieces 
of code such as interrupt handlers to be minimized.



Memory Management Unit 

ARM DDI 0151C Copyright © 2000, 2001 ARM Limited. All rights reserved. 3-5

All the CP15 MMU registers, except register 8, contain state. You can read them using 
MRC instructions, and write them using MCR instructions. Registers 5 and 6 are also written 
by the MMU during a Data Abort. Writing to Register 8 causes the MMU to perform a 
TLB operation, to manipulate TLB entries. This register cannot be read. The Instruction 
TLB (I TLB) and Data TLB (D TLB) both have a copy of register 10. The opcode_2 field 
in the CP15 instruction is used to determine the one accessed.

CP15 is described in Chapter 2 Programmer’s Model, with details of register formats 
and the coprocessor instructions you can use to access them.



Memory Management Unit 

3-6 Copyright © 2000, 2001 ARM Limited. All rights reserved. ARM DDI 0151C

3.3 Address translation

The MMU translates VAs generated by the CPU core, and by CP15 register 13, into 
physical addresses to access external memory. It also derives and checks the access 
permission, using a TLB.

The MMU table walking hardware is used to add entries to the TLB. The translation 
information, that comprises both the address translation data and the access permission 
data, resides in a translation table located in physical memory. The MMU provides the 
logic for you to traverse this translation table and load entries into the TLB. 

There are one or two stages in the hardware table walking, and permission checking, 
process. The number of stages depends on whether the address is marked as a 
section-mapped access or a page-mapped access. 

There are three sizes of page-mapped accesses and one size of section-mapped access. 
The page-mapped accesses are for:

• large pages

• small pages

• tiny pages.

The translation process always starts out in the same way, with a level one fetch. A 
section-mapped access requires only a level one fetch, but a page-mapped access 
requires a subsequent level two fetch.

3.3.1 Translation table base

The hardware translation process is initiated when the TLB does not contain a 
translation for the requested MVA. The Translation Table Base (TTB) register points to 
the base address of a table in physical memory that contains section or page descriptors, 
or both. The 14 low-order bits of the TTB register are set to zero on a read, and the table 
must reside on a 16KB boundary. Figure 3-1 shows the format of the TTB register.

Figure 3-1 Translation table base register

The translation table has up to 4096 x 32-bit entries, each describing 1MB of virtual 
memory. This allows up to 4GB of virtual memory to be addressed. Figure 3-2 on 
page 3-7 shows the table walk process.

31 14 13 0

Translation table base



Memory Management Unit 

ARM DDI 0151C Copyright © 2000, 2001 ARM Limited. All rights reserved. 3-7

Figure 3-2 Translating page tables

Translation
table

4096 entries

TTB base

Indexed by
modified
virtual
address
bits [31:20]

Level one fetch

Section

1 MB

Indexed by
modified
virtual
address
bits [19:0]

Section base

Coarse page table

256 entries

Fine page table

1024 entries

Indexed by
modified
virtual
address
bits [19:12]

Indexed by
modified
virtual
address
bits [19:10]

Coarse page
table base

Fine page
table base

Level two fetch

Large page

64 KB

Small page

4 KB

Tiny page

1 KB

Large page base

Indexed by
modified
virtual
address
bits [15:0]

Indexed by
modified
virtual
address
bits [11:0]

Indexed by
modified
virtual
address
bits [9:0]

00

01

10

11

Invalid

00

10

01

11

00

10

01

11

1 KB subpage

1 KB subpage

1 KB subpage

1 KB subpage

16 KB subpage

16 KB subpage

16 KB subpage

16 KB subpage

Small page base

Tiny page base

Invalid

Invalid

Invalid



Memory Management Unit 

3-8 Copyright © 2000, 2001 ARM Limited. All rights reserved. ARM DDI 0151C

3.3.2 Level one fetch

Bits [31:14] of the TTB register are concatenated with bits [31:20] of the MVA to 
produce a 30-bit address as shown in Figure 3-3. 

Figure 3-3 Accessing translation table level one descriptors

This address selects a 4-byte translation table entry. This is a level one descriptor for 
either a section or a page table.

3.3.3 Level one descriptor

The level one descriptor returned is either a section descriptor, a coarse page table 
descriptor, or a fine page table descriptor, or is invalid. Figure 3-4 on page 3-9 shows 
the format of a level one descriptor.

31 20 19 0

Table index

31 14 13 0

Translation base

31 14 13 2 1 0

0 0Table indexTranslation base

31 0

Level one descriptor

Modified virtual address

Translation table base



Memory Management Unit 

ARM DDI 0151C Copyright © 2000, 2001 ARM Limited. All rights reserved. 3-9

Figure 3-4 Level one descriptor

A section descriptor provides the base address of a 1MB block of memory. 

The page table descriptors provide the base address of a page table that contains level 
two descriptors. There are two sizes of page table:

• coarse page tables have 256 entries, splitting the 1MB that the table describes into 
4KB blocks

• fine page tables have 1024 entries, splitting the 1MB that the table describes into 
1KB blocks.

Level one descriptor bit assignments are shown in Table 3-2. 

31 20 19 12 11 10 9 8 5 4 3 2 1 0

0 0

Coarse page table base address Domain 1 0 1

Section base address AP Domain 1 C B 1 0

Fine page table base address Domain 1 1 1

Fault

Coarse
page table

Section

Fine
page table

Table 3-2 Level one descriptor bits

Bits
Description

Section Coarse Fine

31:20 31:10 31:12 These bits form the corresponding bits of the physical 
address

19:12 - - Should be zero

11:10 - - Access permission bits. Domain access control on 
page 3-23 and Fault checking sequence on page 3-25 show 
how to interpret the access permission bits

9 9 11:9 Should be zero

8:5 8:5 8:5 Domain control bits



Memory Management Unit 

3-10 Copyright © 2000, 2001 ARM Limited. All rights reserved. ARM DDI 0151C

The two least significant bits of the level one descriptor indicate the descriptor type as 
shown in Table 3-3.

3.3.4 Section descriptor

A section descriptor provides the base address of a 1MB block of memory. Figure 3-5 
shows the format of a section descriptor.

Figure 3-5 Section descriptor

4 4 4 Must be 1

3:2 - - These bits, C and B, indicate whether the area of memory 
mapped by this page is treated as write-back cachable, 
write-through cachable, noncached buffered, or noncached 
nonbuffered

- 3:2 3:2 Should be zero

1:0 1:0 1:0 These bits indicate the page size and validity and are 
interpreted as shown in Table 3-3

Table 3-3 Interpreting level one descriptor bits [1:0]

Value Meaning Description

0 0 Invalid Generates a section translation fault

0 1 Coarse page table Indicates that this is a coarse page table descriptor

1 0 Section Indicates that this is a section descriptor

1 1 Fine page table Indicates that this is a fine page table descriptor

Table 3-2 Level one descriptor bits (continued)

Bits
Description

Section Coarse Fine

SBZ

31 20 19 12 11 10 9 8 5 4 3 2 1 0

Section base address AP Domain 1 C B 1 0SBZ



Memory Management Unit 

ARM DDI 0151C Copyright © 2000, 2001 ARM Limited. All rights reserved. 3-11

Section descriptor bit assignments are described in Table 3-4.

3.3.5 Coarse page table descriptor

A coarse page table descriptor provides the base address of a page table that contains 
level two descriptors for either large page or small page accesses. Coarse page tables 
have 256 entries, splitting the 1MB that the table describes into 4KB blocks. Figure 3-6 
shows the format of a coarse page table descriptor.

Figure 3-6 Coarse page table descriptor

Note
 If a coarse page table descriptor is returned from the level one fetch, a level two fetch is 
initiated.

Table 3-4 Section descriptor bits

Bits Description

31:20 Form the corresponding bits of the physical address for a section

19:12 Always written as 0

11:10 (AP) Specify the access permissions for this section

9 Always written as 0

8:5 Specify one of the 16 possible domains (held in the domain access control register) 
that contain the primary access controls

4 Should be written as 1, for backward compatibility

3:2 These bits (C and B) indicate whether the area of memory mapped by this section is 
treated as write-back cachable, write-through cachable, noncached buffered, or 
noncached nonbuffered

1:0 These bits must be 10 to indicate a section descriptor

31 10 9 8 5 4 3 2 1 0

Coarse page table base address Domain 1 0 1SBZ

SBZ



Memory Management Unit 

3-12 Copyright © 2000, 2001 ARM Limited. All rights reserved. ARM DDI 0151C

Coarse page table descriptor bit assignments are described in Table 3-5.

3.3.6 Fine page table descriptor

A fine page table descriptor provides the base address of a page table that contains level 
two descriptors for large page, small page, or tiny page accesses. Fine page tables have 
1024 entries, splitting the 1MB that the table describes into 1KB blocks. Figure 3-7 
shows the format of a fine page table descriptor.

Figure 3-7 Fine page table descriptor

Note
 If a fine page table descriptor is returned from the level one fetch, a level two fetch is 
initiated.

Table 3-5 Coarse page table descriptor bits

Bits Description

31:10 These bits form the base for referencing the level two descriptor (the coarse page 
table index for the entry is derived from the MVA)

9 Always written as 0

8:5 These bits specify one of the 16 possible domains (held in the domain access control 
registers) that contain the primary access controls

4 Always written as 1

3:2 Always written as 0

1:0 These bits must be 01 to indicate a coarse page table descriptor

31 12 11 9 8 5 4 3 2 1 0

Fine page table base address Domain 1 1 1SBZ SBZ



Memory Management Unit 

ARM DDI 0151C Copyright © 2000, 2001 ARM Limited. All rights reserved. 3-13

Fine page table descriptor bit assignments are described in Table 3-6.

3.3.7 Translating section references

Figure 3-8 on page 3-14 shows the complete section translation sequence.

Table 3-6 Fine page table descriptor bits

Bits Description

31:12 These bits form the base for referencing the level two descriptor (the fine page table 
index for the entry is derived from the MVA)

11:9 Always written as 0

8:5 These bits specify one of the 16 possible domains (held in the domain access control 
registers) that contain the primary access controls

4 Always written as 1

3:2 Always written as 0

1:0 These bits must be 11 to indicate a fine page table descriptor



Memory Management Unit 

3-14 Copyright © 2000, 2001 ARM Limited. All rights reserved. ARM DDI 0151C

Figure 3-8 Section translation

Note
 You must check access permissions contained in the level one descriptor before 
generating the physical address.

3.3.8 Level two descriptor

If the level one fetch returns either a coarse page table descriptor or a fine page table 
descriptor, this provides the base address of the page table to be used. The page table is 
then accessed and a level two descriptor is returned. Figure 3-9 on page 3-15 shows the 
format of level two descriptors.

31 14 13 0

Translation base

31 14 13 2 1 0

0 0Table indexTranslation base

Modified virtual address

Translation table base

31 20 19 0

Table index Section index

31 20 19 0

Section indexSection base address

Section level one descriptor

Physical address

31 20 19 0

Section base address AP Domain C B 1 0

2 134589101112

1



Memory Management Unit 

ARM DDI 0151C Copyright © 2000, 2001 ARM Limited. All rights reserved. 3-15

Figure 3-9 Level two descriptor

A level two descriptor defines a tiny, a small, or a large page descriptor, or is invalid:

• a large page descriptor provides the base address of a 64KB block of memory

• a small page descriptor provides the base address of a 4KB block of memory

• a tiny page descriptor provides the base address of a 1KB block of memory.

Coarse page tables provide base addresses for either small or large pages. Large page 
descriptors must be repeated in 16 consecutive entries. Small page descriptors must be 
repeated in each consecutive entry.

Fine page tables provide base addresses for large, small, or tiny pages. Large page 
descriptors must be repeated in 64 consecutive entries. Small page descriptors must be 
repeated in four consecutive entries and tiny page descriptors must be repeated in each 
consecutive entry.

31 12 11 10 9 8 5 4 3 2 1 0

0 0

Large page base address 0 1

Small page base address C B 1 0

Tiny page base address 1 1

Fault

Large page

Small page

Tiny page

7 616 15

BC

C Bap0

ap0

ap

ap1ap2ap3

ap1ap2ap3



Memory Management Unit 

3-16 Copyright © 2000, 2001 ARM Limited. All rights reserved. ARM DDI 0151C

Level two descriptor bit assignments are described in Table 3-7.

The two least significant bits of the level two descriptor indicate the descriptor type as 
shown in Table 3-8.

Note

 Tiny pages do not support subpage permissions and therefore only have one set of 
access permission bits.

Table 3-7 Level two descriptor bits

Bits
Description

Large Small Tiny

31:16 31:12 31:10 These bits form the corresponding bits of the physical address

15:12 - 9:6 Should be zero

11:4 11:4 5:4 Access permission bits. Domain access control on page 3-23 
and Fault checking sequence on page 3-25 show how to 
interpret the access permission bits

3:2 3:2 3:2 These bits, C and B, indicate whether the area of memory 
mapped by this page is treated as write-back cachable, 
write-through cachable, noncached buffered, or noncached 
nonbuffered

1:0 1:0 1:0 These bits indicate the page size and validity and are interpreted 
as shown in Table 3-8

Table 3-8 Interpreting page table entry bits [1:0]

Value Meaning Description

0 0 Invalid Generates a page translation fault

0 1 Large page Indicates that this is a 64KB page

1 0 Small page Indicates that this is a 4KB page

1 1 Tiny page Indicates that this is a 1KB page



Memory Management Unit 

ARM DDI 0151C Copyright © 2000, 2001 ARM Limited. All rights reserved. 3-17

3.3.9 Translating large page references

 Figure 3-10 shows the complete translation sequence for a 64KB large page. 

Figure 3-10 Large page translation from a coarse page table

Because the upper four bits of the page index and low-order four bits of the coarse page 
table index overlap, each coarse page table entry for a large page must be duplicated 16 
times (in consecutive memory locations) in the coarse page table. 

31 14 13 0

Translation base

31 14 13 2 1 0

0 0Table indexTranslation base

Modified virtual address

Translation table base

31 20 19 0

Table index Page index

Level one descriptor

Physical address

31 0

Coarse page table base address Domain 1 1

2 13458910

L2
table index

16 15 12 11

31 16 15 0

Page indexPage base address

Level two descriptor

31 0

Coarse page table base address L2 table index 0

2 1910

31 16 15 0

ap3Page base address

0

0

ap2 ap1 ap0 10C B

123456789101112



Memory Management Unit 

3-18 Copyright © 2000, 2001 ARM Limited. All rights reserved. ARM DDI 0151C

If a large page descriptor is included in a fine page table, the high-order six bits of the 
page index and low-order six bits of the fine page table index overlap. Each fine page 
table entry for a large page must therefore be duplicated 64 times.

3.3.10 Translating small page references

Figure 3-11 shows the complete translation sequence for a 4KB small page. 

Figure 3-11 Small page translation from a coarse page table

31 14 13 0

Translation base

31 14 13 2 1 0

0 0Table indexTranslation base

Modified virtual address

Translation table base

31 20 19 0

Table index Page index

Level one descriptor

Physical address

31 0

Coarse page table base address Domain 1 1

2 13458910

Level 2
table index

12 11

31 0

Page indexPage base address

Level two descriptor

31 0

Coarse page table base address L2 table index 0

2 1910

31 0

ap3Page base address

0

0

ap2 ap1 ap0 01C B

123456789101112

1112



Memory Management Unit 

ARM DDI 0151C Copyright © 2000, 2001 ARM Limited. All rights reserved. 3-19

If a small page descriptor is included in a fine page table, the upper two bits of the page 
index and low-order two bits of the fine page table index overlap. Each fine page table 
entry for a small page must therefore be duplicated four times.

3.3.11 Translating tiny page references

Figure 3-12 shows the complete translation sequence for a 1KB tiny page.

Figure 3-12 Tiny page translation from a fine page table

31 14 13 0

Translation base

31 14 13 2 1 0

0 0Table indexTranslation base

Modified virtual address

Translation table base

31 20 19 0

Table index Page index

Level one descriptor

Physical address

31 0

Fine page table base address Domain 1 1

2 13458911

Level 2
table index

10 9

31 0

Page indexPage base address

Level two descriptor

31 0

Fine page table base address L2 table index 0

2 1

31 0

Page base address

1

0

ap 11C B

123456910

12

1112

910



Memory Management Unit 

3-20 Copyright © 2000, 2001 ARM Limited. All rights reserved. ARM DDI 0151C

Page translation involves one additional step beyond that of a section translation. The 
level one descriptor is the fine page table descriptor and this is used to point to the level 
one descriptor. 

Note
 The domain specified in the level one description and access permissions specified in 
the level one description together determine whether the access has permissions to 
proceed. See section Domain access control on page 3-23 for details.

3.3.12 Subpages

You can define access permissions for subpages of small and large pages. If, during a 
page walk, a small or large page has a non-identical subpage permission, only the 
subpage being accessed is written into the TLB. For example, a 16KB (large page) 
subpage entry is written into the TLB if the subpage permission differs, and a 64KB 
entry is put in the TLB if the subpage permissions are identical.

When you use subpage permissions, and the page entry then has to be invalidated, you 
must invalidate all four subpages separately.



Memory Management Unit 

ARM DDI 0151C Copyright © 2000, 2001 ARM Limited. All rights reserved. 3-21

3.4 MMU faults and CPU aborts

The MMU generates an abort on the following types of faults:

• alignment faults (data accesses only)

• translation faults 

• domain faults

• permission faults.

In addition, an external abort can be raised by the external system. This can happen only 
for access types that have the core synchronized to the external system:

• noncachable loads

• nonbufferable writes.

Alignment fault checking is enabled by the A bit in CP15 register 1. Alignment fault 
checking is not affected by whether or not the MMU is enabled. Translation, domain, 
and permission faults are only generated when the MMU is enabled.

The access control mechanisms of the MMU detect the conditions that produce these 
faults. If a fault is detected as a result of a memory access, the MMU aborts the access 
and signals the fault condition to the CPU core. The MMU retains status and address 
information about faults generated by the data accesses in the fault status register and 
fault address register (see Fault address and fault status registers on page 3-22). The 
MMU does not retain status about faults generated by instruction fetches.

An access violation for a given memory access inhibits any corresponding external 
access, with an abort returned to the CPU core.



Memory Management Unit 

3-22 Copyright © 2000, 2001 ARM Limited. All rights reserved. ARM DDI 0151C

3.5 Fault address and fault status registers

On a Data Abort, the MMU places an encoded 4-bit value, FS[3:0], along with the 4-bit 
encoded domain number, in the data FSR. Similarly, on a Prefetch Abort, in the prefetch 
FSR, intended for debug purposes only. In addition, the MVA associated with the Data 
Abort is latched into the FAR. If an access violation simultaneously generates more than 
one source of abort, they are encoded in the priority given in Table 3-9. The FAR is not 
updated by faults caused by instruction prefetches.

3.5.1 Fault status

Table 3-9 describes the various access permissions and controls supported by the data 
MMU and details how these are interpreted to generate faults.

Note

 For data FSR only, alignment faults can write either b0001 or b0011 into FS[3:0]. 
Invalid values in domains 3:0 can occur because the fault is raised before a valid domain 
field has been read from a page table descriptor. Any abort masked by the priority 
encoding can be regenerated by fixing the primary abort and restarting the instruction. 

For instruction FSR only, the same priority applies as for the data FSR, except that 
alignment faults cannot occur, and external aborts apply only to noncachable reads.

Table 3-9 Priority encoding of fault status

Priority Source Size Status Domain FAR

Highest Alignment - b00x1 Invalid MVA of access causing 
abort

Translation Section

Page

b0101

b0111

Invalid

Valid

MVA of access causing 
abort

Domain Section

Page

b1001

b1011

Valid

Valid

MVA of access causing 
abort

Permission Section

Page

b1101

b1111

Valid

Valid

MVA of access causing 
abort

Lowest External abort on noncachable nonbufferable 
access or noncachable bufferable read

Section

Page

b1000

b1010

Valid

Valid

MVA of access causing 
abort



Memory Management Unit 

ARM DDI 0151C Copyright © 2000, 2001 ARM Limited. All rights reserved. 3-23

3.6 Domain access control

MMU accesses are primarily controlled through the use of domains. There are 16 
domains and each has a 2-bit field to define access to it. Two types of user are supported, 
clients and managers. The domains are defined in the domain access control register. 
Figure 3-13 shows how the 32 bits of the register are allocated to define the 16 2-bit 
domains.

Figure 3-13 Domain access control register format

Table 3-10 defines how the bits within each domain are interpreted to specify the access 
permissions.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Table 3-10 Interpreting access control bits in domain access control register

Value Meaning Description

00 No access Any access generates a domain fault

01 Client Accesses are checked against the access permission bits in the section 
or page descriptor

10 Reserved Reserved. Currently behaves like the no access mode

11 Manager Accesses are not checked against the access permission bits so a 
permission fault cannot be generated



Memory Management Unit 

3-24 Copyright © 2000, 2001 ARM Limited. All rights reserved. ARM DDI 0151C

Table 3-11 shows how to interpret the Access Permission (AP) bits and how their 
interpretation is dependent on the S and R bits (control register bits 8 and 9).

Table 3-11 Interpreting access permission (AP) bits

AP S R
Supervisor
permissions

User 
permissions

Description

00 0 0 No access No access Any access generates a permission 
fault

00 1 0 Read-only No access Only Supervisor read permitted

00 0 1 Read-only Read-only Any write generates a permission fault

00 1 1 Reserved - -

01 x x Read/write No access Access allowed only in Supervisor 
mode

10 x x Read/write Read-only Writes in User mode cause permission 
fault

11 x x Read/write Read/write All access types permitted in both 
modes

xx 1 1 Reserved - -



Memory Management Unit 

ARM DDI 0151C Copyright © 2000, 2001 ARM Limited. All rights reserved. 3-25

3.7 Fault checking sequence

The sequence the MMU uses to check for access faults is different for sections and 
pages. The sequence for both types of access is shown in Figure 3-14. 

Figure 3-14 Sequence for checking faults

Modified virtual address

Check address alignment Misaligned Alignment
fault

Get level one descriptorInvalid
Section

translation
fault

Section Page

Get page
table entry

Check domain status

Section Page

Invalid
Page

translation
fault

No access (00)
Reserved (10)

Page
domain

fault

Section
domain

fault

No access (00)
Reserved (10)

Client (01) Client (01)

Manager
(11)

Check
access

permissions

Check
access

permissions

Physical address

Violation
Page

permission
fault

Violation
Section

permission
fault



Memory Management Unit 

3-26 Copyright © 2000, 2001 ARM Limited. All rights reserved. ARM DDI 0151C

The conditions that generate each of the faults are described in:

• Alignment fault on page 3-26

• Translation fault on page 3-26

• Domain fault on page 3-26

• Permission fault on page 3-27.

3.7.1 Alignment fault

If alignment fault is enabled (A bit in CP15 register 1 set), the MMU generates an 
alignment fault on any data word access, if the address is not word-aligned, or on any 
halfword access, if the address is not halfword-aligned, irrespective of whether the 
MMU is enabled or not. An alignment fault is not generated on any instruction fetch, 
nor on any byte access. 

Note

 If the access generates an alignment fault, the access sequence aborts without reference 
to more permission checks. 

3.7.2 Translation fault 

There are two types of translation fault:

Section A section translation fault is generated if the level one descriptor is 
marked as invalid. This happens if bits [1:0] of the descriptor are both 0.

Page A page translation fault is generated if the level one descriptor is marked 
as invalid. This happens if bits [1:0] of the descriptor are both 0.

3.7.3 Domain fault

There are two types of domain fault:

Section  The level one descriptor holds the 4-bit domain field, which selects one 
of the 16 2-bit domains in the domain access control register. The two bits 
of the specified domain are then checked for access permissions as 
described in Table 3-11 on page 3-24. The domain is checked when the 
level one descriptor is returned.

Page  The level one descriptor holds the 4-bit domain field, which selects one 
of the 16 2-bit domains in the domain access control register. The two bits 
of the specified domain are then checked for access permissions as 
described in Table 3-11 on page 3-24. The domain is checked when the 
level one descriptor is returned.



Memory Management Unit 

ARM DDI 0151C Copyright © 2000, 2001 ARM Limited. All rights reserved. 3-27

If the specified access is either no access (00) or reserved (10) then either a section 
domain fault or page domain fault occurs. 

3.7.4 Permission fault

If the 2-bit domain field returns 01 (client) then access permissions are checked as 
follows:

Section If the level one descriptor defines a section-mapped access, the AP bits of 
the descriptor define whether or not the access is allowed, according to 
Table 3-11 on page 3-24. Their interpretation is dependent on the setting 
of the S and R bits (control register bits 8 and 9). If the access is not 
allowed, a section permission fault is generated.

Large page or small page 

If the level one descriptor defines a page-mapped access and the level two 
descriptor is for a large or small page, four access permission fields 
(ap3-ap0) are specified, each corresponding to one quarter of the page. 
For small pages ap3 is selected by the top 1KB of the page and ap0 is 
selected by the bottom 1KB of the page. For large pages, ap3 is selected 
by the top 16KB of the page and ap0 is selected by the bottom 16KB of 
the page. The selected AP bits are then interpreted in exactly the same 
way as for a section (see Table 3-11 on page 3-24). The only difference 
is that the fault generated is a page permission fault.

Tiny page If the level one descriptor defines a page-mapped access and the level two 
descriptor is for a tiny page, the AP bits of the level one descriptor define 
whether or not the access is allowed in the same way as for a section. The 
fault generated is a page permission fault.



Memory Management Unit 

3-28 Copyright © 2000, 2001 ARM Limited. All rights reserved. ARM DDI 0151C

3.8 External aborts

In addition to the MMU-generated aborts, the ARM920T can be externally aborted by 
the AMBA bus. This can be used to flag an error on an external memory access. 
However, not all accesses can be aborted in this way and the Bus Interface Unit (BIU) 
ignores external aborts that cannot be handled.

The following accesses can be aborted:

• noncached reads

• unbuffered writes

• read-lock-write sequence, to noncachable memory.

In the case of a read-lock-write (SWP) sequence, if the read aborts the write is always 
attempted.



Memory Management Unit 

ARM DDI 0151C Copyright © 2000, 2001 ARM Limited. All rights reserved. 3-29

3.9 Interaction of the MMU and caches

The MMU is enabled and disabled using bit 0 of the CP15 control register as described 
in:

• Enabling the MMU on page 3-29

• Disabling the MMU on page 3-29.

3.9.1 Enabling the MMU

To enable the MMU:

1. Program the TTB and domain access control registers.

2. Program level 1 and level 2 page tables as required.

3. Enable the MMU by setting bit 0 in the control register.

You must take care if the translated address differs from the untranslated address 
because several instructions following the enabling of the MMU might have been 
prefetched with the MMU off (using physical = VA - flat translation). 

In this case, enabling the MMU can be considered as a branch with delayed execution. 
A similar situation occurs when the MMU is disabled. Consider the following code 
sequence:

MRC p15,0,R1,C1,C0,0 ; Read control register
ORR R1, #0x1
MCR p15,0,R1,C1,C0,0 ; Enable MMUS
Fetch Flat
Fetch Flat
Fetch Translated

You can enable the ICache and DCache simultaneously with the MMU using a single 
MCR instruction.

3.9.2 Disabling the MMU

To disable the MMU, clear bit 0 in the control register. The data cache must be disabled 
prior to, or at the same time as, the MMU is disabled by clearing bit 2 of the control 
register. See Enabling the MMU regarding prefetch effects.

Note

 If the MMU is enabled, then disabled and subsequently re-enabled, the contents of the 
TLBs are preserved. If these are now invalid, you must invalidate the TLBs before 
re-enabling the MMU. See Register 8, TLB operations register on page 2-19.



Memory Management Unit 

3-30 Copyright © 2000, 2001 ARM Limited. All rights reserved. ARM DDI 0151C



ARM DDI 0151C Copyright © 2000, 2001 ARM Limited. All rights reserved. 4-1

Chapter 4 
Caches, Write Buffer, and Physical Address 
TAG (PA TAG) RAM

This chapter describes the Instruction Cache (ICache), Data Cache (DCache), write 
buffer, and Physical Address (PA) TAG RAM. It contains the following sections:

• About the caches and write buffer on page 4-2

• ICache on page 4-4

• DCache and write buffer on page 4-9

• Cache coherence on page 4-17

• Cache cleaning when lockdown is in use on page 4-20

• Implementation notes on page 4-21

• Physical address TAG RAM on page 4-22

• Drain write buffer on page 4-23

• Wait for interrupt on page 4-24.



Caches, Write Buffer, and Physical Address TAG (PA TAG) RAM 

4-2 Copyright © 2000, 2001 ARM Limited. All rights reserved. ARM DDI 0151C

4.1 About the caches and write buffer

The ARM920T level-one memory system includes an Instruction Cache (ICache), a 
Data Cache (DCache), a write buffer, and a Physical Address (PA) TAG RAM to reduce 
the effect of main memory bandwidth and latency on performance.

The ARM920T processor implements separate 16KB instruction and 16KB data caches 
(ICache and DCache).

The caches have the following features:

• Virtually-addressed 64-way associative cache.

• 8 words per line (32 bytes per line) with one valid bit and two dirty bits per line, 
allowing half-line write-backs.

• Write-through and write-back cache operation (write-back caches are also known 
as copy-back caches), selected per memory region by the C and B bits in the 
MMU translation tables (for data cache only).

• Pseudo-random or round-robin replacement, selectable using the RR bit in CP15 
register 1.

• Low-power CAM-RAM implementation.

• Caches independently lockable with granularity of 1/64th of cache, which is 
64 words (256 bytes).

• To avoid a TLB miss during write-back data eviction, and to reduce interrupt 
latency, the physical address corresponding to each data cache entry is stored in 
the PA TAG RAM for use during cache line write-backs, in addition to the VA 
TAG stored in the cache CAMs. This means that the MMU is not involved in 
cache write-back operations, removing the possibility of TLB misses related to 
the write-back address.

• Cache maintenance operations to provide efficient cleaning of the entire data 
cache, and to provide efficient cleaning and invalidation of small regions of 
virtual memory. The latter allows ICache coherency to be efficiently maintained 
when small code changes occur, for example self-modifying code and changes to 
exception vectors. 



Caches, Write Buffer, and Physical Address TAG (PA TAG) 

ARM DDI 0151C Copyright © 2000, 2001 ARM Limited. All rights reserved. 4-3

The write buffer:

• has a 16-word data buffer

• has a 4-address address buffer

• can be drained under software control, using a CP15 MCR instruction (see Drain 
write buffer on page 4-23).

The ARM920T can be drained under software control and put into a low-power state 
until an interrupt occurs, using a CP15 MCR instruction (see Wait for interrupt on 
page 4-24).



Caches, Write Buffer, and Physical Address TAG (PA TAG) RAM 

4-4 Copyright © 2000, 2001 ARM Limited. All rights reserved. ARM DDI 0151C

4.2 ICache

The ARM920T includes a 16KB ICache. The ICache has 512 lines of 32 bytes (8 
words), arranged as a 64-way set-associative cache and uses MVAs, translated by CP15 
register 13 (see Address translation on page 3-6), from the ARM9TDMI core.

The ICache implements allocate-on-read-miss. Random or round-robin replacement 
can be selected under software control using the RR bit (CP15 register 1, bit 14). 
Random replacement is selected at reset.

Instructions can also be locked in the ICache so that they cannot be overwritten by a 
linefill. This operates with a granularity of 1/64th of the cache, which is 64 words (256 
bytes).

All instruction accesses are subject to MMU permission and translation checks. 
Instruction fetches that are aborted by the MMU do not cause linefills or instruction 
fetches to appear on the AMBA ASB interface.

Note
 For clarity, the I bit (bit 12 in CP15 register 1) is called the Icr bit throughout the 
following text. The C bit from the MMU translation table descriptor corresponding to 
the address being accessed is called the Ctt bit.

4.2.1 ICache organization

The ICache is organized as eight segments, each containing 64 lines, and each line 
containing eight words. The position of the line within the segment is a number from 0 
to 63. This is called the index. A line in the cache can be uniquely identified by its 
segment and index. The index is independent of the MVA. The segment is selected by 
bits [7:5] of the MVA.

Bits [4:2] of the MVA specify the word within a cache line that is accessed. For 
halfword operations, bit [1] of the MVA specifies the halfword that is accessed within 
the word. For byte operations, bits [1:0] specify the byte within the word that is 
accessed.

Bits [31:8] of the MVA of each cache line are called the TAG. The MVA TAG is stored 
in the cache, along with the 8-words of data, when the line is loaded by a linefill.

Cache lookups compare bits [31:8] of the MVA of the access with the stored TAG to 
determine whether the access is a hit or miss. The cache is therefore said to be virtually 
addressed. The logical model of the 16KB ICache is shown in Figure 4-1 on page 4-5.



Caches, Write Buffer, and Physical Address TAG (PA TAG) 

ARM DDI 0151C Copyright © 2000, 2001 ARM Limited. All rights reserved. 4-5

Figure 4-1 Addressing the 16KB ICache

31

TAG

8 7 5 4 2 1 0

Word ByteSeg

TAG W 0 W 7

CAM RAM

Decoder

0 7

32

RDATA[31:0]

Cache line/index

SEG 0 select

2KB RAM = 64 lines x 8 words

63

0 SEG 0

7
6

5
4

3
2

1

Modified Virtual Address

7

0



Caches, Write Buffer, and Physical Address TAG (PA TAG) RAM 

4-6 Copyright © 2000, 2001 ARM Limited. All rights reserved. ARM DDI 0151C

4.2.2 Enabling and disabling the ICache

On reset, the ICache entries are all invalidated and the ICache is disabled. 

You can enable the ICache by writing 1 to the Icr bit, and disable it by writing 0 to the 
Icr bit.

When the ICache is disabled, the cache contents are ignored and all instruction fetches 
appear on the AMBA ASB interface as separate nonsequential accesses. The ICache is 
usually used with the MMU enabled. In this case the Ctt in the relevant MMU 
translation table descriptor indicates whether an area of memory is cachable. 

If the cache is disabled after having been enabled, all cache contents are ignored. All 
instruction fetches appear on the AMBA ASB interface as separate nonsequential 
accesses and the cache is not updated. If the cache is subsequently re-enabled its 
contents are unchanged. If the contents are no longer coherent with main memory, you 
must invalidate the ICache before you re-enable it (see Register 7, cache operations 
register on page 2-17).

If the cache is enabled with the MMU disabled, all instruction fetches are treated as 
cachable. No protection checks are made, and the physical address is flat-mapped to the 
modified virtual address.

You can enable the MMU and ICache simultaneously by writing a 1 to the M bit, and a 
1 to the Icr bit in CP15 register 1, with a single MCR instruction.

Note
 ARM920T implements a nonsequential access on the AMBA ASB interface as an 
A-TRAN cycle followed by an S-TRAN cycle. It does not produce N-TRAN cycles. A 
linefill appears as an A-TRAN cycle followed by an S-TRAN cycle.

4.2.3 ICache operation

If the ICache is disabled, each instruction fetch results in a separate nonsequential 
memory access on the AMBA ASB interface, giving very low bus and memory 
performance. Therefore, you must enable the ICache as soon as possible after reset.

If the ICache is enabled, an ICache lookup is performed for each instruction fetch 
regardless of the setting of the Ctt bit in the relevant MMU translation table descriptor:

• If the required instruction is found in the cache, the lookup is called a cache hit. 
If the instruction fetch is a cache hit and Ctt=1, indicating a cachable region of 
memory, then the instruction is returned from the cache to the ARM9TDMI CPU 
core.



Caches, Write Buffer, and Physical Address TAG (PA TAG) 

ARM DDI 0151C Copyright © 2000, 2001 ARM Limited. All rights reserved. 4-7

• If the required instruction is not found in the cache, the lookup is called a cache 
miss. If it is a cache miss and Ctt=1, then an eight-word linefill is performed, 
possibly replacing another entry. The entry to be replaced, called the victim, is 
chosen from the entries that are not locked, using either a random or round-robin 
replacement policy.If Ctt=0, indicating a noncachable region of memory, then a 
single nonsequential memory access appears on the AMBA ASB interface. 

Note
 If Ctt=0, indicating a noncachable region of memory, then the cache lookup results in a 
cache miss. The only way that it can result in a cache hit is if software has changed the 
value of the Ctt bit in the MMU translation table descriptor without invalidating the 
cache contents. This is a programming error. The behavior in this case is architecturally 
unpredictable and varies between implementations.

4.2.4 ICache replacement algorithm

The ICache and DCache replacement algorithm is selected by the RR bit in the CP15 
control register (CP15 register 1, bit 14). Random replacement is selected at reset. 
Setting the RR bit to 1 selects round-robin replacement. Round-robin replacement 
means that entries are replaced sequentially in each cache segment.

4.2.5 ICache lockdown

You can lock instructions into the ICache, causing the ICache to guarantee a hit, and 
provide optimum and predictable execution time. If you enable the ICache, an ICache 
lookup is performed for each instruction fetch. If the ICache misses and the Ctt=1 then 
an eight-word linefill is performed. The entry to be replaced is selected by the victim 
pointer. You can lock instructions into the ICache by controlling the victim pointer, and 
forcing prefetches to the ICache. You lock instructions in the ICache by first ensuring 
the code to be locked is not already in the cache. You can ensure this by invalidating 
either the whole ICache or specific lines:

MCR p15, 0, Rd, c7, c5, 0 ; Invalidate ICache
MCR p15, 0, Rd, c7, c5, 1 ; Invalidate ICache line using MVA

You can then use a short software routine to load the instructions into the ICache. The 
software routine must either be noncachable, or already in the ICache but not in an 
ICache line about to be overwritten. You must enable the MMU to ensure that any TLB 
misses that occur while loading the instructions cause a page table walk. The software 
routine operates by writing to CP15 register 9 to force the victim pointer to a specific 
ICache line and by using the prefetch ICache line operation to force the ICache to 
perform a lookup. This misses, assuming the code has been invalidated, and an 8-word 
linefill is performed loading the cache line into the entry specified by the victim pointer. 



Caches, Write Buffer, and Physical Address TAG (PA TAG) RAM 

4-8 Copyright © 2000, 2001 ARM Limited. All rights reserved. ARM DDI 0151C

When all the instructions have been loaded, they are then locked by writing to CP15 
register 9 to set the victim pointer base to be one higher than the last entry written. All 
further linefills now occur in the range victim base to 63.An example ICache lockdown 
routine is shown in Example 4-1. The example assumes that the number of cache lines 
to be loaded is not known. The address does not have to be cache line or word-aligned 
but this is recommended to ensure future compatibility.

Note
 The Prefetch ICache Line operation uses MVA format, because address aliasing is not 
performed on the address in Rd. It is advisable for the associated TLB entry to be locked 
into the TLB to avoid page table walks during execution of the locked code.

Example 4-1 ICache lockdown routine

ADRL r0,start_address ; address pointer
ADRL r1,end_address
MOV r2,#lockdown_base<<26 ; victim pointer
MCR p15,0,r2,c9,c0,1 ; write ICache victim and lockdown base

loop MCR p15,0,r0,c7,c13,1 ; Prefetch ICache line
ADD r0,r0,#32 ; increment address pointer to next ICache line

;; do we need to increment the victim pointer?
;; test for segment 0, and if so, increment the victim pointer
;; and write the ICache victim and lockdown base.

AND r3,r0,#0xE0 ; extract the segment bits from the address
CMP r3,#0x0 ; test for segment 0
ADDEQ r2,r2,#0x1<<26 ; if segment 0, increment victim pointer
MCREQ p15,0,r2,c9,c0,1 ; and write ICache victim and lockdown base

;; have we linefilled enough code?
;; test for the address pointer being less than or equal to the
;; end_address and if so, loop and perform another linefill

CMP r0,r1 ; test for less than or equal to end_address
BLE loop ; if not, loop

;; have we exited with r3 pointing to segment 0?
;; if so, the ICache victim and lockdown base has already been set to one
;; higher than the last entry written. 
;; if not, increment the victim pointer and write the ICache victim and 
;; lockdown base.

CMP r3,#0x0 ; test for segments 1 to 7
ADDNE r2,r2,#0x1<<26 ; if address is segment 1 to 7,
MCRNE p15,0,r2,c9,c0,1 ; write ICache victim and lockdown base



Caches, Write Buffer, and Physical Address TAG (PA TAG) 

ARM DDI 0151C Copyright © 2000, 2001 ARM Limited. All rights reserved. 4-9

4.3 DCache and write buffer

The ARM920T processor includes a 16KB DCache and a write buffer to reduce the 
effect of main memory bandwidth and latency on data access performance. The DCache 
has 512 lines of 32 bytes (8-words), arranged as a 64-way set-associative cache and uses 
MVAs translated by CP15 register 13 (see Address translation on page 3-6) from the 
ARM9TDMI CPU core. The write buffer can hold up to 16 words of data and four 
separate addresses. The operations of the DCache and the write buffer are closely 
connected.

The DCache supports write-through and write-back memory regions, controlled by the 
C and B bits in each section and page descriptor within the MMU translation tables. For 
clarity, these bits are called Ctt and Btt in the following text. For details see DCache and 
write buffer operation on page 4-10.

Each DCache line has two dirty bits, one for the first four words of the line, the other 
for the last four words, and a single virtual TAG address and valid bit for the entire 
8-word line. The physical address from which each line is loaded is stored in the PA 
TAG RAM and is used when writing modified lines back to memory.

When a store hits in the DCache, if the memory region is write-back, the associated 
dirty bit is set marking the appropriate half-line as being modified. If the cache line is 
replaced due to a linefill, or if the line is the target of a DCache clean operation, the dirty 
bits are used to decide whether the whole, half, or none of the line is written back to 
memory. The line is written back to the same physical address from which it was loaded, 
regardless of any changes to the MMU translation tables.

The DCache implements allocate-on-read-miss. Random or round-robin replacement 
can be selected under software control by the RR bit (CP15 register 1, bit 14). Random 
replacement is selected at reset. A linefill always loads a complete 8-word line.

Data can also be locked in the DCache so that it cannot be overwritten by a linefill. This 
operates with a granularity of 1/64 th of the cache, which is 64 words (256 bytes).

All data accesses are subject to MMU permission and translation checks. Data accesses 
that are aborted by the MMU do not cause linefills or data accesses to appear on the 
AMBA ASB interface.

For clarity, the C bit (bit 2 in CP15 register 1) is called the Ccr bit throughout the 
following text. 



Caches, Write Buffer, and Physical Address TAG (PA TAG) RAM 

4-10 Copyright © 2000, 2001 ARM Limited. All rights reserved. ARM DDI 0151C

4.3.1 Enabling and disabling the DCache and write buffer

On reset, the DCache entries are invalidated and the DCache is disabled, and the write 
buffer contents are discarded.

There is no explicit write buffer enable bit implemented in ARM920T. The write buffer 
is used in the following ways:

• You can enable the DCache by writing 1 to the Ccr bit, and disable it by writing 
0 to the Ccr bit.

• You must only enable the DCache when the MMU is enabled. This is because the 
MMU translation tables define the cache and write buffer configuration for each 
memory region.

• If the DCache is disabled after having been enabled, the cache contents are 
ignored and all data accesses appear on the AMBA ASB interface as separate 
nonsequential accesses and the cache is not updated. If the cache is subsequently 
re-enabled its contents are unchanged. Depending on the software system design, 
you might have to clean the cache after it is disabled, and invalidate it before you 
re-enable it. See Cache coherence on page 4-17.

• You can enable or disable the MMU and DCache simultaneously with a single MCR 
that changes the M bit and the C bit in the control register (CP15 register 1).

4.3.2 DCache and write buffer operation

The DCache and write buffer configuration of each memory region is controlled by the 
Ctt and Btt bits in each section and page descriptor in the MMU translation tables. You 
can modify the configuration using the DCache enable bit in the CP15 control register. 
This is called Ccr.

If the DCache is enabled, a DCache lookup is performed for each data access initiated 
by the ARM9TDMI CPU core, regardless of the value of the Ctt bit in the relevant 
MMU translation table descriptor. If the required data is found, the lookup is called a 
cache hit. If the required data is not found, the lookup is called a cache miss. In this 
context a data access means any type of load (read), store (write), or swap instruction, 
including LDR, LDRB, LDRH, LDM, LDC, STR, STRB, STRH, STC, SWP, and SWPB.

Accesses appear on the AMBA ASB interface in program order but the ARM9TDMI 
CPU core can continue executing at full speed, reading instructions and data from the 
caches, and writing to the DCache and write buffer, while buffered writes are being 
written to memory through the AMBA ASB interface.



Caches, Write Buffer, and Physical Address TAG (PA TAG) 

ARM DDI 0151C Copyright © 2000, 2001 ARM Limited. All rights reserved. 4-11

Table 4-1 describes the DCache and write buffer behavior for each type of memory 
configuration. Ctt AND Ccr means the bitwise Boolean AND of Ctt with Ccr.

Table 4-1 DCache and write buffer configuration

Ctt AND 
Ccr

Btt DCache, write buffer, and memory access behavior

0a 0 Noncached, nonbuffered (NCNB). 

Reads and writes are not cached. They always perform accesses on the 
AMBA ASB interface. 

Writes are not buffered. The CPU halts until the write is completed on 
the AMBA ASB interface. 

Reads and writes can be externally aborted.

Cache hits never occur under normal operation.b

0 1 Noncached, buffered (NCB).

Reads and writes are not cached, and always perform accesses on the 
AMBA ASB interface. 

Writes are placed in the write buffer and appear on the AMBA ASB 
interface. The CPU continues execution as soon as the write is placed 
in the write buffer. 

Reads can be externally aborted. 

Writes cannot be externally aborted.Cache hits never occur under 
normal operation.b

1 0 Cached write-through mode (WT).

Reads that hit in the cache read the data from the cache and do not 
perform an access on the AMBA ASB interface. 

Reads that miss in the cache cause a linefill. 

Writes that hit in the cache update the cache. 

All writes are placed in the write buffer and appear on the AMBA 
ASB interface. 

The CPU continues execution as soon as the write is placed in the 
write buffer. 

Reads and writes cannot be externally aborted.



Caches, Write Buffer, and Physical Address TAG (PA TAG) RAM 

4-12 Copyright © 2000, 2001 ARM Limited. All rights reserved. ARM DDI 0151C

A linefill performs an 8-word burst read from the AMBA ASB interface and places it 
as a new entry in the cache, possibly replacing another line at the same location within 
the cache. The location that is replaced, called the victim, is chosen from the entries that 
are not locked using either a random or round-robin replacement policy. If the cache line 
being replaced is marked as dirty, indicating that it has been modified and that main 
memory has not been updated to reflect the change, a cache writeback occurs. 

Depending on whether one or both halves of the cache line are dirty, the write-back 
performs a 4 or 8-word sequential burst write access on the AMBA ASB interface. The 
write-back data is placed in the write buffer, and then the linefill data is read from the 
AMBA ASB interface. The CPU can then continue while the write-back data is written 
to memory over the AMBA ASB interface.

Load multiple (LDM) instructions accessing NCNB or NCB regions perform sequential 
bursts on the AMBA ASB interface. Store multiple (STM) instructions accessing NCNB 
regions also perform sequential bursts on the AMBA ASB interface.

1 1 Cached write-back mode (WB).

Reads that hit in the cache read the data from the cache and do not 
perform an AMBA ASB interface access.

Reads that miss in the cache cause a linefill.

Writes that hit in the cache update the cache and mark the appropriate 
half of the cache line as dirty, and do not cause an AMBA ASB 
interface access.

Writes that miss in the cache are placed in the write buffer and appear 
on the AMBA ASB interface. The CPU continues execution as soon 
as the write is placed in the write buffer.

Cache write-backs are buffered.

Reads, writes, and write-backs cannot be externally aborted.

a. If the control register C bit (Ccr) is zero, it disables all lookups in the cache, while if the 
translation table descriptor C bit (Ctt) is zero, it only stops new data being loaded into the 
cache. With Ccr = 1 and Ctt = 0 the cache is still searched on every access to check whether 
the cache contains an entry for the data.

b. It is an operating system software error if a cache hit occurs when reading from, or writing to, 
a region of memory marked as NCNB or NCB. The only way this can occur is if the operating 
system changes the value of the C and B bits in a page table descriptor, while the cache 
contains data from the area of virtual memory controlled by that descriptor. The cache and 
memory system behavior resulting from changing the page table descriptor in this way is 
unpredictable. If the operating system has to change the C and B bits of a page table descriptor, 
it must ensure that the caches do not contain any data controlled by that descriptor. In some 
circumstances, the operating system might have to clean and flush the caches to ensure this.

Table 4-1 DCache and write buffer configuration (continued)

Ctt AND 
Ccr

Btt DCache, write buffer, and memory access behavior



Caches, Write Buffer, and Physical Address TAG (PA TAG) 

ARM DDI 0151C Copyright © 2000, 2001 ARM Limited. All rights reserved. 4-13

The sequential burst is split into two bursts if it crosses a 1KB boundary. This is because 
the smallest MMU protection and mapping size is 1KB, so the memory regions on each 
side of the 1KB boundary can have different properties.

This means that sequential accesses generated by ARM920T do not cross a 1KB 
boundary. This can be exploited to simplify memory interface design. For example, a 
simple page-mode DRAM controller can perform a page-mode access for each 
sequential access, provided the DRAM page size is 1KB or larger.

See also Cache coherence on page 4-17.

4.3.3 DCache organization

The DCache is organized as eight segments, each containing 64 lines, and each line 
containing eight words. The position of the line within the segment is a number from 0 
to 63. This is called the index. A line in the cache can be uniquely identified by its 
segment and index. The index is independent of the MVA. The segment is selected by 
bits [7:5] of the MVA.

Bits [4:2] of the MVA specify which word within a cache line is accessed. For halfword 
operations, bit [1] of the MVA specifies which halfword is accessed within the word. 
For byte operations, bits [1:0] specify which byte within the word is accessed.

Bits [31:8] of the MVA of each cache line are called the TAG. The MVA TAG is stored 
in the cache, along with the eight words of data, when the line is loaded by a linefill.

Cache lookups compare bits [31:8] of the MVA of the access with the stored TAG to 
determine whether the access is a hit or miss. The cache is therefore said to be virtually 
addressed.

The DCache logical model is the same as for the ICache. See Addressing the 16KB 
ICache on page 4-5.

4.3.4 DCache replacement algorithm

The DCache and ICache replacement algorithm is selected by the RR bit in the CP15 
control register (CP15 register 1, bit 14). Random replacement is selected at reset. 
Setting the RR bit to 1 selects round-robin replacement. Round-robin replacement 
means that entries are replaced sequentially in each segment.



Caches, Write Buffer, and Physical Address TAG (PA TAG) RAM 

4-14 Copyright © 2000, 2001 ARM Limited. All rights reserved. ARM DDI 0151C

4.3.5 Swap instructions

Swap instruction (SWP or SWPB) behavior is dependent on whether the memory region is 
cachable or noncachable.

Swap instructions to cachable regions of memory are useful for implementing 
semaphores or other synchronization primitives in multithreaded uniprocessor software 
systems. 

Swap instructions to noncachable memory regions are useful for synchronization 
between two bus masters in a multi-master bus system. This can be two processors, or 
one processor and a DMA controller.

When a swap instruction accesses a cachable region of memory (write-through or 
write-back), the DCache and write buffer behavior is the same as having a load followed 
by a store according to the normal rules described. The BLOK pin is not asserted during 
the execution of the instruction. It is guaranteed that no interrupt can occur between the 
load and store portions of the swap. 

When a swap instruction accesses a noncachable (NCB or NCNB) region of memory, 
the write buffer is drained, and a single word or byte is read from the AMBA ASB 
interface. The write portion of the swap is then treated as nonbufferable, regardless of 
the value of Btt, and the processor is stalled until the write is completed on the AMBA 
ASB interface. The BLOK pin is asserted to indicate that you can treat the read and 
write as an atomic operation on the bus.

Like all other data accesses, a swap to a noncachable region that hits in the cache 
indicates a programming error.

4.3.6 DCache lockdown

You can lock data into the DCache, causing the DCache to guarantee a hit, and provide 
optimum and predictable execution time. If you enable the DCache, a DCache lookup 
is performed for each load. If the DCache misses and the Ctt=1 then an eight-word 
linefill is performed. The entry to be replaced is selected by the victim pointer. You can 
lock data into the DCache by controlling the victim pointer, and forcing loads to the 
DCache. You lock data in the DCache by first ensuring the data to be locked is not 
already in the cache. You can ensure this by cleaning and invalidating either the whole 
DCache or specific lines. Example 4-2 on page 4-15 shows DCache invalidate and clean 
operations that you can perform to do this.



Caches, Write Buffer, and Physical Address TAG (PA TAG) 

ARM DDI 0151C Copyright © 2000, 2001 ARM Limited. All rights reserved. 4-15

Example 4-2 DCache invalidate and clean operations

MCR p15, 0, Rd, c7, c6, 0 ; Invalidate DCache

MCR p15, 0, Rd, c7, c6, 1 ; Invalidate DCache single entry using MVA

MCR p15, 0, Rd, c7, c10, 1 ; Clean DCache single entry using MVA

MCR p15, 0, Rd, c7, c14, 1 ; Clean and Invalidate DCache single entry using MVA

MCR p15, 0, Rd, c7, c10, 2 ; Clean DCache single entry using Index

MCR p15, 0, Rd, c7, c14, 2 ; Clean and Invalidate DCache single entry using Index

You can then use a short software routine to load the data into the DCache. You can 
locate the software routine in a cachable region of memory providing it does not contain 
any loads or stores. You must enable the MMU.The software routine operates by writing 
to CP15 register 9 to force the victim pointer to a specific DCache line and by using an 
LDR or LDM to force the DCache to perform a lookup. This misses, assuming the data was 
previously invalidated, and an eight-word linefill is performed loading the cache line 
into the entry specified by the victim pointer. When all the data has been loaded, it is 
then locked by writing to CP15 register 9 to set the victim pointer base to be one higher 
than the last entry written. All further linefills now occur in the range victim base to 
63.An example DCache lockdown routine is shown in Example 4-3 on page 4-16. The 
example assumes that the number of cache lines to be loaded is not known. The address 
does not have to be cache line or word-aligned, although it is preferable for future 
compatibility.

Note
 The LDR or LDM uses VA format, because address aliasing is performed on the address.It 
is advisable for the associated TLB entry to be locked into the TLB to avoid page table 
walks during accesses of the locked data.



Caches, Write Buffer, and Physical Address TAG (PA TAG) RAM 

4-16 Copyright © 2000, 2001 ARM Limited. All rights reserved. ARM DDI 0151C

Example 4-3 DCache lockdown routine

ADRL r0,start_address ; address pointer
ADRL r1,end_address
MOV r2,#lockdown_base<<26 ; victim pointer
MCR p15,0,r2,c9,c0,0 ; write DCache victim and lockdown base

loop
LDR r3,[r0],#32 ; load DCache line, increment to next DCache line

;; do we need to increment the victim pointer?
;; test for segment 0, and if so, increment the victim pointer and
;; write the ICache victim and lockdown base.

AND r3,r0,#0xE0 ; extract the segment bits from the address
CMP r3,#0x0 ; test for segment 0
ADDEQ r2,r2,#0x1<<26 ; if segment 0, increment victim pointer
MCREQ p15,0,r2,c9,c0,0 ; and write DCache victim and lockdown base

;; have we linefilled enough code?
;; test for the address pointer being less than or equal to the end_address
;; and if so, loop and perform another linefill

CMP r0,r1 ; test for less than or equal to end_address,
BLE loop ; if not, loop

;; have we exited with r3 pointing to segment 0?
;; if so, the ICache victim and lockdown base has already been set to one
;; higher than the last entry written.
;; if not, increment the victim pointer and write the ICache victim and 
;; lockdown base.

CMP r3,#0x0 ; test for segments 1 to 7
ADDNE r2,r2,#0x1<<26 ; if address is segment 1 to 7,
MCRNE p15,0,r2,c9,c0,0 ; write DCache victim and lockdown base



Caches, Write Buffer, and Physical Address TAG (PA TAG) 

ARM DDI 0151C Copyright © 2000, 2001 ARM Limited. All rights reserved. 4-17

4.4 Cache coherence

The ICache and DCache contain copies of information normally held in main memory. 
If these copies of memory information get out of step with each other because one is 
updated and the other is not updated, they are said to have become incoherent. If the 
DCache contains a line that has been modified by a store or swap instruction, and the 
main memory has not been updated, the cache line is said to be dirty. Clean operations 
force the cache to write dirty lines back to main memory. The ICache then has to be 
made coherent with a changed area of memory after any changes to the instructions that 
appear at an MVA, and before the new instructions are executed.

On the ARM920T, software is responsible for maintaining coherence between main 
memory, the ICache, and the DCache. 

Register 7, cache operations register on page 2-17 describes facilities for invalidating 
the entire ICache or individual ICache lines, and for cleaning and/or invalidating 
DCache lines, or for invalidating the entire DCache.

To clean the entire DCache efficiently, software must loop through each cache entry 
using the clean D single entry (using index) operation or the clean and invalidate D 
entry (using index) operation. You must perform this using a two-level nested loop 
going though each index value for each segment. See DCache organization on 
page 4-13.

Example 4-4 shows an example loop for two alternative DCache cleaning operations.

Example 4-4 DCache cleaning loop

for seg = 0 to 7
for index = 0 to 63

Rd = {seg,index}

MCR p15,0,Rd,c7,c10,2 ; Clean DCache single
; entry (using index)

or

MCR p15,0,Rd,c7,c14,2 ; Clean and Invalidate
; DCache single entry
; (using index)

next index
next seg



Caches, Write Buffer, and Physical Address TAG (PA TAG) RAM 

4-18 Copyright © 2000, 2001 ARM Limited. All rights reserved. ARM DDI 0151C

DCache, ICache, and memory coherence is generally achieved by:

• cleaning the DCache to ensure memory is up to date with all changes

• invalidating the ICache to ensure that the ICache is forced to re-fetch instructions 
from memory.

Software can minimize the performance penalties of cleaning and invalidating caches 
by:

• Cleaning only small portions of the DCache when only a small area of memory 
has to be made coherent, for example, when updating an exception vector entry. 
Use Clean DCache single entry (using MVA) or Clean and Invalidate DCache 
single entry (using MVA).

• Invalidating only small portions of the ICache when only a small number of 
instructions are modified, for example, when updating an exception vector entry. 
Use Invalidate ICache single entry (using MVA).

• Not invalidating the ICache in situations where it is known that the modified area 
of memory cannot be in the cache, for example, when mapping a new page into 
the currently running process.

Situations that necessitate cache cleaning and invalidating include:

• Writing instructions to a cachable area of memory using STR or STM instructions, 
for example:

— self-modifying code

— JIT compilation

— copying code from another location

— downloading code using the EmbeddedICE JTAG debug features

— updating an exception vector entry.

• Another bus master, such as a DMA controller, modifying a cachable area main 
memory.

• Turning the MMU on or off.

• Changing the virtual-to-physical mappings, or Ctt, or Btt, or protection 
information, in the MMU page tables. The DCache must be cleaned, and both 
caches invalidated, before the cache and write buffer configuration of an area of 
memory is changed by modifying Ctt or Btt in the MMU translation table 
descriptor. This is not necessary if it is known that the caches cannot contain any 
entries from the area of memory whose translation table descriptor is being 
modified.

• Turning the ICache or DCache on, if its contents are no longer coherent.



Caches, Write Buffer, and Physical Address TAG (PA TAG) 

ARM DDI 0151C Copyright © 2000, 2001 ARM Limited. All rights reserved. 4-19

Changing the FCSE PID in CP15 register 13 does not change the contents of the cache 
or memory, and does not affect the mapping between cache entries and physical 
memory locations. It only changes the mapping between ARM9TDMI addresses and 
cache entries. This means that changing the FCSE PID does not lead to any coherency 
issues. No cache cleaning or cache invalidation is required when the FCSE PID is 
changed.

The software design must also consider that the pipelined design of the ARM9TDMI 
core means that it fetches three instructions ahead of the current execution point. So, for 
example, the three instructions following an MCR that invalidates the ICache, have 
already been read from the ICache before it is invalidated.



Caches, Write Buffer, and Physical Address TAG (PA TAG) RAM 

4-20 Copyright © 2000, 2001 ARM Limited. All rights reserved. ARM DDI 0151C

4.5 Cache cleaning when lockdown is in use

The Clean DCache single entry (using index) and Clean and Invalidate DCache entry 
(using index) operations can leave the victim pointer set to the index value used by the 
operation. In some circumstances, if DCache locking is in use, this can leave the victim 
pointer in the locked region, leading to locked data being evicted from the cache. You 
can move the victim pointer outside the locked region by implementing the cache loop, 
enclosed by the reading and writing of the base and victim pointer:

MRC p15, 0, Rd, c9, c0, 0 ; Read D Cache Base into Rd
Index Clean or Index Clean and Invalidate loops
MCR p15, 0, Rd, c9, c0, 0 ; Write D Cache Base and Victim from Rd

Clean DCache single entry (using MVA) and Clean and Invalidate DCache entry (using 
MVA) operations do not move the victim pointer, so you do not have to reposition the 
victim pointer after using these operations.



Caches, Write Buffer, and Physical Address TAG (PA TAG) 

ARM DDI 0151C Copyright © 2000, 2001 ARM Limited. All rights reserved. 4-21

4.6 Implementation notes

This section describes the behavior of the ARM920T implementation in areas that are 
architecturally unpredictable. For portability to other ARM implementations, software 
must not depend on this behavior.

A read from a noncachable (NCB or NCNB) region that unexpectedly hits in the cache 
still reads the required data from the AMBA ASB interface. The contents of the cache 
are ignored, and the cache contents are not modified. This includes the read portion of 
a swap (SWP or SWPB) instruction.

A write to a noncachable (NCB or NCNB) region that unexpectedly hits in the cache 
updates the cache and still causes an access on the AMBA ASB interface. This includes 
the write portion of a swap instruction.

There are two test interfaces to both the DCache and ICache:

• debug interface

• AMBA test interface.



Caches, Write Buffer, and Physical Address TAG (PA TAG) RAM 

4-22 Copyright © 2000, 2001 ARM Limited. All rights reserved. ARM DDI 0151C

4.7 Physical address TAG RAM

The ARM920T implements a Physical Address (PA) TAG RAM in order to perform 
write-backs from the DCache.

A write-back occurs when dirty data, that is about to be overwritten by linefill data, 
comes from a memory region that is marked as a write-back region. This data is written 
back to main memory to maintain memory coherency.

Note
 Dirty data is data that has been modified in the cache, but not updated in main memory.

When a line is written into the data cache, the PA TAG is written into the PA TAG RAM. 
If this line has to be written back to main memory, the PA TAG RAM is read and the 
physical address is used by the AMBA ASB interface to perform the write-back.

The PA TAG RAM array for a 16KB DCache comprises eight segments x 64 rows per 
segment x 26 bits per row. There are two test interfaces to the PA TAG RAM:

• debug interface, see Scan chain 4 - debug access to the PA TAG RAM on 
page 9-39

• AMBA test interface, see PA TAG RAM test on page 11-12.



Caches, Write Buffer, and Physical Address TAG (PA TAG) 

ARM DDI 0151C Copyright © 2000, 2001 ARM Limited. All rights reserved. 4-23

4.8 Drain write buffer

You can drain the write buffer under software control, so that further instructions are not 
executed until the write buffer is drained, using the following methods:

• store to nonbufferable memory

• load from noncachable memory

• MCR drain write buffer:

MCR p15,0,Rd,c7,c10,4

The write buffer is also drained before performing the following less controllable 
activities, which you must consider as implementation-defined:

• fetch from noncachable memory

• DCache linefill

• ICache linefill.



Caches, Write Buffer, and Physical Address TAG (PA TAG) RAM 

4-24 Copyright © 2000, 2001 ARM Limited. All rights reserved. ARM DDI 0151C

4.9 Wait for interrupt

You can place the ARM920T into a low power state by executing the CP15 MCR wait for 
interrupt:

MCR p15,0,Rd,c7,c0,4

Execution of this MCR causes the write buffer to drain and the ARM920T is put into a 
state where it will resume execution of code after either an interrupt or a debug request. 
When the interrupt occurs the MCR instruction completes and the FIQ or IRQ handler is 
entered as normal. The return link in R14_fiq or R14_irq contains the address of the MCR 
instruction plus 8, so that the normal instruction used for interrupt return returns to the 
instruction following the MCR:

SUBS pc,r14,#4



ARM DDI 0151C Copyright © 2000, 2001 ARM Limited. All rights reserved. 5-1

Chapter 5 
Clock Modes

This chapter describes the different clocking modes available on the ARM920T 
processor. It contains the following sections:

• About ARM920T clocking on page 5-2

• FastBus mode on page 5-3

• Synchronous mode on page 5-4

• Asynchronous mode on page 5-6.



Clock Modes 

5-2 Copyright © 2000, 2001 ARM Limited. All rights reserved. ARM DDI 0151C

5.1 About ARM920T clocking

The ARM920T processor has two functional clock inputs, BCLK and FCLK. 
Internally, the ARM920T is clocked by GCLK. This can be seen on the CPCLK output 
as shown in Figure 5-1. GCLK can be sourced from either BCLK or FCLK depending 
on the clocking mode, selected using nF bit and iA bit in CP15 register 1 (see Register 
1, control register on page 2-12), and external memory access. The three clocking 
modes are:

• FastBus mode on page 5-3

• Synchronous mode on page 5-4

• Asynchronous mode on page 5-6.

The ARM920T is a static design and you can stop both clocks indefinitely without loss 
of state. Figure 5-1 shows that some of the ARM920T macrocell signals have timing 
specified with relation to GCLK. This can be either FCLK or BCLK depending on the 
clocking mode.

Figure 5-1 ARM920T clocking

nF iA,

GCLK

CPCLK ARM920T I/O

Rest of ARM920T
AMBA
Bus

Interface

ASB

BCLK

FCLK



Clock Modes 

ARM DDI 0151C Copyright © 2000, 2001 ARM Limited. All rights reserved. 5-3

5.2 FastBus mode

In FastBus mode GCLK is sourced from BCLK. The FCLK input is ignored. This 
means that BCLK is used to control the AMBA ASB interface and the internal 
ARM920T processor core.

On reset, the ARM920T is put into FastBus mode and operates using BCLK. A typical 
use for FastBus mode is to execute startup code while configuring a PLL under software 
control to produce FCLK at a higher frequency. When the PLL has stabilized and 
locked, you can switch the ARM920T to synchronous or asynchronous clocking using 
FCLK for normal operation.



Clock Modes 

5-4 Copyright © 2000, 2001 ARM Limited. All rights reserved. ARM DDI 0151C

5.3 Synchronous mode

In this mode of operation GCLK is sourced from BCLK or FCLK. There are three 
restrictions that apply to BCLK and FCLK: 

• FCLK must have a higher frequency than BCLK

• FCLK must be an integer multiple of the BCLK frequency

• FCLK must be HIGH whenever there is a BCLK transition.

BCLK is used to control the AMBA ASB interface, and FCLK is used to control the 
internal ARM920T processor core. When an external memory access is required the 
core either continues to clock using FCLK or is switched to BCLK, as shown in 
Table 5-1. This is the same as for asynchronous mode.

The penalty in switching from FCLK to BCLK and from BCLK to FCLK is 
symmetric, from zero to one phase of the clock to which the core is re-synchronizing. 
That is, switching from FCLK to BCLK has a penalty of between zero and one BCLK 
phase, and switching back from BCLK to FCLK has a penalty of between zero and one 
FCLK phase.

Figure 5-2 on page 5-5 shows an example zero BCLK phase delay when switching 
from FCLK to BCLK in synchronous mode.

Table 5-1 Clock selection for external memory accesses

External memory access operation GCLK =

Buffered write FCLK

Nonbuffered write BCLK

Page walk, cachable read (linefill), noncachable read BCLK



Clock Modes 

ARM DDI 0151C Copyright © 2000, 2001 ARM Limited. All rights reserved. 5-5

Figure 5-2 Synchronous mode FCLK to BCLK zero phase delay

Figure 5-3 shows an example one BCLK phase delay when switching from FCLK to 
BCLK in synchronous mode.

Figure 5-3 Synchronous mode FCLK to BCLK one phase delay

BCLK

FCLK

FnB

CPCLK

BCLK

FCLK

FnB

CPCLK



Clock Modes 

5-6 Copyright © 2000, 2001 ARM Limited. All rights reserved. ARM DDI 0151C

5.4 Asynchronous mode

In this mode of operation GCLK is sourced from BCLK or FCLK. FCLK and BCLK 
can be completely asynchronous to one another, with the one restriction that FCLK 
must have a higher frequency than BCLK.

BCLK is used to control the AMBA ASB interface, and FCLK is used to control the 
internal ARM920T processor core. When an external memory access is required the 
core either continues to clock using FCLK or is switched to BCLK. This is the same 
as for synchronous mode.The penalty in switching from FCLK to BCLK and from 
BCLK to FCLK is symmetric, from zero to one cycle of the clock to which the core is 
re-synchronizing. That is, switching from FCLK to BCLK has a penalty of between 
zero and one BCLK cycle, and switching back from BCLK to FCLK has a penalty of 
between zero and one FCLK cycle.

Figure 5-4 shows an example zero BCLK cycle delay when switching from FCLK to 
BCLK in asynchronous mode.

Figure 5-4 Asynchronous mode FCLK to BCLK zero cycle delay

Figure 5-5 on page 5-7 shows an example one BCLK cycle delay when switching from 
FCLK to BCLK in asynchronous mode.

BCLK

FCLK

FnB

CPCLK



Clock Modes 

ARM DDI 0151C Copyright © 2000, 2001 ARM Limited. All rights reserved. 5-7

Figure 5-5 Asynchronous mode FCLK to BCLK one cycle delay

BCLK

FCLK

FnB

CPCLK



Clock Modes 

5-8 Copyright © 2000, 2001 ARM Limited. All rights reserved. ARM DDI 0151C



ARM DDI 0151C Copyright © 2000, 2001 ARM Limited. All rights reserved. 6-1

Chapter 6 
Bus Interface Unit

This chapter describes the ARM920T bus interface. It contains the following sections:

• About the ARM920T bus interface on page 6-2

• Unidirectional AMBA ASB interface on page 6-3

• Fully-compliant AMBA ASB interface on page 6-5

• AMBA AHB interface on page 6-21

• Level 2 cache support and performance analysis on page 6-23.



Bus Interface Unit 

6-2 Copyright © 2000, 2001 ARM Limited. All rights reserved. ARM DDI 0151C

6.1 About the ARM920T bus interface

The AMBA Specification (Rev 2.0) defines two high-performance system buses:

• the Advanced High-performance Bus (AHB)

• the Advanced System Bus (ASB).

The ARM920T processor has been designed with a unidirectional ASB interface, plus 
the necessary extra control signals to enable efficient implementation of both the AHB 
and ASB interface. With no additional logic, you can use the unidirectional ASB 
interface in single master systems where the ARM920T is the master. With the addition 
of tristate drivers, the ARM920T implements a full ASB interface, either as an ASB bus 
master, or as a slave for production test. With the addition of a synthesizable wrapper, 
the ARM920T implements a full AHB interface, either as an AHB bus master, or as a 
slave for production test. 

The wrapper introduces no speed penalties, no performance penalties on reads, no 
performance penalties on buffered writes, and minimal performance penalty on 
nonbuffered writes. The MCR drain write buffer requires an additional instruction to 
operate in a predictable manner. See AMBA AHB interface on page 6-21 for details.

In this section the following abbreviations are used:

NCNB Noncachable and nonbufferable

NCB Noncachable and bufferable

NC Noncachable

WT Cachable and write-through

WB Cachable and write-back.



Bus Interface Unit 

ARM DDI 0151C Copyright © 2000, 2001 ARM Limited. All rights reserved. 6-3

6.2 Unidirectional AMBA ASB interface

The AMBA Specification (Rev 2.0) defines the Advanced Microcontroller Bus 
Architecture (AMBA) ASB interface for use with multiple masters. This requires that 
only the granted master controls and drives the bus system. The unidirectional AMBA 
ASB interface on the ARM920T supplies the constituent signals to make a bidirectional 
interface, that is input, output, and output enable. These signals are shown in Table 6-1.

Table 6-1 Relationship between bidirectional and unidirectional ASB interface

ASB signal ARM920T input ARM920T output ARM920T output enable

AGNTx AGNT - -

AREQx - AREQ -

BCLK BCLK - -

BnRES BnRES - -

DSELx DSEL - -

BA[31:12] - AOUT[31:12] ENBA

BA[11:2] AIN[11:2] AOUT[31:0] ENBA

BA[1:0] - AOUT[1:0] ENBA

BLOK - LOK ENBA

BPROT[1:0] - PROT[1:0] ENBA

BSIZE[1:0] - SIZE[1:0] ENBA

BWRITE WRITEIN WRITEOUT ENBA

BD[31:0] DIN[31:0] DOUT[31:0] ENBD

BTRAN[1:0] - TRAN[1:0] ENBTRAN

BERROR ERRORIN ERROROUT ENSR

BLAST LASTIN LASTOUT ENSR

BWAIT WAITIN WAITOUT ENSR



Bus Interface Unit 

6-4 Copyright © 2000, 2001 ARM Limited. All rights reserved. ARM DDI 0151C

An ASB bus cycle is defined from falling-edge to falling-edge transition of BCLK. The 
LOW part is referred to as phase 1, the HIGH part as phase 2. The timing is shown in 
Table 6-2, and is for reference only. It is assumed that the ARM920T macrocell is used 
in either an AMBA ASB or AMBA AHB system.

The timing for TRAN[1:0] is slightly different, so that if the ARM920T loses the GNT 
signal, TRAN[1:0] is changed to indicate A-TRAN in the same phase 1. Under these 
circumstances however, the ARM920T does not drive BTRAN[1:0] in the subsequent 
phase 2.

Table 6-2 ARM920T input/output timing

ARM920T 
input

Timing
ARM920T 
output

Timing

- - AREQ Change phase 2

AGNT Setup to rising BCLK - -

DSEL Setup to falling BCLK - -

AIN[11:2] Setup to falling BCLK AOUT[31:0] Change phase 2

- - LOK Change phase 2

- - BPROT[1:0] Change phase 2

- - SIZE[1:0] Change phase 2

WRITEIN Setup to falling BCLK WRITEOUT Change phase 2

DIN[31:0] Setup to falling BCLK DOUT[31:0] Change phase 1

- - TRAN[1:0] Change phase 2 (1)

ERRORIN Setup to rising BCLK ERROROUT Fixed to 0

LASTIN Setup to rising BCLK LASTOUT Fixed to 0

WAITIN Setup to rising BCLK WAITOUT Change phase 1



Bus Interface Unit 

ARM DDI 0151C Copyright © 2000, 2001 ARM Limited. All rights reserved. 6-5

6.3 Fully-compliant AMBA ASB interface

AMBA Specification (Rev 2.0), defines the AMBA ASB interface for use with multiple 
masters. Connecting the unidirectional ARM920T signals as indicated in Connecting 
the ARM920T to an AMBA ASB interface implements a fully-compliant interface, either 
as an ASB bus master, or slave for production test. For details of how the AMBA ASB 
interface operates, refer to the AMBA Specification (Rev 2.0).

6.3.1 Connecting the ARM920T to an AMBA ASB interface

For bidirectional signals, BA[11:2], BWRITE, BD[31:0], BERROR, BWAIT, and 
BLAST, the macrocell outputs must be tristate buffered, using the output enable 
specified in Table 6-1 on page 6-3. The ARM920T macrocell outputs are continuously 
driven and intended to drive the signals to the edge of the macrocell from where they 
can be buffered for additional routing and tristate behavior. The drive strength chosen 
for tristate drivers must be governed by the ASB load. Figure 6-1 shows the required 
output buffer for bidirectional signals. 

Figure 6-1 Output buffer for bidirectional signals

For output signals, BA[31:12], BA[1:0], BLOK, BPROT[1:0], BSIZE[1:0], and 
BTRAN[1:0], the macrocell outputs must be tristate buffered, using the output enable 
specified in Table 6-1 on page 6-3. The drive strength chosen for tristate drivers must 
be governed by the ASB load. Figure 6-2 on page 6-6 shows the output buffer required 
for unidirectional signals.

ARM920T input

ARM920T output

ARM920T output enable

ASB signal



Bus Interface Unit 

6-6 Copyright © 2000, 2001 ARM Limited. All rights reserved. ARM DDI 0151C

Figure 6-2 Output buffer for unidirectional signals

You can connect the input signals, AGNTx, BCLK, BnRES, and DSELx directly to 
the ARM920T. The signals are appropriately buffered when the signal reaches the edge 
of the macrocell so additional buffering is not required. The output signal AREQ must 
be buffered with no tristate control, and is dependent on the load within the ASB system.

6.3.2 Transfer types

The AMBA ASB specification describes three transfer types that are encoded in 
BTRAN[1:0]. Table 6-3 shows these transfer types.

The ARM920T does not use N-TRAN cycles, instead it uses an A-TRAN cycle 
followed by a S-TRAN cycle for nonsequential transfers. This eases AMBA decoder 
design considerably, particularly for high-speed designs.

ARM920T output

ARM920T output enable

ASB signal

Table 6-3 AMBA ASB transfer types

BTRAN[1:0] Transfer type Description

00 Address-only 
(A-TRAN)

Used when no data movement is required. The three 
main uses for address-only transfers are:

• for IDLE cycles

• for bus handover cycles

• for speculative address decoding without 
committing to a data transfer.

01 - Reserved.

10 Nonsequential 
(N-TRAN)

Used for single transfers or the first transfer of a burst. 
The address of the transfer is unrelated to the previous 
bus access.

11 Sequential 
(S-TRAN)

Used for successive transfers in burst. The address of a 
SEQUENTIAL transfer is always related to the 
previous transfer.



Bus Interface Unit 

ARM DDI 0151C Copyright © 2000, 2001 ARM Limited. All rights reserved. 6-7

The output signals ASTB, BURST[1:0], and NCMAHB have been added to the 
ARM920T bus interface. They are necessary to support the AMBA AHB wrapper, but 
can also be used to provide optimized accesses in an AMBA ASB system:

ASTB This signal distinguishes between an IDLE cycle and the A-TRAN cycle 
of a nonsequential transfer. It is asserted with the same timing as 
AOUT[31:0], changing in phase 2. Usually a memory controller only 
commits to a transfer when it sees the S-TRAN cycle, perhaps only 
decoding the address during the A-TRAN cycle. ASTB is asserted in the 
preceding A-TRAN cycle, indicating that the current A-TRAN is 
followed by an S-TRAN, providing AGNT is HIGH on the next rising 
edge of BCLK.

BURST[1:0] This signal gives an indication of the length of a sequential burst, as 
shown in Table 6-4.

For linefills, BURST[1:0] indicates 8 words. For cache line evictions, 
BURST[1:0] indicates either 4 or 8 words. For all other transfers, 
BURST[1:0] indicates no burst or undefined burst length.

The meaning of the BURST[1:0] encoding is clarified when considered 
whether the transfer is a read or write. In this way you can distinguish 
between bufferable and nonbufferable STR/STM and table walks, as shown 
in Table 6-5 on page 6-8.

Table 6-4 Burst transfers

BURST[1:0] Transfer

00 No burst or undefined burst 
length

01 4-word burst

10 8-word burst

11 No burst or undefined burst 
length



Bus Interface Unit 

6-8 Copyright © 2000, 2001 ARM Limited. All rights reserved. ARM DDI 0151C

The BURST[1:0] signals change in phase 2 and are asserted in the phase 
when ASTB is asserted. BURST[1:0] then remains unchanged until the 
next transfer.

NCMAHB This signal indicates for noncached load multiples whether more words 
are requested as part of the current burst transfer. When HIGH this 
indicates more words are requested. When LOW, on the last S-TRAN of 
the burst, this indicates that the current transfer is the last word of the 
burst. It is asserted in phase 2 and is only valid if AGNT remains asserted 
throughout the transfer.

The following timing diagrams show the types of transfer that can be initiated by the 
ARM920T rev1:

• Instruction fetch after reset on page 6-11

• Example LDR from address 0x108 on page 6-12

• Example LDM of 5 words from 0x108 on page 6-13

• Example nonbuffered STR on page 6-14

• Example nonbuffered STM on page 6-15

• Example linefill from 0x100 on page 6-16

• Example 4-word data eviction on page 6-17

• Example swap operation on page 6-19.

Table 6-5 Use of WRITEOUT signal

BURST[1:0] WRITEOUT ARM920T bus access Type

00 Read NC LDR/LDM/fetch Noncachable read

00 Write NCNB STR/STM Nonbufferable write

01 Read - -

01 Write Write-back of 4 words Bufferable write

10 Read Linefill of 8 words Cachable read

10 Write Write-back of 8 words Bufferable write

11 Read Table walk Cachable read

11 Write NCB/WT/WB miss STR/STM Bufferable write



Bus Interface Unit 

ARM DDI 0151C Copyright © 2000, 2001 ARM Limited. All rights reserved. 6-9

Where the AREQ and AGNT signals and the responses from the ASB slave are not 
shown in these diagrams, it is assumed that AGNT is asserted and the ASB slave 
response is DONE. 

Different slave responses and bus master handover are covered in the AMBA 
Specification (Rev 2.0). It is assumed that you are using the ARM920T macrocell within 
a multi-master ASB system, so unidirectional ASB timing diagrams are not provided.

6.3.3 Instruction fetch after reset

The general operation of the AMBA ASB during reset is described in the AMBA 
Specification (Rev 2.0). The reset signal, BnRES, is active LOW, and can be asserted 
asynchronously to guarantee the bus is in a safe state. During reset, the following 
actions occur on the bus:

• The arbiter grants the default bus master.

• The default bus master must:

— drive BTRAN to indicate an ADDRESS-ONLY transfer

— drive BLOK LOW to allow arbitration

— drive BA, BWRITE, BSIZE, and BPROT to any value

— tristate BD.

• All other bus masters must tristate shared bus signals, BA, BD, BWRITE, 
BTRAN, BSIZE, BPROT, and BLOK.

• The decoder must:

— deassert all slave select signals, DSELx

— provide the appropriate transfer response.

• All slaves must tristate shared bus signals.

You must hold BnRES LOW for a minimum of five BCLK cycles to ensure complete 
reset of the ARM920T processor. You must deassert BnRES during the BCLK LOW 
phase.



Bus Interface Unit 

6-10 Copyright © 2000, 2001 ARM Limited. All rights reserved. ARM DDI 0151C

Figure 6-3 on page 6-11 shows the default bus master during reset to be the TIC 
controller. After reset, the ARM920T processor is made the default bus master, so there 
is a handover phase when BA, BWRITE, BSIZE, BPROT, and BLOK are not driven, 
but BTRAN is driven with ADDRESS-ONLY. The ARM920T processor continues as 
the default bus master without requesting the bus, so it must:

• drive BTRAN to indicate an ADDRESS-ONLY transfer

• drive BLOK LOW to allow arbitration

• drive BA, BWRITE, BSIZE, and BPROT to any value

• tristate BD.

The ARM920T processor then requests use of the bus and, because it is already granted 
the bus, starts the first ADDRESS-ONLY cycle that is not an IDLE cycle, indicated by 
ASTB. The first instruction fetch continues from then.



Bus Interface Unit 

ARM DDI 0151C Copyright © 2000, 2001 ARM Limited. All rights reserved. 6-11

Figure 6-3 Instruction fetch after reset

00

10

BCLK

BWRITE

BA[31:0]

BD[31:0]

BPROT[1:0]

BTRAN[1:0]

BURST[1:0]

ASTB

NCMAHB

A-TRAN A-TRAN A-TRAN A-TRAN A-TRANA-TRAN A-TRAN A-TRAN S-TRAN A-TRAN

0x0

BnRES

Word 0

Bus handover

AGNTARM

AGNTTIC

AREQARM

0x4

A-TRAN A-TRAN A-TRANS-TRAN

Word 1



Bus Interface Unit 

6-12 Copyright © 2000, 2001 ARM Limited. All rights reserved. ARM DDI 0151C

6.3.4 Noncached LDRs and noncached fetches

The only difference between these noncached LDRs and noncached fetches is the 
BPROT[1:0] information, as shown in Table 6-6.

The address is word-aligned for an LDR and fetch. An example LDR is shown in 
Figure 6-4.

Figure 6-4 Example LDR from address 0x108

Table 6-6 Noncached LDR and fetch

BPROT[0] Transfer

0 Opcode fetch

1 Data access

00 = No burst or undefined burst length

11 or 01 for LDR
10 or 00 for fetch

BCLK

BA[31:0]

BD[31:0]

0x108

Word 1

BTRAN[1:0]

BWRITE

A-TRANA-TRAN S-TRAN

BPROT[1:0]

BURST[1:0]

ASTB

NCMAHB



Bus Interface Unit 

ARM DDI 0151C Copyright © 2000, 2001 ARM Limited. All rights reserved. 6-13

6.3.5 Noncached LDM

For a noncached LDM the BURST[1:0] information is always 00 = No burst or undefined 
burst length, though the NCMAHB signal gives one cycle advance warning of the end 
of the burst transfer if AGNT remains asserted throughout the burst transfer. The 
address is word-aligned. An example LDM is shown in Figure 6-5.

Figure 6-5 Example LDM of 5 words from 0x108

BCLK

BWRITE

BA[31:0]

BD[31:0]

BPROT[1:0]

0x104

BTRAN[1:0]

0x108 0x10C0x108

4 5

S-TRAN S-TRAN S-TRAN S-TRAN A-TRANA-TRAN S-TRAN

11 or 01 for data access, 10 or 00 for opcode fetch

BURST[1:0] 00 = No burst or undefined burst length

ASTB

NCMAHB

0x110

321



Bus Interface Unit 

6-14 Copyright © 2000, 2001 ARM Limited. All rights reserved. ARM DDI 0151C

6.3.6 Buffered and nonbuffered STR

For a buffered or nonbuffered STR the BURST[1:0] information is:

11 Buffered STR, no burst or undefined burst length.

00 Nonbuffered STR, no burst or undefined burst length. 

The address is word-aligned. An example STR is shown in Figure 6-6.

Figure 6-6 Example nonbuffered STR

BCLK

BWRITE

BA[31:0]

BD[31:0]

BPROT[1:0]

BTRAN[1:0]

1

0x108

S-TRAN A-TRANA-TRAN

11 or 01

BURST[1:0] 00 = No burst or undefined burst length

ASTB

NCMAHB



Bus Interface Unit 

ARM DDI 0151C Copyright © 2000, 2001 ARM Limited. All rights reserved. 6-15

6.3.7 Buffered and nonbuffered STM

For a buffered or nonbuffered STM the BURST[1:0] information is:

11 Buffered STM, no burst or undefined burst length.

00 Nonbuffered STM, no burst or undefined burst length. 

The address is word-aligned. An example nonbuffered STM is shown in Figure 6-7.

Figure 6-7 Example nonbuffered STM

BCLK

BWRITE

BA[31:0]

BD[31:0]

BPROT[1:0]

0x10C

BTRAN[1:0]

1 2 3

0x110 0x114 0x1180x108

4 5

S-TRAN S-TRAN S-TRAN S-TRAN A-TRANA-TRAN S-TRAN

11 or 01

BURST[1:0] 00 = No burst or undefined burst length

ASTB

NCMAHB



Bus Interface Unit 

6-16 Copyright © 2000, 2001 ARM Limited. All rights reserved. ARM DDI 0151C

6.3.8 Cached LDR, cached LDM, and cached fetch

A cached LDR or LDM, and a cached fetch, are equivalent to a linefill operation. The 
BURST[1:0] information is always 10 = 8 words. The address is word-aligned and 
increases from the lowest address. The lowest five bits always increase from 0x00 to 
0x1C. An example linefill is shown in Figure 6-8.

Figure 6-8 Example linefill from 0x100

BCLK

BWRITE

BA[31:0]

BD[31:0]

BPROT[1:0]

0x104

BTRAN[1:0]

1 2 3

0x108 0x10C0x100

4 5

S-TRAN S-TRAN S-TRAN S-TRAN A-TRANA-TRAN S-TRAN

11 or 01 for data access, 10 or 00 for opcode fetch

BURST[1:0] 10 = 8 words

ASTB

NCMAHB

0x110 0x114 0x118 0x11C

6 7 8

S-TRAN S-TRAN S-TRAN



Bus Interface Unit 

ARM DDI 0151C Copyright © 2000, 2001 ARM Limited. All rights reserved. 6-17

6.3.9 Dirty data eviction, write-back of 4 or 8 words

Dirty data can be evicted from a cache line as either the first four words, the last four 
words, or all eight words of the cache line. The address is word-aligned and increases 
from the lowest address. BPROT[1:0] is always 11, indicating privileged data access. 
Figure 6-9 shows an example four-word dirty data eviction of the second half of a cache 
line.

Figure 6-9 Example 4-word data eviction

BCLK

BWRITE

BA[31:0]

BD[31:0]

BPROT[1:0]

0x114

BTRAN[1:0]

1 2 3

0x118 0x11C0x110

4

S-TRAN S-TRAN S-TRAN A-TRANA-TRAN S-TRAN

11

BURST[1:0] 01 = 4 words

ASTB

NCMAHB



Bus Interface Unit 

6-18 Copyright © 2000, 2001 ARM Limited. All rights reserved. ARM DDI 0151C

The allowable combinations are listed in Table 6-7.

6.3.10 Swap

The swap operation is implemented as a single read transfer followed by a single write 
transfer. The BLOK signal is asserted so that the write transfer is locked to the 
preceding read transfer. This must be used by the arbiter to ensure that no other bus 
master is given access to the bus between the read and write transfers. An example swap 
operation is shown in Figure 6-10 on page 6-19.

Table 6-7 Data eviction of 4 or 8 words

Data evicted BURST[1:0] Lowest 5 bits of the address

First 4 words 01 0x00 to 0x0C

Last 4 words 01 0x10 to 0x1C

All 8 words 10 0x00 to 0x1C



Bus Interface Unit 

ARM DDI 0151C Copyright © 2000, 2001 ARM Limited. All rights reserved. 6-19

Figure 6-10 Example swap operation

BCLK

BWRITE

BA[31:0]

BD[31:0]

BPROT[1:0]

BTRAN[1:0]

Write

A-TRAN A-TRAN A-TRAN A-TRANA-TRAN S-TRAN

11 or 01

BURST[1:0] 00 = No burst or undefined burst length

NCMAHB

A-TRAN S-TRAN

Read

AREQ

AGNT

BLOK

ASTB



Bus Interface Unit 

6-20 Copyright © 2000, 2001 ARM Limited. All rights reserved. ARM DDI 0151C

6.3.11 Page walk

A page walk is identical to a noncached LDR on the ASB. That is, a single word read. 
The BURST[1:0] encoding is always 11. For a page walk caused by an opcode fetch, 
BPROT[1:0] = 10. For a page walk caused by a data operation, BPROT[1:0] = 11. The 
page walk is always privileged.

6.3.12 AMBA ASB slave transfers

You can test the ARM920T processor as an individual module within an AMBA system, 
responding only to transfers from the AMBA ASB. In this mode of operation the 
ARM920T processor is never granted the ASB as a bus master, and responds as an ASB 
slave, detecting the assertion of DSEL. This is described in detail in the AMBA 
Specification (Rev 2.0).



Bus Interface Unit 

ARM DDI 0151C Copyright © 2000, 2001 ARM Limited. All rights reserved. 6-21

6.4 AMBA AHB interface

The AMBA Specification (Rev 2.0) defines the AMBA AHB interface for use with 
multiple masters. With the addition of a synthesizable wrapper, the ARM920T 
implements a full AHB interface, either as an AHB bus master, or as a slave for 
production test. This is delivered as synthesizable RTL, with synthesis scripts. Contact 
ARM for details of how to obtain this information. The interface uses ASTB, 
BURST[1:0], and NCMAHB signals in addition to the unidirectional ASB signals. 
This allows an efficient implementation that has:

• no speed penalty

• no cycle penalties for read transfers

• no cycle penalties for buffered write transfers

• one cycle penalty for every nonbuffered write transfer

• swaps incur one cycle penalty on the read transfer and one cycle penalty on the 
write transfer

• the MCR drain write buffer instruction, MCR p15, 0, Rd, c7, c10, 4, drains the write 
buffer to the AHB wrapper. 

In the case of the MCR drain write buffer the write transfers appear as buffered, so the 
ARM920T processor continues execution before the last write transfer is completed on 
the AHB.

An example of how this might be a problem is if the last STR to the write buffer was to 
clear an interrupt source prior to enabling interrupts to the ARM9TDMI, then the 
following sequence might result in an interrupt being returned to the ARM9TDMI 
before the interrupt is cleared:

Buffered STR to clear interrupt
MCR drain write buffer
Enable interrupts.

There are three solutions:

1. For a non write-sensitive address. Issue the STR twice. The first STR completes 
before the second STR enters the AHB wrapper, guaranteeing the interrupt is 
cleared before the interrupts are enabled:

Buffered STR to clear interrupt
Buffered STR to clear interrupt
MCR drain write buffer
Enable interrupts.



Bus Interface Unit 

6-22 Copyright © 2000, 2001 ARM Limited. All rights reserved. ARM DDI 0151C

2. For a write-sensitive address. Issue any other buffered STR to a non write-sensitive 
address. This must be to a NCB or WT region to ensure the STR is committed to 
the write buffer:

Buffered STR to clear interrupt
Buffered STR to a non write-sensitive address
MCR drain write buffer
Enable interrupts.

3. Issue a read on the AHB before enabling the interrupts. This must be from a 
noncachable region to ensure the read appears on the AHB:

Buffered STR to clear interrupt
MCR drain write buffer
Non-cachable LDR or fetch
Enable interrupts.



Bus Interface Unit 

ARM DDI 0151C Copyright © 2000, 2001 ARM Limited. All rights reserved. 6-23

6.5 Level 2 cache support and performance analysis

The BURST[1:0] encoding, used with WRITEOUT and PROT[1:0], or BWRITE 
and BPROT[1:0], is intended to provide the information necessary to implement an 
efficient AHB wrapper. However, it also provides enough information for a level 2 
cache to be implemented outside the ARM920T macrocell. Contact ARM for details. 
Encodings for the range of accesses supported by the ARM920T processor are listed in 
Table 6-8.

By monitoring the AMBA ASB bus transfers, qualified by the ARM920T AGNT and 
slave responses BERROR, BLAST, and BWAIT, you can implement a performance 
monitor outside the ARM920T macrocell. This might give the type of information 

Table 6-8 ARM920T supported bus access types

BURST[1:0] WRITEOUT PROT[0] ARM920T bus access

00 Read 0 Noncachable fetch

00 Read 1 Noncachable LDR or LDM

00 Write 0 -

00 Write 1 Nonbuffered STR or STM

01 Read 0 -

01 Read 1 -

01 Write 0 -

01 Write 1 Write-back of 4 words

10 Read 0 Instruction linefill of 8 words

10 Read 1 Data linefill of 8 words

10 Write 0 -

10 Write 1 Write-back of 8 words

11 Read 0 Instruction table walk

11 Read 1 Data table walk

11 Write 0 -

11 Write 1 Buffered STR or STM



Bus Interface Unit 

6-24 Copyright © 2000, 2001 ARM Limited. All rights reserved. ARM DDI 0151C

shown in Example 6-1 on page 6-24 after running a program. The performance monitor 
can be made accessible as a memory mapped peripheral or using JTAG on the 
ARM920T external scan chain. 

Example 6-1 Typical output data from a performance monitor

I TLB Page Table Walks : 1
D TLB Page Table Walks : 1
4 Word Writebacks : 10
8 Word Writebacks : 5
I Cache Linefills : 48
D Cache Linefills : 28
NC Loads : 2
NC Fetches : 38
NCNB Stores : 2
NCB, WT or WB Miss Stores : 13
BCLK Cycles : 1594



ARM DDI 0151C Copyright © 2000, 2001 ARM Limited. All rights reserved. 7-1

Chapter 7 
Coprocessor Interface

This chapter describes the ARM920T coprocessor interface. It contains the following 
sections:

• About the ARM920T coprocessor interface on page 7-2

• LDC/STC on page 7-5

• MCR/MRC on page 7-9

• Interlocked MCR on page 7-11

• CDP on page 7-13

• Privileged instructions on page 7-15

• Busy-waiting and interrupts on page 7-17.



Coprocessor Interface 

7-2 Copyright © 2000, 2001 ARM Limited. All rights reserved. ARM DDI 0151C

7.1 About the ARM920T coprocessor interface

The ARM920T processor supports the connection of on-chip coprocessors through an 
external coprocessor interface. All types of coprocessor instruction are supported. 

The ARM920T coprocessor interface allows you to attach specially designed 
coprocessor hardware to the ARM920T. Example uses include:

• attachment of accelerators for floating-point math, DSP, 3-D graphics, 
encryption, or decryption

• the ARM instruction set supports the connection of 16 coprocessors, numbered 0 
to 15, to an ARM processor.

7.1.1 Internal coprocessors

The ARM920T processor contains two internal coprocessors:

• CP14 for debug control

• CP15 for memory system control and test control. 

This means that coprocessors attached externally to the ARM920T processor cannot be 
assigned coprocessor numbers 15 or 14. Other coprocessor numbers have been 
allocated by ARM for internal usage. Contact ARM for a full list of reserved 
coprocessor numbers.

The register map of CP15 is described in CP15 register map summary on page 2-5. The 
functionality of CP14 is described in Debug communications channel on page 9-64.

7.1.2 External coprocessors

Coprocessors determine the instructions they have to execute by using a pipeline 
follower in the coprocessor. As each instruction arrives from memory, it enters both the 
ARM pipeline and the coprocessor pipeline. To avoid a critical path for the instruction 
being latched by the coprocessor, the coprocessor pipeline must operate one clock phase 
behind the ARM920T pipeline. The ARM920T then informs the coprocessor when 
instructions move from Decode into Execute, and whether the instruction has to be 
executed.

To enable coprocessors to continue doing coprocessor data operations while the 
ARM920T pipeline is stalled (for instance waiting for a cache linefill to occur), the 
coprocessor must monitor a clock CPCLK, and a clock stall signal nCPWAIT. If 
nCPWAIT is LOW on the rising edge of CPCLK, the ARM920T pipeline is stalled 
and the coprocessor pipeline must not advance.



Coprocessor Interface 

ARM DDI 0151C Copyright © 2000, 2001 ARM Limited. All rights reserved. 7-3

Figure 7-1 indicates the timing for these signals and when the coprocessor pipeline 
must advance its state. In this diagram, Coproc clock shows the result of ORing 
CPCLK with the inverse of nCPWAIT. This is one technique for generating a clock 
that reflects the ARM9TDMI pipeline advancing.

Figure 7-1 ARM920T coprocessor clocking

Coprocessor instructions

There are three classes of coprocessor instructions:

LDC or STC Load coprocessor register from memory or store coprocessor 
register to memory.

MCR or MRC Register transfer between coprocessor and ARM processor core.

CDP Coprocessor data operation.

Examples of how a coprocessor must execute these instruction classes are given in:

• LDC/STC on page 7-5

• MCR/MRC on page 7-9

• Interlocked MCR on page 7-11

• CDP on page 7-13.

CPCLK

Coproc
clock

nCPWAIT

Coprocessor
pipeline



Coprocessor Interface 

7-4 Copyright © 2000, 2001 ARM Limited. All rights reserved. ARM DDI 0151C

7.1.3 Enabling and disabling the external coprocessor interface buses

The ARM920T macrocell has the CPEN input, coprocessor enable.

When tied LOW, the CPID and CPDOUT buses are held stable. When tied HIGH, the 
CPID and CPDOUT buses are enabled. This is meant as a power saving feature and is 
intended to be used statically within an embedded system.



Coprocessor Interface 

ARM DDI 0151C Copyright © 2000, 2001 ARM Limited. All rights reserved. 7-5

7.2 LDC/STC

The cycle timing for LDC/STC operations are shown in Figure 7-2.

Figure 7-2 ARM920T LDC/STC cycle timing

A A+4 A+8 A+C

DA[31:0]
(ARM920T

internal)

GO GO LAST Ignored

GO

CPCLK

nCPMREQ

CPID[27:0]

CHSDE[1:0]

CHSEX[1:0]

CPDOUT[31:0]
LDC/MCR

CPPASS

CPLATECANCEL

LDC

CPDIN[31:0]
STC/MRC

DnMREQ
(ARM920T

internal)

DMORE
(ARM920T

internal)

Decode Execute
(GO)

Execute
(GO)

Execute
(GO)

Execute
(LAST)

Memory Write

Decode Execute
(GO)

Execute
(GO)

Execute
(GO)

Execute
(LAST)

Memory Write

Coprocessor pipeline

ARM processor pipeline



Coprocessor Interface 

7-6 Copyright © 2000, 2001 ARM Limited. All rights reserved. ARM DDI 0151C

In Figure 7-2 on page 7-5, four words of data are transferred. The number of words 
transferred is determined by how the coprocessor drives the CHSDE[1:0] and 
CHSEX[1:0] buses.

As with all other instructions, the ARM920T processor core performs the main 
instruction decode off the rising edge of the clock during the Decode stage. From this, 
the ARM9TDMI CPU core commits to executing the instruction, and so performs an 
instruction Fetch. The coprocessor instruction pipeline keeps in step with the 
ARM920T by monitoring CPMREQ, a latched copy of the ARM9TDMI instruction 
memory request signal InMREQ. Whenever nCPMREQ is LOW, an instruction Fetch 
is occurring and CPID is updated with the fetched instruction in the next cycle. This 
means that the instruction currently on CPID enters the Decode stage of the coprocessor 
pipeline, and that the instruction in the Decode stage of the coprocessor pipeline enters 
its Execute stage.

During the Execute stage, the condition codes are combined with the flags to determine 
whether the instruction can be executed or not. The output CPPASS is asserted (HIGH) 
if the instruction in the Execute stage of the coprocessor pipeline:

• is a coprocessor instruction

• has passed its condition codes.

If a coprocessor instruction busy-waits, CPPASS is asserted on every cycle until the 
coprocessor instruction is executed. If an interrupt occurs during busy-waiting, 
CPPASS is driven LOW, and the coprocessor stops execution of the coprocessor 
instruction.

Another output, CPLATECANCEL, is used to cancel a coprocessor instruction when 
the instruction preceding it caused a Data Abort. This is valid on the rising edge of 
CPCLK on the cycle after the first Execute cycle of the coprocessor instructions. 
CPLATECANCEL is only asserted during the first Memory cycle of the execution of 
coprocessor instructions.

On the falling edge of the clock, the ARM920T processor core examines the 
coprocessor handshake signals CHSDE[1:0] or CHSEX[1:0]:

• if a new instruction is entering the Execute stage in the next cycle, it examines 
CHSDE[1:0]

• if the coprocessor instruction currently in Execute requires another Execute cycle, 
it examines CHSEX[1:0]. 



Coprocessor Interface 

ARM DDI 0151C Copyright © 2000, 2001 ARM Limited. All rights reserved. 7-7

The handshake signals encode one of four states:

ABSENT If there is no coprocessor attached that can execute the coprocessor 
instruction, the handshake signals indicate the ABSENT state. In this 
case, the ARM9TDMI processor core takes the undefined instruction 
exception.

WAIT If there is a coprocessor attached that can execute the instruction but not 
immediately, the coprocessor handshake signals must be driven to 
indicate that the ARM9TDMI processor core must stall until the 
coprocessor can catch up. This is known as the busy-wait condition. 

In this case, the ARM9TDMI processor core loops in an IDLE state, 
waiting for CHSEX[1:0] to be driven to another state, or for an interrupt 
to occur. If CHSEX[1:0] changes to ABSENT, the undefined instruction 
exception is taken. If CHSEX[1:0] changes to GO or LAST, the 
instruction proceeds as described below. 

If an interrupt occurs, the ARM9TDMI processor core is forced out of the 
busy-wait state. This is indicated to the coprocessor by the CPPASS 
signal going LOW. The instruction is restarted at a later date. Therefore 
the coprocessor must not commit to the instruction (change any of the 
coprocessor states) until it has seen CPPASS go HIGH, and the 
handshake signals indicate the GO or LAST condition.

GO The GO state indicates that the coprocessor can execute the instruction 
immediately, and that it requires another cycle of execution. Both the 
ARM9TDMI processor core and the coprocessor must also consider the 
state of the CPPASS signal before actually committing to the instruction. 
For an LDC or STC instruction, the coprocessor instruction must drive the 
handshake signals with GO when two or more words still have to be 
transferred. When only one more word is required, the coprocessor must 
drive the handshake signals with the LAST condition.

In phase 2 of the Execute stage, the ARM9TDMI processor core outputs 
the address for the LDC/STC. Also in this phase, DnMREQ is driven LOW, 
indicating to the memory system that a memory access is required at the 
data end of the device. The timing for the data on CPDOUT[31:0] for an 
LDC, and CPDIN[31:0] for an STC, is as shown in Figure 7-2 on page 7-5. 

LAST An LDC or STC can be used for more than one item of data. If this is the 
case, possibly after busy waiting, the coprocessor must drive the 
coprocessor handshake signals with a number of GO states and, in the 
penultimate cycle, with LAST. The LAST indicating that the next 
transfer is the final one. If there is only one transfer, the sequence is 
[WAIT,[WAIT,...]],LAST.



Coprocessor Interface 

7-8 Copyright © 2000, 2001 ARM Limited. All rights reserved. ARM DDI 0151C

7.2.1 Coprocessor handshake encoding

Table 7-1 shows how the handshake signals CHSDE[1:0] and CHSEX[1:0] are 
encoded.

If you do not attach a coprocessor to the ARM920T, then the handshake signals must be 
driven with ABSENT.

If you attach multiple coprocessors to the interface, the handshaking signals can be 
combined by ANDing bit 1, and ORing bit 0. In the case of two coprocessors that have 
handshaking signals CHSDE1, CHSEX1 and CHSDE2, CHSEX2 respectively:

CHSDE[1]<= CHSDE1[1] AND CHSDE2[1]

CHSDE[0]<= CHSDE1[0] OR CHSDE2[0]

CHSEX[1]<= CHSEX1[1] AND CHSEX2[1]

CHSEX[0]<= CHSEX1[0] OR CHSEX2[0].

Consequently, if the coprocessor does not recognize a coprocessor instruction, it must 
drive CHSDE[1:0] and CHSEX[1:0] with ABSENT.

Table 7-1 Handshake encoding

State [1:0]

ABSENT 10

WAIT 00

GO 01

LAST 11



Coprocessor Interface 

ARM DDI 0151C Copyright © 2000, 2001 ARM Limited. All rights reserved. 7-9

7.3 MCR/MRC

MCR/MRC cycles look very similar to STC/LDC. An example with a busy-wait state is shown 
in Figure 7-3. 

Figure 7-3 ARM920T MCR/MRC transfer timing

LAST Ignored

WAIT

CPCLK

nCPMREQ

CPID[31:0]

CHSDE[1:0]

CHSEX[1:0]

CPDOUT[31:0]
LDC/MCR

CPPASS

CPLATECANCEL

MCR/
MRC

CPDIN[31:0]
STC/MRC

Decode Execute
(WAIT)

Execute
(LAST)

Memory Write

Decode Execute
(WAIT)

Execute
(LAST)

Memory Write

Coprocessor pipeline

ARM processor pipeline



Coprocessor Interface 

7-10 Copyright © 2000, 2001 ARM Limited. All rights reserved. ARM DDI 0151C

In Figure 7-3 on page 7-9, first nCPMREQ is driven LOW to denote that the 
instruction on CPID is entering the Decode stage of the pipeline. The coprocessor 
decodes the new instruction and drives CHSDE[1:0] as required. 

In the next cycle nCPMREQ is driven LOW to denote that the instruction has now been 
issued to the Execute stage. If the condition codes pass, and the instruction is to be 
executed, the CPPASS signal is driven HIGH and the CHSDE[1:0] handshake bus is 
examined (it is ignored in all other cases). 

For any successive Execute cycles the CHSEX[1:0] handshake bus is examined. When 
the LAST condition is observed, the instruction is committed. In the case of an MCR, 
the CPDOUT[31:0] bus is driven with the register data. In the case of an MRC, 
CPDIN[31:0] is sampled at the end of the ARM920T Memory stage and written to the 
destination register during the next cycle.

For an MCR or MRC, with no busy-wait states, the coprocessor drives CHSDE[1:0] with 
LAST. This commits the instruction for execution in the next cycle. The value on 
CHSEX[1:0] is ignored.



Coprocessor Interface 

ARM DDI 0151C Copyright © 2000, 2001 ARM Limited. All rights reserved. 7-11

7.4 Interlocked MCR

If the data for an MCR operation is not available inside the ARM9TDMI pipeline during 
its first Decode cycle, the ARM920T pipeline interlocks for one or more cycles until the 
data is available. An example of this is where the register being transferred is the 
destination from a preceding LDR instruction. In this situation the MCR instruction enters 
the Decode stage of the coprocessor pipeline, and remains there for a number of cycles 
before entering the Execute stage. Figure 7-4 on page 7-12 gives an example of an 
interlocked MCR. In this example the MCR busy-waits the ARM9TDMI. When the 
instruction enters the Decode stage of the coprocessor pipeline, the coprocessor drives 
CHSDE[1:0] with WAIT. Due to an interlock in the ARM9TDMI, the instruction 
remains in Decode for an extra cycle. This is signaled to the coprocessor by nCPMREQ 
going HIGH, holding the instruction in the Decode stage of the coprocessor pipeline 
follower. The coprocessor signals WAIT to the ARM9TDMI during its second Decode 
cycle. The interlock in the ARM9TDMI resolves, nCPMREQ goes LOW, and the 
instruction moves from Decode into Execute.



Coprocessor Interface 

7-12 Copyright © 2000, 2001 ARM Limited. All rights reserved. ARM DDI 0151C

Figure 7-4 ARM920T interlocked MCR

LAST Ignored

WAIT/
Ignored

CPCLK

nCPMREQ

CPID[31:0]

CHSDE[1:0]

CHSEX[1:0]

CPDOUT[31:0]
LDC/MCR

CPPASS

CPLATECANCEL

MCR/
MRC

CPDIN[31:0]
STC/MRC

Decode Decode Execute
(WAIT)

Execute
(LAST)

Memory

Decode
(interlock)

Decode Execute
(WAIT)

Memory Write

Coprocessor pipeline

ARM processor pipeline

WAIT

Execute
(LAST)

Write



Coprocessor Interface 

ARM DDI 0151C Copyright © 2000, 2001 ARM Limited. All rights reserved. 7-13

7.5 CDP

CDPs normally execute in a single cycle. Like all other instructions, nCPMREQ is 
driven LOW to signal when an instruction is entering the Decode and then the Execute 
stage of the pipeline:

• if the instruction is to be executed, the CPPASS signal is driven HIGH during 
phase 2 of the Execute stage

• if the coprocessor can execute the instruction immediately it drives CHSDE[1:0] 
with LAST

• if the instruction requires a busy-wait cycle, the coprocessor drives CHSDE[1:0] 
with WAIT and then CHSEX[1:0] with LAST.

Figure 7-5 on page 7-14 shows a CDP that is canceled due to the previous instruction 
causing a Data Abort. The CDP instruction enters the Execute stage of the pipeline, and 
is signaled to execute by CPPASS. In the following phase CPLATECANCEL is 
asserted. This causes the coprocessor to terminate execution of the CDP instruction, and 
for it to cause no state changes to the coprocessor.



Coprocessor Interface 

7-14 Copyright © 2000, 2001 ARM Limited. All rights reserved. ARM DDI 0151C

Figure 7-5 ARM920T late canceled CDP

Ignored

LAST

CPCLK

nCPMREQ

CPID[31:0]

CHSDE[1:0]

CHSEX[1:0]

CPPASS

CPLATECANCEL

CPRT

Dabort
(ARM920T

internal)

Decode Execute Memory
(Latecancelled)

Decode Execute

CDP: Coprocessor pipeline

CDP: ARM processor pipeline

Execute Memory Exception
entry start

Exception
continuesLDR with Data Abort



Coprocessor Interface 

ARM DDI 0151C Copyright © 2000, 2001 ARM Limited. All rights reserved. 7-15

7.6 Privileged instructions

The coprocessor can restrict certain instructions for use in priv ileged modes only. To 
do this, the coprocessor must track the nCPTRANS output. Figure 7-6 shows how 
nCPTRANS changes after a mode change.

Figure 7-6 ARM920T privileged instructions

Ignored

Ignored

CPCLK

nCPMREQ

CPID[31:0]

CHSDE[1:0]

CHSEX[1:0]

CPPASS

CPLATECANCEL

CPRT

Decode Decode Decode Execute Memory

Decode Decode Decode Memory Write

CDP: Coprocessor pipeline

CDP: ARM processor pipeline

Ignored

Execute

Write

nCPTRANS Old mode New mode

LAST

Execute Execute
(Cycle 2)

Execute
(Cycle 3)

Write
Mode change

Memory

*



Coprocessor Interface 

7-16 Copyright © 2000, 2001 ARM Limited. All rights reserved. ARM DDI 0151C

In Figure 7-6 on page 7-15 the mode change (marked with an asterisk) occurs as 
follows:

• For mode changes that do not use an MSR. The mode changes after the first execute 
cycle.

• For mode changes that use an MSR. The mode changes after the second execute 
cycle.

Note
 The first two CHSDE[1:0] responses are ignored by the ARM920T because it is only 
the final CHSDE[1:0] response, as the instruction moves from Decode into Execute, 
that is relevant. This allows the coprocessor to change its response as nCPTRANS 
changes.



Coprocessor Interface 

ARM DDI 0151C Copyright © 2000, 2001 ARM Limited. All rights reserved. 7-17

7.7 Busy-waiting and interrupts

The coprocessor is permitted to stall (or busy-wait) the processor during the execution 
of a coprocessor instruction if, for example, it is still busy with an earlier coprocessor 
instruction. To do so, the coprocessor associated with the Decode stage instruction must 
drive WAIT in CHSDE[1:0]. When the instruction concerned enters the Execute stage 
of the pipeline, the coprocessor can drive WAIT onto CHSEX[1:0] for as many cycles 
as required to keep the instruction in the busy-wait loop.

For interrupt latency reasons the coprocessor can be interrupted while  busy-waiting, 
causing the instruction to be abandoned. Abandoning execution is achieved through 
CPPASS. The coprocessor must monitor the state of CPPASS during every busy-wait 
cycle. If it is HIGH, the instruction must still be executed. If it is LOW, the instruction 
must be abandoned. Figure 7-7 on page 7-18 shows a busy-waited coprocessor 
instruction being abandoned due to an interrupt.



Coprocessor Interface 

7-18 Copyright © 2000, 2001 ARM Limited. All rights reserved. ARM DDI 0151C

Figure 7-7 ARM920T busy waiting and interrupts

WAIT WAIT

WAIT

CPCLK

nCPMREQ

CPID[31:0]

CHSDE[1:0]

CHSEX[1:0]

CPDOUT[31:0]
LDC/MCR

CPPASS

CPLATECANCEL

CPInstr

CPDIN[31:0]
STC/MRC

Decode Execute
(WAIT)

Execute
(WAIT)

Execute
(WAIT)

Execute
(WAIT)

Decode Execute
(WAIT)

Execute
(WAIT)

Execute
(WAIT)

Execute
interrupted

Coprocessor pipeline

ARM processor pipeline

WAIT Ignored

Exception
entry

Abandoned



ARM DDI 0151C Copyright © 2000, 2001 ARM Limited. All rights reserved. 8-1

Chapter 8 
Trace Interface Port

This chapter gives a brief description of the Embedded Trace Macrocell (ETM) support 
for the ARM920T processor. It contains the following section:

• About the ETM interface on page 8-2.



Trace Interface Port 

8-2 Copyright © 2000, 2001 ARM Limited. All rights reserved. ARM DDI 0151C

8.1 About the ETM interface

The ARM920T trace interface port enables simple connection of an ETM9 to an 
ARM920T Rev 1. This interface does not exist on ARM920T Rev 0. The ARM9 
Embedded Trace Macrocell (ETM9) provides instruction and data trace for the 
ARM9TDMI family of processors.

The interface is made up as follows:

• ETMPWRDOWN input to the ARM920T

• ETMCLOCK output to the ETM9

• ETMnWAIT output to the ETM9

• ETM<signal> outputs to the ETM9.

When ETMPWRDOWN is HIGH, the ETMCLOCK output and the ETM<signal> 
outputs are held stable. When ETMPWRDOWN is LOW, the ETMCLOCK and 
ETM<signal> outputs are enabled. This enables system power to be reduced when the 
ETM9 is not used. When the ETM9 is incorporated within a system, the ARM debug 
tools control ETMPWRDOWN, automatically setting the signal LOW at the start of a 
debug session. If the ETM9 is not incorporated within a system, then 
ETMPWRDOWN must be tied HIGH.

The ETMCLOCK output to the ETM9 is used by the ETM9 to sample the 
ETM<signal> outputs on the rising edge of ETMCLOCK, when ETMnWAIT is 
HIGH. ETMnWAIT is the nWAIT input signal to the ARM9TDMI, so this allows 
cycle-accurate tracing using ETMCLOCK. The ETMCLOCK signal is never 
stretched.

The ETM<signal> outputs are registered so that they can be sampled on the rising edge 
of ETMCLOCK.

The ETM<signal> timing is shown in Timing definitions for the ARM920T Trace 
Interface Port on page 13-26 and signal descriptions in ARM920T Trace Interface Port 
signals on page A-13.

The ETM9 (Rev0/0a) Technical Reference Manual contains details of how to integrate 
an ETM9 with an ARM920T Rev 1, including the pin correlation.



ARM DDI 0151C Copyright © 2000, 2001 ARM Limited. All rights reserved. 9-1

Chapter 9 
Debug Support

This chapter describes the debug support for the ARM920T, including the 
EmbeddedICE macrocell. It contains the following sections:

• About debug on page 9-2

• Debug systems on page 9-3

• Debug interface signals on page 9-5

• Scan chains and JTAG interface on page 9-11

• The JTAG state machine on page 9-12

• Test data registers on page 9-19

• ARM920T core clocks on page 9-42

• Clock switching during debug on page 9-43

• Clock switching during test on page 9-44

• Determining the core state and system state on page 9-45

• Exit from debug state on page 9-48

• The behavior of the program counter during debug on page 9-51

• EmbeddedICE macrocell on page 9-54

• Vector catching on page 9-62

• Single-stepping on page 9-63

• Debug communications channel on page 9-64.



Debug Support 

9-2 Copyright © 2000, 2001 ARM Limited. All rights reserved. ARM DDI 0151C

9.1 About debug

Debug support is implemented using the ARM9TDMI CPU core embedded within the 
ARM920T. Throughout this chapter therefore, ARM9TDMI refers to this core.

The ARM920T debug interface is based on IEEE Std. 1149.1- 1990, Standard Test 
Access Port and Boundary-Scan Architecture. See this standard for an explanation of 
the terms used in this chapter and for a description of the TAP controller states.

The ARM920T contains hardware extensions for advanced debugging features. These 
are intended to ease the development of application software, operating systems, and the 
hardware itself.

The debug extensions allow the core to be stopped by one of the following:

• a given instruction fetch (breakpoint)

• a data access (watchpoint)

• asynchronously by a debug request. 

When this happens, the ARM920T is said to be in debug state. At this point, you can 
examine the internal state of the core and the external state of the system. When 
examination is complete, you can restore the core and system state and resume program 
execution.

The ARM920T is forced into debug state either by a request on one of the external 
debug interface signals, or by an internal functional unit known as the EmbeddedICE 
macrocell. When in debug state, the core isolates itself from the memory system. You 
can then examine the core can while all other system activity continues as normal. 

You can examine the internal state of the ARM920T using a JTAG-style serial interface. 
This allows instructions to be serially inserted into the pipeline of the core without using 
the external data bus. Therefore, when in debug state, you can insert a store-multiple 
(STM) into the instruction pipeline to export the contents of the ARM9TDMI registers. 
This data can be serially shifted out without affecting the rest of the system. 



Debug Support 

ARM DDI 0151C Copyright © 2000, 2001 ARM Limited. All rights reserved. 9-3

9.2 Debug systems

The ARM920T forms one component of a debug system that interfaces from the 
high-level debugging performed by you, to the low-level interface supported by the 
ARM920T. A typical system is shown in Figure 9-1.

Figure 9-1 Typical debug system

This typical system has three parts:

• The debug host on page 9-3

• The protocol converter on page 9-4

• The ARM920T processor on page 9-4.

9.2.1 The debug host

The debug host is a computer, for example a personal computer, running a software 
debugger such as armsd, for example, or ADW. The debug host allows you to issue 
high-level commands such as set breakpoint at location XX, or examine the contents of 
memory from 0x0 to 0x100.

Host computer running armsd or ADWDebug
host

Protocol
converter

Debug
host

Debug
target

for example, Multi-ICE

Development system containing ARM920T



Debug Support 

9-4 Copyright © 2000, 2001 ARM Limited. All rights reserved. ARM DDI 0151C

9.2.2 The protocol converter

The debug host is connected to the ARM920T development system using an interface 
(an RS232, for example). The messages broadcast over this connection must be 
converted to the interface signals of the ARM920T. This function is performed by a 
protocol converter, for example, Multi-ICE.

9.2.3 The ARM920T processor

The ARM920T processor, with hardware debug extensions, is the lowest level of the 
system. The debug extensions allow you to:

• stall the core from program execution

• examine its internal state and the state of the memory system

• resume program execution.

The debug host and the protocol converter are system-dependent. 



Debug Support 

ARM DDI 0151C Copyright © 2000, 2001 ARM Limited. All rights reserved. 9-5

9.3 Debug interface signals

There are four primary external signals associated with the debug interface:

• IEBKPT, DEWPT, and EDBGRQ. The system can use these to ask the 
ARM920T to enter debug state.

• DBGACK. The ARM920T uses this signal to flag back to the system when it is 
in debug state.

9.3.1 Entry into debug state on breakpoint

Any instruction being fetched from memory is latched at the end of phase 2. To apply a 
breakpoint to that instruction, the breakpoint signal must be asserted by the end of the 
following phase 1. This minimizes the setup time, giving the EmbeddedICE macrocell 
an entire phase to perform the comparison. This is shown in Figure 9-2.

Figure 9-2 Breakpoint timing

GCLK

IA[31:0]

IEBKPT

DBGACK

w1

D1 E1

Edebug2Edebug1Ddebug

ID[31:0] 1 I 42 3

w2 wI

M1 W1F1

F2 D2 E2 M2 W2

FI DI EI MI WI



Debug Support 

9-6 Copyright © 2000, 2001 ARM Limited. All rights reserved. ARM DDI 0151C

You can build external logic, such as additional breakpoint comparators, to extend the 
functionality of the EmbeddedICE macrocell. You must apply the external logic output 
to the IEBKPT input. This signal is ORed with the internally generated breakpoint 
signal before being applied to the ARM920T core control logic.

A breakpointed instruction is allowed to enter the Execute stage of the pipeline, but any 
state change as a result of the instruction is prevented. All writes from previous 
instructions complete as normal.

The Decode cycle of the debug entry sequence occurs during the Execute cycle of the 
breakpointed instruction. The latched breakpoint signal forces the processor to start the 
debug sequence.

9.3.2 Breakpoints and exceptions

A breakpointed instruction might have a Prefetch Abort associated with it. If so, the 
Prefetch Abort takes priority and the breakpoint is ignored. (If there is a Prefetch Abort, 
instruction data might be invalid, the breakpoint might have been data-dependent, and 
as the data might be incorrect, the breakpoint might have been triggered incorrectly.)

SWI and undefined instructions are treated in the same way as any other instruction that 
might have a breakpoint set on it. Therefore, the breakpoint takes priority over the SWI 
or undefined instruction.

On an instruction boundary, if there is a breakpointed instruction and an interrupt (IRQ 
or FIQ), the interrupt is taken and the breakpointed instruction is discarded. When the 
interrupt has been serviced, the execution flow is returned to the original program. 
This means that the instruction that has been breakpointed is fetched again, and if the 
breakpoint is still set, the processor enters debug state when it reaches the Execute stage 
of the pipeline.

When the processor has entered debug state, it is important that additional interrupts do 
not affect the instructions executed. For this reason, as soon as the processor enters 
debug state, interrupts are disabled, although the state of the I and F bits in the Program 
Status Register (PSR) are not affected.

9.3.3 Watchpoints

Entry into debug state following a watchpointed memory access is imprecise. This is 
necessary because of the nature of the pipeline and the timing of the watchpoint signal. 



Debug Support 

ARM DDI 0151C Copyright © 2000, 2001 ARM Limited. All rights reserved. 9-7

After a watchpointed access, the next instruction in the processor pipeline is always 
allowed to complete execution. Where this instruction is a single-cycle data-processing 
instruction, entry into debug state is delayed for one cycle while the instruction 
completes. The timing of debug entry following a watchpointed load in this case is 
shown in Figure 9-3 on page 9-8.

Note
 Although instruction 5 enters the Execute state, it is not executed, and there is no state 
update as a result of this instruction. When the debugging session is complete, normal 
continuation involves a return to instruction 5, the next instruction in the code sequence 
to be executed.

The instruction following the instruction that generated the watchpoint might have 
modified the Program Counter (PC). If this happens, it is not possible to determine the 
instruction that caused the watchpoint. A timing diagram showing debug entry after a 
watchpoint where the next instruction is a branch is shown in Figure 9-4 on page 9-9. 
However, you can always restart the processor. 

When the processor has entered debug state, the ARM920T core can be interrogated to 
determine its state. In the case of a watchpoint, the PC contains a value that is five 
instructions on from the address of the next instruction to be executed. Therefore, if on 
entry to debug state, in ARM state, the instruction SUB PC, PC, #20 is scanned in and the 
processor restarted, execution flow returns to the next instruction in the code sequence.



Debug Support 

9-8 Copyright © 2000, 2001 ARM Limited. All rights reserved. ARM DDI 0151C

Figure 9-3 Watchpoint entry with data processing instruction

DD[31:0]

GCLK

InMREQ

ID[31:0]

DA[31:0]

1 2 LDR Dp 5 6 7 8

DDIN[31:0]

Watchpoint

DBGACK

E1F1 D1 W1M1

D2F2 M2E2

ELDRFLDR DLDR WLDRMLDR

DDpFDp MDpEDp

E5F5 D5 W5M5

W2

WDp

Ddebug Edebug2Edebug1

wLDRw1 w2 w5wDp w6



Debug Support 

ARM DDI 0151C Copyright © 2000, 2001 ARM Limited. All rights reserved. 9-9

Figure 9-4 Watchpoint entry with branch

9.3.4 Watchpoints and exceptions

If there is an abort in the data access together with a watchpoint, the watchpoint 
condition is latched, the exception entry sequence performed, and then the processor 
enters debug state. If there is an interrupt pending, again the ARM920T processor 
allows the exception entry sequence to occur and then enters debug state.

DD[31:0]

GCLK

InMREQ

IA[31:1]

DA[31:0]

A+4 T T+8

DDIN[31:0]

Watchpoint

DBGACK

ELDRFLDR DLDR WLDRMLDR

DBFB MBEB

FT ETDT

Ddebug

WB

Edebug1

A A+8 T+4 T+C

ID[31:0] LDR B X X T T+1 T+2 T+3

Edebug2



Debug Support 

9-10 Copyright © 2000, 2001 ARM Limited. All rights reserved. ARM DDI 0151C

9.3.5 Debug request

A debug request can take place through the EmbeddedICE macrocell or by asserting the 
EDBGRQ signal. The request is synchronized and passed to the processor. Debug 
request takes priority over any pending interrupt. Following synchronization, the core 
enters debug state when the instruction at the Execute stage of the pipeline has 
completely finished executing (when Memory and Write stages of the pipeline have 
completed). While waiting for the instruction to finish executing, no more instructions 
are issued to the Execute stage of the pipeline.

9.3.6 Actions of the ARM920T in debug state

When the ARM920T is in debug state, both memory interfaces indicate internal cycles. 
This allows the rest of the memory system to ignore the ARM9TDMI core and function 
as normal. Because the rest of the system continues operation, the ARM9TDMI core 
ignores aborts and interrupts.

The BIGEND signal must not be changed by the system while in debug state. If it 
changes there might be a synchronization problem, and the ARM920T (as seen by the 
programmer) changes without the knowledge of the debugger. The BnRES signal must 
also be held stable during debug. If the system applies reset to the ARM920T (BnRES 
is driven LOW), the state of the ARM920T changes without the knowledge of the 
debugger.

When instructions are executed in debug state, the ARM9TDMI core changes 
asynchronously to the memory system outputs (except for InMREQ, ISEQ, 
DnMREQ, and DSEQ that change synchronously from GCLK). For example, every 
time a new instruction is scanned into the pipeline, the instruction address bus changes. 
If the instruction is a load or store operation, the data address bus changes as the 
instruction executes. Although this is asynchronous, it does not affect the system, 
because both interfaces indicate internal cycles. You must take care when designing the 
memory controller to ensure that this does not become a problem.



Debug Support 

ARM DDI 0151C Copyright © 2000, 2001 ARM Limited. All rights reserved. 9-11

9.4 Scan chains and JTAG interface

There are six scan chains inside the ARM920T processor. These allow  testing, 
debugging, and programming of the EmbeddedICE macrocell watchpoint units. The 
scan chains are controlled by a JTAG-style Test Access Port (TAP) controller. In 
addition, support is provided for an optional seventh scan chain. This is intended to be 
used for an external boundary scan chain around the pads of a packaged device. The 
signals provided for this scan chain are described in Scan chain 3 on page 9-30.

The six scan chains of the ARM920T processor are called scan chain 0, 1, 2, 3, 4, and 
15.

Note
 The ARM920T TAP controller supports 32 scan chains. Scan chains 0 to 15 have been 
reserved for use by ARM. Any extension scan chains must be implemented in the 
remaining space. The SCREG[4:0] signals indicate the scan chain being accessed.



Debug Support 

9-12 Copyright © 2000, 2001 ARM Limited. All rights reserved. ARM DDI 0151C

9.5 The JTAG state machine

The process of serial test and debug is best explained in conjunction with the JTAG state 
machine. Figure 9-5 shows the state transitions that occur in the TAP controller.

The state numbers are also shown on the diagram. These are output from the ARM920T 
on the TAPSM[3:0] bits.

Figure 9-5 Test access port (TAP) controller state transitions1

1. From IEEE Std 1149.1-1990. Copyright 1999IEEE. All rights reserved.

Select-DR-Scan
0x7

Capture-DR
0x6

Shift-DR
0x2

Exit1-DR
0x1

Pause-DR
0x3

Exit2-DR
0x0

Update-DR
0x5

Run-Test/Idle
0xC

Test-Logic-Reset
0xF

tms=0

tms=0

tms=1

tms=0

tms=1

tms=1

Select-IR-Scan
0x4

Capture-IR
0xE

Shift-IR
0xA

Exit1-IR
0x9

Pause-IR
0xB

Exit2-IR
0x8

Update-IR
0xD

tms=0

tms=0

tms=1

tms=0

tms=1

tms=1

tms=0 tms=0

tms=0 tms=0

tms=1

tms=0

tms=1
tms=0

tms=1

tms=1

tms=0

tms=1 tms=1

tms=1 tms=0 tms=1 tms=0

tms=1

tms=1

tms=0



Debug Support 

ARM DDI 0151C Copyright © 2000, 2001 ARM Limited. All rights reserved. 9-13

9.5.1 Reset

The JTAG interface includes a state-machine controller, the TAP controller. To force the 
TAP controller into the correct state after power-up of the device, a reset pulse must be 
applied to the nTRST signal, or the JTAG state machine must be cycled through the test 
logic reset state. Before the JTAG interface can be used, nTRST must be driven LOW, 
and then HIGH again. If you do not intend using the boundary scan interface, you can 
tie the nTRST input permanently LOW. 

Note

 A clock on TCK is not required to reset the device.

The action of reset is as follows:

1. System mode is selected. The boundary scan chain cells do not intercept any of 
the signals passing between the external system and the core. 

2. The IDCODE instruction is selected. If the TAP controller is put into the 
SHIFT-DR state and TCK is pulsed, the contents of the ID register are clocked 
out of TDO.

9.5.2 Pullup resistors

The IEEE 1149.1 standard effectively requires TDI and TMS to have internal pullup 
resistors. In order to minimize static current draw, these resistors are not fitted to the 
ARM9TDMI core. Accordingly, the four inputs to the test interface (the TDO, TDI, and 
TMS signals, plus TCK) must all be driven to valid logic levels to achieve normal 
circuit operation.

9.5.3 Instruction register

The instruction register is four bits in length. There is no parity bit. The fixed value 
loaded into the instruction register during the CAPTURE-IR controller state is 0001.



Debug Support 

9-14 Copyright © 2000, 2001 ARM Limited. All rights reserved. ARM DDI 0151C

9.5.4 Public instructions

Table 9-1 shows the public instructions that are supported.

In the descriptions that follow, TDI and TMS are sampled on the rising edge of TCK 
and all output transitions on TDO occur as a result of the falling edge of TCK.

EXTEST (0000)

The selected scan chain is placed in test mode by the EXTEST instruction. The 
EXTEST instruction connects the selected scan chain between TDI and TDO.

When the instruction register is loaded with the EXTEST instruction, all the scan cells 
are placed in their test mode of operation.

In the CAPTURE-DR state, inputs from the system logic and outputs from the output 
scan cells to the system are captured by the scan cells. 

In the SHIFT-DR state, the previously captured test data is shifted out of the scan chain 
on TDO, while new test data is shifted in on the TDI input. This data is applied 
immediately to the system logic and system pins. 

Table 9-1 Public instructions

Instruction Binary code

EXTEST 0000

SCAN_N 0010

INTEST 1100

IDCODE 1110

BYPASS 1111

CLAMP 0101

HIGHZ 0111

CLAMPZ 1001

SAMPLE/PRELOAD 0011

RESTART 0100



Debug Support 

ARM DDI 0151C Copyright © 2000, 2001 ARM Limited. All rights reserved. 9-15

SCAN_N (0010)

This instruction connects the scan path select register between TDI and TDO. 

During the CAPTURE-DR state, the fixed value 10000 is loaded into the register. 

During the SHIFT-DR state, the ID number of the desired scan path is shifted into the 
scan path select register. 

In the UPDATE-DR state, the scan register of the selected scan chain is connected 
between TDI and TDO, and remains connected until a subsequent SCAN_N instruction 
is issued. On reset, scan chain 3 is selected by default. The scan path select register is 
five bits long in this implementation, although no finite length is specified.

INTEST (1100)

The selected scan chain is placed in test mode by the INTEST instruction. The INTEST 
instruction connects the selected scan chain between TDI and TDO.

When the instruction register is loaded with the INTEST instruction, all the scan cells 
are placed in their test mode of operation.

In the CAPTURE-DR state, the value of the data applied from the core logic to the 
output scan cells, and the value of the data applied from the system logic to the input 
scan cells is captured.

In the SHIFT-DR state, the previously captured test data is shifted out of the scan chain 
on the TDO pin, while new test data is shifted in on the TDI pin.

IDCODE (1110)

The IDCODE instruction connects the device identification register (or ID register) 
between TDI and TDO. The ID register is a 32-bit register that allows the manufacturer, 
part number, and version of a component to be determined through the TAP. The ID 
register is loaded from the TAPID[31:0] input bus. This must be tied to a constant value 
that represents the unique JTAG IDCODE for the device.

When the instruction register is loaded with the IDCODE instruction, all the scan cells 
are placed in their normal (system) mode of operation.

In the CAPTURE-DR state, the device identification code is captured by the ID register. 

In the SHIFT-DR state, the previously captured device identification code is shifted out 
of the ID register on the TDO pin, while data is shifted in on the TDI pin into the ID 
register. 

In the UPDATE-DR state, the ID register is unaffected.



Debug Support 

9-16 Copyright © 2000, 2001 ARM Limited. All rights reserved. ARM DDI 0151C

BYPASS (1111)

The BYPASS instruction connects a 1-bit shift register (the bypass register) between 
TDI and TDO.

When the BYPASS instruction is loaded into the instruction register, all the scan cells 
are placed in their normal (system) mode of operation. This instruction has no effect on 
the system pins. 

In the CAPTURE-DR state, a logic 0 is captured by the bypass register. 

In the SHIFT-DR state, test data is shifted into the bypass register on TDI and out on 
TDO after a delay of one TCK cycle. The first bit shifted out is a zero. 

The bypass register is not affected in the UPDATE-DR state. 

Note
 All unused instruction codes default to the BYPASS instruction.

CLAMP (0101)

This instruction connects a 1-bit shift register (the bypass register) between TDI and 
TDO.

When the CLAMP instruction is loaded into the instruction register, the state of all the 
output signals is defined by the values previously loaded into the currently-loaded scan 
chain. 

Note
 This instruction must only be used when scan chain 0 is the currently selected scan 
chain.

In the CAPTURE-DR state, a logic 0 is captured by the bypass register. 

In the SHIFT-DR state, test data is shifted into the bypass register on TDI and out on 
TDO after a delay of one TCK cycle. The first bit shifted out is a zero. 

The bypass register is not affected in the UPDATE-DR state.

HIGHZ (0111)

This instruction connects a 1-bit shift register (the bypass register) between TDI and 
TDO.



Debug Support 

ARM DDI 0151C Copyright © 2000, 2001 ARM Limited. All rights reserved. 9-17

When the HIGHZ instruction is loaded into the instruction register and scan chain 0 is 
selected, all ARM920T outputs are driven to the high impedance state and the external 
HIGHZ signal is driven HIGH. This is as if the signal TBE had been driven LOW.

In the CAPTURE-DR state, a logic 0 is captured by the bypass register. In the 
SHIFT-DR state, test data is shifted into the bypass register on TDI and out on TDO 
after a delay of one TCK cycle. The first bit shifted out is a zero. 

The bypass register is not affected in the UPDATE-DR state.

CLAMPZ (1001)

This instruction connects a 1-bit shift register (the bypass register) between TDI and 
TDO.

When the CLAMPZ instruction is loaded into the instruction register and scan chain 0 
is selected, all the 3-state outputs (as described above) are placed in their inactive state, 
but the data supplied to the outputs is derived from the scan cells. The purpose of this 
instruction is to ensure that, during production test, each output can be disabled when 
its data value is either a logic 0 or logic 1.

In the CAPTURE-DR state, a logic 0 is captured by the bypass register. 

In the SHIFT-DR state, test data is shifted into the bypass register on TDI and out on 
TDO after a delay of one TCK cycle. The first bit shifted out is a zero. 

The bypass register is not affected in the UPDATE-DR state.

SAMPLE/PRELOAD (0011)

When the instruction register is loaded with the SAMPLE/PRELOAD instruction, all 
the scan cells of the selected scan chain are placed in the normal mode of operation.

In the CAPTURE-DR state, a snapshot of the signals of the boundary scan is taken on 
the rising edge of TCK. Normal system operation is unaffected. 

In the SHIFT-DR state, the sampled test data is shifted out of the boundary scan on the 
TDO pin, while new data is shifted in on the TDI pin to preload the boundary scan 
parallel input latch. This data is not applied to the system logic or system pins while the 
SAMPLE/PRELOAD instruction is active. 

This instruction must be used to preload the boundary scan register with known data 
prior to selecting INTEST or EXTEST instructions.



Debug Support 

9-18 Copyright © 2000, 2001 ARM Limited. All rights reserved. ARM DDI 0151C

RESTART (0100)

This instruction is used to restart the processor on exit from debug state. The RESTART 
instruction connects the bypass register between TDI and TDO and the TAP controller 
behaves as if the BYPASS instruction is loaded. The processor resynchronizes back to 
the memory system when the RUN-TEST/IDLE state is entered.



Debug Support 

ARM DDI 0151C Copyright © 2000, 2001 ARM Limited. All rights reserved. 9-19

9.6 Test data registers

You can connect the following test data registers between TDI and TDO: 

• Bypass register on page 9-19

• ARM920T device identification (ID) code register on page 9-19

• Instruction register on page 9-20

• Scan chain select register on page 9-20

• Scan chains 0, 1, 2, and 3 on page 9-23

• Scan chain 6 on page 9-31

• Scan chains 4 and 15, the ARM920T memory system on page 9-31.

9.6.1 Bypass register

Purpose Bypasses the device during scan testing by providing a path 
between TDI and TDO.

Length 1 bit.

Operating mode When the BYPASS instruction is the current instruction in the 
instruction register, serial data is transferred from TDI to TDO in 
the SHIFT-DR state with a delay of one TCK cycle. There is no 
parallel output from the bypass register. A logic 0 is loaded from 
the parallel input of the bypass register in CAPTURE-DR state.

9.6.2 ARM920T device identification (ID) code register

Purpose Reads the 32-bit device identification code. No programmable 
supplementary identification code is provided.

Length 32 bits.

Operating mode When the IDCODE instruction is current, the ID register is 
selected as the serial path between TDI and TDO. There is no 
parallel output from the ID register. The 32-bit identification code 
is loaded into the register from the parallel inputs of the 
TAPID[31:0] input bus during the CAPTURE-DR state.



Debug Support 

9-20 Copyright © 2000, 2001 ARM Limited. All rights reserved. ARM DDI 0151C

The IEEE format of the ID register is shown in Table 9-2.

The TAPID[31:0] pins allow you to set this value when the macrocell is instantiated in 
a design.

9.6.3 Instruction register

Purpose Changes the current TAP instruction.

Length 4 bits.

Operating mode When in SHIFT-IR state, the instruction register is selected as the 
serial path between TDI and TDO.

During the CAPTURE-IR state, the value b0001 is loaded into this register. This is 
shifted out during SHIFT-IR (least significant bit first), while a new instruction is 
shifted in (least significant bit first). During the UPDATE-IR state, the value in the 
instruction register becomes the current instruction. On reset, IDCODE becomes the 
current instruction.

9.6.4 Scan chain select register

Purpose Changes the current active scan chain.

Length 5 bits.

Operating mode After SCAN_N has been selected as the current instruction, when 
in SHIFT-DR state, the scan chain select register is selected as the 
serial path between TDI and TDO.

During the CAPTURE-DR state, the value b10000 is loaded into this register. This is 
shifted out during SHIFT-DR, least significant bit first, while a new value is shifted in, 
least significant bit first. 

Table 9-2 ID code register

Bits Function Value

31:28 Specification revision 0x1

27:12 Product code 0x0920

11:1 Manufacturer Default = 0b11110000111

0 IEEE standard specified 0b1



Debug Support 

ARM DDI 0151C Copyright © 2000, 2001 ARM Limited. All rights reserved. 9-21

During the UPDATE-DR state, the value in the register selects a scan chain to become 
the currently active scan chain. All additional instructions such as INTEST then apply 
to that scan chain.

The currently selected scan chain only changes when a SCAN_N instruction is 
executed, or a reset occurs. On reset, scan chain 3 is selected as the active scan chain.

The number of the currently selected scan chain is reflected on the SCREG[4:0] output 
bus. You can use the TAP controller to drive external scan chains in addition to those 
within the ARM920T macrocell. The external scan chain must be assigned a number 
and control signals for it, and can be derived from SCREG[4:0], IR[3:0], 
TAPSM[3:0], TCK1, and TCK2.

The list of scan chain numbers allocated by ARM are shown in Table 9-3 on page 9-23. 
An external scan chain can take any other number. The serial data stream applied to the 
external scan chain is made present on SDIN. The serial data back from the scan chain 
must be presented to the TAP controller on the SDOUTBS input. 

The scan chain present between SDIN and SDOUTBS is connected between TDI and 
TDO whenever scan chain 3 is selected, or when any of the unassigned scan chain 
numbers is selected. If there is more than one external scan chain, you must build a 
multiplexor externally to apply the desired scan chain output to SDOUTBS. You can 
control the multiplexor by decoding SCREG[4:0]. The structure is shown in Figure 9-6 
on page 9-22.



Debug Support 

9-22 Copyright © 2000, 2001 ARM Limited. All rights reserved. ARM DDI 0151C

Figure 9-6 External scan chain multiplexor

TAP
controller

TAP
controller

TDI
TMS
TCK

SDOUTBS

ARMTDO

SCREG

SCREG

ARM920T

ETM9

TDO

TDO

TDO

6!6

0 1 2 4 15

3, 5-14,
16-31

3 !3

SCREG

Scan chain 3

SDOUTBSSDIN

SDIN



Debug Support 

ARM DDI 0151C Copyright © 2000, 2001 ARM Limited. All rights reserved. 9-23

Scan chain number allocations are shown in Table 9-3.

9.6.5 Scan chains 0, 1, 2, and 3

These scan chains allow serial access to the core logic, and to the EmbeddedICE 
macrocell for programming purposes. Each scan cell can perform two basic functions:

• capture

• shift.

Scan chain 0

Purpose Primarily for inter-device testing (EXTEST), and testing the 
ARM9TDMI core (INTEST). Scan chain 0 is selected using the 
SCAN_N instruction.

Length 184 bits.

Table 9-3 Scan chain number allocation

Scan
chain
number

Function

0 ARM9TDMI macrocell scan 
test

1 Debug

2 EmbeddedICE programming

3 External boundary scan

4 Physical address TAG RAM

5 Reserved

6 ETM9

7:14 Reserved

15 Coprocessor 15

16:31 Unassigned



Debug Support 

9-24 Copyright © 2000, 2001 ARM Limited. All rights reserved. ARM DDI 0151C

INTEST allows serial testing of the core. The TAP controller must be placed in the 
INTEST mode after scan chain 0 has been selected:

• During CAPTURE-DR, the current outputs from the core logic are captured in the 
output cells. 

• During SHIFT-DR, this captured data is shifted out while a new serial test pattern 
is scanned in, applying known stimuli to the inputs. 

• During RUN-TEST/IDLE, the core is clocked. Normally, the TAP controller only 
spends one cycle in RUN-TEST/IDLE. The whole operation can then be repeated.

EXTEST allows inter-device testing, useful for verifying the connections between 
devices in the design. The TAP controller must be placed in EXTEST mode after scan 
chain 0 has been selected:

• During CAPTURE-DR, the current inputs to the core logic from the system are 
captured in the input cells. 

• During SHIFT-DR, this captured data is shifted out while a new serial test pattern 
is scanned in, applying known values on the core outputs. 

• During RUN-TEST/IDLE, the core is not clocked. 

The operation can then be repeated. 

The bit order of scan chain 0 is shown in Table 9-4.

Table 9-4 Scan chain 0 bit order

No. Signal Direction

1 ID[0] Input

2 ID[1] Input

3:31 ID[2:30] Input

32 ID[31] Input

33 SYSSPEED Internal

34 WPTANDBKPT Internal

35 DDEN Output

36 DD[31] Bidirectional

37 DD[30] Bidirectional



Debug Support 

ARM DDI 0151C Copyright © 2000, 2001 ARM Limited. All rights reserved. 9-25

38:66 DD[29:1] Bidirectional

67 DD[0] Bidirectional

68 DA[31] Output

69 DA[30] Output

70:98 DA[29:1] Output

99 DA[0] Output

100 IA[31] Output

101 IA[30] Output

102:129 IA[29:2] Output

130 IA[1] Output

131 IEBKPT Input

132 DEWPT Input

133 EDBGRQ Input

134 EXTERN0 Input

135 EXTERN1 Input

136 COMMRX Output

137 COMMTX Output

138 DBGACK Output

139 RANGEOUT0 Output

140 RANGEOUT1 Output

141 DBGRQI Output

142 DDBE Input

143 InMREQ Output

144 DnMREQ Output

145 DnRW Output

Table 9-4 Scan chain 0 bit order (continued)

No. Signal Direction



Debug Support 

9-26 Copyright © 2000, 2001 ARM Limited. All rights reserved. ARM DDI 0151C

146 DMAS[1] Output

147 DMAS[0] Output

148 PASS Output

149 LATECANCEL Output

150 ITBIT Output

151 InTRANS Output

152 DnTRANS Output

153 nRESET Input

154 nWAIT Input

155 IABORT Input

156 IABE Input

157 DABORT Input

158 DABE Input

159 nFIQ Input

160 nIRQ Input

161 ISYNC Input

162 BIGEND Input

163 HIVECS Input

164 CHSD[1] Input

165 CHSD[0] Input

166 CHSE[1] Input

167 CHSE[0] Input

168 Reserved -

169 ISEQ Output

170 InM[4] Output

Table 9-4 Scan chain 0 bit order (continued)

No. Signal Direction



Debug Support 

ARM DDI 0151C Copyright © 2000, 2001 ARM Limited. All rights reserved. 9-27

171 InM[3] Output

172 InM[2] Output

173 InM[1] Output

174 InM[0] Output

175 DnM[4] Output

176 DnM[3] Output

177 DnM[2] Output

178 DnM[1] Output

179 DnM[0] Output

180 DSEQ Output

181 DMORE Output

182 DLOCK Output

183 ECLK Output

184 INSTREXEC Output

Table 9-4 Scan chain 0 bit order (continued)

No. Signal Direction



Debug Support 

9-28 Copyright © 2000, 2001 ARM Limited. All rights reserved. ARM DDI 0151C

Scan chain 1

Purpose Primarily for debugging. Scan chain 1 is selected using the 
SCAN_N TAP controller instruction.

Length 67 bits.

The bit functions of scan chain 1 are shown in Table 9-5.

This scan chain is 67 bits long, 32 bits for data values, 32 bits for instruction data, and 
three control bits, SYSSPEED, WPTANDBKPT, and DDEN. The three control bits 
serve four different purposes:

• Under normal INTEST test conditions, the DDEN signal can be captured and 
examined.

• During EXTEST conditions, a known value can be scanned into DDEN to be 
driven into the rest of the system. If a logic 1 is scanned into DDEN, the data data 
bus DD[31:0] drives out the values stored in its scan cells. If a logic 0 is scanned 
into DDEN, DD[31:0] captures the current input values.

• While debugging, the value placed in the SYSSPEED control bit determines 
whether the ARM920T synchronizes back to system speed before executing the 
instruction.

• After the ARM920T has entered debug state, the first time SYSSPEED is 
captured and scanned out, its value tells the debugger whether the core has entered 
debug state due to a breakpoint (SYSSPEED LOW), or a watchpoint 
(SYSSPEED HIGH). You can have a watchpoint and breakpoint condition occur 
simultaneously. When a watchpoint condition occurs, the WPTANDBKPT bit 
must be examined by the debugger to determine whether the instruction currently 
in the execute stage of the pipeline is breakpointed. If so, WPTANDBKPT is 
HIGH, otherwise it is LOW.

Table 9-5 Scan chain 1 bit function

Bit Function

67:36 Data values DD[0:31]

35:33 Control bits DDEN, 
WPTANDBKPT, and 
SYSSPEED

32:1 Instruction data ID[31:0]



Debug Support 

ARM DDI 0151C Copyright © 2000, 2001 ARM Limited. All rights reserved. 9-29

Scan chain 2

Purpose Allows access to the EmbeddedICE hardware registers. The order 
of the scan chain from TDI to TDO is:

• read/write

• register address bits 4 to 0

• data values bits 31 to 0.

Length 38 bits.

Table 9-6 shows the bit functions of scan chain 2.

To access this serial register, scan chain 2 must first be selected using the SCAN_N TAP 
controller instruction. The TAP controller must then be placed in INTEST mode:

• No action is taken during CAPTURE-DR. 

• During SHIFT-DR, a data value is shifted into the serial register. Bits 32 to 36 
specify the address of the EmbeddedICE hardware register to be accessed. 

• During UPDATE-DR, this register is either read or written depending on the value 
of bit 37 (0 = read).

Table 9-6 Scan chain 2 bit function

Bit Function

37 Read = 0

Write = 1

36:32 EmbeddedICE address register

31:0 Data values



Debug Support 

9-30 Copyright © 2000, 2001 ARM Limited. All rights reserved. ARM DDI 0151C

Scan chain 3

Purpose Allows the ARM920T to control an external boundary scan chain.

Length User-defined.

Scan chain 3 is provided so that you can control an optional external boundary scan 
chain using the ARM920T. Typically this is used for a scan chain around the pad ring 
of a packaged device. The following control signals are provided, and are generated 
only when scan chain 3 is selected. These outputs are inactive at all other times:

DRIVEOUTBS This switches the scan cells from system mode to test mode. This 
signal is asserted whenever the INTEST, EXTEST, CLAMP, or 
CLAMPZ instruction is selected.

PCLKBS This is the update clock, generated in the UPDATE-DR state. 
Typically the value scanned into the chain is transferred to the cell 
output on the rising edge of this signal.

ICAPCLKBS, ECAPCLKBS 

These are the capture clocks used to sample data into the scan cells 
during INTEST and EXTEST respectively. These clocks are 
generated in the CAPTURE-DR state.

SHCLK1BS, SHCLK2BS 

These are non-overlapping clocks generated in the SHIFT-DR 
state that are used to clock the master and slave element of the 
scan cells respectively. When the state machine is not in the 
SHIFT-DR state, both these clocks are LOW.

nHIGHZ You can use this signal to drive the outputs of the scan cells to the 
high impedance state. This signal is driven LOW when the 
HIGHZ instruction is loaded into the instruction register, and 
HIGH at all other times.

In addition to these control outputs, SDIN output and SDOUTBS input are also 
provided. When an external scan chain is in use, SDOUTBS must be connected to the 
serial data output and SDIN must be connected to the serial data input.



Debug Support 

ARM DDI 0151C Copyright © 2000, 2001 ARM Limited. All rights reserved. 9-31

9.6.6 Scan chain 6

Purpose You use scan chain 6 to program the registers in the ETM9.

Length The chain length is 40 bits, comprising:

• a 32-bit data field

• a 7-bit address field

• a read/write bit.

To write an ETM9 register:

• the data to be written is placed in the data field

• the register address is in the address field

• the read/write bit is set to 1.

To read an ETM9 register:

• the data field is ignored

• the register address is in the address field

• the read/write bit is set to 0.

The ETM9 registers are read or written when the TAP controller enters the 
UPDATE-DR state.

For more details of the ETM9 registers, see the ETM9 (Rev1) Technical Reference 
Manual.

9.6.7 Scan chains 4 and 15, the ARM920T memory system

On entry to debug state, the debugger must extract and save the state of CP15. It is 
advisable that the caches and MMUs are then switched off to prevent any debug 
accesses to memory altering their state. At this point, the debugger can non-invasively 
determine the state of the memory system. When in debug state, the debugger can see 
the state of the ARM920T memory system. This includes:

• CP15

• caches

• MMU

• PA TAG RAM.

Scan chains 4 and 15 are reserved for this use.



Debug Support 

9-32 Copyright © 2000, 2001 ARM Limited. All rights reserved. ARM DDI 0151C

Scan chain 15

This scan chain is 40 bits long. The format of the scan chain is dependent on the access 
mode used. The formats for both modes for scan chain 15 are shown in Table 9-7. 

With scan chain 15 selected, TDI is connected to bit 39 and TDO is connected to bit 0. 
An access using this scan chain allows all of the CP15 registers to be read and written, 
the cache CAM and RAM to be read, and the TLB CAM and RAM to be read. There 
are two access modes available using scan chain 15. These are:

• Physical access mode

• Interpreted access mode on page 9-34.

Physical access mode

You can do a physical access mode operation using scan chain 15 as follows:

1. In SHIFT-DR, shift in the read/write bit, register address and register value for 
writing, shown in Table 9-8 on page 9-33.

2. Move through UPDATE-DR. For a write, the register is updated here.

3. For reading, return to SHIFT-DR through CAPTURE-DR and shift out the 
register value.

Table 9-7 Scan chain 15 format and access modes

Scan chain bit
Interpreted access mode Physical access mode

Function Read/write Function Read/write

39 0 Write nR/W Write

38:33 000000 Write Register address Write

32:1 Instruction word Write Register value Read/write

0 0 Write 1 Write



Debug Support 

ARM DDI 0151C Copyright © 2000, 2001 ARM Limited. All rights reserved. 9-33

Table 9-8 shows the bit format for scan chain 15 physical access mode operations.

The mapping of the 6-bit register address field to the CP15 registers for physical access 
mode is shown in Table 9-9.

Table 9-8 Scan chain 15 physical access mode bit format

Scan chain bit Function
Read/
write

39 nR/W Write

38:33 Register address Write

32:1 Register value Read/

write

0 1 Write

Table 9-9 Physical access mapping to CP15 registers

Address Register 

[38] [37:34] [33] Number Name Type

0 0x0 0 C0 ID register Read

0 0x0 1 C0 Cache type Read

0 0x1 0 C1 Control Read/write

0 0x9 0 C9 Data cache lockdown Read

0 0x9 1 C9 Instruction cache lockdown Read

0 0xD 0 C13 Process ID Read/write

0 0xF 0 C15.State Test state Read/write

1 0xD 1 C15.C.I.Ind Instruction cache index Read

1 0xE 1 C15.C.D.Ind Data cache index Read

1 0x1 1 C15.C.I Instruction cache Read/write

1 0x2 1 C15.C.D Data cache Read/write

1 0x5 0 C15.M.I Instruction MMU Read

1 0x6 0 C15.M.D Data MMU Read



Debug Support 

9-34 Copyright © 2000, 2001 ARM Limited. All rights reserved. ARM DDI 0151C

Interpreted access mode

You can do an interpreted access mode operation using scan chain 15 as follows:

1. A physical access read-modify-write to C15 (test state) must be done in order to 
set bit 0, CP15 interpret.

2. The required MCR/MRC instruction word is shifted in to scan chain 15.

3. A system-speed LDR (read) or STR (write) is performed on the ARM9TDMI.

4. CP15 responds to this LDR/STR by executing the coprocessor instruction in its scan 
chain.

5. In the case of a LDR, the data is returned to the ARM9TDMI and can be captured 
onto scan chain 1 by performing an STR.

6. In the case of an STR, the interpreted MCR completes with the data that is issued 
from the ARM9TDMI.

7. A physical access read-modify-write to C15 (test state) must be done in order to 
clear CP15 interpret, bit 0.

Table 9-10 shows the bit format for scan chain 15 interpreted access mode operations.

The mapping of the 32-bit instruction word field to the remaining CP15 registers 
supported for interpreted access mode is shown in Table 9-11 on page 9-35, Table 9-12 
on page 9-36, and Table 9-13 on page 9-36. This supported subset is used for cache and 
MMU debug operations. Using interpreted accesses for other CP15 register operations 
produces UNPREDICTABLE behavior. The construction of a CP15 instruction word 
from ARM assembler is shown in Figure 2-1 on page 2-7.

For the MCR, Rd has been replaced by r0, because the register being used as the source 
data is governed by the STR. For the MRC, Rd has been replaced by r0, because the register 
being used as the destination is governed by the LDR.

Table 9-10 Scan chain 15 interpreted access mode bit format

Scan chain bit Function
Read/
write

39 0 Write

38:33 000000 Write

32:1 Instruction word Write

0 0 Write



Debug Support 

ARM DDI 0151C Copyright © 2000, 2001 ARM Limited. All rights reserved. 9-35

The mapping of the 32-bit instruction word field to the remaining CP15 registers for 
interpreted access mode is shown in Table 9-11. The construction of a CP15 instruction 
word from ARM assembler is shown in CP15 register map summary on page 2-5.

Table 9-11 Interpreted access mapping to CP15 registers

ARM920T
instruction

Function Rd Ra CP15 instruction

STR Rd,[Ra] Write I TTB TTB - MCR p15,5,r0,c15,c1,2

LDR Rd,[Ra] Read I TTB TTB - MRC p15,5,r0,c15,c1,2

STR Rd,[Ra] Write D TTB TTB - MCR p15,5,r0,c15,c2,2

LDR Rd,[Ra] Read D TTB TTB - MRC p15,0,r0,c2,c2,2

STR Rd,[Ra] Write I DAC DAC - MCR p15,5,r0,c15,c1,3

LDR Rd,[Ra] Read I DAC DAC - MRC p15,5,r0,c15,c1,3

STR Rd,[Ra] Write D DAC DAC - MCR p15,5,r0,c15,c2,3

LDR Rd,[Ra] Read D DAC DAC - MRC p15,0,r0,c3,c0,0

STR Rd,[Ra] Write I FSR FSR - MCR p15,0,r0,c5,c0,1

LDR Rd,[Ra] Read I FSR FSR - MRC p15,0,r0,c5,c0,1

STR Rd,[Ra] Write D FSR FSR - MCR p15,0,r0,c5,c0,0

LDR Rd,[Ra] Read D FSR FSR - MRC p15,0,r0,c5,c0,0

STR Rd,[Ra] Write I FAR FAR - MCR p15,0,r0,c6,c0,1

LDR Rd,[Ra] Read I FAR FAR - MRC p15,0,r0,c6,c0,1

STR Rd,[Ra] Write D FAR FAR - MCR p15,0,r0,c6,c0,0

LDR Rd,[Ra] Read D FAR FAR - MRC p15,0,r0,c6,c0,0

STR Rd,[Ra] ICache invalidate all - - MCR p15,0,r0,c7,c5,0

STR Rd,[Ra] ICache invalidate entry - Tag, Seg MCR p15,0,r0,c7,c5,1

STR Rd,[Ra] DCache invalidate all - - MCR p15,0,r0,c7,c6,0

STR Rd,[Ra] DCache invalidate entry - Tag ,Seg MCR p15,0,r0,c7,c6,1

STR Rd,[Ra] Write ICache victim - Victim, Seg MCR p15,0,r0,c9,c1,1

STR Rd,[Ra] Write DCache victim - Victim, Seg MCR p15,0,r0,c9,c1,0



Debug Support 

9-36 Copyright © 2000, 2001 ARM Limited. All rights reserved. ARM DDI 0151C

STR Rd,[Ra] Write ICache victim and lockdown 
base

- Victim MCR p15,0,r0,c9,c0,1

STR Rd,[Ra] Write DCache victim and lockdown 
base

- Victim MCR p15,0,r0,c9,c0,0

STR Rd,[Ra] Write I TLB lockdown Base,Victim - MCR p15,0,r0,c10,c0,1

LDR Rd,[Ra] Read I TLB lockdown Base,Victim - MRC p15,0,r0,c10,c0,1

STR Rd,[Ra] Write D TLB lockdown Base,Victim - MCR p15,0,r0,c10,c0,0

LDR Rd,[Ra] Read D TLB lockdown Base,Victim - MRC p15,0,r0,c10,c0,0

Table 9-12 Interpreted access mapping to the MMU

ARM920T instruction Function Rd/Rlist Ra CP15 instruction

LDR Rd,[Ra] or LDMIA Ra,[Rlist] I CAM Read MVA Tag, Size, V, P - MCR p15,4,r0,c15,c5,4

LDR Rd,[Ra] or LDMIA Ra,[Rlist] I RAM1 Read Protection - MCR p15,4,r0,c15,c9,4

LDR Rd,[Ra]or LDMIA Ra,[Rlist] I RAM2 Read PA Tag, Size - MCR p15,4,r0,c15,c1,5

LDR Rd,[Ra]or LDMIA Ra,[Rlist] D CAM Read MVA Tag, Size, V, P - MCR p15,4,r0,c15,c6,4

LDR Rd,[Ra]or LDMIA Ra,[Rlist] D RAM1 Read Protection - MCR p15,4,r0,c15,c10,4

LDR Rd,[Ra]or LDMIA Ra,[Rlist] D RAM2 Read PA Tag, Size - MCR p15,4,r0,c15,c2,5

Table 9-13 Interpreted access mapping to the caches

ARM920T instruction Function Rd/Rlist Ra CP15 instruction

LDR Rd,[Ra] or LDMIA 
Ra,[Rlist]

I CAM Read Tag, Seg, Dirty Seg MCR p15,2,r0,c15,c5,2

LDR Rd,[Ra] or LDMIA 
Ra,[Rlist]

I RAM Read Data Seg, Word MCR p15,2,r0,c15,c9,2

LDR Rd,[Ra]or LDMIA 
Ra,[Rlist]

D CAM Read Tag, Seg ,Dirty Seg MCR p15,2,r0,c15,c6,2

LDR Rd,[Ra] or LDMIA 
Ra,[Rlist]

D RAM Read Data Seg, Word MCR p15,2,r0,c15,c10,2

Table 9-11 Interpreted access mapping to CP15 registers (continued)

ARM920T
instruction

Function Rd Ra CP15 instruction



Debug Support 

ARM DDI 0151C Copyright © 2000, 2001 ARM Limited. All rights reserved. 9-37

Debug access to the MMU

This is achieved through scan chain 1 and 15, using the physical access and interpreted 
access modes. The following steps explain how to read the Data TLB 

1. Physical access: Read-modify-write cp15, register 1, to turn off both the caches 
and MMU.

2. Physical access: Read-modify-write cp15, register 15, to set MMU test and CP15 
interpret mode.

3. Interpreted access: LDR Rd,[Ra]. MCR = Read D TLB lockdown. This will read 
the Base and Victim to Rd.

4. Physical access: Read-modify-write CP15 register 15 to clear CP 15 interpret 
mode.

5. STR of Rd loaded in step (3). Capture on scan chain 1 and shift out.

6. Physical access: Read-modify-write CP15 register 15 to set CP15 interpret mode.

7. Interpreted access: STR Rd,[Ra]. MCR = Write D TLB lockdown, where Rd = 
Base[read in (3)], Victim[=0].

8. Interpreted access: 8 word LDM, LDMIA Ra,[Rlist]. MCR = D CAM Read. The 
CAM Read will increment the victim pointer on every access, so this will read 
entries 0-7.

9. Physical access: Read-modify-write CP15 register 15 to clear CP 15 interpret 
mode.

10. 8 word STM of the values loaded in step (6). Capture these on scan chain 1 and 
shift out. These 8 values are the CAM Tag for entries 0-7.

11. Physical access: Read-modify-write CP15 register 15 to set CP15 interpret mode.

12. Repeat steps (8) to (11) eight times to read entries 0-63.

13. Interpreted access: STR Rd,[Ra]. MCR = Write D TLB lockdown, where Rd = 
Base[read in step (3)], Victim[=0].

14. Interpreted access: LDR Rd,[Ra]. MCR = D RAM1 Read. The RAM1 Read will 
increment the victim pointer on every access as MMU test in cp15, register 15, 
Test State register has been set.

15. Interpreted access: LDR Rd,[Ra]. MCR = D RAM2 Read. This uses a pipelined 
version of the last RAM1 read.



Debug Support 

9-38 Copyright © 2000, 2001 ARM Limited. All rights reserved. ARM DDI 0151C

16. Physical access: Read-modify-write CP15 register 15 to clear CP 15 interpret 
mode.

17. 2 word STM of the values loaded in steps (10) and (11). Capture these on scan 
chain 1 and shift out. These 2 values are RAM1 and RAM2 from entry 0.

18. Physical access: Read-modify-write CP15 register 15 to set CP15 interpret mode.

19. Repeat steps (14) to (18) 64 times to read RAM1 and RAM2 entries 0-63.

20. Interpreted access: STR Rd,[Ra]. MCR = Write D TLB lockdown, where Rd = 
Base[read in step (3)], Victim[read in step (3)].

21. Physical access: Read-modify-write cp15, register 15, to clear MMU test and 
CP15 interpret mode.

22. Physical access: Read-modify-write cp15, register 1, to turn on (restore state of) 
both the caches and MMU.

Debug access to the caches

This is achieved through scan chain 1 and 15, using the physical access and interpreted 
access modes. The following steps explain how to read the DCache. They assume you 
are trying to read the contents of segment 2 of the DCache.

1. Physical access: Read-modify-write cp15, register 1, to turn off both the caches 
and MMU.

2. Physical access: Read-modify-write cp15, register 15, to set CP15 interpret mode.

3. Interpreted access: LDR Rd,[Ra]. MCR = D CAM Read, where Ra = Seg2. This 
will cause the current victim for segment 2 to be read into C15.C.D.Ind.

4. Physical access: Read C15.C.D.Ind which contains the victim of segment 2.

5. Interpreted access: STR Rd,[Ra]. MCR = Write DCache victim, where Ra = 
Victim0, Seg2. This sets the victim counter to 0 for segment 2, and configures the 
counter to increment after a CAM read or write. The Base remains unchanged.

6. Interpreted access: 8 word LDM, LDMIA Ra,[Rlist]. MCR = D RAM Read, 
where Ra = seg2, word0. The LDMIA will increment the word part of the address 
and move across the cache line from word0 to word7.

7. Interpreted access: LDR Rd,[Ra]. MCR = D CAM Read, where Ra = Seg2.

8. Physical access: Read-modify-write cp15, register 15, to clear CP15 interpret 
mode.



Debug Support 

ARM DDI 0151C Copyright © 2000, 2001 ARM Limited. All rights reserved. 9-39

9. 9 word STM of the values loaded in (6) and (7). Capture these on scan chain 1 and 
shift out. These 9 values are the CAM Tag and RAM cache line data for segment 
2, index 0.

10. Physical access: Read-modify-write cp15, register 15, to set CP15 interpret mode.

11. Increment the victim (+1) and repeat steps (5) to (10) 64 times. This approach 
avoids using the auto increment capability of the victim counter. If the auto 
increment capability is used, the victim counter will loop back to the Base value 
when it reaches 63, so either the Victim must start at 0, or the Base must be read, 
set to 0, then restored after reading the memory.By starting the victim at 0, repeat 
steps (6) to (10) 64 times.

12. Interpreted access: STR Rd,[Ra]. MCR = Write DCache victim, where Ra = 
Victim, Seg2. The Victim value should be the value read and saved in step (5). 

13. Repeat steps (3) to (12) for each segment.

14. Physical access: Read-modify-write cp15, register 15, to clear CP15 interpret 
mode.

15. Physical access: Read-modify-write cp15, register 1, to turn on (restore state of) 
both the caches and MMU.

Scan chain 4 - debug access to the PA TAG RAM

 This scan chain is 49 bits long, as shown in Table 9-14. 

Table 9-14 Scan chain 4 format

Scan
chain
bit

Function
Read/
write

48 PA TAG sel TCK Write

47 RAM enable Write

46 Odd not even Write

45:40 Scan index [5:0] Write

39:33 Scan seg [6:0] Write

32 PA TAG sync TCK Read

31:0 WBPA Read



Debug Support 

9-40 Copyright © 2000, 2001 ARM Limited. All rights reserved. ARM DDI 0151C

With scan chain 4 selected, TDI is connected to bit 48 and TDO is connected to bit 0. 
An access using this scan chain allows the physical address TAG RAM to be read.

Figure 9-7 shows the construction of write back physical addresses.

Figure 9-7 Write back physical address format

Note
 Although Scan Seg [6:0] is provided, only bits [2:0] are used in ARM920T to address 
segments 0-7. Bits [6:3] are defined for forwards compatibility.

To read an entry in the PA TAG RAM, you must execute the following sequence:

1. Write:

• PA TAG sel TCK = 1

• RAM enable = 0.

This synchronizes the PA TAG RAM to TCK, the test clock.

2. Read PA TAG sync TCK until it is 1.

This confirms that the PA TAG RAM is synchronized to TCK.

3. Write:

• PA TAG sel TCK = 1

• RAM enable = 1

• odd not even

• scan index bits [5:0]

• scan seg bits [2:0].

31 6 5 4 3 0

PA TAG 0 0 0 0

Scan
seg[0]

Odd
not

even



Debug Support 

ARM DDI 0151C Copyright © 2000, 2001 ARM Limited. All rights reserved. 9-41

4. Go through the UPDATE-DR state of the ARM920T TAP controller three times. 
The most efficient way of doing this, after doing the write in step 3 is to go 
through the following sequence. This avoids rewriting the values in step 3 on each 
iteration:

a. EXIT1-DR

b. UPDATE-DR

c. SELECT-DR-SCAN

d. CAPTURE-DR

e. Repeat (a) to (d) x 2

f. SHIFT-DR.

The PA TAG RAM requires three clock cycles to perform the read. Its clock is 
cycled in UPDATE-DR, and therefore this state must be passed through three 
times.

5. Read the Write Back Physical Address (WBPA).

6. Write:

• PA TAG sel TCK = 0

• RAM enable = 0.

Resynchronize the PA TAG RAM to the system clock.

7. Read PA TAG sync TCK until it is 0. This confirms that resynchronization has 
occurred.

You must repeat this sequence of steps (1 to 7) for the eight segments, corresponding to 
the eight DCache segments, and the 64 entries per segment, corresponding to the 64 
entries in each DCache segment.



Debug Support 

9-42 Copyright © 2000, 2001 ARM Limited. All rights reserved. ARM DDI 0151C

9.7 ARM920T core clocks

The ARM9TDMI core has two clocks:

• the memory clock GCLK
• an internally TCK generated clock, DCLK. 

During normal operation, the core is clocked by GCLK, and internal logic holds DCLK 
LOW. When the ARM920T is in the debug state, the core is clocked by DCLK under 
control of the TAP state machine, and GCLK can free run. The selected clock is output 
on the ECLK signal for use by the external system. 

Note
 When the core is being debugged and is running from DCLK, nWAIT has no effect.

The two cases where the clocks switch are:

• during debugging

• during testing.



Debug Support 

ARM DDI 0151C Copyright © 2000, 2001 ARM Limited. All rights reserved. 9-43

9.8 Clock switching during debug

When the ARM9TDMI core enters debug state, it must switch from GCLK to DCLK. 
This is handled automatically by logic in the ARM9TDMI core. On entry to debug state, 
the ARM9TDMI asserts DBGACK in the HIGH phase of GCLK. The switch between 
the two clocks occurs on the next falling edge of GCLK as shown in Figure 9-8.

Figure 9-8 Clock switching on entry to debug state

The ARM9TDMI core is forced to use DCLK as the primary clock until debugging is 
complete. On exit from debug, the core must be allowed to synchronize back to GCLK. 
You must do this in the following sequence:

1. Shift the final instruction of the debug sequence into the instruction data bus scan 
chain, and clock it in by asserting DCLK. At this point, clock RESTART into the 
TAP controller register. 

2. The ARM9TDMI core now automatically resynchronizes back to GCLK when 
the TAP controller enters the RUN-TEST/IDLE mode and starts fetching 
instructions from memory at GCLK speed. For more information, see Exit from 
debug state on page 9-48.

GCLK

DBGACK

ECLK

DCLK



Debug Support 

9-44 Copyright © 2000, 2001 ARM Limited. All rights reserved. ARM DDI 0151C

9.9 Clock switching during test

Under serial test conditions, when test patterns are being applied to the core through the 
JTAG interface, the ARM9TDMI CPU core must be clocked using DCLK. Entry into 
test is less automatic than debug and some care must be taken.

On the way into test, GCLK must be held LOW. You can now use the TAP controller 
to perform serial testing on the ARM9TDMI core. If scan chain 0 and INTEST are 
selected, DCLK is generated while the state machine is in RUN-TEST/IDLE state. 

During EXTEST, DCLK is not generated.

On exit from test, you must select RESTART as the TAP controller instruction. When 
this is done, you can allow GCLK to resume. After INTEST testing, you must take care 
to ensure that the core is in a sensible state before switching back. The safest way to do 
this is either:

• select RESTART and then cause a system reset

• insert MOV PC,#0 into the instruction pipeline before switching back.



Debug Support 

ARM DDI 0151C Copyright © 2000, 2001 ARM Limited. All rights reserved. 9-45

9.10 Determining the core state and system state

When the ARM9TDMI core is in debug state, you can examine the core state and 
system state. You can do this by forcing load and store multiples into the pipeline.

Before you can examine the core state and system state, the debugger must first 
determine whether the processor entered debug from Thumb state or ARM state. You 
can do this by examining bit 4 of the EmbeddedICE macrocell debug status register. If 
this is HIGH, the core is in Thumb state. If it is LOW, the core is in ARM state.

9.10.1 Determining the core state

If the processor has entered debug state from Thumb state, it is easiest for the debugger 
to force the core back into ARM state. When this is done, the debugger can execute the 
same sequence of instructions to determine the processor state.

To force the processor into ARM state, the following sequence of Thumb instructions 
can be executed on the core:

STR R0, [R1] ; Save R0 before use
MOV R0, PC ; Copy PC into R0
STR R0, [R1] ; Save the PC in R0
BX PC ; Jump into ARM state
MOV R8, R8 ; NOP (no operation)
MOV R8, R8 ; NOP

The above use of R1 as the base register for stores is for illustration only. You can use 
any register.

Because all Thumb instructions are only 16 bits long, you can duplicate the instruction 
in the instruction data bus bits, when shifting them into scan chain 1. For example, the 
encoding for BX R0 is 0x4700. Therefore, if 0x47004700 is shifted into the 32 bits of the 
instruction data bus of scan chain 1, the debugger does not have to remember the half 
of the bus that the processor expects to read instructions from.

From this point, you can determine the processor state by the following series of steps 
of ARM instructions.

When the processor is in ARM state, typically the first instruction executed is:

STM R0, {R0-R15}

This causes the contents of the registers to be made visible on the data data bus. These 
values can then be sampled and shifted out.



Debug Support 

9-46 Copyright © 2000, 2001 ARM Limited. All rights reserved. ARM DDI 0151C

After determining the values in the current bank of registers, you might want to access 
the banked registers. This can only be done by changing mode. Normally, a mode 
change can only occur if the core is already in a privileged mode. However, while in 
debug state, a mode change can occur from any mode into any other mode. 

Note
 The debugger must restore the original mode before exiting debug state.

For example, assume that the debugger has been asked to return the state of the User 
mode and FIQ mode registers, and debug state has been entered in Supervisor mode.

The instruction sequence might be:

STMIA R0, {R0-R15} ; Save current registers
MRS R0, CPSR
STR R0, [R0] ; Save CPSR to determine current mode
BIC R0, R0, #0x1F ; Clear mode bits
ORR R0, R0, #0x10 ; Select USER mode
MSR CPSR, R0 ; Enter USER mode
STMIA R0, {R13-R14} ; Save registers not previously visible
ORR R0, R0, #0x01 ; Select FIQ mode
MSR CPSR, R0 ; Enter FIQ mode
STMIA R0, {R8-R14} ; Save banked FIQ registers

All these instructions are said to execute at debug speed. Debug speed is much slower 
than system speed because, between each core clock, 67 scan clocks occur in order to 
shift in an instruction or shift out data. Executing instructions more slowly than usual is 
fine for accessing the core state because the ARM920T is fully static. However, you 
cannot use this same method for determining the state of the rest of the system.

While in debug state, only the following instructions can be inserted into the instruction 
pipeline for execution:

• all data processing operations

• all load, store, load multiple, and store multiple instructions

• MSR and MRS.



Debug Support 

ARM DDI 0151C Copyright © 2000, 2001 ARM Limited. All rights reserved. 9-47

9.10.2 Determining system state

To meet the dynamic timing requirements of the memory system, any attempt to access 
system state must occur synchronously. Therefore, you must force the ARM9TDMI 
core to synchronize back to system speed. The 33rd bit of scan chain 1, SYSSPEED, 
controls this.

You can place a legal debug instruction in the instruction data bus of scan chain 1 with 
bit 33 (the SYSSPEED bit) LOW. This instruction is then executed at debug speed. To 
execute an instruction at system speed, a NOP (such as MOV R0, R0) must be scanned in 
as the next instruction with bit 33 set HIGH.

After the system speed instructions have been scanned into the instruction data bus and 
clocked into the pipeline, you must load the RESTART instruction into the TAP 
controller. This causes the ARM9TDMI automatically to resynchronize back to GCLK 
when the TAP controller enters RUN-TEST/IDLE state, and execute the instruction at 
system speed. Debug state is re-entered after the instruction completes execution, when 
the processor switches itself back to the internally generated DCLK. When the 
instruction has completed, DBGACK is HIGH. At this point INTEST can be selected 
in the TAP controller, and debugging can resume.

To determine whether a system speed instruction has completed, the debugger must 
look at SYSCOMP (bit 3 of the debug status register). To access memory, the 
ARM9TDMI must access memory through the data data bus interface, as this access can 
be stalled indefinitely by nWAIT. Therefore, the only way to determine whether the 
memory access has completed is to examine the SYSCOMP bit. When this bit is HIGH 
the instruction has completed.

The state of the system memory can be passed to the debug host by using system speed 
load multiples and debug store multiples.

9.10.3 Instructions that can have the SYSSPEED bit set

The only valid instructions to set this bit for are:

• loads

• stores

• load multiple

• store multiple. 

When the ARM9TDMI returns to debug state after a system speed access, the 
SYSSPEED bit is set HIGH.



Debug Support 

9-48 Copyright © 2000, 2001 ARM Limited. All rights reserved. ARM DDI 0151C

9.11 Exit from debug state

Leaving debug state involves restoring the internal state of the ARM9TDMI core, 
causing a branch to the next instruction to be executed, and synchronizing back to 
GCLK. After restoring the internal state, you must load a branch instruction into the 
pipeline. For details on calculating the branch, see The behavior of the program counter 
during debug on page 9-51.

Use bit 33 of scan chain 1 to force the ARM9TDMI core to resynchronize back to 
GCLK. The penultimate instruction in the debug sequence is a branch to the instruction 
where execution is to resume. This is scanned in with bit 33 set LOW. The core is then 
clocked to load the branch into the pipeline. The final instruction that you must scan in 
is a NOP (such as MOV R0, R0), with bit 33 set HIGH. You must the clock the core to 
load this instruction into the pipeline. Now, select the RESTART instruction in the TAP 
controller. When the state machine enters the RUN-TEST/IDLE state, the scan chain 
reverts back to system mode and clock resynchronization to GCLK occurs within the 
ARM9TDMI. Normal operation resumes, with instructions being fetched from 
memory. 

The delay, until the state machine is in RUN-TEST/IDLE state, allows you to set up 
conditions in other devices in a multiprocessor system without taking immediate effect. 
Then, when RUN-TEST/IDLE state is entered, all the processors resume operation 
simultaneously.

The function of DBGACK is to tell the rest of the system when the ARM9TDMI core 
is in debug state. You can use this to inhibit peripherals such as watchdog timers that 
have real-time characteristics. Also, you can use DBGACK to mask out memory 
accesses that are caused by the debugging process. For example, when the ARM9TDMI 
core enters debug state after a breakpoint, the instruction pipeline contains the 
breakpointed instruction plus two other instructions that have been prefetched. On entry 
to debug state, the pipeline is flushed. So, on exit from debug state, the pipeline must be 
refilled to its previous state. Therefore, because of the debugging process, more memory 
accesses occur than are normally expected. You can inhibit any system peripheral that 
might be sensitive to the number of memory accesses by using DBGACK.

Note

 DBGACK can only be used in this way using breakpoints. It does not mask the correct 
number of memory accesses after a watchpoint.

For example, consider a peripheral that merely counts the number of instruction fetches. 
This device must return the same answer after a program has run both with and without 
debugging. Figure 9-9 on page 9-49 shows the behavior of the ARM9TDMI core on 
exit from debug state.



Debug Support 

ARM DDI 0151C Copyright © 2000, 2001 ARM Limited. All rights reserved. 9-49

Figure 9-9 Debug exit sequence

Figure 9-10 on page 9-50 shows that two instructions are fetched after the instruction 
that breakpoints. Figure 9-10 on page 9-50 shows that DBGACK masks the first three 
instruction fetches out of the debug state, corresponding to the breakpoint instruction, 
and the two instructions prefetched after it.

Note
 When a system speed access occurs, DBGACK remains HIGH, masking any memory 
access.

IAb IAb+4 IAb+8

ID[31:0]

ECLK

InMREQ
ISEQ

IA[31:1]

DBGACK

N S SInternal cycles



Debug Support 

9-50 Copyright © 2000, 2001 ARM Limited. All rights reserved. ARM DDI 0151C

Figure 9-10 Debug state entry

GCLK

ID[31:0]

InMREQ
ISEQ

IA[31:1]

DBGACK

Memory cycles Internal cycles

IEBKPT

1 2 3



Debug Support 

ARM DDI 0151C Copyright © 2000, 2001 ARM Limited. All rights reserved. 9-51

9.12 The behavior of the program counter during debug

To force the ARM9TDMI core to branch back to the place where program flow is 
interrupted by debug, the debugger must keep track of what happens to the PC. There 
are six cases: 

• Breakpoint on page 9-51

• Watchpoint on page 9-51

• Watchpoint with another exception on page 9-52

• Watchpoint and breakpoint on page 9-52

• Debug request on page 9-52

• System speed accesses on page 9-53.

In each case the same equation is used to determine where to resume execution. 

9.12.1 Breakpoint

Entry to debug state from a breakpointed instruction advances the PC by 16 bytes in 
ARM state, or 8 bytes in Thumb state. Each instruction executed in debug state 
advances the PC by one address. The normal way to exit from debug state after a 
breakpoint is to remove the breakpoint, and branch back to the previously breakpointed 
address.

For example, if the ARM9TDMI core entered debug state from a breakpoint set on a 
given address and two debug speed instructions were executed, a branch of 7 addresses 
must occur (four for debug entry, plus two for the instructions, plus one for the final 
branch). The following sequence shows ARM instructions scanned into scan chain 1. 
This is Most Significant Bit (MSB) first, so the first digit represents the value to be 
scanned into the SYSSPEED bit, followed by the instruction.

0 EAFFFFF9 ; B -7 addresses (two’s complement)
1 E1A00000 ; NOP (MOV R0, R0), SYSSPEED bit is set

For small branches, the final branch can be replaced with a subtract, with the PC as the 
destination. For example, SUB PC, PC, #28 for ARM code.

9.12.2 Watchpoint

You can return to program execution after entering debug state from a watchpoint in the 
same way as the procedure described in Breakpoint above. Debug entry adds four 
addresses to the PC, and every instruction adds one address. Because the instruction 
after the one that caused the watchpoint has executed, execution resumes at the 
following instruction.



Debug Support 

9-52 Copyright © 2000, 2001 ARM Limited. All rights reserved. ARM DDI 0151C

9.12.3 Watchpoint with another exception

If a watchpoint access simultaneously causes a Data Abort, the ARM9TDMI core enters 
debug state in abort mode. Entry into debug is held off until the core has changed into 
abort mode, and fetched the instruction from the abort vector.

A similar sequence is followed when an interrupt, or any other exception, occurs during 
a watchpointed memory access. The ARM9TDMI core enters debug state in the mode 
of the exception, and so the debugger must check to see whether this happened. The 
debugger can deduce whether an exception occurred by looking at the current and 
previous mode, (in the CPSR and SPSR), and the value of the PC. If an exception did 
take place, you must have the choice to service the exception before debugging or not.

For example, suppose an abort occurred on a watchpoint access, and ten instructions 
had been executed to determine this. You can use the following sequence to return to 
program execution:

0 EAFFFFF1 ; B -15 addresses (two’s complement)
1 E1A00000 ; NOP (MOV R0, R0), SYSSPEED bit is set

This forces a branch back to the abort vector, causing the instructions at that location to 
be refetched and executed. After the abort service routine, the instruction that caused 
the abort and watchpoint is re-executed. This causes the watchpoint to be generated and 
the ARM9TDMI enters debug state again.

9.12.4 Watchpoint and breakpoint

It is possible to have a watchpoint and breakpoint condition occurring simultaneously. 
This can happen when an instruction causes a watchpoint, and the following instruction 
has been breakpointed. The same calculation must be performed as for Breakpoint on 
page 9-51 to determine where to resume. In this case, it is at the breakpoint instruction, 
because this has not been executed.

9.12.5 Debug request

Entry into debug state as a result of a debug request is similar to a breakpoint and, as for 
breakpoint entry to debug state, adds four addresses to the PC, and every instruction 
executed in debug state adds one. 

For example, the following sequence handles a situation where a debug request has been 
invoked, followed by a decision to return to program execution immediately:

0 EAFFFFFB ; B -5 addresses (two’s complement)
1 E1A00000 ; NOP (MOV R0, R0), SYSSPEED bit is set

This restores the PC, and restarts the program from the next instruction.



Debug Support 

ARM DDI 0151C Copyright © 2000, 2001 ARM Limited. All rights reserved. 9-53

9.12.6 System speed accesses

If a system speed access is performed during debug state, the value of the PC is 
increased by five addresses. Because system speed instructions access the memory 
system, it is possible for aborts to take place. If an abort occurs during a system speed 
memory access, the ARM9TDMI core enters abort mode before returning to debug 
state.

This is similar to an aborted watchpoint. However, the problem is much harder to fix 
because the abort is not caused by an instruction in the main program, and the PC does 
not point to the instruction that caused the abort. An abort handler usually looks at the 
PC to determine the instruction that caused the abort, and therefore the abort address. 
In this case, the value of the PC is invalid, but the debugger knows the address of the 
location being accessed. Therefore the debugger can be written to help the abort handler 
fix the memory system.

9.12.7 Summary of return address calculations

The calculation of the branch return address can be summarized as:

-(4 + N +5S)

Where N is the number of debug speed instructions executed (including the final 
branch), and S is the number of system speed instructions executed.



Debug Support 

9-54 Copyright © 2000, 2001 ARM Limited. All rights reserved. ARM DDI 0151C

9.13 EmbeddedICE macrocell

The EmbeddedICE macrocell is integral to the ARM9TDMI processor core. It has two 
hardware breakpoint or watchpoint units. You can configure each of them to monitor 
the instruction memory interface or the data memory interface. Each watchpoint unit 
has a value and mask register, with an address field, a data field, and a control field. 

Because the ARM9TDMI processor core has a Harvard architecture, you must specify 
whether the watchpoint registers examine the instruction or the data interface. This is 
specified by bit 3:

• when bit 3 is set, the data interface is examined

• when bit 3 is clear, the instruction interface is examined. 

There can be no don’t care case for this bit because the comparators cannot compare the 
values on both buses simultaneously. Therefore, bit 3 of the control mask register is 
always clear and cannot be programmed HIGH. Bit 3 also determines whether the 
internal breakpoint or watchpoint signal must be driven by the result of the comparison. 
Figure 9-11 on page 9-56 gives an overview of the operation of the EmbeddedICE 
macrocell.

The ARM9TDMI EmbeddedICE macrocell has logic that allows single stepping 
through code. This reduces the work required by an external debugger, and removes the 
requirement to flush the instruction cache. There is also hardware to allow efficient 
trapping of accesses to the exception vectors. These blocks of logic free the two 
general-purpose hardware breakpoint or watchpoint units for use by the programmer at 
all times.

9.13.1 Register map

The EmbeddedICE macrocell register map is shown in Table 9-15.

Table 9-15 ARM9TDMI EmbeddedICE macrocell register map

Address Width Function

00000 4 Debug control

00001 5 Debug status

00010 8 Vector catch control

00100 6 Debug comms control

00101 32 Debug comms data

01000 32 Watchpoint 0 address value



Debug Support 

ARM DDI 0151C Copyright © 2000, 2001 ARM Limited. All rights reserved. 9-55

The general arrangement of the EmbeddedICE macrocell is shown in Figure 9-11 on 
page 9-56.

01001 32 Watchpoint 0 address mask

01010 32 Watchpoint 0 data value

01011 32 Watchpoint 0 data mask

01100 9 Watchpoint 0 control value

01101 8 Watchpoint 0 control mask

10000 32 Watchpoint 1 address value

10001 32 Watchpoint 1 address mask

10010 32 Watchpoint 1 data value

10011 32 Watchpoint 1 data mask

10100 9 Watchpoint 1 control value

10101 8 Watchpoint 1 control mask

Table 9-15 ARM9TDMI EmbeddedICE macrocell register map (continued)

Address Width Function



Debug Support 

9-56 Copyright © 2000, 2001 ARM Limited. All rights reserved. ARM DDI 0151C

Figure 9-11 ARM9TDMI EmbeddedICE macrocell overview

As an example, if a watchpoint is requested on a particular memory location but the data 
value is irrelevant, you can program the data mask register to 0xFFFF_FFFF, all bits set to 
1. This ensures that the entire data bus value is ignored.

9.13.2 Using the mask registers

For each value register there is an associated mask register in the same format. Setting 
a bit to 1 in the mask register causes the corresponding bit in the value register to be 
ignored in any comparison.

9.13.3 Control registers

The format of the control registers depends on how bit 3 is programmed. If bit 3 is 
programmed to be 1, the breakpoint comparators examine the data address, and data and 
control signals. In this case, the format of the register is as shown in Figure 9-12 on 
page 9-57. 

0

31

0

4

Rangeout

Enable

5

Breakpoint

Scan chain
register

TDI TDO

Update

Value Mask Comparator

IA[31:0]

Registers

A
d

d
re

s
s

D
a

ta
C

o
n

tro
l

A
d

d
re

s
s

D
a

ta
C

o
n

tro
l

A
d

d
re

s
s

D
a

ta
C

o
n

tro
l

Address
decoder

32

R/W

DA[31:0]

ID[31:0]

DD[31:0]

I Control

D Control

Address

Data



Debug Support 

ARM DDI 0151C Copyright © 2000, 2001 ARM Limited. All rights reserved. 9-57

Figure 9-12 Watchpoint control register for data comparison

Note
 Bit 8 and bit 3 cannot be masked.

The functions of the watchpoint control register for data comparison bits are shown in 
Table 9-16.

7 6 5 4 3 2 1 0

ENABLE RANGE CHAIN EXTERN DnTRANS 1 DMAS[1] DnRWDMAS[0]

8

Table 9-16 Watchpoint control register, data comparison bit functions

Bit Name Function

8 ENABLE If a watchpoint match occurs, the internal watchpoint signal is only 
asserted when the ENABLE bit is set. This bit only exists in the value 
register. It cannot be masked.

7 RANGE You can connect this bit to the range output of another watchpoint 
register. In the ARM9TDMI EmbeddedICE macrocell, the address 
comparator output of watchpoint 1 is connected to the RANGE input 
of watchpoint 0. This allows you to couple two watchpoints for 
detecting conditions that occur simultaneously, for example, for 
range-checking.

6 CHAIN You can connect this bit to chain output of another watchpoint to 
implement, for example, debugger requests of the form breakpoint on 
address YYY only when in process XXX.

In the ARM9TDMI EmbeddedICE macrocell, the CHAINOUT output 
of watchpoint 1 is connected to the CHAIN input of watchpoint 0. The 
CHAINOUT output is derived from a latch. The address and control 
field comparator drives the write enable for the latch and the input to 
the latch is the value of the data field comparator. The CHAINOUT 
latch is cleared when the control value register is written or when 
nTRST is LOW.

5 EXTERN This is an external input into the EmbeddedICE macrocell that allows 
the watchpoint to be dependent on some external condition. The 
EXTERN input for watchpoint 0 is labeled EXTERN0, and the 
EXTERN input for watchpoint 1 is labeled EXTERN1.



Debug Support 

9-58 Copyright © 2000, 2001 ARM Limited. All rights reserved. ARM DDI 0151C

If bit 3 of the control register is programmed to 0, the comparators examine the 
instruction address, instruction data, and instruction control buses. In this case bits [1:0] 
of the mask register must be set to don’t care (programmed to 11). The format of the 
register in this case is as shown in Figure 9-13.

Figure 9-13 Watchpoint control register for instruction comparison

4 DnTRANS This bit is compared with the data not translate signal from the core in 
order to determine between a User mode (DnTRANS = 0) data transfer, 
and a privileged mode (DnTRANS = 1) transfer.

2:1 DMAS[1:0] These bits are compared with the DMAS[1:0] signal from the core in 
order to detect the size of the data data bus activity.

0 DnRW This bit is compared with the data not read/write signal from the core 
in order to detect the direction of the data data bus activity. nRW is 0 
for a read, and 1 for a write.

Table 9-16 Watchpoint control register, data comparison bit functions (continued)

Bit Name Function

7 6 5 4 3 2 1 0

ENABLE RANGE CHAIN EXTERN InTRANS 0 X XITBIT

8



Debug Support 

ARM DDI 0151C Copyright © 2000, 2001 ARM Limited. All rights reserved. 9-59

The functions of the watchpoint control register for instruction comparison bits are 
shown in Table 9-17.

Table 9-17 Watchpoint control register for instruction comparison bit functions

Bit Name Function

8 ENABLE If a watchpoint match occurs, the internal breakpoint signal is only 
asserted when the ENABLE bit is set. This bit only exists in the value 
register, it cannot be masked.

7 RANGE You can connect this bit to the range output of another watchpoint 
register. In the ARM9TDMI EmbeddedICE macrocell, the address 
comparator output of watchpoint 1 is connected to the RANGE input of 
watchpoint 0. This allows you to couple two watchpoints for detecting 
conditions that occur simultaneously, for example, for range-checking.

6 CHAIN You can connect this bit to chain output of another watchpoint to 
implement, for example, debugger requests of the form breakpoint on 
address YYY only when in process XXX.

In the ARM9TDMI EmbeddedICE macrocell, the CHAINOUT output 
of watchpoint 1 is connected to the CHAIN input of watchpoint 0. The 
CHAINOUT output is derived from a latch. The address or control field 
comparator drives the write enable for the latch, and the input to the latch 
is the value of the data field comparator. The CHAINOUT latch is 
cleared when the control value register is written, or when nTRST is 
LOW.

5 EXTERN This is an external input into the ARM9TDMI EmbeddedICE macrocell 
that allows the watchpoint to be dependent on some external condition. 
The EXTERN input for watchpoint 0 is labeled EXTERN0, and the 
EXTERN input for watchpoint 1 is labeled EXTERN1.

4 InTRANS This bit is compared with the not translate signal from the core in order 
to determine between a User mode (InTRANS = 0) instruction fetch, and 
a privileged mode (InTRANS = 1) instruction fetch.

1 ITBIT This bit is compared with the Thumb state signal from the core to 
determine between a Thumb (ITBIT = 1) instruction fetch or an ARM 
(ITBIT = 0) instruction fetch.



Debug Support 

9-60 Copyright © 2000, 2001 ARM Limited. All rights reserved. ARM DDI 0151C

9.13.4 Debug control register

The ARM9TDMI debug control register is four bits wide and is shown in Figure 9-14.

Figure 9-14 Debug control register

Bit 3 controls the single-step hardware. This is explained in more detail in Figure 9-17 
on page 9-64.

9.13.5 Debug status register

The debug status register is five bits wide. If this register is accessed for a write (with 
the read/write bit set HIGH), the status bits are written. If it is accessed for a read (with 
the read/write bit LOW), the status bits are read.

Figure 9-15 Debug status register

The function of the bits in the debug status register are shown in Table 9-18.

3 2 1 0

Single step INTDIS DBGRQ DBGACK

7 6 5 4 3 2 1 08
ITBIT SYSCOMP IFEN DBGRQ DBGACK

4 3 2 1 0

Table 9-18 Debug status register bit functions

Bits Function

4 Allows ITBIT to be read. This enables the debugger to determine what state the 
processor is in, and therefore determine the instructions to execute.

3 Allows the state of the SYSCOMP bit from the core (synchronized to TCK) to be 
read. This allows the debugger to determine that a memory access from the debug 
state has completed.



Debug Support 

ARM DDI 0151C Copyright © 2000, 2001 ARM Limited. All rights reserved. 9-61

9.13.6 Vector catch register

The ARM9TDMI EmbeddedICE macrocell controls logic to enable accesses to the 
exception vectors to be trapped in an efficient manner. This is controlled by the vector 
catch register, as shown in Figure 9-16. The functionality is described in Vector 
catching on page 9-62.

Figure 9-16 Vector catch register

2 Allows the state of the core interrupt enable signal, IFEN, to be read. Because the 
capture clock for the scan chain might be asynchronous to the processor clock, the 
DBGACK output from the core is synchronized before being used to generate the 
IFEN status bit.

1:0 Allow the values on the synchronized versions of DBGRQ and DBGACK to be read. 

Table 9-18 Debug status register bit functions (continued)

Bits Function

7 6 5 4 3 2 1 0

FIQ IRQ Reserved D_Abort P_Abort SWI Undefined Reset



Debug Support 

9-62 Copyright © 2000, 2001 ARM Limited. All rights reserved. ARM DDI 0151C

9.14 Vector catching

The ARM9TDMI EmbeddedICE macrocell contains logic that allows efficient trapping 
of fetches from the vectors during exceptions. This is controlled by the vector catch 
register. If one of the bits in this register is set HIGH and the corresponding exception 
occurs, the processor enters debug state as if a breakpoint has been set on an instruction 
fetch from the relevant exception vector.

For example, if the processor executes a SWI instruction while bit 2 of the vector catch 
register is set, the ARM9TDMI core fetches an instruction from location 0x8. The vector 
catch hardware detects this access and forces the ARM9TDMI CPU core to enter debug 
state.

The behavior of the hardware is independent of the watchpoint comparators, leaving 
them free for general use. The vector catch register is sensitive only to fetches from the 
vectors during exception entry. Therefore, if code branches to an address within the 
vectors during normal operation, and the corresponding bit in the vector catch register 
is set, the processor is not forced to enter debug state.



Debug Support 

ARM DDI 0151C Copyright © 2000, 2001 ARM Limited. All rights reserved. 9-63

9.15 Single-stepping

The ARM9TDMI EmbeddedICE macrocell contains logic that allows efficient 
single-stepping through code. This leaves the macrocell watchpoint comparators free 
for general use. 

This function is enabled by setting bit 3 of the debug control register. You must only 
alter the state of this bit while the processor is in debug state. If the processor exits debug 
state and this bit is HIGH, the processor fetches an instruction, executes it, and then 
immediately re-enters debug state. This happens independently of the watchpoint 
comparators. If a system-speed data access is performed while in debug state, the 
debugger must ensure that the control bit is clear first.



Debug Support 

9-64 Copyright © 2000, 2001 ARM Limited. All rights reserved. ARM DDI 0151C

9.16 Debug communications channel

The ARM9TDMI EmbeddedICE macrocell contains a communication channel for 
passing information between the target and the host debugger. This is implemented as 
coprocessor 14.

The communications channel consists of:

• a 32-bit wide comms data read register

• a 32-bit wide comms data write register

• a 6-bit wide comms control register for synchronized handshaking between the 
processor and the asynchronous debugger. 

These registers are in fixed locations in the EmbeddedICE register map, as shown in 
Figure 9-11 on page 9-56. You can access the registers from the processor using MCR and 
MRC instructions to coprocessor 14.

9.16.1 Debug comms channel register

The debug comms control register is read-only, and allows synchronized handshaking 
between the processor and the debugger. The format of the debug comms control 
register is shown in Figure 9-17.

Figure 9-17 Debug comms control register

31 30 29 28 27 2 1 0

R0 W00 1



Debug Support 

ARM DDI 0151C Copyright © 2000, 2001 ARM Limited. All rights reserved. 9-65

The function of each register bit is described in Table 9-19.

From the perspective of the debugger, the registers are accessed using the scan chain in 
the usual way. From the processor, these registers are accessed using coprocessor 
register transfer instructions. You can use the following instructions:

MRC p14, 0, Rd, C0, C0
; Returns the debug comms control register into Rd.

MCR p14, 0, Rn, C1, C0
; Writes the value in Rn to the comms data write register.

MRC p14, 0, Rd, C1, C0
; Returns the debug data read register into Rd.

Note

 The Thumb instruction set does not support coprocessors so the ARM9TDMI must be 
operated in ARM state to access the debug comms channel.

Table 9-19 Debug comms control register bit functions

Bits Function

31:28 Contain a fixed pattern that denotes the EmbeddedICE macrocell version number, in 
this case 0b0010.

27:2 Unused.

1 Denotes, as seen by the processor, whether the comms data write register is free. If, 
as seen by the processor, the comms data write register is free (W=0), new data can 
be written. If it is not free (W=1), the processor must poll until W=0. If, as seen by 
the debugger, W=1, some new data has been written that can then be scanned out.

0 Denotes whether there is some new data in the comms data read register. If, as seen 
by the processor, R=1, there is some new data that can be read using an MRC 
instruction. If, as seen by the debugger, R=0, the comms data read register is free and 
new data can be placed there through the scan chain. If R=1, this denotes that data 
previously placed there through the scan chain has not been collected by the 
processor, and so the debugger must wait.



Debug Support 

9-66 Copyright © 2000, 2001 ARM Limited. All rights reserved. ARM DDI 0151C

9.16.2 Communications using the comms channel

 There are two methods of communicating using the comms channel:

• transmitting

• receiving. 

Sending a message to the debugger and Receiving a message from the debugger detail 
their usage.

Sending a message to the debugger

When the processor wishes to send a message to the debugger, it must check that the 
comms data write register is free for use by finding out if the W bit of the debug comms 
control register is clear:

• If the W bit is set, previously written data has not been read by the debugger. The 
processor must continue to poll the control register until the W bit is clear.

• If W bit is clear, the comms data write register is clear.

When the W bit is clear, a message can be written by a register transfer to coprocessor 
14. As the data transfer occurs from the processor to the comms data write register, the 
W bit is set in the debug comms control register. 

The debugger sees a synchronized version of both the R and W bit when it polls the 
debug comms control register through the JTAG interface. When the debugger sees the 
W bit is set, it can read the comms data write register and scan the data out. The action 
of reading this data register clears the debug comms control register W bit. At this point, 
the communications process can begin again.

As an alternative to polling, the debug comms channel can be interrupt driven by 
connecting the ARM920T COMMRX and COMMTX signals to the systems interrupt 
controller.

Receiving a message from the debugger

Message transfer from the debugger to the processor is similar to sending a message to 
the debugger. In this case, the debugger polls the R bit of the debug comms control 
register:

• if the R bit is LOW, the comms data read register is free, and data can be placed 
there for the processor to read

• if the R bit is set, previously deposited data has not yet been collected, so the 
debugger must wait.



Debug Support 

ARM DDI 0151C Copyright © 2000, 2001 ARM Limited. All rights reserved. 9-67

When the comms data read register is free, data can be written using the JTAG interface. 
The action of this write sets the R bit in the debug comms control register. 

When the processor polls this register, it sees a GCLK synchronized version. If the R 
bit is set, there is data waiting to be collected. You can read this data read using an MRC 
instruction to coprocessor 14. The action of this load clears the R bit in the debug 
comms control register. When the debugger polls this register and sees that the R bit is 
clear, the data has been taken, and the process can now be repeated.



Debug Support 

9-68 Copyright © 2000, 2001 ARM Limited. All rights reserved. ARM DDI 0151C



ARM DDI 0151C Copyright © 2000, 2001 ARM Limited. All rights reserved. 10-1

Chapter 10 
TrackingICE

This chapter describes how the ARM920T processor uses TrackingICE mode. It 
contains the following sections:

• About TrackingICE on page 10-2

• Timing requirements on page 10-3

• TrackingICE outputs on page 10-4.



TrackingICE 

10-2 Copyright © 2000, 2001 ARM Limited. All rights reserved. ARM DDI 0151C

10.1 About TrackingICE

When in TrackingICE mode, several ARM920T outputs track the inputs to the 
ARM9TDMI processor core embedded within the ARM920T processor. You can then 
connect an ARM9TDMI test chip to the outputs. This precisely tracks the ARM9TDMI 
processor core inside the ARM920T, enabling all outputs of the ARM9TDMI core to 
be observed.

Figure 10-1 shows how a tracking ARM9TDMI processor is attached to an ARM920T 
processor. 

Figure 10-1 Using TrackingICE

The tracking ARM9TDMI processor operates one clock phase behind the actual 
ARM9TDMI core (on the inverted clock). All required inputs to the ARM9TDMI core 
are latched inside the ARM920T processor and are then brought out on various outputs. 
You can attach the tracking ARM9TDMI processor to these outputs.

0

1

ARM920T

1

TRACK

ARM9TDMIARM9TDMI



TrackingICE 

ARM DDI 0151C Copyright © 2000, 2001 ARM Limited. All rights reserved. 10-3

10.2 Timing requirements

To enable the ARM9TDMI processor core to be tracked correctly, all inputs must be 
synchronous to the ARM9TDMI processor clock. These inputs include TCK, that in 
tracking mode is latched on the falling edge of GCLK before it is driven onto the 
ARM920T tracking outputs. All other TCK relative signals, TDI, TMS, and 
SDOUTBS, are latched on rising GCLK before they are driven onto the ARM920T 
tracking outputs.



TrackingICE 

10-4 Copyright © 2000, 2001 ARM Limited. All rights reserved. ARM DDI 0151C

10.3 TrackingICE outputs

Table 10-1 shows the ARM920T outputs that are re-used when the ARM920T 
processor is in TrackingICE mode.

Table 10-1 ARM920T in TrackingICE mode

ARM920T
output

Attach to 
tracking 
ARM9TDMI
input

IR[3:2] CHSE[1:0]

IR[1:0] CHSD[1:0]

SCREG[4] nIRQ

SCREG[3] nFIQ

SCREG[2] DABORT

SCREG[1] IABORT

TAPSM[3] EXTERN1

TAPSM[2] EXTERN0

TAPSM[1] DEWPT

TAPSM[0] IEBKPT

ICAPCLKBS HIVECS

ECAPCLKBS EDBGGQ

PCLKBS nWAIT

RSTCLKBS nRESET

SHCLK1BS TDI

SHCLK2BS TMS

TCK1 GCLK

TCK2 TCK

SDIN SDOUTBS



TrackingICE 

ARM DDI 0151C Copyright © 2000, 2001 ARM Limited. All rights reserved. 10-5

The remaining input connections to the ARM9TDMI core are:

• ID bus attaches to the CPID bus

• DD bus attaches to the CPDOUT bus

• BIGEND input attaches to the BIGENDOUT.

These can still be attached to a coprocessor when the ARM920T processor is in tracking 
mode. The only difference in behavior is that CPDOUT mirrors the ARM920T DD bus 
on every cycle, not only for coprocessor data transfers. The following conditions apply:

• The ISYNC and nTRST inputs must be common between the ARM920T and the 
tracking ARM9TDMI processor.

• IABE and DABE of the tracking ARM9TDMI processor must be HIGH so that 
the address outputs can be observed.

• DDBE of the tracking ARM9TDMI processor must be LOW to prevent a drive 
clash on the bidirectional DD bus. It is not necessary for the tracking 
ARM9TDMI to drive the DD bus because CPDOUT is driven with the data from 
all memory access cycles.



TrackingICE 

10-6 Copyright © 2000, 2001 ARM Limited. All rights reserved. ARM DDI 0151C



ARM DDI 0151C Copyright © 2000, 2001 ARM Limited. All rights reserved. 11-1

Chapter 11 
AMBA Test Interface

This chapter examines the ARM920T AMBA test interface. It contains the following 
sections:

• About the AMBA test interface on page 11-2

• Entering and exiting AMBA Test on page 11-3

• Functional test on page 11-4

• Burst operations on page 11-11

• PA TAG RAM test on page 11-12

• Cache test on page 11-15

• MMU test on page 11-19.



AMBA Test Interface 

11-2 Copyright © 2000, 2001 ARM Limited. All rights reserved. ARM DDI 0151C

11.1 About the AMBA test interface

You can use the ARM920T processor as an AMBA Revision D compliant ASB slave 
for AMBA testing. The address space of the ARM920T Slave State Machine (SSM) is 
from <base> to <base + 0xFFF>, word-aligned. The base address is specific to the 
implementation of the AMBA decoder. In this chapter <base> is assumed to be 0x0. 
Operation of the SSM is address mapped. This chapter explains the address mapping of 
AIN for ARM920T AMBA test.



AMBA Test Interface 

ARM DDI 0151C Copyright © 2000, 2001 ARM Limited. All rights reserved. 11-3

11.2 Entering and exiting AMBA Test

Six test modes exist:

• functional test

• PA TAG RAM test

• instruction MMU test

• data MMU test

• instruction cache test

• data cache test.

The address of the state location is 0x0. A write to this location changes the test mode, 
as shown in Table 11-1. An example TIF file is shown in Example 11-1.

Example 11-1 Example TIF (test input file)

; Address State Location
A 00000000
; Enter Functional Test Mode
W 00000001

<Body of Functional Test>

; Address State Location
A 00000000
; Exit Test Mode
W 00000000
E ZZZZZZZZ

Table 11-1 AMBA test modes

Test mode Write data

Exit test 0x0

Functional test 0x1

PA TAG RAM test 0x2

Instruction MMU test 0x3

Data MMU test 0x4

Instruction cache test 0x5

Data cache test 0x6



AMBA Test Interface 

11-4 Copyright © 2000, 2001 ARM Limited. All rights reserved. ARM DDI 0151C

11.3 Functional test

In AMBA functional test mode, the SSM disconnects the functional ARM920T from its 
inputs and disables its output drivers. The SSM provides locations that can be accessed 
by the tester. There are 9 locations that can be accessed in functional test mode:

• 3 write locations

• 6 read locations. 

These are bit-mapped to AIN[10:2] as shown in Table 11-2.

Note
 TAPID[31:0] and ETM<name>, the ARM920T Trace Interface Port, are not 
accessible in this test mode

Table 11-2 AMBA functional test locations

AIN 
bit

Location
Read/
write

Data

10 CPDIN Write 31:0

9 A920Inputs Write 31:0

8 DIN Write 31:0

7 DOUT Read 31:0

6 CPDOUT Read 31:0

5 CPID Read 31:0

4 A920Status1 Read 21:0

3 A920Status2 Read 31:0

2 AOUT Read 31:0



AMBA Test Interface 

ARM DDI 0151C Copyright © 2000, 2001 ARM Limited. All rights reserved. 11-5

The A920Inputs location, shown in Table 11-12 on page 11-16, is constructed as 
shown in Table 11-3.

Table 11-3 Construction of A920Inputs location

A920 inputs bit Signal

31 AGNT

30 WAITIN

29 ERRORIN

28 LASTIN

27 BnRES

26 FCLK

25:20 0

19 VINITHI

18 nFIQ

17 nIRQ

16 ISYNC

15:14 CHSDE[1:0]

13:12 CHSEX[1:0]

11 TRACK

10 IEBKPT

9 DEWPT

8 EDBGRQ

7 EXTERN0

6 EXTERN1

5 TCK

4 TDI

3 TMS



AMBA Test Interface 

11-6 Copyright © 2000, 2001 ARM Limited. All rights reserved. ARM DDI 0151C

The A920Status1 location, shown in Table 11-2 on page 11-4, is constructed as shown 
in Table 11-4.

2 nTRST

1 SDOUTBS

0 DBGEN

Table 11-4 Construction of A920Status1 location

A920Status1 
bits

Signal

21 WRITEOUT

20:19 SIZE

18:17 PROT[1:0]

16:15 BURST[1:0]

14 AREQ

13 LOK

12 TRAN

11 ENBA

10 ENBD

9 FCLKOUT

8 CPCLK

7 nCPWAIT

6 nCPMREQ

5 CPPASS

4 CPLATECANCEL

3 CPTBIT

Table 11-3 Construction of A920Inputs location (continued)

A920 inputs bit Signal



AMBA Test Interface 

ARM DDI 0151C Copyright © 2000, 2001 ARM Limited. All rights reserved. 11-7

The A920Status2 location, shown in Table 11-2 on page 11-4, is constructed as shown 
in Table 11-5.

2 nCPTRANS

1 BIGENDOUT

0 INSTREXEC

Table 11-5 Construction of A920Status2 location

A920Status2 bits Signal

31 DRIVEOUTBS

30 DBGACK

29 ECLK

28:25 IR[3:0]

24 RANGEOUT0

23 RANGEOUT1

22:18 SCREG[4:0]

17:14 TAPSM[3:0]

13 TDO

12 NTDOEN

11 SDIN

10 SHCLK1BS

9 SHCLK2BS

8 ICAPCLKBS

7 ECAPCLKBS

6 PCLKBS

5 TCK1

Table 11-4 Construction of A920Status1 location (continued)

A920Status1 
bits

Signal



AMBA Test Interface 

11-8 Copyright © 2000, 2001 ARM Limited. All rights reserved. ARM DDI 0151C

You can update and examine the inputs and outputs of the ARM920T on a per-cycle 
basis by writing to the input locations and reading from the output locations. The 
functional ARM920T is clocked after every sequence of writes. This means that for 
every cycle, at least one location must be written to (usually A920Inputs), but no 
locations have to be read. A typical AMBA test iterates the sequence:

• address locations to be written and read

• write input locations

• read output locations

• turnaround vector.

When the locations have been addressed, they are sequenced through in the order shown 
in Figure 11-1 on page 11-9.

4 TCK2

3 RSTCLKBS

2 COMMRX

1 COMMTX

0 DBGRQI

Table 11-5 Construction of A920Status2 location (continued)

A920Status2 bits Signal



AMBA Test Interface 

ARM DDI 0151C Copyright © 2000, 2001 ARM Limited. All rights reserved. 11-9

Figure 11-1 AMBA functional test state machine

11.3.1 Creating an ARM920T AMBA functional test

The steps required to write a TIF (test input format) file are:

1. Run an assembler program on a model of the ARM920T. You must run the 
program in FastBus mode (see FastBus mode on page 5-3). You must also run 
TCK synchronously to BCLK, and at least a factor of two slower.

2. On each rising edge of BCLK you must record the values of ERRORIN, 
WAITIN, and LASTIN. On each falling edge of BCLK, you must record the 
values of all other inputs and outputs. This binary string of values is called a 
vector.

The AMBA functional test header is:

; Entering AMBA Functional Test Mode
A 00000000
W 00000001
; Addressing all locations
A 000007FC

Write
CPDIN

100000000

IDLE

000000000

Write
A920 inputs

010000000

Write
DIN

001000000

Read
DOUT

000100000

Read
CPDOUT

000010000

Read
CPID

000001000

Read
A920Status1

000000100

Read
A920Status2

000000010

Read
AOUT

000000001



AMBA Test Interface 

11-10 Copyright © 2000, 2001 ARM Limited. All rights reserved. ARM DDI 0151C

3. Repeat the following sequence for n in the range 1 to <number of vectors>:

; Writing CPDIN of vector n-1
W <Data>
; Writing ARM920T Inputs of vector n
W <Data>
; Writing DIN of vector n-1
W <Data>
; Clocking ARM920T
; Reading DOUT of vector n
R <Data> FFFFFFFF
; Reading CPID of vector n
R <Data> FFFFFFFF
; Reading CPDOUT of vector n
R <Data> FFFFFFFF
; Reading ARM920T Status Location 1 of vector n-1
R <Data> 003FFCFF
; Reading ARM920T Status Location 2 of vector n-1
R <Data> 003FFCFF
; Reading AOUT of vector n
R <Data> FFFFFFFF

The AMBA functional test footer is:

; ARM920T Exiting AMBA Functional Test Mode
A 00000000
W 00000000
A ZZZZZZZZ
E ZZZZZZZZ

For each write and read, <Data> is an 8-character hexadecimal value. For the buses 
CPDIN, DIN, DOUT, CPID, CPDOUT, and AOUT this is the vector value. For the 
ARM920T inputs location the data is constructed as shown in Table 11-3 on page 11-5. 
For the A920status1 and A920status2 locations, the read data is constructed as shown 
in Table 11-4 on page 11-6 and Table 11-5 on page 11-7. Vector number zero does not 
exist in the vector file, so on the first iteration you must write CPDIN as zero and you 
must give both status locations a mask value of zero. For more information see the 
AMBA Specification (Rev 2.0).

Note

 If DOUT has the same value on two or more successive vectors, the mask value for the 
second and subsequent reads must be zero. It is recommended that you mask out 
FCLKOUT and CPCLK in each status1 read.



AMBA Test Interface 

ARM DDI 0151C Copyright © 2000, 2001 ARM Limited. All rights reserved. 11-11

11.4 Burst operations

In all test modes other than functional test, the SSM provides locations for burst reads 
and writes of certain lengths. These are shown in Table 11-6.

To construct the address of a location for a burst access, you must add the address of the 
burst size to the address of the location. For example:

• address of PA TAG RAM read location = 0x18

• address of burst-64 location = 0x180

• address of burst of 64 PA TAG RAM reads = 0x18 + 0x180 = 0x198.

For each of the six test modes (see Table 11-1 on page 11-3) there is a table 
summarizing for each location:

• its address

• whether it is for reading or writing

• whether burst accesses are supported to that location

• the alignment of read and write data.

Table 11-6 Burst locations

Burst size Address

1 0x000

2 0x040

4 0x080

8 0x0C0

16 0x100

32 0x140

64 0x180

128 0x1C0



AMBA Test Interface 

11-12 Copyright © 2000, 2001 ARM Limited. All rights reserved. ARM DDI 0151C

11.5 PA TAG RAM test

PA TAG RAM test mode allows you to test reading and writing the memory array. The 
memory array comprises eight segments out of a possible 128. Each segment comprises 
64 lines. Each line is 26 bits wide. Before either a read or write can be executed, the 
segment and index locations must be written, defining the array entry. If this has been 
done, writing is achieved as a two-step process and reading as a one-step process. 

1. You must write a data pattern to a test location provided by the SSM. 

2. The data pattern is written into the RAM array and the index is incremented. 
Depending on the write location used the data pattern is either incremented or 
inverted. For a burst access, the second step is repeated. 

There are five write locations and one read location. These are shown in Table 11-7.

When writing the data pattern, the write data is constructed as shown in Table 11-8. 

Table 11-7 PA TAG RAM locations

Location Address
Read/
write

Burst Data

Index 0x04 Write No 5:0

Segment 0x08 Write No 6:0

Data pattern 0x0C Write No 25:0

RAM write, invert data pattern and 
increment index

0x10 Write Yes -

RAM write, increment data pattern and 
increment index

0x14 Write Yes -

RAM read and increment index 0x18 Read Yes 31:6

Table 11-8 Construction of data pattern write data

Data pattern bits Write data bits

25:21 28:24

20:14 22:16

13:7 14:8

6:0 6:0



AMBA Test Interface 

ARM DDI 0151C Copyright © 2000, 2001 ARM Limited. All rights reserved. 11-13

For example:

• data pattern = 0x03FFFFFF

• write data = 0x1F7F7F7F.

Figure 11-2 shows the write data format.

Figure 11-2 Write data format

An example sequence to test lines 5 to 8 of memory segment 1 comprises:

1. Enter PA TAG test mode.

2. Write index = 5.

3. Write segment = 1.

4. Write data pattern = 0.

5. Burst-4 RAM write and increment both data pattern and index.

6. Write index = 5.

7. Burst-4 RAM read and increment index.

8. Exit test mode.

The TIF file equivalent of the above sequence is:

; PATAGRAM testmode
A 00000000
W 00000002
; load index counter 5
A 00000004
W 00000005
; load segment number 1
A 00000008
W 00000001
; load data pattern 0
A 0000000C
W 00000000
; ramwrite, increment data pattern and index, burst of 4
; 0x14 + 0x80 = 0x94
A 00000094

31 29 28 24 23 22 16 15 14 8 7 6 0

0 Data [13:7] Data [6:0]00Data [20:14]Data [25:21]000



AMBA Test Interface 

11-14 Copyright © 2000, 2001 ARM Limited. All rights reserved. ARM DDI 0151C

W 00000000
; ramwrite
W 00000000
; ramwrite
W 00000000
; ramwrite
W 00000000
; load index counter 5. Segment is unchanged at 1.
A 00000004
W 00000005
; ramread, increment index, burst of 4
; 0x18 + 0x80 = 0x98
A 00000098
R 00000000 FFFFFFC0
; ramread
R 00000040 FFFFFFC0
; ramread
R 00000080 FFFFFFC0
; ramread
R 000000C0 FFFFFFC0
A ZZZZZZZZ
; Exit Test Mode
A 00000000
W 00000000
; Exiting Test Mode
E ZZZZZZZZ.



AMBA Test Interface 

ARM DDI 0151C Copyright © 2000, 2001 ARM Limited. All rights reserved. 11-15

11.6 Cache test

Cache test mode allows you to perform the following functions:

• read and write CAM and RAM

• CAM matches

• dirty all entries

• write the lockdown pointer

• invalidate either the whole cache or a single entry by VA.

Cache test locations that you can access are shown in Table 11-9. See Chapter 2 
Programmer’s Model and Appendix B CP15 Test Registers for more details of the 
registers used for cache test.

CAM write data is organized as shown in Table 11-10.

Table 11-9 Cache test locations

Location Address Read/write Burst Data

CAM 0x04 Read/write Yes 31:0

RAM 0x08 Read/write Yes 31:0

CAM match, RAM read 0x0C Write then read No 31:0

Invalidate all 0x10 Write No -

Dirty all 0x14 Write No -

Lockdown victim and base 0x18 Write No 31:2

Invalidate by VA 0x1C Write No 31:5

Table 11-10 CAM write data

CAM data Read value Write value

31:5 [31:8] MVA TAG [31:8] MVA TAG

[7:6] = Segment [2:1] [7:5] = Segment [2:0]

[5] = 0

4 Valid Valid

3 Dirty even Dirty even



AMBA Test Interface 

11-16 Copyright © 2000, 2001 ARM Limited. All rights reserved. ARM DDI 0151C

CAM match write data is organized as shown in Table 11-11.

CAM match read data is organized as shown in Table 11-12.

Invalidate by VA write data is organized as shown in Table 11-13.

2 Dirty odd Dirty odd

1 Write back Write back

0 LFSR[6] 0

Table 11-11 CAM match write data

Match write data Value

31:8 MVA TAG

7:5 Segment

4:2 Word

1:0 SBZ

Table 11-12 CAM match read data

Match read data Value

31 Cache miss

30 Cache hit

29:0 RAM read data [29:0]

Table 11-13 Invalidate by VA write data

Invalidate by VA data Value

31:8 VA TAG

7:5 Segment

4:0 SBZ

Table 11-10 CAM write data (continued)

CAM data Read value Write value



AMBA Test Interface 

ARM DDI 0151C Copyright © 2000, 2001 ARM Limited. All rights reserved. 11-17

Lockdown victim and base data organization is shown in Table 11-14.

11.6.1 Behavior of the cache index pointer in AMBA cache test

Writing the lockdown pointer in AMBA cache test mode specifies the segment, index, 
and word that are used for all subsequent CAM and RAM operations. The index 
increments after CAM reads or writes and RAM reads or writes, but the segment and 
word do not change.

11.6.2 RAM read or write

To read or write the RAM in cache segment n, carry out the following sequence:

1. Write lockdown victim and base with:

• lockdown value = 0

• segment = n

• word = 0.

2. Burst 64 RAM read/write:

data = RAM data.

3. Repeat steps 1 and 2 seven times, incrementing the word value each time, from 0 
to 7.

Table 11-14 Lockdown victim and base data

Data Value

31:26 Index

25:8 SBZ

7:5 Segment

4:2 Word

1:0 SBZ



AMBA Test Interface 

11-18 Copyright © 2000, 2001 ARM Limited. All rights reserved. ARM DDI 0151C

11.6.3 CAM read or write

To read or write the CAM in cache segment n, carry out the following sequence:

1. Write lockdown victim and base with:

• lockdown value = 0

• segment = n.

2. Burst 64 CAM read or write:

TAG, segment, valid, dirty even, dirty odd, write back = CAM data.

11.6.4 CAM match, RAM read

To match on a VA and read out the corresponding RAM entry, carry out the following 
sequence:

1. Address the match location.

2. Write VA comprising:

• VA TAG

• segment

• word.

3. Read:

• cache hit

• cache miss

• RAM data.



AMBA Test Interface 

ARM DDI 0151C Copyright © 2000, 2001 ARM Limited. All rights reserved. 11-19

11.7 MMU test

MMU test allows you to test the following:

• read and write CAM, RAM1, RAM2, DAC, and lockdown pointer

• invalidate either a whole TLB or a single entry selected by VA

• CAM match and RAM1 read.

Table 11-15 shows the MMU test locations. See Chapter 2 Programmer’s Model and 
Appendix B CP15 Test Registers for more details of the registers used for MMU test.

The data format for the DAC and lockdown locations are described in Register 3, 
domain access control register on page 2-15 and Register 10, TLB lockdown register on 
page 2-22.

Invalidate by VA data is organized as shown in Table 11-16.

Table 11-15 MMU test locations

Location Address Read/write Burst Data

Invalidate by VA 0x04 Write No 31:10

CAM match, RAM1 read 0x08 Write then read No 31:0

CAM 0x24 Read/write Yes 31:0

RAM1 0x28 Read/write Yes 31:0

RAM2 0x2C Read/write Yes 31:0

RAM1, RAM2 0x30 Read/write Yes 31:0

DAC 0x34 Read/write No 31:0

Lockdown 0x38 Read/write No 31:20, 1

Invalidate all 0x3C Write No -

Table 11-16 Invalidate by VA data

Invalidate by VA data Value

31:10 VA tag

9:0 SBZ



AMBA Test Interface 

11-20 Copyright © 2000, 2001 ARM Limited. All rights reserved. ARM DDI 0151C

Match write data is organized as shown in Table 11-17.

CAM data is organized as shown in Table 11-18.

CAM data size encoding is shown in Table 11-19.

Table 11-17 Match write data

Match write data Value

31:10 VA tag

9:0 SBZ

Table 11-18 CAM data

CAM data Value

31:10 VA tag

9:6 Size_C

(see Table 11-19)

5 Valid

4 Preserved

3:0 SBZ

Table 11-19 CAM data Size_C encoding

Size Encoding [3:0]

1MB 0b1111

64KB 0b0111

16KB 0b0011

4KB 0b0001

1KB 0b0000



AMBA Test Interface 

ARM DDI 0151C Copyright © 2000, 2001 ARM Limited. All rights reserved. 11-21

RAM1 data is organized as shown in Table 11-20.

For RAM1 reads, bits [24:22] are only valid for a match operation. The encoding of 
RAM1 data access permission bits is shown in Table 11-21.

Table 11-20 RAM1 data

RAM 1 data Value

31:25 SBZ

24 Protection fault

23 Domain fault

22 MMU miss

21:6 Domain, D15:D0

5 Not cachable

4 Not bufferable

3:0 Access permission

bits [3:0]

Table 11-21 RAM1 data access permission bits

Access permission
bits [3:0]

Decoded as
AP [1:0]

0b0001 0b00

0b0010 0b01

0b0100 0b10

0b1000 0b11



AMBA Test Interface 

11-22 Copyright © 2000, 2001 ARM Limited. All rights reserved. ARM DDI 0151C

RAM2 data is organized as shown in Table 11-22.

The encoding of RAM2 data size bits is shown in Table 11-23.

11.7.1 Behavior of the TLB Index pointer in AMBA MMU test

Auto-increment is enabled for CAM and RAM1 reads and writes.

11.7.2 Indexing the RAM2 array 

The index pointer to the RAM2 array is a pipelined version of the CAM and RAM1 
index pointer. This means that to read from index n in the RAM2 array, you must first 
perform an access to index n in either the CAM or RAM1. Because of this, the 
composite location RAM1, RAM2 at address 0x30, and the Burst-128 location at 
address 0x1C0 are supported.

Table 11-22 RAM2 data

RAM 2 data Value

31:10 Physical address TAG

9:6 Size_R2

5:0 SBZ

Table 11-23 RAM2 data Size_R2 encoding

Size_R2 Encoding [3:0]

1MB 0b1111

64KB 0b0111

16KB 0b0011

4KB 0b0000

1KB 0b0001



ARM DDI 0151C Copyright © 2000, 2001 ARM Limited. All rights reserved. 12-1

Chapter 12 
Instruction Cycle Summary and Interlocks

This chapter gives the instruction cycle times and shows the timing diagrams for 
interlock timing. It contains the following sections:

• About the instruction cycle summary on page 12-2

• Instruction cycle times on page 12-3

• Interlocks on page 12-6.



Instruction Cycle Summary and Interlocks 

12-2 Copyright © 2000, 2001 ARM Limited. All rights reserved. ARM DDI 0151C

12.1 About the instruction cycle summary

All signals quoted in this chapter are ARM9TDMI signals, and are internal to the 
ARM920T. In all cases it is assumed that all accesses are from cached regions of 
memory.

If an instruction causes an external access, either when prefetching instructions or when 
accessing data, the instruction takes more cycles to complete execution. The additional 
number of cycles is dependent on the system implementation.



Instruction Cycle Summary and Interlocks 

ARM DDI 0151C Copyright © 2000, 2001 ARM Limited. All rights reserved. 12-3

12.2 Instruction cycle times

Table 12-1 shows a key to the symbols used in tables in this section.

Table 12-2 summarizes the ARM920T instruction cycle counts and bus activity when 
executing the ARM instruction set.

Table 12-1 Symbols used in tables

Symbol Meaning

b The number of busy-wait states during coprocessor accesses

m Is in the range 0 to 3, depending on early termination (see Multiplier cycle counts 
on page 12-5)

n The number of words transferred in an LDM/STM/LDC/STC

C Coprocessor register transfer (C-cycle)

I Internal cycle (I-cycle)

N Nonsequential cycle (N-cycle)

S Sequential cycle (S-cycle)

Table 12-2 Instruction cycle bus times

Instruction Cycles
Instruction 
bus

Data bus Comment

Data Op 1 1S 1I Normal case

Data Op 2 1S+1I 2I With register controlled shift

LDR 1 1S 1N Normal case, not loading PC

LDR 2 1S+1I 1N+1I Not loading PC and following instruction uses 
loaded word (1 cycle load-use interlock)

LDR 3 1S+2I 1N+2I Loaded byte, halfword, or unaligned word used 
by following instruction (2 cycle load-use 
interlock)

LDR 5 2S+2I+1N 1N+4I PC is destination register

STR 1 1S 1N All cases

LDM 2 1S+1I 1S+1I Loading 1 Register, not the PC



Instruction Cycle Summary and Interlocks 

12-4 Copyright © 2000, 2001 ARM Limited. All rights reserved. ARM DDI 0151C

Table 12-3 shows the instruction cycle times from the perspective of the data bus.

LDM n 1S+(n-1)I 1N+(n-1)S Loading n registers, n > 1, not loading the PC

LDM n+4 2S+1N+(n+1)I 1N+(n-1)S+4I Loading n registers including the PC, n > 0

STM 2 1S+1I 1N+1I Storing 1 Register

STM n 1S+(n-1)I 1N+(n-1)S Storing n registers, n > 1

SWP 2 1S+1I 2N Normal case

SWP 3 1S+2I 2N+1I Loaded byte used by following instruction

B,BL,BX 3 2S+1N 3I All cases

SWI, Undefined 3 2S+1N 3I All cases

CDP b+1 1S+bI (1+b)I All cases

LDC,STC b+n 1S+(b+n-1)I bI+1N+(n-1)S All cases

MCR b+1 1S+bI bI+1C All cases

MRC b+1 1S+bI bI+1C Normal case

MRC b+2 1S+(b+1)I (b+I)I+1C Following instruction uses transferred data

MUL, MLA 2+m 1S+(1+m)I (2+m)I All cases

SMULL,UMULL, 

SMLAL,UMLAL

3+m 1S+(2+m)I (3+m)I All cases

Table 12-2 Instruction cycle bus times (continued)

Instruction Cycles
Instruction 
bus

Data bus Comment

Table 12-3 Data bus instruction times

Instruction Cycle time

LDR 1N

STR 1N

LDM,STM 1N+(n-1)S



Instruction Cycle Summary and Interlocks 

ARM DDI 0151C Copyright © 2000, 2001 ARM Limited. All rights reserved. 12-5

12.2.1 Multiplier cycle counts

The number of cycles that a multiply instruction takes to complete depends on the 
instruction, and on the value of the multiplier-operand. The multiplier-operand is the 
contents of the register specified by bits [11:8] of the ARM multiply instructions, or bits 
[2:0] of the Thumb multiply instructions:

• For ARM MUL, MLA, SMULL, SMLAL, and Thumb MUL, m is:

1 if bits [31:8] of the multiplier operand are all 0 or all 1

2 if bits [31:16] of the multiplier operand are all 0 or all 1

3 if bits [31:24] of the multiplier operand are all 0 or all 1

4 otherwise.

• For ARM UMULL, UMLAL, m is:

1 if bits [31:8] of the multiplier operand are all 0

2 if bits [31:16] of the multiplier operand are all 0

3 if bits [31:24] of the multiplier operand are all 0

4 otherwise.

SWP 1N+1S

LDC,STC 1N+(n-1)S

MCR,MRC 1C

Table 12-3 Data bus instruction times (continued)

Instruction Cycle time



Instruction Cycle Summary and Interlocks 

12-6 Copyright © 2000, 2001 ARM Limited. All rights reserved. ARM DDI 0151C

12.3 Interlocks

 Pipeline interlocks occur when the data required for an instruction is not available due 
to the incomplete execution of an earlier instruction. When an interlock occurs, 
instruction fetches stop on the instruction memory interface of the ARM920T. Four 
examples are given in:

• Example 12-1

• Example 12-2 on page 12-7

• Example 12-3 on page 12-7

• Example 12-4 on page 12-9.

Example 12-1 Single load interlock

In this example, the following code sequence is executed:

LDR R0, [R1]
ADD R2, R0, R1

The ADD instruction cannot start until the data is returned from the load. The ADD 
instruction therefore, has to delay entering the Execute stage of the pipeline by one 
cycle. The behavior on the instruction memory interface is shown in Figure 12-1.

Figure 12-1 Single load interlock timing

GCLK

InMREQ

IA[31:1]

Dldr Eldr

ID[31:0]

A+4

Mldr WldrFldr

Dadd Dadd Eadd Madd WaddFadd

LDR ADD

A+10 A+14A+CA+8



Instruction Cycle Summary and Interlocks 

ARM DDI 0151C Copyright © 2000, 2001 ARM Limited. All rights reserved. 12-7

Example 12-2 Two cycle load interlock

In this example, the following code sequence is executed:

LDRB R0, [R1,#1]
ADD R2, R0, R1

Now, because a rotation must occur on the loaded data, there is a second interlock cycle. 
The behavior on the instruction memory interface is shown in Figure 12-2.

Figure 12-2 Two cycle load interlock

Example 12-3 LDM interlock

In this example, the following code sequence is executed:

LDM R12,{R1-R3}
ADD R2, R2, R1

The LDM takes three cycles to execute in the Memory stage of the pipeline. The ADD is 
therefore delayed until the LDM begins its final memory fetch. The behavior of both the 
instruction and data memory interfaces is shown in Figure 12-3.

GCLK

InMREQ

IA[31:1]

Dldrb Eldrb

ID[31:0]

A+4

Mldrb WldrbFldrb

Dadd Dadd Eadd Madd WaddFadd

LDRB ADD

A+10 A+14A+CA+8

Dadd



Instruction Cycle Summary and Interlocks 

12-8 Copyright © 2000, 2001 ARM Limited. All rights reserved. ARM DDI 0151C

Figure 12-3 LDM interlock

GCLK

InMREQ

IA[31:1]

Dldmb Eldmb

ID[31:0]

IA+4

Mldmb WldmbFldmb

Dadd Dadd Eadd Madd WaddFadd

LDM ADD

IA+10 IA+14IA+CIA+8

Dadd

DnMREQ

DA[31:0] DA+4 DA+8DA

DD[31:0]

MldmbMldmb

R1 R2 R3



Instruction Cycle Summary and Interlocks 

ARM DDI 0151C Copyright © 2000, 2001 ARM Limited. All rights reserved. 12-9

Example 12-4 LDM dependent interlock

In this example, the following code sequence is executed:

LDM R12,{R1-R3}
ADD R4, R3, R1

The code is the same code as in example 3, but in this instance the ADD instruction uses 
R3. Due to the nature of load multiples, the lowest register specified is transferred first, 
and the highest specified register last. Because the ADD is dependent on R3, there must 
be another cycle of interlock while R3 is loaded. The behavior on the instruction and 
data memory interface is shown in Figure 12-4 on page 12-10.



Instruction Cycle Summary and Interlocks 

12-10 Copyright © 2000, 2001 ARM Limited. All rights reserved. ARM DDI 0151C

Figure 12-4 LDM dependent interlock

GCLK

InMREQ

IA[31:1]

Dldmb Eldmb

ID[31:0]

IA+4

Mldmb WldmbFldmb

Dadd Dadd Dadd Eadd MaddFadd

LDM ADD

IA+10 IA+14IA+CIA+8

Dadd

DnMREQ

DA[31:0] DA+4 DA+8DA

DD[31:0]

MldmbMldmb

R1 R2 R3

Wadd



ARM DDI 0151C Copyright © 2000, 2001 ARM Limited. All rights reserved. 13-1

Chapter 13 
AC Characteristics

This chapter gives the timing diagrams and timing parameters for the ARM920T 
processor. It contains the following sections:

• ARM920T timing diagrams on page 13-2

• ARM920T timing parameters on page 13-16

• Timing definitions for the ARM920T Trace Interface Port on page 13-26.



AC Characteristics 

13-2 Copyright © 2000, 2001 ARM Limited. All rights reserved. ARM DDI 0151C

13.1 ARM920T timing diagrams

The AMBA bus interface of the ARM920T conforms to the AMBA Specification (Rev 
2.0). See this document for the relevant timing diagrams.

Figure 13-1 shows the signal parameters for the FCLK timed coprocessor interface.

Figure 13-1 ARM920T FCLK timed coprocessor interface

FCLK

CPCLK

CPID[31:0]
CPDOUT[31:0]

CPnMREQ
nCPTRANS

CPTBIT

CPLATECANCEL

CPPASS

nCPWAIT

CHSDE[1:0]
CHSEX[1:0]

CPDIN[31:0]

Tfcpkr fcpkfT

fcpiddT

fcpmreqdT

fcandT

fcanhT

fpashT
fpasdT

fnwtdT

fnwthT

fcdnsT

fchsdhT

fcdnhT

Tfclkh Tfclkl

fcpdoutdT

fcpidhT fcpdouthT

ftransdT fcptbitdT

fcpmreqhT ftranshT fcptbithT

fchsehTfchsdsT fchsesT



AC Characteristics 

ARM DDI 0151C Copyright © 2000, 2001 ARM Limited. All rights reserved. 13-3

Figure 13-2 shows the signal parameters for the BCLK timed coprocessor interface.

Figure 13-2 ARM920T BCLK timed coprocessor interface

BCLK

CPCLK

CPID[31:0]
CPDOUT[31:0]

CPnMREQ
nCPTRANS

CPTBIT

CPLATECANCEL

CPPASS

nCPWAIT

CHSDE[1:0]
CHSEX[1:0]

CPDIN[31:0]

TbcpkfbcpkrT

bcandT

bcanhT

bpasdT

bpashT

bnwtdT

bnwthT

bcdnsT bcdnhT

bcpiddT

bcpmreqdT

bchsdhT

Tclkh Tclkl

bcpdoutdT

bcpidhT bcpdouthT

btransdT bcptbitdT

bcpmreqhT btranshT bcptbithT

bchsehTbchsdsT bchsesT



AC Characteristics 

13-4 Copyright © 2000, 2001 ARM Limited. All rights reserved. ARM DDI 0151C

Figure 13-3 shows the ARM920T FCLK related signal timing.

Figure 13-3 ARM920T FCLK related signal timing

FCLK

ECLK

BIGENDOUT

nFIQ
nIRQ

fints

FCLKOUT

fekrT fekfT

ffkrT ffkfT

finthTT

fbigdT

fbighT



AC Characteristics 

ARM DDI 0151C Copyright © 2000, 2001 ARM Limited. All rights reserved. 13-5

Figure 13-4 shows the ARM920T BCLK related signal timing.

Figure 13-4 ARM920T BCLK related signal timing

Figure 13-5 shows the SDOUTBS to TDO signal relationship.

Figure 13-5 ARM920T SDOUTBS to TDO relationship

BCLK

ECLK

BIGENDOUT

nFIQ
nIRQ

bekrT bekfT

bbigdT

bbighT

binthTbintsT

TDO

SDOUTBS

tdsdT

tdshT



AC Characteristics 

13-6 Copyright © 2000, 2001 ARM Limited. All rights reserved. ARM DDI 0151C

Figure 13-6 shows the relationship between nTRST and the following signals:

• COMMRX
• COMMTX
• DBGACK
• DBGRQI
• DRIVEOUTBS
• IR[3:0]
• RANGEOUT0
• RANGEOUT1
• RSTCLKBS
• SCREG[3:0]
• SDIN
• TAPSM[3:0]
• TDO
• nTDOEN.

Figure 13-6 ARM920T nTRST to other signals relationship

Figure 13-7 on page 13-7 shows the JTAG output signal timing parameters.

Signals

nTRST

brstT



AC Characteristics 

ARM DDI 0151C Copyright © 2000, 2001 ARM Limited. All rights reserved. 13-7

Figure 13-7 ARM920T JTAG output signal timing

TCK

TCK1

TCK2

IR[3:0]
SCREG[3:0]

RSTCLKBS

SDIN

TAPSM[3:0]

ECAPCLKBS
ICAPCLKBS

PCLKBS

nTDOEN

TDO

SHCLK2BS

SHCLK1BS

tckfT

tckrT
tckfT

tckrT

capfT
caprT

irsdT

irshT

brtdT

brthT

toedT

toehT

tdodT

tdohT

sdndT

sdnhT

tpmdT

tpmhT

shkfT

shkrT
shkfT

shkrT

tckhT tcklT

brtdT

brthT



AC Characteristics 

13-8 Copyright © 2000, 2001 ARM Limited. All rights reserved. ARM DDI 0151C

Figure 13-8 shows the JTAG input signal timing parameters.

Figure 13-8 ARM920T JTAG input signal timing

Figure 13-9 on page 13-8 shows the FCLK related debug output timing parameters.

Figure 13-9 ARM920T FCLK related debug output timing

TCK

TDI
TMS

dihTdisT

FCLK

COMMTX
COMMRX

DBGACK

EXTERN0
EXTERN1

EDBGRQ

RANGEOUT0

RANGEOUT1

fcomdT

fcomhT

fdckdT

fdckhT

frg0dT

frg0hT

frg1dT

frg1hT

fexthTfextsT

fdbqhTfdbqsT



AC Characteristics 

ARM DDI 0151C Copyright © 2000, 2001 ARM Limited. All rights reserved. 13-9

Figure 13-10 shows the BCLK related debug output timing parameters.

Figure 13-10 ARM920T BCLK related debug output timing

BCLK

COMMTX
COMMRX

DBGACK

EXTERN0
EXTERN1

EDBGRQ

RANGEOUT0

RANGEOUT1

bcomdT

bcomhT

bdckdT

bdckhT

brg0dT

brg0hT

brg1dT

brg1hT

bextsT

bdbqhTbdbqsT

bexthT



AC Characteristics 

13-10 Copyright © 2000, 2001 ARM Limited. All rights reserved. ARM DDI 0151C

Figure 13-11 shows the TCK related debug output timing parameters.

Figure 13-11 ARM920T TCK related debug output timing

Figure 13-12 shows the EDBGRQ to DBGRQI relationship.

Figure 13-12 ARM920T EDBGRQ to DBGRQI relationship

TCK

ECLK

DBGRQI

tekfT

dgidT

dgihT

tekrT

DBGRQI

EDBGRQ

edqdT

edqhT



AC Characteristics 

ARM DDI 0151C Copyright © 2000, 2001 ARM Limited. All rights reserved. 13-11

Figure 13-13 shows the DBGEN to output relationship.

Figure 13-13 ARM920T DBGEN to output relationship

Figure 13-14 shows the BCLK related Trace Interface Port timing parameters.

Figure 13-14 ARM920T BCLK related Trace Interface Port timing

RANGEOUT0
RANGEOUT1

DBGEN

rgenT

BCLK

ETMCLOCK

ETM<name>

betmckfT betmckrT

betm<name>dT
betm<name>hT



AC Characteristics 

13-12 Copyright © 2000, 2001 ARM Limited. All rights reserved. ARM DDI 0151C

Figure 13-15 shows the FCLK related Trace Interface Port timing parameters.

Figure 13-15 ARM920T FCLK related Trace Interface Port timing

Figure 13-16 shows the BnRES timing.

Figure 13-16 ARM920T BnRES timing

You can assert BnRES LOW asynchronously during either BCLK phase, but you must 
de-assert it during the BCLK LOW phase. You must keep BnRES asserted for a 
minimum of five BCLK cycles to ensure a complete reset of the ARM920T.

FCLK

ETMCLOCK

ETM<name>

fetmckfT fetmckrT

fetm<name>dT

fetm<name>hT

BCLK

BnRES

ihnresTzeroT zeroT
isnresT

5 cycles minimum



AC Characteristics 

ARM DDI 0151C Copyright © 2000, 2001 ARM Limited. All rights reserved. 13-13

Figure 13-17 shows the ARM920T ASB slave transfer timing parameters.

Figure 13-17 ARM920T ASB slave transfer timing

BCLK

DSEL

DOUT[31:0]

isdselT ihdselT

AIN[11:2]

WRITEIN

DIN[31:0]

ENBD

WAITOUT

ENBA

isaT ihaT

iswrT ihwrT

ihdTisdT

ohdT

ohenbdT

ohwaitT

ohenbaTovenbaT

ovwaitT

ovenbdT

ovdT

clktstlT clktsthT



AC Characteristics 

13-14 Copyright © 2000, 2001 ARM Limited. All rights reserved. ARM DDI 0151C

Figure 13-18 and Figure 13-19 on page 13-15 show the ARM920T ASB master transfer 
timing parameters.

Figure 13-18 ARM920T ASB master transfer timing

ovdT ohdT

BCLK

AREQ

WRITEOUT

LOK

SIZE[1:0]

ENBA

AOUT

PROT[1:0]

ENBD

DOUT[31:0]

ovareqT ohareqT

ohaTovaT

ovwriteT

ovprotT

LOK

ovlokT ohlokT

ovsizeT

ovenbaT
ovenbaT

ohwriteT

ohprotT

ohsizeT

ohenbaT

ovenbdT ohenbdT

ihdT

DIN[31:0]

ohenbaT

isdT

clkhT clklT



AC Characteristics 

ARM DDI 0151C Copyright © 2000, 2001 ARM Limited. All rights reserved. 13-15

Figure 13-19 ARM920T ASB master transfer timing

ihwaitTiswaitT

ihlastTislastT

iherrTiserrT

BCLK

AREQ

AGNT

ENBTRAN

NCMAHB

ERRORIN

TRAN[1:0]

ASTB

WAITIN

LASTIN

ovareqT ohareqT

ihagntTisagntT

ohtrTovtrT

ovbstT

BURST[1:0]

oventrT ohentrT

ohbstT

ovastbT ohastbT

ncmahbdT ncmahbhT

ovtraT

oventrT ohentrT

clkhT clklT



AC Characteristics 

13-16 Copyright © 2000, 2001 ARM Limited. All rights reserved. ARM DDI 0151C

13.2 ARM920T timing parameters

Table 13-1 shows the ARM920T timing parameters.

Table 13-1 ARM920T timing parameters

Timing parameter Description

No arcs for CPEN a

No arcs for ERROROUT b

No arcs for ISYNC a

No arcs for LASTOUT b

No arcs for TRACK a

No arcs for VINITHI a

Tbbigd BIGENDOUT output delay from BCLK falling

Tbbigh BIGENDOUT output hold from BCLK falling

Tbcand CPLATECANCEL output delay from BCLK falling

Tbcanh CPLATECANCEL output hold from BCLK falling

Tbcdnh CPDIN[31:0] input hold from BCLK falling

Tbcdns CPDIN[31:0] input setup to BCLK falling

Tbchsdh CHSDE[1:0] input hold from BCLK falling

Tbchsds CHSDE[1:0] input setup to BCLK falling

Tbchseh CHSEX[1:0] input hold from BCLK falling

Tbchses CHSEX[1:0] input setup to BCLK falling

Tbcomd COMMTX/COMMRX output delay from BCLK rising

Tbcomh COMMTX/COMMRX output hold from BCLK rising

Tbcpdoutd CPDOUT[31:0] output delay from BCLK falling

Tbcpdouth CPDOUT[31:0] output hold from BCLK falling

Tbcpidd CPID[31:0] output delay from BCLK falling

Tbcpidh CPID[31:0] output hold from BCLK falling



AC Characteristics 

ARM DDI 0151C Copyright © 2000, 2001 ARM Limited. All rights reserved. 13-17

Tbcpkf CPCLK falling output delay from BCLK falling

Tbcpkr CPCLK rising output delay from BCLK rising

Tbcpmreqd nCPMREQ output delay from BCLK falling.

Tbcpmreqh nCPMREQ output hold from BCLK falling

Tbcptbitd CPTBIT output delay from BCLK falling.

Tbcptbith CPTBIT output hold from BCLK falling

Tbdbqh EDBGRQ input hold from BCLK falling

Tbdbqs EDBGRQ input setup to BCLK falling

Tbdckd DBGACK output delay from BCLK rising

Tbdckh DBGACK output hold from BCLK rising

Tbdwph DEWPT input hold from BCLK rising c

Tbdwps DEWPT input setup to BCLK rising c

Tbekf ECLK falling output delay from BCLK falling

Tbekr ECLK rising output delay from BCLK rising

Tbexth EXTERN0/EXTERN1 input hold from BCLK falling

Tbexts EXTERN0/EXTERN1 input setup to BCLK falling

Tbibkh IEBKPT hold after BCLK rising c

Tbibks IEBKPT input setup to BCLK rising c

Tbinth nFIQ/nIRQ input hold from BCLK falling

Tbints nFIQ/nIRQ input setup to BCLK falling

Tbinxd INSTREXEC output delay from BCLK falling c

Tbinxh INSTREXEC output hold from BCLK falling c

Tbnwtd nCPWAIT output delay from BCLK rising

Tbnwth nCPWAIT output hold from BCLK rising

Table 13-1 ARM920T timing parameters (continued)

Timing parameter Description



AC Characteristics 

13-18 Copyright © 2000, 2001 ARM Limited. All rights reserved. ARM DDI 0151C

Tbpasd CPPASS output delay from BCLK rising

Tbpash CPPASS output hold from BCLK rising

Tbrg0d RANGEOUT0 output delay from BCLK falling

Tbrg0h RANGEOUT0 output hold from BCLK falling

Tbrg1d RANGEOUT1 output delay from BCLK falling

Tbrg1h RANGEOUT1 output hold from BCLK falling

Tbrst COMMRX/COMMTX/DBGACK/DBGRQI/DRIVEOUTBS/ 
IR[3:0]/RANGEOUT0/RANGEOUT1/RSTCLKBS/ 
SCREG[3:0]/SDIN/ TAPSM[3:0]/TDO/nTDOEN output delay 
from nTRST falling

Tbrtd RSTCLKBS output delay from TCK 

Tbrth RSTCLKBS hold time from TCK 

Tbtransd nCPTRANS output delay from BCLK falling

Tbtransh nCPTRANS output hold from BCLK falling

Tcapf ECAPCLKBS/ICAPCLKBS/PCLKBS falling output delay from 
TCK rising

Tcapr ECAPCLKBS/ICAPCLKBS/PCLKBS rising output delay from 
TCK rising

Tclkh BCLK minimum width HIGH phase

Tclkl BCLK minimum width LOW phase

Tclktsth BCLK minimum width HIGH phase in AMBA test mode

Tclktstl BCLK minimum width LOW phase in AMBA test mode

Tdebugd COMMRX/COMMTX/DBGACK/DBGRQI/RANGEOUT0/ 
RANGEOUT1 output delay from TCK when in debug state c

Tdebugh COMMRX/COMMTX/DBGACK/DBGRQI/RANGEOUT0/ 
RANGEOUT1 output hold from TCK when in debug state c

Tdgid DBGRQI output delay from TCK falling

Table 13-1 ARM920T timing parameters (continued)

Timing parameter Description



AC Characteristics 

ARM DDI 0151C Copyright © 2000, 2001 ARM Limited. All rights reserved. 13-19

Tdgih DBGRQI output hold from TCK falling

Tdih TDI/TMS input hold from TCK rising

Tdis TDI/TMS input setup to TCK rising

Tdrbsd DRIVEOUTBS output delay from TCK falling c

Tdrbsh DRIVEOUTBS output hold from TCK falling c

Tedqd DBGRQI output delay from EDBGRQ rising or falling

Tedqh DBGRQI output hold from EDBGRQ rising or falling

Tfbigd BIGENDOUT output delay from FCLK falling

Tfbigh BIGENDOUT output hold from FCLK falling

Tfcand CPLATECANCEL output delay from FCLK falling

Tfcanh CPLATECANCEL output hold from FCLK falling

Tfcdnh CPDIN[31:0] input hold from FCLK falling

Tfcdns CPDIN[31:0] input setup to FCLK falling

Tfchsdh CHSDE[1:0] input hold to FCLK falling

Tfchsds CHSDE[1:0] input setup to FCLK falling

Tfchseh CHSEX[1:0] input hold to FCLK falling

Tfchses CHSEX[1:0] input setup to FCLK falling

Tfclkh FCLK minimum width HIGH phase

Tfclkl FCLK minimum width LOW phase

Tfcomd COMMTX/RX output delay from FCLK rising

Tfcomh COMMTX/RX output hold from FCLK rising

Tfcpdoutd CPOUT[31:0] output delay from FCLK falling

Tfcpdouth CPOUT[31:0] output hold from FCLK falling

Tfcpidd CPID[31:0] output delay from FCLK falling

Table 13-1 ARM920T timing parameters (continued)

Timing parameter Description



AC Characteristics 

13-20 Copyright © 2000, 2001 ARM Limited. All rights reserved. ARM DDI 0151C

Tfcpidh CPID[31:0] output hold from FCLK falling

Tfcpkf CPCLK falling output delay from FCLK falling

Tfcpkr CPCLK rising output delay from FCLK rising

Tfcpmreqd nCPMREQ output delay from FCLK falling

Tfcpmreqh nCPMREQ output hold time from FCLK falling

Tfcptbitd CPTBIT output delay from FCLK falling

Tfcptbith CPTBIT output hold time from FCLK falling

Tfdbqh EDBGRQ input hold from FCLK falling

Tfdbqs EDBGRQ input setup to FCLK falling

Tfdckd DBGACK output delay from FCLK rising

Tfdckh DBGACK output hold from FCLK rising

Tfdwph DEWPT input hold from FCLK rising c

Tfdwps DEWPT input setup to FCLK rising c

Tfekf ECLK falling output delay from FCLK falling

Tfekr ECLK rising output delay from FCLK rising

Tfexth EXTERN0/1 output hold after FCLK falling

Tfexts EXTERN0/1 input setup to FCLK falling

Tffkf FCLKOUT falling output delay from FCLK falling

Tffkr FCLKOUT rising output delay from FCLK rising

Tfibkh IEBKPT input hold from FCLK rising c

Tfibks IEBKPT input setup to FCLK rising c

Tfinth nFIQ/nIRQ input hold from FCLK falling

Tfints nFIQ/nIRQ input setup to FCLK falling

Tfinxd INSTREXEC output delay from FCLK falling c

Table 13-1 ARM920T timing parameters (continued)

Timing parameter Description



AC Characteristics 

ARM DDI 0151C Copyright © 2000, 2001 ARM Limited. All rights reserved. 13-21

Tfinxh INSTREXEC output hold from FCLK falling c

Tfnwtd nCPWAIT output delay from FCLK rising

Tfnwth nCPWAIT output hold from FCLK rising

Tfpasd CPPASS output delay from FCLK rising

Tfpash CPPASS output hold from FCLK rising

Tfrg0d RANGEOUT0 output delay from FCLK falling

Tfrg0h RANGEOUT0 output hold from FCLK falling

Tfrg1d RANGEOUT1 output delay from FCLK falling

Tfrg1h RANGEOUT1 output hold from FCLK falling

Tftransd nCPTRANS output delay from FCLK falling

Tftransh nCPTRANS output hold time from FCLK falling

Tiha AIN[11:2] input hold from BCLK rising

Tihagnt AGNT input hold from BCLK falling

Tihd DIN[31:0] input hold from BCLK falling

Tihdsel DSEL input hold from BCLK rising

Tiherr ERRORIN input hold from BCLK rising

Tihlast LASTIN input hold from BCLK rising

Tihnres BnRES input rising hold from BCLK falling

Tihwait WAITIN input hold from BCLK rising

Tihwr WRITEIN input hold from BCLK rising

Tirsd IREG[3:0]/SCREG[3:0] output delay from TCK falling

Tirsh IREG[3:0]/SCREG[3:0] output hold from TCK falling

Tisa AIN[11:2] input setup to BCLK falling

Tisagnt AGNT input setup to BCLK rising

Table 13-1 ARM920T timing parameters (continued)

Timing parameter Description



AC Characteristics 

13-22 Copyright © 2000, 2001 ARM Limited. All rights reserved. ARM DDI 0151C

Tisd DIN[31:0] input setup to BCLK falling

Tisdsel DSEL input setup to BCLK falling

Tiserr ERRORIN input setup to BCLK rising

Tislast LASTIN input setup to BCLK rising

Tisnres BnRES input rising setup to BCLK rising

Tiswait WAITIN input setup to BCLK rising

Tiswr WRITEIN input setup to BCLK rising

Tncmahbd NCMAHB output delay from BCLK rising

Tncmahbh NCMAHB output hold from BCLK rising

Toha AOUT[31:0] output hold from BCLK rising

Tohareq AREQ output hold from BCLK rising

Tohastb ASTB output hold from BCLK rising

Tohbst BURST[1:0] output hold from BCLK rising

Tohd DOUT[31:0] output hold from BCLK falling

Tohenba ENBA output hold from BCLK rising or falling

Tohenbd ENBD output hold from BCLK falling

Tohensr ENSR output hold from BCLK rising or falling

Tohentr ENBTRAN output hold from BCLK rising or falling

Tohlok LOK output hold from BCLK rising 

Tohprot PROT[1:0] output hold from BCLK rising

Tohsize SIZE[1:0] output hold from BCLK rising

Tohtr TRAN[1:0] output hold from BCLK rising

Tohwait WAITOUT output hold from BCLK falling

Tohwrite WRITEOUT output hold from BCLK rising

Table 13-1 ARM920T timing parameters (continued)

Timing parameter Description



AC Characteristics 

ARM DDI 0151C Copyright © 2000, 2001 ARM Limited. All rights reserved. 13-23

Tova AOUT[31:0] output delay from BCLK rising

Tovareq AREQ output delay from BCLK rising

Tovastb ASTB output delay from BCLK rising

Tovbst BURST[1:0] output delay from BCLK rising

Tovd DOUT[31:0] output delay from BCLK falling

Tovenba ENBA output delay from BCLK rising or falling

Tovenbd ENBD output delay from BCLK falling

Tovensr ENSR output delay from BCLK rising or falling

Toventr ENBTRAN output delay from BCLK rising or falling

Tovlok LOK output delay from BCLK rising

Tovprot PROT[1:0] output delay from BCLK rising

Tovsize SIZE[1:0] output delay from BCLK rising

Tovtr TRAN[1:0] output delay from BCLK rising

Tovtra TRAN[1:0] output delay from AGNT rising or falling

Tovwait WAITOUT output delay from BCLK falling

Tovwrite WRITEOUT output delay from BCLK rising

Trgen RANGEOUT0/RANGEOUT1 falling output delay from DBGEN 
falling

Tsdnd SDIN output delay from TCK falling

Tsdnh SDIN output hold from TCK falling

Tshkf SHCLK1BS falling output delay from TCK falling d

Tshkf SHCLK2BS falling output delay from TCK rising d

Tshkr SHCLK1BS rising output delay from TCK rising d

Tshkr SHCLK2BS rising output delay from TCK falling d

Ttckf TCK1 falling output delay from TCK falling e

Table 13-1 ARM920T timing parameters (continued)

Timing parameter Description



AC Characteristics 

13-24 Copyright © 2000, 2001 ARM Limited. All rights reserved. ARM DDI 0151C

Ttckf TCK2 falling output delay from TCK rising e

Ttckh TCK minimum width HIGH phase

Ttckl TCK minimum width LOW phase

Ttckr TCK1 rising output delay from TCK rising e

Ttckr TCK2 rising output delay from TCK falling e

Ttdod TDO output delay from TCK falling

Ttdoh TDO output hold from TCK falling

Ttdsd TDO output delay from SDOUTBS rising or falling

Ttdsh TDO output hold from SDOUTBS rising or falling

Ttekf ECLK falling output delay from TCK falling

Ttekr ECLK rising output delay from TCK rising

Tticd COMMRX/COMMTX/DBGACK/DBGRQI/DRIVEOUTBS/ 
ECAPCLKBS/ECLK/FCLKOUT/ICAPCLKBS/IR[3:0]/ 
RANGEOUT0/RANGEOUT1/RSTCLKBS/SCREG[3:0]/SDIN/ 
SHCLK1BS/SHCLK2BS/TAPSM[3:0]/TCK1/TCK2/TDO/ 
nTDOEN generic output delay from BCLK during AMBA test c

Ttich COMMRX/COMMTX/DBGACK/DBGRQI/DRIVEOUTBS/ 
ECAPCLKBS/ECLK/FCLKOUT/ICAPCLKBS/IR[3:0]/ 
RANGEOUT0/RANGEOUT1/RSTCLKBS/SCREG[3:0]/SDIN/ 
SHCLK1BS/SHCLK2BS/TAPSM[3:0]/TCK1/TCK2/TDO/ 
nTDOEN generic output hold from BCLK during AMBA test c

Ttoed nTDOEN output delay from TCK falling

Ttoeh nTDOEN output hold from TCK falling

Ttpmd TAPSM[3:0] output delay from TCK falling

Ttpmh TAPSM[3:0] output hold from TCK falling

Tzero BnRES falling setup to BCLK falling f

Tzero BnRES falling hold from BCLK falling f

Table 13-1 ARM920T timing parameters (continued)

Timing parameter Description



AC Characteristics 

ARM DDI 0151C Copyright © 2000, 2001 ARM Limited. All rights reserved. 13-25

a. It is assumed that this signal is static.
b. Permanently driven to 0.
c. This timing parameter is not shown in any diagram in this chapter.
d. Tshkr is greater than Tshkf to ensure non-overlapping SHCLK1BS and SHCLK2BS.
e. Ttckr is greater than Ttckf to ensure non-overlapping TCK1 and TCK2.
f. This parameter is always zero because the timing arcs refer to asynchronous assertion.



AC Characteristics 

13-26 Copyright © 2000, 2001 ARM Limited. All rights reserved. ARM DDI 0151C

13.3 Timing definitions for the ARM920T Trace Interface Port

Table 13-2 shows the timing parameters of signals used with the ARM920T Trace 
Interface Port.

Table 13-2 ARM920T Trace Interface Port timing definitions

Timing parameter Description

No arcs for ETMPWRDOWN -

Tbetmbigendd ETMBIGEND output delay from BCLK rising

Tbetmbigendh ETMBIGEND output hold from BCLK rising

Tbetmchsdd ETMCHSD[1:0] output delay from BCLK rising

Tbetmchsdh ETMCHSD[1:0] hold from BCLK rising

Tbetmchsed ETMCHSE[1:0] output delay from BCLK rising

Tbetmchseh ETMCHSE[1:0] hold from BCLK rising

Tbetmckf ETMCLOCK falling output delay from BCLK falling

Tbetmckr ETMCLOCK rising output delay from BCLK rising

Tbetmdabortd ETMDABORT output delay from BCLK rising

Tbetmdaborth ETMDABORT output hold from BCLK rising

Tbetmdad ETMDA[31:0] output delay from BCLK rising

Tbetmdah ETMDA[31:0] output hold from BCLK rising

Tbetmdbgackd ETMDBGACK output delay from BCLK rising

Tbetmdbgackh ETMDBGACK output hold from BCLK rising

Tbetmddd ETMDD[31:0] output delay from BCLK rising

Tbetmddh ETMDD[31:0] output hold from BCLK rising

Tbetmdmasd ETMDMAS[1:0] output delay from BCLK rising

Tbetmdmash ETMDMAS[1:0] output hold from BCLK rising

Tbetmdmored ETMDMORE output delay from BCLK rising

Tbetmdmoreh ETMDMORE output hold from BCLK rising



AC Characteristics 

ARM DDI 0151C Copyright © 2000, 2001 ARM Limited. All rights reserved. 13-27

Tbetmdnmreqd ETMDnMREQ output delay from BCLK rising

Tbetmdnmreqh ETMDnMREQ output hold from BCLK rising

Tbetmdnrwd ETMDnRW output delay from BCLK rising

Tbetmdnrwh ETMDnRW output hold from BCLK rising

Tbetmdseqd ETMDSEQ output delay from BCLK rising

Tbetmdseqh ETMDSEQ output hold from BCLK rising

Tbetmhivecsd ETMHIVECS output delay from BCLK rising

Tbetmhivecsh ETMHIVECS output hold from BCLK rising

Tbetmiabortd ETMIABORT output delay from BCLK rising

Tbetmiaborth ETMIABORT output hold from BCLK rising

Tbetmiad ETMIA[31:1] output delay from BCLK rising

Tbetmiah ETMIA[31:1] output hold from BCLK rising

Tbetmid15to8d ETMID15TO8[15:8] output delay from BCLK rising

Tbetmid15to8h ETMID15TO8[15:8] output hold from BCLK rising

Tbetmid31to24d ETMID31TO24[31:24] output delay from BCLK rising

Tbetmid31to24h ETMID31TO24[31:24] output hold from BCLK rising

Tbetminmreqd ETMInMREQ output delay from BCLK rising

Tbetminmreqh ETMInMREQ output hold from BCLK rising

Tbetminstrexecd ETMINSTREXEC output delay from BCLK rising

Tbetminstrexech ETMINSTREXEC output hold from BCLK rising

Tbetmiseqd ETMISEQ output delay from BCLK rising

Tbetmiseqh ETMISEQ output hold from BCLK rising

Tbetmitbitd ETMITBIT output delay from BCLK rising

Tbetmitbith ETMITBIT output hold from BCLK rising

Table 13-2 ARM920T Trace Interface Port timing definitions (continued)

Timing parameter Description



AC Characteristics 

13-28 Copyright © 2000, 2001 ARM Limited. All rights reserved. ARM DDI 0151C

Tbetmlatecanceld ETMLATECANCEL output delay from BCLK rising

Tbetmlatecancelh ETMLATECANCEL output hold from BCLK rising

Tbetmnwaitd ETMnWAIT output delay from BCLK rising

Tbetmnwaith ETMnWAIT output hold from BCLK rising

Tbetmpassd ETMPASS output delay from BCLK rising

Tbetmpassh ETMPASS output hold from BCLK rising

Tbetmrngoutd ETMRNGOUT[1:0] output delay from BCLK rising

Tbetmrngouth ETMRNGOUT[1:0] hold from BCLK rising

Tfetmbigendd ETMBIGEND output delay from FCLK rising

Tfetmbigendh ETMBIGEND output hold from FCLK rising

Tfetmchsdd ETMCHSD[1:0] output delay from FCLK rising

Tfetmchsdh ETMCHSD[1:0] output hold from FCLK rising

Tfetmchsed ETMCHSE[1:0] output delay from FCLK rising

Tfetmchseh ETMCHSE[1:0] output hold from FCLK rising

Tfetmckf FETMCLOCK falling output delay from FCLK falling

Tfetmckr FETMCLOCK rising output delay from FCLK rising

Tfetmdabortd ETMDABORT output delay from FCLK rising

Tfetmdaborth ETMDABORT output hold from FCLK rising

Tfetmdad ETMDA[31:0] output delay from FCLK rising

Tfetmdah ETMDA[31:0] output hold from FCLK rising

Tfetmdbgackd ETMDBGACK output delay from FCLK rising

Tfetmdbgackh ETMDBGACK output hold from FCLK rising

Tfetmddd ETMDD[31:0] output delay from FCLK rising

Tfetmddh ETMDD[31:0] output hold from FCLK rising

Table 13-2 ARM920T Trace Interface Port timing definitions (continued)

Timing parameter Description



AC Characteristics 

ARM DDI 0151C Copyright © 2000, 2001 ARM Limited. All rights reserved. 13-29

Tfetmdmasd ETMDMAS[1:0] output delay from FCLK rising

Tfetmdmash ETMDMAS[1:0] output hold from FCLK rising

Tfetmdmored ETMDMORE output delay from FCLK rising

Tfetmdmoreh ETMDMORE output hold from FCLK rising

Tfetmdnmreqd ETMDnMREQ output delay from FCLK rising

Tfetmdnmreqh ETMDnMREQ output hold from FCLK rising

Tfetmdnrwd ETMDnRW output delay from FCLK rising

Tfetmdnrwh ETMDnRW output hold from FCLK rising

Tfetmdseqd ETMDSEQ output delay from FCLK rising

Tfetmdseqh ETMDSEQ output hold from FCLK rising

Tfetmhivecsd ETMHIVECS output delay from FCLK rising

Tfetmhivecsh ETMHIVECS output hold from FCLK rising

Tfetmiabortd ETMIABORT output delay from FCLK rising

Tfetmiaborth ETMIABORT output hold from FCLK rising

Tfetmiad ETMIA[31:1] output delay from FCLK rising

Tfetmiah ETMIA[31:1] output hold from FCLK rising

Tfetmid15to8d ETMID15TO8[15:8] output delay from FCLK rising

Tfetmid15to8h ETMID15TO8[15:8] output hold from FCLK rising

Tfetmid31to24d ETMID31TO24[31:24] output delay from FCLK rising

Tfetmid31to24h ETMID31TO24[31:24] output hold from FCLK rising

Tfetminmreqd ETMInMREQ output delay from FCLK rising

Tfetminmreqh ETMInMREQ output hold from FCLK rising

Tfetminstrexecd ETMINSTREXEC output delay from FCLK rising

Tfetminstrexech ETMINSTREXEC output hold from FCLK rising

Table 13-2 ARM920T Trace Interface Port timing definitions (continued)

Timing parameter Description



AC Characteristics 

13-30 Copyright © 2000, 2001 ARM Limited. All rights reserved. ARM DDI 0151C

Tfetmiseqd ETMISEQ output delay from FCLK rising

Tfetmiseqh ETMISEQ output hold from FCLK rising

Tfetmitbitd ETMITBIT output delay from FCLK rising

Tfetmitbith ETMITBIT output hold from FCLK rising

Tfetmlatecanceld ETMLATECANCEL output delay from FCLK rising

Tfetmlatecancelh ETMLATECANCEL output hold from FCLK rising

Tfetmnwaitd ETMnWAIT output delay from FCLK rising

Tfetmnwaith ETMnWAIT output hold from FCLK rising

Tfetmpassd ETMPASS output delay from FCLK rising

Tfetmpassh ETMPASS output hold from FCLK rising

Tfetmrngoutd ETMRNGOUT[1:0] output delay from FCLK rising

Tfetmrngouth ETMRNGOUT[1:0] output hold from FCLK rising

Table 13-2 ARM920T Trace Interface Port timing definitions (continued)

Timing parameter Description



ARM DDI 0151C Copyright © 2000, 2001 ARM Limited. All rights reserved. A-1

Appendix A 
Signal Descriptions

This appendix describes the ARM920T signals. It contains the following sections:

• AMBA signals on page A-2

• Coprocessor interface signals on page A-5

• JTAG and TAP controller signals on page A-7

• Debug signals on page A-10

• Miscellaneous signals on page A-12

• ARM920T Trace Interface Port signals on page A-13.



Signal Descriptions 

A-2 Copyright © 2000, 2001 ARM Limited. All rights reserved. ARM DDI 0151C

A.1 AMBA signals

Table A-1 shows the ARM920T AMBA signals.

Table A-1 AMBA signals

Name Direction Description

AGNT Input Bus grant. A signal from the bus arbiter to a bus master that indicates that the bus 
master is granted the bus when WAITIN is LOW.

AIN[11:2] Input Address input bus. Used for addressing the ARM920T processor as a slave during 
AMBA test.

AOUT[31:0] Output Address output bus. The processor address bus, that is driven by the active bus 
master.

AREQ Output Bus request. A signal from the bus master to the bus arbiter that indicates that the 
ARM920T processor requires the bus.

ASTB Output Indicates a non-idle A-TRAN cycle.

BCLK Input Bus clock. This clock times all bus transfers. Both the LOW phase and HIGH phase 
of BCLK control transfers on the bus.

BnRES Input ARM920T processor reset. You can assert BnRES LOW asynchronously during 
either BCLK phase, but you must de-assert it during the BCLK LOW phase. You 
must keep BnRES asserted for a minimum of five BCLK cycles to ensure a 
complete reset of the ARM920T processor.

BURST[1:0] Output Burst access. These signals indicate the length of a burst transfer. The encoding is:

00 =no burst or undefined burst length 

01= current access is part of a burst of 4-word transfers

10 = current access is part of a burst of 8-word transfers

11 = no burst or undefined burst length.

DIN[31:0] Input Data input bus.

DOUT[31:0] Output Data output bus.

DSEL Input Slave select. This signal is used during test within the AMBA system and allows the 
ARM920T processor to be selected and to have test vectors applied to it.

ENBA Output Tristate enable for AOUT, WRITEOUT, LOK, PROT, and SIZE onto an AMBA 
address bus and AMBA request signals.

ENBD Output Tristate enable for DOUT onto an AMBA data bus.

ENBTRAN Output Tristate enable for TRAN onto AMBA BTRAN.



Signal Descriptions 

ARM DDI 0151C Copyright © 2000, 2001 ARM Limited. All rights reserved. A-3

ENSR Output Tristate enable for ERROROUT, LASTOUT, and WAITOUT onto AMBA 
response signals.

ERRORIN Input Error response. A transfer error is indicated by the selected bus slave using the 
ERRORIN signal. When ERRORIN is HIGH, a transfer error has occurred. When 
ERRORIN is LOW, the transfer is successful. This signal is also used in 
combination with the LASTIN signal to indicate a bus retract operation.

ERROROUT Output AMBA ERROR response of the ARM920T slave during AMBA test.

LASTIN Input Last response. This signal is driven by the selected bus slave to indicate if the 
current transfer must be the last of a burst sequence. When LASTIN is HIGH, the 
decoder must allow sufficient time for address decoding. When LASTIN is LOW, 
the next transfer can continue a burst sequence.

LASTOUT Output AMBA LAST response of the ARM920T slave during AMBA test.

LOK Output Locked transfers. When HIGH, this signal indicates that the current transfer, and the 
next transfer, are to be indivisible, and that no other bus master must be given access 
to the bus. This signal is used by the bus arbiter. Asserted in the same cycle as ASTB 
is asserted.

NCMAHB Output Noncached more indication for noncached load multiples. When HIGH, this 
indicates that more words are to be requested as part of the burst transfer. When 
LOW, on the last S-TRAN of the burst, this indicates that the current transfer is the 
last word of the burst. It is only valid if AGNT remains asserted throughout the 
transfer.

PROT[1:0] Output Protection control.These signals provide additional information about a bus access 
and are primarily intended for use by a bus decoder when acting as a basic 
protection unit. The signals indicate if the transfer is an opcode fetch or data access. 
They also indicate if the transfer is a privileged mode or User mode as follows:

PROT[0] 0 = Opcode fetch, 1 = Data access 

PROT[1] 0 = User access, 1 = Supervisor access

SIZE[1:0] Output Transfer size. These signals indicate the size of the transfer:

10 = word access

01 = half word access

00= byte access

11 = reserved.

Table A-1 AMBA signals (continued)

Name Direction Description



Signal Descriptions 

A-4 Copyright © 2000, 2001 ARM Limited. All rights reserved. ARM DDI 0151C

A.1.1 AMBA bus specification

The ARM920T processor has a unidirectional AMBA-compatible bus interface. See the 
AMBA Specification (Rev 2.0) for full details.

TRAN[1:0] Output Transfer type. These signals indicate the type of the next transaction:

00 = an address-only transfer

01 = a nonsequential transfer

11 = a sequential transfer

01 reserved.

WAITIN Input Wait response. This signal is driven by the selected bus slave to indicate if the 
current transfer can complete. If WAITIN is HIGH, another bus cycle is required. 
If WAITIN is LOW, the transfer completes in the current bus cycle.

WAITOUT Output AMBA WAIT response of the ARM920T slave during AMBA test.

WRITEIN Input Transfer direction.When HIGH, this signal indicates a write transfer. When LOW, 
a read transfer.

WRITEOUT Output Transfer direction.When HIGH, this signal indicates a write transfer. When LOW, 
a read transfer.

Table A-1 AMBA signals (continued)

Name Direction Description



Signal Descriptions 

ARM DDI 0151C Copyright © 2000, 2001 ARM Limited. All rights reserved. A-5

A.2 Coprocessor interface signals

Table A-2 shows the ARM920T coprocessor interface signals.

Table A-2 Coprocessor interface signals

Name Direction Description

CHSDE[1:0] Input Coprocessor handshake decode. The handshake signals from the Decode stage 
of the coprocessor pipeline follower.

CHSEX[1:0] Input Coprocessor handshake execute. The handshake signals from the Execute stage 
of the coprocessor pipeline follower.

CPCLK Output Coprocessor clock. This clock controls the operation of the coprocessor 
interface.

CPDOUT[31:0] Output Coprocessor data out. The coprocessor data bus for transferring MCR and LDC data 
to the coprocessor.

CPDIN[31:0] Input Coprocessor data in. The coprocessor data bus for transferring MRC and STC data 
from the coprocessor to the ARM920T processor.

CPEN Input Coprocessor data out enable. When tied LOW, the CPID and CPDOUT buses 
are held stable. When tied HIGH, the CPID and CPDOUT buses are enabled. It 
is expected that this pin is used statically.

CPID[31:0] Output Coprocessor instruction data. This is the coprocessor instruction data bus used 
for transferring instructions to the pipeline follower in the coprocessor.

CPLATECANCEL Output Coprocessor late cancel. When a coprocessor instruction is being executed, if 
this signal is HIGH during the first Memory cycle, the coprocessor instruction 
must be canceled without having updated the coprocessor state.

nCPMREQ Output Not coprocessor memory request. When LOW on a rising CPCLK edge and 
nCPWAIT LOW, the instruction on CPID enters the Decode stage of the 
coprocessor pipeline follower. The second instruction previously in the Decode 
stage of the pipeline follower enters its Execute stage.

CPPASS Output Coprocessor pass. This signal indicates that there is a coprocessor instruction in 
the Execute stage of the pipeline, and it must be executed.



Signal Descriptions 

A-6 Copyright © 2000, 2001 ARM Limited. All rights reserved. ARM DDI 0151C

For more information on the coprocessor interface see Chapter 7 Coprocessor 
Interface.

CPTBIT Output Coprocessor Thumb bit. If HIGH, the coprocessor interface is in Thumb state.

nCPTRANS Output Not coprocessor translate. When LOW, the coprocessor interface is in a 
nonprivileged mode. When HIGH, the coprocessor interface is in a privileged 
mode. The coprocessor samples this signal on every cycle when determining the 
coprocessor response.

nCPWAIT Output Not coprocessor wait. The coprocessor clock CPCLK is qualified by 
nCPWAIT to allow the ARM920T processor to control the transfer of data on 
the coprocessor interface. nCPWAIT changes while CPCLK is HIGH.

Table A-2 Coprocessor interface signals (continued)

Name Direction Description



Signal Descriptions 

ARM DDI 0151C Copyright © 2000, 2001 ARM Limited. All rights reserved. A-7

A.3 JTAG and TAP controller signals

Table A-3 shows the ARM920T JTAG and TAP controller signals.

Table A-3 JTAG and TAP controller signals

Name Direction Description

DRIVEOUTBS Output Boundary scan cell enable. This signal controls the multiplexors in the scan cells of an 
external boundary scan chain. This signal changes in the UPDATE-IR state when scan 
chain 3 is selected, and either the INTEST, EXTEST, CLAMP, or CLAMPZ 
instruction is loaded. If you do not connect an external boundary scan chain, you must 
leave this output unconnected.

ECAPCLKBS Output Extest capture clock for boundary scan. This is a TCK2 wide pulse generated when 
the TAP controller state machine is in the CAPTURE-DR state, the current instruction 
is EXTEST, and scan chain 3 is selected. This signal captures the chip-level inputs 
during EXTEST. If you do not connect an external boundary scan chain, you must 
leave this output unconnected.

ICAPCLKBS Output Intest capture clock. This is a TCK2 wide pulse generated when the TAP controller 
state machine is in the CAPTURE-DR state, the current instruction is INTEST, and 
scan chain 3 is selected. This signal captures the chip-level outputs during INTEST. If 
you do not connect an external boundary scan chain, you must leave this output 
unconnected.

IR[3:0] Output Tap controller instruction register. These four bits reflect the current instruction loaded 
into the TAP controller instruction register. The bits change on the falling edge of TCK 
when the state machine is in the UPDATE-IR state.

PCLKBS Output Boundary scan update clock. This is a TCK2 wide pulse generated when the TAP 
controller state machine is in the UPDATE-DR state, and scan chain 3 is selected. This 
signal is used by an external boundary scan chain as the update clock. If you do not 
connect an external boundary scan chain, you must leave this output unconnected.

RSTCLKBS Output Boundary scan reset clock. This signal denotes that either the TAP controller state 
machine is in the RESET state, or that nTRST has been asserted. You can use this to 
reset external boundary scan cells.

SCREG[4:0] Output Scan chain register. These five bits reflect the ID number of the scan chain currently 
selected by the TAP controller. These bits change on the falling edge of TCK when the 
TAP state machine is in the UPDATE-DR state.

SDIN Output Boundary scan serial input data. This signal contains the serial data to be applied to an 
external scan chain, and is valid around the falling edge of TCK.

SDOUTBS Input Boundary scan serial output data. This is the serial data out of the boundary scan chain 
(or other external scan chain). It must be set up to the rising edge of TCK. If you do 
not connect an external boundary scan chain, you must tie this input LOW.



Signal Descriptions 

A-8 Copyright © 2000, 2001 ARM Limited. All rights reserved. ARM DDI 0151C

SHCLK1BS Output Boundary scan shift clock phase 1. This control signal eases the connection of an 
external boundary scan chain. SHCLK1BS clocks the master half of the external scan 
cells. When in the SHIFT-DR state of the state machine and scan chain 3 is selected, 
SHCLK1BS follows TCK1. When not in the SHIFT-DR state, or when scan chain 3 
is not selected, this clock is LOW. If you do not connect an external boundary scan 
chain, you must leave this output unconnected.

SHCLK2BS Output Boundary scan shift clock phase 2. This control signal eases the connection of an 
external boundary scan chain. SHCLK2BS clocks the slave half of the external scan 
cells. When in the SHIFT-DR state of the state machine and scan chain 3 is selected, 
SHCLK2BS follows TCK2. When not in the SHIFT-DR state, or when scan chain 3 
is not selected, this clock is LOW. If you do not connect an external boundary scan 
chain, you must leave this output unconnected.

TAPID[31:0] Input This is the ARM920T device identification (ID) code test data register, accessible from 
the scan chains. You must tie this to an appropriate value when you instantiate the 
device:

31:28 Functionality revision

27:12 Product code

11:1 Manufacturer identity

0 IEEE specified = 1.

TAPSM[3:0] Output TAP controller state machine. This bus reflects the current state of the TAP controller 
state machine. These bits change off the rising edge of TCK.

TCK Input Test clock. The JTAG clock (the test clock).

TCK1 Output TCK, phase 1. TCK1 is HIGH when TCK is HIGH, although there is a slight phase 
lag due to the internal clock non-overlap.

TCK2 Output TCK, Phase 2. TCK2 is HIGH when TCK is LOW, although there is a slight phase 
lag due to the internal clock non-overlap.

TDI Input Test data input. JTAG serial input.

TDO Output Test data output. JTAG serial output.

Table A-3 JTAG and TAP controller signals (continued)

Name Direction Description



Signal Descriptions 

ARM DDI 0151C Copyright © 2000, 2001 ARM Limited. All rights reserved. A-9

nTDOEN Output Not TDO enable. When HIGH, this signal denotes that serial data is being driven out 
on the TDO output. nTDOEN is normally used as an output enable for a TDO pin in 
a packaged part.

TMS Input Test mode select. TMS selects the state that the TAP controller state machine must 
change to.

nTRST Input Not test reset. Active LOW reset signal for the boundary scan logic. This pin must be 
pulsed or driven LOW to achieve normal device operation, in addition to the normal 
device reset (BnRES).

Table A-3 JTAG and TAP controller signals (continued)

Name Direction Description



Signal Descriptions 

A-10 Copyright © 2000, 2001 ARM Limited. All rights reserved. ARM DDI 0151C

A.4 Debug signals

Table A-4 shows the ARM920T debug signals.

Table A-4 Debug signals

Name Direction Description

COMMRX Output Communications channel receive. When HIGH, this signal denotes that the comms 
channel receive buffer contains data waiting to be read by the processor core.

COMMTX Output Communications channel transmit. When HIGH, this signal denotes that the comms 
channel transmit buffer is empty.

DBGACK Output Debug acknowledge. When HIGH, this signal indicates the ARM is in debug state.

DBGEN Input Debug enable. This input signal allows the debug features of the ARM920T processor 
to be disabled. This signal must be LOW only when debugging is not required.

DBGRQI Output Internal debug request. This signal represents the debug request signal that is presented 
to the processor core. This is a combination of EDBGRQ, as presented to the ARM920T 
processor, and bit 1 of the debug control register.

DEWPT Input External watchpoint. This signal allows external data watchpoints to be implemented.

ECLK Output External clock output.

EDBGRQ Input External debug request. When driven HIGH, this causes the processor to enter debug 
state when execution of the current instruction has completed.

EXTERN0 Input External input 0. This is an input to watchpoint unit 0 of the EmbeddedICE logic in the 
processor, and allows breakpoints or watchpoints to be dependent on an external 
condition.

EXTERN1 Input External input 1. This is an input to watchpoint unit 1 of the EmbeddedICE logic in the 
processor, and allows breakpoints or watchpoints to be dependent on an external 
condition.

IEBKPT Input External breakpoint. This signal allows an external instruction breakpoints to be 
implemented.

INSTREXEC Output Instruction executed. Indicates that in the previous cycle, the instruction in the Execute 
stage of the pipeline passed its condition codes, and has been executed.



Signal Descriptions 

ARM DDI 0151C Copyright © 2000, 2001 ARM Limited. All rights reserved. A-11

RANGEOUT0 Output EmbeddedICE rangeout 0. This signal indicates that the EmbeddedICE watchpoint 
unit 0 has matched the conditions currently present on the address, data, and control 
buses. This signal is independent of the state of the watchpoint unit enable control bit.

RANGEOUT1 Output EmbeddedICE rangeout 1. This signal indicates that the EmbeddedICE watchpoint 
unit 1 has matched the conditions currently present on the address, data, and control 
buses. This signal is independent of the state of the watchpoint unit enable control bit.

TRACK Input Enable TrackingICE mode. Driving this signal HIGH places the ARM920T processor 
into tracking mode for debugging purposes.

Table A-4 Debug signals (continued)

Name Direction Description



Signal Descriptions 

A-12 Copyright © 2000, 2001 ARM Limited. All rights reserved. ARM DDI 0151C

A.5 Miscellaneous signals

Table A-5 shows the ARM920T miscellaneous signals.

Table A-5 Miscellaneous signals

Name Direction Description

BIGENDOUT Output Big-endian output. When HIGH, the ARM920T processor is operating in big-endian 
configuration. When LOW, it is in little-endian configuration.

FCLKOUT Output Buffered version of FCLK input.

FCLK Input Fast clock. The fast clock input is used when the ARM920T processor is in the 
synchronous or asynchronous clocking mode.

VINITHI Input Determines the state of CP15 Register 1 V-Bit in reset. When HIGH, V-Bit is 1 coming 
out of reset. When LOW, V-Bit is 0 coming out of reset.

ISYNC Input Synchronous interrupts. When HIGH, interrupts must be applied synchronously.

nFIQ Input Not fast interrupt request. This is the not fast interrupt request (nFIQ) signal.

nIRQ Input Not interrupt request. This is the not interrupt request (nIRQ) signal.



Signal Descriptions 

ARM DDI 0151C Copyright © 2000, 2001 ARM Limited. All rights reserved. A-13

A.6 ARM920T Trace Interface Port signals

Table A-6 shows the ARM920T Trace Interface Port signals

Table A-6 Trace signals

Name Direction

ETMBIGEND Output The signal driving the ARM9TDMI core 
BIGEND/BIGENDIAN input. When HIGH, the 
processor treats bytes in memory as big-endian 
format. When LOW, memory is treated as 
little-endian. This is a static configuration signal.

ETMCHSD[1:0] Output The coprocessor handshake decode bus driven into 
the ARM9TDMI core.

ETMCHSE[1:0] Output The coprocessor handshake execute bus driven into 
the ARM9TDMI core.

ETMCLOCK Output This clock times all operations in the ETM9. All 
outputs change from the rising edge and all inputs 
are sampled on the rising edge. The clock can be 
stretched in either phase. 

ETMDA[31:0] Output The processor data MVA bus driven by the 
ARM9TDMI core.

ETMDABORT Output The Data Abort signal driven into the ARM9TDMI 
core. The DABORT signal is used to tell the 
processor that the requested data memory access is 
not allowed.

ETMDBGACK Output The debug acknowledge signal driven by the 
ARM9TDMI core. When HIGH this signal 
indicates that the ARM9TDMI core is in debug 
state.

ETMDD[31:0] Output The DD bus driven within the ARM920T processor.

ETMDMAS[1:0] Output The data memory access size bus driven by the 
ARM9TDMI core. These encode the size of a data 
memory access in the following cycle.

ETMDMORE Output The data control signal driven by the ARM9TDMI 
core. If HIGH at the end of the cycle then the data 
memory access is directly followed by a sequential 
data memory access.



Signal Descriptions 

A-14 Copyright © 2000, 2001 ARM Limited. All rights reserved. ARM DDI 0151C

ETMDnMREQ Output The data memory request signal driven by the 
ARM9TDMI core. If LOW at the end of a cycle 
then the processor requires a data memory access in 
the following cycle.

ETMDnRW Output The data read/write signal driven by the 
ARM9TDMI core. If LOW at the end of a cycle 
then any data memory access in the following cycle 
is a read. If HIGH, then it is a write.

ETMDSEQ Output The data sequential address signal driven by the 
ARM9TDMI core. If HIGH at the end of the cycle 
then any data memory access in the following cycle 
is sequential from the last data memory access.

ETMHIVECS Output The signal driving the ARM9TDMI core HIVECS 
input. When LOW the ARM exception vectors start 
at address 0x0000 0000. When HIGH, the ARM 
exception vectors start at address 0xFFFF 0000. This 
is a static configuration signal.

ETMIA[31:1] Output The instruction MVA bus driven by the 
ARM9TDMI core.

ETMIABORT Output The instruction abort signal driven into the 
ARM9TDMI core.

ETMID15To8[15:8] Output A section from the ID input bus driven into the 
ARM9TDMI core.

ETMID31To24[31:24] Output A section from the ID input bus driven into the 
ARM9TDMI core.

ETMInMREQ Output The InMREQ signal driven by the ARM9TDMI 
core. If LOW at the end of the cycle then the 
processor requires an instruction memory access 
during the following cycle.

ETMINSTREXEC Output The INSTREXEC pipeline status signal driven by 
the ARM9TDMI core. The instruction executed 
signal indicates that the instruction in the Execute 
stage of the pipeline follower of the ETM9 has been 
executed.

Table A-6 Trace signals (continued)

Name Direction



Signal Descriptions 

ARM DDI 0151C Copyright © 2000, 2001 ARM Limited. All rights reserved. A-15

ETMISEQ Output The ISEQ signal driven by the ARM9TDMI core. If 
HIGH at the end of the cycle then any instruction 
memory access during the following cycle is 
sequential from the last instruction memory access.

ETMITBIT Output The ITBIT signal driven by the ARM9TDMI core. 
When HIGH, denotes that the ARM is in Thumb 
state. When LOW, the processor is in ARM state. 
This signal is valid with the address.

ETMLATECANCEL Output The coprocessor late cancel signal driven by the 
ARM9TDMI core. If HIGH during the first memory 
cycle of a coprocessor instruction, then the 
coprocessor must cancel the instruction without 
changing any internal state. This signal is only 
asserted in cycles where the previous instruction 
accessed memory and a data abort occurred.

ETMPASS Output The PASS coprocessor signal driven by the 
ARM9TDMI core. This signal indicates that the 
instruction in the Execute stage of the pipeline 
follower of the ETM9 is executed.

ETMPWRDOWN Input When HIGH, indicates that the ETM9 can be 
powered down. The ARM920T processor uses this 
to stop the ETMCLOCK output. When this 
happens all other ETM<name> outputs are held 
stable.

ETMRNGOUT[1:0] Output The RANGEOUT[1:0] EmbeddedICE signals 
driven by the ARM. The EmbeddedICE 
RANGEOUT signals indicate that the 
corresponding watchpoint unit has matched the 
conditions currently present on the address, control 
and data buses. These signals are independent of the 
state of the enable control bit of the watchpoint unit.

ETMnWAIT Output You can stall the ETM9 by driving ETMnWAIT 
LOW. It must be held HIGH at all other times. 
ETMnWAIT is the nWAIT signal driven into the 
ARM9TDMI core.

Table A-6 Trace signals (continued)

Name Direction



Signal Descriptions 

A-16 Copyright © 2000, 2001 ARM Limited. All rights reserved. ARM DDI 0151C



ARM DDI 0151C Copyright © 2000, 2001 ARM Limited. All rights reserved. B-1

Appendix B 
CP15 Test Registers

This appendix describes the ARM920T CP15 test registers. It contains the following 
sections:

• About the test registers on page B-2

• Test state register on page B-3

• Cache test registers and operations on page B-8

• MMU test registers and operations on page B-18.

• StrongARM backwards compatibility operations on page B-30.



CP15 Test Registers 

B-2 Copyright © 2000, 2001 ARM Limited. All rights reserved. ARM DDI 0151C

B.1 About the test registers

The ARM920T coprocessor 15 (CP15), register 15 (c15) is used to provide additional 
device-specific test operations. You can use it to access and control the following:

• Test state register on page B-3

• Cache test registers and operations on page B-8

• MMU test registers and operations on page B-18

• StrongARM backwards compatibility operations on page B-30.

You must only use these operations for test. The ARM Architecture Reference Manual 
describes this register as implementation defined.

The format of the CP15 test operations is:

MCR/MRC  p15,opcode_1,Rd,c15,CRm,opcode_2

Figure B-1 CP15 MRC and MCR bit pattern

The L bit distinguishes between an MCR (L = 1) and an MRC (L = 0).

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 1 1 1

CRmopcode_2RdCRn

L

opcode_1Cond



CP15 Test Registers 

ARM DDI 0151C Copyright © 2000, 2001 ARM Limited. All rights reserved. B-3

B.2 Test state register

The test state register is used to modify the behavior of the ARM920T from the default 
behavior. At reset, all bits of the test state register are cleared to 0.

You can write bits [12:1] by: 

MCR p15,0,Rd,c15,c0,0

You can read bits [12:0] by: 

MRC p15,0,Rd,c15,c0,0

You can only write bit 0 using scan chain 15 (CP15), selecting the test state register. You 
can also access bits[12:1] using the same scan chain, but it is recommended that you 
only read and write these using MCR and MRC instructions. The functions of bits in the test 
state register are listed in Table B-1.

Table B-1 Test state register

Bit Function or name Description

12 Disable DCache streaming 0 = Enable DCache streaming

1 = Disable DCache streaming

11 Disable ICache streaming 0 = Enable ICache streaming

1 = Disable ICache streaming

10 Disable DCache linefill 0 = Enable DCache linefills 

1 = Disable DCache linefills

9 Disable ICache linefill 0 = Enable ICache linefills 

1 = Disable ICache linefills

8 Disable CP15, c1, bits[31:30] 0 = Enable R1

1 = Disable R1

7 iA, StrongARM asynchronous select 00 = FastBus mode

01 = Synchronous mode

10 = Reserved

11 = Asynchronousmode

6 nF, StrongARM notFastBus select

5 D force noncachable 0 = Normal operation

1 = Force noncachable behavior in the 
DCache

4 I force noncachable 0 = Normal operation

1 = Force noncachable behavior in the ICache



CP15 Test Registers 

B-4 Copyright © 2000, 2001 ARM Limited. All rights reserved. ARM DDI 0151C

MRC (reading) return bits [12:0], with bits [31:13] being unpredictable.

MCR (writing) update bits [12:1]. Bits [31:13] and [0] should be zero.

B.2.1 Bit 12, disable DCache streaming

When set, this bit prevents the DCache from streaming data words to the ARM9TDMI 
while the linefill is performed to the cache. The linefill still occurs, but the data word is 
returned to the ARM9TDMI at the end of the linefill.

B.2.2 Bit 11, disable ICache streaming

When set, this bit prevents the ICache from streaming instructions to the ARM9TDMI 
while the linefill is performed to the cache. The linefill still occurs, but the instruction 
is returned to the ARM9TDMI at the end of the linefill.

B.2.3 Bit 10, disable DCache linefill

When set, this bit prevents the DCache from performing a linefill on a DCache miss. 
Instead, a single word read is performed from the AMBA ASB interface. The memory 
region mapping is unchanged. This mode of operation is required for debug, so that the 
memory image, as seen by the ARM9TDMI, can be read in a non-invasive manner. 
Cache hits from a cachable region read the data word from the cache, and cache misses 
from a cachable region do not cause a linefill, but read a single data word from 
memory.You must use the control bit disable DCache linefill instead of D force 
noncachable, because D force noncachable does not read from the cache on a cache hit.

3 MMU test 0 = Disable auto-increment 

1 = Enable auto-increment 

2 I miss abort 0 = Enable ITLB hardware page table walks

1 = Disable ITLB hardware page table walks 

1 D miss abort 0 = Enable DTLB hardware page table walks

1 = Disable DTLB hardware page table walks 

0 CP15 interpret mode 0 = Disable CP15 interpret mode

1 = Enable CP15 interpret mode

Table B-1 Test state register (continued)

Bit Function or name Description



CP15 Test Registers 

ARM DDI 0151C Copyright © 2000, 2001 ARM Limited. All rights reserved. B-5

B.2.4 Bit 9, disable ICache linefill

When set, this bit prevents the ICache from performing a linefill on an ICache miss. 
Instead, a single word read is performed from the AMBA ASB interface. The memory 
region mapping is unchanged. This mode of operation is required for debug so that the 
memory image, as seen by the ARM9TDMI, can be read in a non-invasive manner. 
Cache hits from a cachable region read the instruction from the cache, and cache misses 
from a cachable region do not cause a linefill, but read a single instruction from 
memory.You must use the control bit disable ICache linefill instead of I force 
noncachable, because I force noncachable does not read from the cache on a cache hit.

B.2.5 Bits [8:6], disable CP15 register 1, iA and nF

These 3 bits allow clock switching code compatibility with the SA110 and SA1100 
(StrongARM). The StrongARM implements the following MCR instructions: 

MCR p15,0,Rd,c15,c1,2 ; Enable clock switching

MCR p15,0,Rd,c15,c2,2 ; Disable clock switching

These are equivalent to selecting Asynchronous and FastBus clocking modes 
respectively. If either of the two StrongARM MCR instructions are executed then disable 
R1, bit 8, is set. This prevents the iAcr and nFcr, bit[31:30] in CP15 register 1, from 
being used to control clock switching. This is necessary to maintain backwards 
compatibility with non-ARMv4T compliant devices, that do not use CP15 register 1 to 
select the clock mode.

The following applies:

iA’ = (iAcr AND NOT disable R1) or iA_c15

nF’ = (nFcr AND NOT disable R1) or nF_c15

Table B-2 shows the clocking mode selection.

Table B-2 Clocking mode selection

Clocking mode iA’ nF’

FastBus 0 0

Synchronous 0 1

Reserved 1 0

Asynchronous 1 1



CP15 Test Registers 

B-6 Copyright © 2000, 2001 ARM Limited. All rights reserved. ARM DDI 0151C

B.2.6 Bit 5, D force noncachable

The cachable behavior for a memory region is determined by the AND of the DCache 
enable in CP15 register 1 and the cachable bit of the MMU page table entry:

C = Ccr AND Ctt

Setting the D force noncachable bit effectively forces the C=0. This means all memory 
accesses are treated as single memory accesses on the AMBA ASB interface. A write 
that hits in the cache updates the cache. A read that hits in the cache is ignored, and the 
data read from the AMBA ASB interface does not update the cache.

B.2.7 Bit 4, I force noncachable

The cachable behavior for a memory region is determined by the AND of the ICache 
enable in CP15 register 1 and the cachable bit of the MMU page table entry:

C = Icr AND Ctt

Setting the I force noncachable bit effectively forces the C=0. This means all memory 
accesses are treated as single memory accesses on the AMBA ASB interface. A read 
that hits in the cache is ignored, and the instruction from the AMBA ASB interface does 
not update the cache.

B.2.8 Bit 3, MMU test

Setting the MMU test bit enables auto-increment of the TLB index pointer in both 
MMUs on CAM and RAM1 reads and writes. If this bit is not set, the TLB index pointer 
only increments on RAM1 writes.

B.2.9 Bit 2, I miss abort

When ITLB page table walks are disabled, the ITLB miss causes an Instruction Abort 
and indicates a translation fault in the IFSR. The Instruction Abort handler then has to 
use a CP15 MCR instruction to write a page table entry to the instruction TLB.It is a 
requirement that the ICache and MMU is enabled when you disable hardware page table 
walks, otherwise the behavior is unpredictable.

B.2.10 Bit 1, D miss abort

When DTLB page table walks are disabled, the DTLB miss causes a Data Abort and 
indicates a translation fault in the DFSR. The Data Abort handler then has to use a CP15 
MCR instruction to write a page table entry to the data TLB.It is a requirement that the 
DCache and MMU is enabled when you disable hardware page table walks, otherwise 
the behavior is unpredictable.



CP15 Test Registers 

ARM DDI 0151C Copyright © 2000, 2001 ARM Limited. All rights reserved. B-7

B.2.11 Bit 0, CP15 interpret mode

This bit is only writable using scan chain 15, selecting register c15.State. This accesses 
the whole test state register. Therefore this bit must be written using read-modify-write.

Interpreted mode allows interpreted accesses to take place within the ARM920T 
memory system. To do this, the required MCR or MRC instruction word must be shifted into 
scan chain 15. A system speed LDR (read) or STR (write) can then be performed on the 
ARM9TDMI. CP15 will interpret the LDR or STR by executing the MCR or MRC instruction 
held in scan chain 15. In the case of an LDR, the data is returned to the ARM9TDMI. In 
the case of a STR, the interpreted MCR or MRC completes with the data from the 
ARM9TDMI. You can exit interpreted mode by performing a read-modify-write to scan 
chain 15, register c15.State to reset bit 0 to 0.



CP15 Test Registers 

B-8 Copyright © 2000, 2001 ARM Limited. All rights reserved. ARM DDI 0151C

B.3 Cache test registers and operations

The ICache and DCache are maintained using MCR and MRC instructions to CP15 registers 
7 and 9, defined by the ARM v4T programmer’s model. Additional operations are 
available using MCR and MRC to CP15 register 15. These operations are combined with 
those using registers 7 and 9 to enable testing of the caches entirely in software.

A modified subset of these MCR and MRC instructions is available in AMBA test for 
production test. See Chapter 11 AMBA Test Interface.

All MCR and MRC instructions to CP15 are available through the debug scan chains in 
CP15 interpret mode. This mode of access is intended to be used with a subset of the 
available CP15 MCR and MRC instructions, such that using other than the minimal subset 
will cause unpredictable behavior. See Chapter 9 Debug Support.

The register 7 operations are all write-only. They are listed in Table B-3.

The register 9 operations are read and write. They are listed in Table B-4.

Table B-3 Register 7 operations

Cache Function

I and D, or I, or D Invalidate cache

I or D Invalidate single entry using MVA

D Clean single entry using MVA or index

D Clean and invalidate single entry using MVA or index

I Prefetch cache line using MVA

Table B-4 Register 9 operations

Cache Function

I or D Read lockdown base (applies to all cache segments).

I or D Write victim and lockdown base (applies to all cache segments).

I or D Write victim for specified segment. This is provided for debug only and is not 
specified by ARMv4T.



CP15 Test Registers 

ARM DDI 0151C Copyright © 2000, 2001 ARM Limited. All rights reserved. B-9

The register 15 operations are listed in Table B-5.

The Harvard architecture allows you to combine all of these operations to operate on 
both the ICache and DCache in parallel. 

Note
 For the CAM Match, RAM Read operation the respective MMU does not perform a 
lookup and a cache miss does not cause a linefill.

These register 15 operations are all issued as MCR. In these, Rd defines the address for 
the operation. Therefore, the data is either supplied from, or latched into, the CP15.C.I 
or CP15.C.D in CP15. These 32 bit registers are accessed with the CP15 MCR and MRC 
instructions shown in Table B-6.

Again, the Harvard architecture allows the data to be written to both CP15.C.<I and D> 
in parallel.

Table B-5 Register 15 operations

Cache Function Rd Data

I and D, or I, or D Set dirty all entries SBZ -

I and D, or I, or D CAM read to C15.C.<I or D> Seg Tag, Dirty, 
Index

I and D, or I, or D CAM write Tag, Seg, Dirty -

I and D, or I, or D RAM read to C15.C.<I or D> Seg, Word Data

I and D, or I, or D RAM write from C15.C.<I or D> Seg, Word -

I and D, or I, or D CAM match RAM read to reg 
C15.C.<I or D>

Tag, Seg, Word Hit or Miss, 
Data

Table B-6 CP15 MCR and MRC instructions

Cache Function

I and D, or I, or D Write to register CP15.C.<I or D>

I or D Read from register CP15.C.<I or D>



CP15 Test Registers 

B-10 Copyright © 2000, 2001 ARM Limited. All rights reserved. ARM DDI 0151C

Table B-7 summarizes C7, C9, and C15 operations.

Table B-7 Register 7, 9, and 15 operations

Function Rd Instruction

Invalidate ICache and DCache SBZ MCR p15,0,Rd,c7,c7,0

Invalidate ICache SBZ MCR p15,0,Rd,c7,c5,0

Invalidate ICache single entry (using MVA) MVA format MCR p15,0,Rd,c7,c5,1

Prefetch ICache line (using MVA) MVA format MCR p15,0,Rd,c7,c13,1

Invalidate DCache SBZ MCR p15,0,Rd,c7,c6,0

Invalidate DCache single entry (using MVA) MVA format MCR p15,0,Rd,c7,c6,1

Clean DCache single entry (using MVA) MVA format MCR p15,0,Rd,c7,c10,1

Clean and invalidate DCache entry (using MVA) MVA format MCR p15,0,Rd,c7,c14,1

Clean DCache single entry (using index) Index format MCR p15,0,Rd,c7,c10,2

Clean and invalidate DCache entry (using index) Index format MCR p15,0,Rd,c7,c14,2

Drain write buffer a SBZ MCR p15,0,Rd,c7,c10,4

Wait for interrupt b SBZ MCR p15,0,Rd,c7,c0,4

Read DCache lockdown base Base MRC p15,0,Rd,c9,c0,0

Write DCache victim and lockdown base Victim=Base MCR p15,0,Rd,c9,c0,0

Write DCache victim Victim, Seg MCR p15,0,Rd,c9,c1,0

Read ICache lockdown base Base MRC p15,0,Rd,c9,c0,1

Write ICache victim and lockdown base Victim=Base MCR p15,0,Rd,c9,c0,1

Write ICache victim Victim, Seg MCR p15,0,Rd,c9,c1,1

I set dirty all entries SBZ MCR p15,2,Rd,c15,c1,0 

D set dirty all entries SBZ MCR p15,2,Rd,c15,c2,0 

I and D set dirty all entries SBZ MCR p15,2,Rd,c15,c3,0 



CP15 Test Registers 

ARM DDI 0151C Copyright © 2000, 2001 ARM Limited. All rights reserved. B-11

I CAM read to C15.C.I Seg MCR p15,2,Rd,cI5,c5,2 

D CAM read to C15.C.D Seg MCR p15,2,Rd,c15,c6,2 

I CAM read to C15.C.I and 

D CAM read to C15.C.D 

Seg MCR p15,2,Rd,c15,c7,2 

I CAM write Tag, Seg, Dirty MCR p15,2,Rd,c15,c5,6 

D CAM write Tag, Seg, Dirty MCR p15,2,Rd,c15,c6,6 

I and D CAM write Tag, Seg, Dirty MCR p15,2,Rd,c15,c7,6 

I RAM read to C15.C.I Seg, Word MCR p15,2,Rd,c15,c9,2 

D RAM read to C15.C.D Seg, Word MCR p15,2,Rd,c15,c10,2 

I RAM read to C15.C.I and 

D RAM read to C15.C.D 

Seg, Word MCR p15,2,Rd,c15,c11,2 

I RAM write from C15.C.I Seg, Word MCR p15,2,Rd,c15,c9,6 

D RAM write from C15.C.D Seg, Word MCR p15,2,Rd,c15,c10,6 

I RAM write from C15.C.I and 

D RAM write from C15.C.D 

Seg, Word MCR p15,2,Rd,c15,c11,6 

I CAM match, RAM read to C15.C.I Tag, Seg, Word MCR p15,2,Rd,c15,c5,5 

D CAM match, RAM read to C15.C.D Tag, Seg, Word MCR p15,2,Rd,c15,c6,5 

I CAM match, RAM read to C15.C.I and 

D CAM match, RAM read to C15.C.D 

Tag, Seg, Word MCR p15,2,Rd,c15,c7,5 

Write to C15.C.I Data MCR p15,3,Rd,c15,c1,0 

Write to C15.C.D Data MCR p15,3,Rd,c15,c2,0 

Write to C15.C.I and

write to C15.C.D 

Data MCR p15,3,Rd,c15,c3,0 

Read from C15.C.I Data read MRC p15,3,Rd,c15,c1,0 

Read from C15.C.D Data read MRC p15,3,Rd,c15,c2,0 

a. Stops execution until the write buffer has drained.
b. Stops execution in a LOW power state until an interrupt occurs.

Table B-7 Register 7, 9, and 15 operations (continued)

Function Rd Instruction



CP15 Test Registers 

B-12 Copyright © 2000, 2001 ARM Limited. All rights reserved. ARM DDI 0151C

The CAM read format for Rd is shown in Figure B-2.

Figure B-2 Rd format, CAM read

The CAM write format for Rd is shown in Figure B-3.

Figure B-3 Rd format, CAM write

In Figure B-3, bit labels have the following meanings:

V Valid

De Dirty even (words [3:0])

Do Dirty odd (words [7:4])

WB Writeback.

The RAM read format for Rd is shown in Figure B-4.

Figure B-4 Rd format, RAM read

31 8 7 5 4 0

SBZ Seg SBZ

31 8 7 5 4 0

MVA TAG Seg

SBZ

3 2 1

V

De
Do

WB

31 8 7 5 4 0

SBZ Seg SBZ

2 1

Word



CP15 Test Registers 

ARM DDI 0151C Copyright © 2000, 2001 ARM Limited. All rights reserved. B-13

The RAM write format for Rd is shown in Figure B-5.

Figure B-5 Rd format, RAM write

The CAM match, RAM read format for Rd is shown in Figure B-6.

Figure B-6 Rd format, CAM match RAM read

The CAM read format for data is shown in Figure B-7.

Figure B-7 Data format, CAM read

In AMBA cache test mode, the LFSR for the cache is restricted to increment only on a 
CAM read.

The RAM read format for data is shown in Figure B-8.

Figure B-8 Data format, RAM read

31 8 7 5 4 0

SBZ Seg SBZ

2 1

Word

31 8 7 5 4 0

MVA TAG Seg SBZ

2 1

Word

31 8 7 5 4 0

MVA TAG
Seg
[2:1]

LFSR[6]

3 2 1

V

De
Do

WB

6

0

31 0

RAM data word [31:0]



CP15 Test Registers 

B-14 Copyright © 2000, 2001 ARM Limited. All rights reserved. ARM DDI 0151C

The CAM match, RAM read format for data is shown in Figure B-9.

Figure B-9 Data format, CAM match RAM read

B.3.1 Addressing the CAM and RAM

For the CAM read or write, and RAM read or write operations you must specify the 
segment, index, and word (for the RAM operations). See Addressing the 16KB ICache 
on page 4-5. The CAM and RAM operations use the value in the victim pointer for that 
segment, so you must ensure that the value is written in the victim pointer before any 
CAM or RAM operation.

If the MCR write victim and lockdown base is used, then the victim pointer is incremented 
after every CAM read or write, and every RAM read or write. If the MCR write victim is 
used, then the victim pointer is only incremented after every CAM read or write. This 
enables efficient reading or writing of the CAM and RAM for an entire segment. The 
write cache victim and lockdown operations are listed in Table B-8.

31 30 29 0

Miss

RAM data word [29:0]

Hit

Table B-8 Write cache victim and lockdown operations

Operation Instruction

Write DCache victim and lockdown base MCR p15,0,Rd,c9,c0,0

Write DCache victim MCR p15,0,Rd,c9,c1,0

Write ICache victim and lockdown base MCR p15,0,Rd,c9,c0,1

Write ICache victim MCR p15,0,Rd,c9,c1,1



CP15 Test Registers 

ARM DDI 0151C Copyright © 2000, 2001 ARM Limited. All rights reserved. B-15

The write I or D cache victim and lockdown base format for Rd is shown in 
Figure B-10.

Figure B-10 Rd format, write I or D cache victim and lockdown base

The write I or D cache victim format for Rd is shown in Figure B-11.

Figure B-11 Rd format, write I or D cache victim

There are two other cache test registers that are only accessible using debug scan chain 
15. These are C15.C.<I or D>.Ind. These registers are written with the current victim of 
the addressed segment whenever an MCR CAM read is executed. This is intended for use 
in debug to establish the value of the current victim pointer of each segment before 
reading the values of the CAM and RAM, so that the value can be restored afterwards. 
See Chapter 9 Debug Support.

Example B-1 shows sample code for performing software test of the D Cache. It 
contains typical operations with C15.C.D. 

Example B-1 DCache test operations

TAG_LSB EQU 0x8
SEG_LSB EQU 0x5
VLD_LSB EQU 0x4 ; valid bit
DE_LSB EQU 0x3 ; dirty even bit 
DO_LSB EQU 0x2 ; dirty odd bit 
WB_LSB EQU 0x1 ; write back bit
WORD_LSB EQU 0x2
LOCK_LSB EQU 0x1A 

; Load DCache victim and lockdown base with 32
MOV r0,#32 :SHL: LOCK_LSB
MCR p15,0,r0,c9,c0,0

31 26 25 0

SBZIndex

31 26 25 8 7 5 4 0

SBZSegSBZIndex



CP15 Test Registers 

B-16 Copyright © 2000, 2001 ARM Limited. All rights reserved. ARM DDI 0151C

; Do DCache CAM write to seg 7, index 32
LDR r1,=0x123456 ; CAM Tag
MOV r0,r1,LSL #TAG_LSB
ORR r0,r0,#7 :SHL: SEG_LSB ; Segment
ORR r0,r0,#1 :SHL: VLD_LSB ; Valid bit
ORR r0,r0,#1 :SHL: DE_LSB ; Dirty even bit
ORR r0,r0,#1 :SHL: DO_LSB ; Dirty odd bit
ORR r0,r0,#1 :SHL: WB_LSB ; Writeback bit
MCR p15,2,r0,c15,c6,6 ; CAM write

; Reload DCache lock-down pointer because it will have incremented
MOV r0,#32 :SHL: LOCK_LSB
MCR p15,0,r0,c9,c0,0 

; Do DCache RAM write to seg 7, index 32, word 6
LDR r0,=0x89ABCDEF ; RAM Data
MCR p15,3,r0,c15,c2,0 ; Write RAM data to

; C15.C.D
MOV r0,#7 :SHL: SEG_LSB ; Segment
ORR r0,r0,#6 :SHL: WORD_LSB ; Word
MCR p15,2,r0,c15,c10,6 ; RAM write from C15.C.D

; Clear C15.C.D to prove that data comes back from DCache
MOV r0,#0
MCR p15,3,r0,c15,c2,0 ; Write C15.C.D

; Do a CAM match, RAM read to C15.C.D
LDR r1,=0x123456
MOV r0,r1,LSL #TAG_LSB ; TAG
ORR r0,r0,#7 :SHL: SEG_LSB ; Segment
ORR r0,r0,#6 :SHL: WORD_LSB ; Word
MCR p15,2,r0,c15,c6,5 ; CAM match, RAM read

; Read C15.C.D and compare with expected data. 
; Note that the top 2 bits of the RAM Data returned from the CAM match
; give the Hit and Miss information [31:30] = [Miss,Hit]

MRC p15,3,r0,c15,c2,0 ; Read C15.C.D

; Check the CAM match for a hit
MOV r2,#0xC0000000 ; Mask bits [31:30]
AND r2,r2,r0
MOV r3,#0x80000000 ; Hit
CMP r2,r3
BNE Fail



CP15 Test Registers 

ARM DDI 0151C Copyright © 2000, 2001 ARM Limited. All rights reserved. B-17

; Check the RAM data
MOV r0,r0,LSL #2 ; Remove bits [31:30]
LDR r1,=0x89ABCDEF ; Expected data
MOV r1,r1,LSL #2 ; Remove bits [31:30]
CMP r0,r1 
BNE Fail
TEST_PASS

Fail TEST_FAIL
END 

B.3.2 Testing the LFSR

There is an 8-bit LFSR in both the DCache and ICache that is used to provide the 
pseudo-random sequence to increment the segment victim counters in random mode. 
This is the default setting of the RR bit in CP15 register 1, bit 14.

The LFSR is tested in a controlled manner in AMBA cache test mode. In this mode the 
LFSR is reset to its seed value by performing an MCR invalidate all, and is incremented 
once by performing a CAM read. For each CAM read, bit 6 of bits[7:0] is sampled onto 
bit 0 of the CAM read data. 

The by-product of this is that LFSR[6] is sampled for any CAM read, but the LFSR is 
clocked freely when not in AMBA cache test mode. See Chapter 11 AMBA Test 
Interface.



CP15 Test Registers 

B-18 Copyright © 2000, 2001 ARM Limited. All rights reserved. ARM DDI 0151C

B.4 MMU test registers and operations

The ITLB and DTLB are maintained using MCR and MRC instructions to CP15 registers 2, 
3, 5, 6, 8, and 10, defined by the ARM v4T programmer’s model. Additional operations 
are available using MCR and MRC instructions to CP15 register 15. These operations are 
combined with those using registers 2, 3, 5, 6, 8, and 10 to enable testing of the TLBs 
entirely in software.

A modified subset of these MCR and MRC instructions are available in AMBA test for 
production test. See Chapter 11 AMBA Test Interface.

All MCR and MRC instructions to CP15 are available through the debug scan chains in 
CP15 Interpret Mode. This mode of access is intended to be used with a subset of the 
available CP15 MCR and MRC instructions, so that using other than the minimal subset 
causes unpredictable behavior. See Scan chains 4 and 15, the ARM920T memory system 
on page 9-31.

The register 2 operations are read and write. They are extended by the register 15 
operations to allow individual control of the separate I and D Translation Table Base 
(TTB) registers, and are listed in Table B-9.

Table B-9 TTB register operations

Register TLB Function

c2 I and D Write I and D TTB registers

c2 D Read D TTB register

c15 I Write I TTB register

c15 D Write D TTB register

c15 I Read I TTB register



CP15 Test Registers 

ARM DDI 0151C Copyright © 2000, 2001 ARM Limited. All rights reserved. B-19

The register 3 operations are read and write. They are extended by the register 15 
operations to allow individual control of the separate I and D Domain Access Control 
(DAC) registers, and are listed in Table B-10.

The register 5 operations are read and write, but the ability to access the I FSR is not 
architecturally defined in ARMv4T and is only intended for debug, when testing the 
TLB miss mechanism using aborts rather than hardware page table walks. Register 5 
operations are listed in Table B-11. The register 15 duplication remains from 
ARM920T Rev 0.

Table B-10 DAC register operations

Register TLB Function

c3 I and D Write I and D DAC registers

c3 D Read D DAC register

c15 I Write I DAC register

c15 D Write D DAC register

c15 I Read I DAC register

Table B-11 FSR register operations

Reg TLB Function

c5 I or D Write Fault Status Register (FSR)

c5 I or D Read FSR

c15 I Write I FSR

c15 I Read I FSR



CP15 Test Registers 

B-20 Copyright © 2000, 2001 ARM Limited. All rights reserved. ARM DDI 0151C

The register 6 operations are read and write. The I TLB is identical to the D TLB, but 
the I FAR is not architecturally defined, so the ability to access the I FAR is for 
testability only and the MCR and MRC instructions are described by the ARMv4T as being 
UNPREDICTABLE. Register 6 operations are listed in Table B-12.

The register 8 operations are all write-only. They are listed in Table B-13.

The register 10 operations are read and write. They are listed in Table B-14.

The register 15 operations that operate on the CAM, RAM1, and RAM2 are listed in 
Table B-15.

Table B-12 FAR register operations

Reg TLB Function

c6 I or D Write Fault Address Register (FAR)

c6 I or D Read FAR

Table B-13 Register 8 operations

Reg TLB Function

c8 I and D, or I, or D Invalidate TLB

c8 I or D Invalidate single entry using MVA

Table B-14 Register 10 operations

Reg TLB Function

c10 I or D Read victim, lockdown base and preserve bit

c10 I or D Write victim, lockdown base and preserve bit

Table B-15 CAM, RAM1, and RAM2 register 15 operations

TLB Function Rd Data

I or D CAM read to C15.M.<I or D> SBZ Tag, Size, V, P

I and D, or I, 
or D

CAM write Tag, Size, V, P

I or D RAM1 read to C15.M.<I or D> SBZ Protection



CP15 Test Registers 

ARM DDI 0151C Copyright © 2000, 2001 ARM Limited. All rights reserved. B-21

While the ARM920T memory system is a Harvard architecture, the TLBs are accessed 
using CData. This means the write operations can be combined to operate on both the I 
TLB and D TLB in parallel. 

Note
 Setting the CP15 register 15 test status register MMU test bit (bit 3) enables 
auto-increment of the TLB index pointer in both MMUs on CAM and RAM1 reads and 
writes. If this bit is not set, the TLB index pointer only increments on RAM1 writes.

For the CAM match, RAM1 read operation a TLB miss does not cause a page walk.

These register 15 operations are all issued as MCR, which means that the read and match 
operations have to be latched into the CP15.M.I or CP15.M.D in CP15. These are 32 bit 
registers that are read with the following CP15 MRC instruction:

Read from register CP15.M.<I or D>

Table B-16 summarizes C2, C3, C5, C6, C8, C10, and C15 operations.

I and D, or I, 
or D

RAM1 write Protection

I or D RAM2 read to C15.M.<I or D> SBZ PA Tag, Size

I and D, or I, 
or D

RAM2 write PA Tag, Size PA Tag, Size

I or D CAM match RAM1 read to C15.M.<I 
or D>

MVA Fault, Miss, 
Protection

Table B-16 Register 2, 3, 5, 6, 8, 10, and 15 operations

Function Rd Instruction

Read TTB register TTB MRC p15,0,Rd,c2,c0,0

Write TTB register TTB MCR p15,0,Rd,c2,c0,0

Read domain 15:0 access 
control

DAC MRC p15,0,Rd,c3,c0,0 

Write domain 15:0 access 
control

DAC MCR p15,0,Rd,c3,c0,0

Table B-15 CAM, RAM1, and RAM2 register 15 operations (continued)

TLB Function Rd Data



CP15 Test Registers 

B-22 Copyright © 2000, 2001 ARM Limited. All rights reserved. ARM DDI 0151C

Read data FSR value FSR MRC p15,0,Rd,c5,c0,0

Write data FSR value FSR MCR p15,0,Rd,c5,c0,0

Read prefetch FSR value a FSR MRC p15,0,Rd,c5,c0,1

Write prefetch FSR value a FSR MCR p15,0,Rd,c5,c0,1

Read D FAR FAR MRC p15,0,Rd,c6,c0,0

Write D FAR FAR MCR p15,0,Rd,c6,c0,0

Read I FAR a FAR MRC p15,0,Rd,c6,c0,1

Write I FAR a FAR MCR p15,0,Rd,c6,c0,1

Invalidate TLB(s) SBZ MCR p15,0,Rd,c8,c7,0

Invalidate I TLB SBZ MCR p15,0,Rd,c8,c5,0

Invalidate I TLB single entry 
(using MVA)

MVA format MCR p15,0,Rd,c8,c5,1

Invalidate D TLB SBZ MCR p15,0,Rd,c8,c6,0

Invalidate D TLB single entry 
(using MVA)

MVA format MCR p15,0,Rd,c8,c6,1

Read D TLB lockdown TLB lockdown MRC p15,0,Rd,c10,c0,0

Write D TLB lockdown TLB lockdown MCR p15,0,Rd,c10,c0,0

Read I TLB lockdown TLB lockdown MRC p15,0,Rd,c10,c0,1

Write I TLB lockdown TLB lockdown MCR p15,0,Rd,c10,c0,1

Read I TTB TTB MRC p15,5,Rd,c15,c1,2 

Write I TTB TTB MCR p15,5,Rd,c15,c1,2 

Write D TTB TTB MCR p15,5,Rd,c15,c2,2 

Read I DAC DAC MRC p15,5,Rd,c15,c1,3 

Write I DAC DAC MCR p15,5,Rd,c15,c1,3

Write D DAC DAC MCR p15,5,Rd,c15,c2,3 

Table B-16 Register 2, 3, 5, 6, 8, 10, and 15 operations (continued)

Function Rd Instruction



CP15 Test Registers 

ARM DDI 0151C Copyright © 2000, 2001 ARM Limited. All rights reserved. B-23

Read prefetch FSR value FSR MRC p15,5,Rd,c15,c1,5

Write prefetch FSR value FSR MCR p15,5,Rd,c15,c1,5

D CAM read to C15.M.D SBZ MCR p15,4,Rd,c15,c6,4 

I CAM read to C15.M.I SBZ MCR p15,4,Rd,c15,c5,4 

D CAM write Tag, Size, V, P MCR p15,4,Rd,c15,c6,0 

I CAM write Tag, Size, V, P MCR p15,4,Rd,c15,c5,0 

D and I CAM write Tag, Size, V, P MCR p15,4,Rd,c15,c7,0 

D RAM1 read to C15.M.D SBZ MCR p15,4,Rd,c15,c10,4 

I RAM 1 read to C15.M.I SBZ MCR p15,4,Rd,c15,c9,4 

D RAM1 write Protection MCR p15,4,Rd,c15,c10,0 

I RAM 1 write Protection MCR p15,4,Rd,c15,c9,0 

D and I RAM1 write Protection MCR p15,4,Rd,c15,c11,0 

D RAM2 read to C15.M.D SBZ MCR p15,4,Rd,c15,c2,5 

I RAM2 read to C15.M.I SBZ MCR p15,4,Rd,c15,c1,5 

D RAM2 write PA Tag, Size MCR p15,4,Rd,c15,c2,1 

I RAM2 write PA Tag, Size MCR p15,4,Rd,c15,c1,1 

D and I RAM2 write PA Tag, Size MCR p15,4,Rd,c15,c3,1 

D CAM match, RAM1 read to 
C15.M.D

MVA MCR p15,4,Rd,c15,c14,4 

I CAM match, RAM1 read to 
C15.M.I 

MVA MCR p15,4,Rd,c15,c13,4 

Read C15.M.D Data MRC p15,4,Rd,c15,c2,6 

Read C15.M.I Data MRC p15,4,Rd,c15,c1,6 

a. These MCR and MRC instructions are not architecturally defined in ARMv4T, and are only 
intended for testability. Their behavior is described by ARMv4T as being 
UNPREDICTABLE.

Table B-16 Register 2, 3, 5, 6, 8, 10, and 15 operations (continued)

Function Rd Instruction



CP15 Test Registers 

B-24 Copyright © 2000, 2001 ARM Limited. All rights reserved. ARM DDI 0151C

Figure B-12 shows the format of Rd for CAM writes and data for CAM reads.

Figure B-12 Rd format, CAM write and data format, CAM read

In Figure B-12, V is the Valid bit, P is the Preserve bit, and SIZE_C sets the memory 
region size. The allowed values of SIZE_C are shown in Table B-17. 

Figure B-13 shows the format of Rd for RAM1 writes.

Figure B-13 Rd format, RAM1 write

In Figure B-13, AP[3:0] determines the setting of the access permission bits for a 
memory region. The allowed values are listed in Table B-18 on page B-25.

31 910 5 4 0

MVA TAG SIZE_C

3

P

6

V SBZ

Table B-17 CAM memory region size

SIZE_C[3:0] Memory region size

0b1111 1MB

0b0111 64KB

0b0011 16KB

0b0001 4KB

0b0000 1KB

31 22 21 6 5 4 3 0

APSBZ DOMAIN [D15:D0] (one hot encoding) nBnC

D15 D0



CP15 Test Registers 

ARM DDI 0151C Copyright © 2000, 2001 ARM Limited. All rights reserved. B-25

Figure B-14 shows the data format for RAM1 reads.

Figure B-14 Data format, RAM1 read

In Figure B-14, bits [24:22] are only valid for a match operation. In this case the values 
listed in Table B-19 apply.

Table B-18 Access permission bit setting

AP[3:0] Access permission bits

0b1000 0b11

0b0100 0b10

0b0010 0b01

0b0001 0b00

31 22 21 6 5 4 3 0

APSBZ DOMAIN [D15:D0] (one hot encoding) nBnC

232425

Prot
fault

TLB
miss

Domain
fault

D15

D0

Table B-19 Miss and fault encoding

Prot fault Domain fault TLB miss Function

0 0 0 Hit, OK

0 1 0 Hit, domain fault

1 0 0 Hit, protection fault

1 1 0 Hit, protection and domain fault

- - 1 TLB miss



CP15 Test Registers 

B-26 Copyright © 2000, 2001 ARM Limited. All rights reserved. ARM DDI 0151C

Figure B-15 shows the Rd format for RAM2 writes, and the data format for RAM2 
reads.

Figure B-15 Rd format, RAM2 write and data format, RAM2 read

In Figure B-15, SIZE_R2 sets the memory region size. The allowed values of SIZE_R2 
are shown in Table B-20. 

Note

 The encoding for SIZE_R2 is different from SIZE_C.

B.4.1 Addressing the CAM, RAM1, and RAM2

For the CAM read or write, RAM1 read or write, and RAM2 read or write operations, 
you must specify the index. The CAM and RAM1 operations use the value in the victim 
pointer, so you must write this before any CAM or RAM1 operation. RAM2 uses a 
pipelined version of the victim pointer used for the CAM or RAM1 operation. This 
means that to read from index N in the RAM2 array, you must first perform an access 
to index N in either the CAM or RAM1.

31 910 5 0

PA TAG SIZE_R2

6

SBZ

Table B-20 RAM2 memory region size

SIZE_R2[3:0] Memory region size

0b1111 1MB

0b0111 64KB

0b0011 16KB

0b0000 4KB

0b0001 1KB



CP15 Test Registers 

ARM DDI 0151C Copyright © 2000, 2001 ARM Limited. All rights reserved. B-27

The write TLB lockdown operations are listed in Table B-21.

The write I or D TLB lockdown format for Rd is shown in Figure B-16.

Figure B-16 Rd format, write I or D TLB lockdown

Example B-2 shows sample code for performing software test of the DMMU. It 
contains typical operations with C15.M.D. 

Example B-2 DMMU test operations

LOCK_BASE_LSB EQU 0x1A 
LOCK_VICT_LSB EQU 0x14 
P_STATE_LSB EQU 0x0
P_ENTRY_LSB EQU 0x4
VATAG_LSB EQU 0xA
VASIZE_LSB EQU 0x6
VALID_LSB EQU 0x5
DOMAIN8_LSB EQU 0xE
DOMAIN_LSB EQU 0x6
NCACHE_LSB EQU 0x5
NBUFF_LSB EQU 0x4
ACCESS_LSB EQU 0x0 
PATAG_LSB EQU 0xA
PASIZE_LSB EQU 0x7 

; Write the DAC so that when doing a RAM1 Read
; bits [24:23] (P-Fault, D-Fault) can be defined 

MOV r0,#0 
MCR p15,0,r0,c3,c0,0 

Table B-21 Write TLB lockdown operations

Operation Instruction

Write D TLB lockdown MCR p15,0,Rd,c10,c0,0

Write I TLB lockdown MCR p15,0,Rd,c10,c0,1

31 26 25 20 19 1 0

Base Victim PSBZ



CP15 Test Registers 

B-28 Copyright © 2000, 2001 ARM Limited. All rights reserved. ARM DDI 0151C

; Load the DMMU lock-down pointer to index 25
MOV r0,#25 :SHL: LOCK_BASE_LSB ; Base
ORR r0,r0,#25 :SHL: LOCK_VICT_LSB ; Victim
ORR r0,r0,#0 :SHL: P_STATE_LSB ; Preserve
MCR p15,0,r0,c10,c0,0

; CAM write to index 25
LDR r0,=0xAAAAA 
MOV r0,r0,LSL #VATAG_LSB ; MVA Tag
ORR r0,r0,#1 :SHL:  VASIZE_LSB ; Size_C
ORR r0,r0,#1 :SHL: VALID_LSB ; Valid
ORR r0,r0,#1 :SHL: P_ENTRY_LSB ; Preserve
MCR p15,4,r0,c15,c6,0 

; RAM2 write to index 25
; The RAM2 location pointed to for reads and writes
; is whichever CAM and RAM1 location was last read or written. 

LDR r0,=0x55555
MOV r0,r0,LSL #PATAG_LSB ; PATAG
ORR r0,r0,#3 :SHL: PASIZE_LSB ; Size_R2
MCR p15,4,r0,c15,c2,1 

; As CP15 register 15, Test Status Register, MMU Test (bit 3) is not set,
; the victim pointer will only increment after the RAM1 write. 
; So RAM1 write to index 25 (Victim increments to 26 after the write)

MOV r0,#0 
ORR r0,r0,#0 :SHL: DOMAIN8_LSB ; Upper 8 domains
ORR r0,r0,#1 :SHL: DOMAIN_LSB ; Lower 8 domains
ORR r0,r0,#1 :SHL: NCACHE_LSB ; nC
ORR r0,r0,#1 :SHL: NBUFF_LSB ; nB
ORR r0,r0,#8 :SHL: ACCESS_LSB 
MCR p15,4,r0,c15,c10,0

; Load the DMMU lock-down pointer to index 25
MOV r0,#25 :SHL: LOCK_BASE LSB ; Base
ORR r0,r0,#25 :SHL: LOCK_VICT_LSB ; Victim
ORR r0,r0,#0 :SHL: P_STATE_LSB ; Preserve
MCR p15,0,r0,c10,c0,0

; RAM1 read to C15.M.D 
MCR p15,4,r0,c15,c10,4

; Read C15.M.D to r1
MRC p15,4,r1,c15,c2,6 

; RAM2 read to C15.M.D 
MCR p15,4,r0,c15,c2,5 

; Read C15.M.D to r3



CP15 Test Registers 

ARM DDI 0151C Copyright © 2000, 2001 ARM Limited. All rights reserved. B-29

MRC p15,4,r3,c15,c2,6 

; CAM match, RAM1 read to C15.M.D 
LDR r0,=0xAAAAA
MOV r0,r0,LSL #VATAG_LSB 
MCR p15,4,r0,c15,c14,4 

; Read C15.M.D to r2
MRC p15,4,r2,c15,c2,6 

; Compare match value to read value and RAM2 read value to write value 
LDR r4,=0x55555 ; Expected RAM2 PA Tag
MOV r4,r4,LSL #PATAG_LSB
ORR r4,r4,#3 :SHL: PASIZE_LSB 
CMP r1,r2 ; Compare RAM1 read with

; CAM match, RAM1 read
CMPEQ r3,r4 ; Compare RAM2 read with

; expected RAM2
BNE Fail 
TEST_PASS

Fail TEST_FAIL 
END 



CP15 Test Registers 

B-30 Copyright © 2000, 2001 ARM Limited. All rights reserved. ARM DDI 0151C

B.5 StrongARM backwards compatibility operations

The following MCR instructions are supported to provide clock switching and MCR wait for 
interrupt compatibility with SA110 and SA1100 (StrongARM).

MCR p15,0,Rd,c15,c1,2 ; Enable clock switching

This is equivalent to Asynchronous clocking mode.

MCR p15,0,Rd,c15,c2,2 ; Disable clock switching 

This is equivalent to FastBus clocking mode.

MCR p15,0,Rd,c15,c8,2 ; Wait for interrupt

This is equivalent to MCR p15,0,Rd,c7,c0,4.

These three MCR instructions must not be used and are deprecated in ARM architectures 
after v4T.



ARM DDI 0151C Copyright © 2000, 2001 ARM Limited. All rights reserved. Glossary-1

Glossary

This glossary describes some of the terms used in this manual. Where terms can have 
several meanings, the meaning presented here is intended.

Abort A mechanism that indicates to a core that it should halt execution of an attempted illegal 
memory access. An abort can be caused by the external or internal memory system as a 
result of attempting to access invalid instruction or data memory. An abort is classified 
as either a prefetch abort, a data abort, or an external abort. See also Data abort, 
External abort and Prefetch abort.

Abort model An abort model is the defined behavior of an ARM processor in response to a Data 
Abort exception. Different abort models behave differently with regard to load and store 
instructions that specify base register writeback.

ALU See Arithmetic Logic Unit.

Application Specific 
Integrated Circuit 

An integrated circuit that has been designed to perform a specific application function. 
It can be custom-built or mass-produced.

Arithmetic Logic 
Unit 

The part of a processor core that performs arithmetic and logic operations.

ARM state A processor that is executing ARM (32-bit) word-aligned instructions is operating in 
ARM state.



Glossary 

Glossary-2 Copyright © 2000, 2001 ARM Limited. All rights reserved. ARM DDI 0151C

ASIC See Application Specific Integrated Circuit.

Banked registers Those physical registers whose use is defined by the current processor mode. The 
banked registers are R8 to R14.

Base register A register specified by a load or store instruction that is used to hold the base value for 
the instruction’s address calculation. 

Big-endian Byte ordering scheme in which bytes of decreasing significance in a data word are 
stored at increasing addresses in memory. See also Little-endian and Endianness.

Breakpoint A breakpoint is a mechanism provided by debuggers to identify an instruction at which 
program execution is to be halted. Breakpoints are inserted by the programmer to allow 
inspection of register contents, memory locations, variable values at fixed points in the 
program execution to test that the program is operating correctly. Breakpoints are 
removed after the program is successfully tested. See also Watchpoint.

Byte An 8-bit data item.

Cache A block of on-chip or off-chip fast access memory locations, situated between the 
processor and main memory, used for storing and retreiving copies of often used 
instructions and/or data. This is done to greatly reduce the average speed of memory 
accesses and so to increase processor performance. 

Cache contention When the number of frequently-used memory cache lines that use a particular cache set 
exceeds the set-associativity of the cache. In this case, main memory activity increases 
and performance decreases.

Cache hit A memory access that can be processed at high speed because the instruction or data 
that it addresses is already held in the cache.

Cache line index The number associated with each cache line in a cache set. Within each cache set, the 
cache lines are numbered from 0 to (set associativity) -1.

Cache lockdown To fix a line in cache memory so that it cannot be overwritten. Cache lockdown allows 
critical instructions and/or data to be loaded into the cache so that the cache lines 
containing them will not subsequently be reallocated. This ensures that all subsequent 
accesses to the instructions/data concerned are cache hits, and therefore complete as 
quickly as possible.

Cache miss A memory access that cannot be processed at high speed because the instruction/data it 
addresses is not in the cache and a main memory access is required. 

CAM See Content addressable memory.

Central Processing 
Unit 

The part of a processor that contains the ALU, the registers, and the instruction decode 
logic and control circuitry. Also commonly known as the processor core.



Glossary 

ARM DDI 0151C Copyright © 2000, 2001 ARM Limited. All rights reserved. Glossary-3

Clock gating Gating a clock signal for a macrocell with a control signal (such as PWRDOWN) and 
using the modified clock that results to control the operating state of the macrocell.

Condition field A 4-bit field in an instruction that is used to specify a codition under which the 
instruction can execute.

Content 
addressable 
memory 

Memory that is identified by its contents. Content addressable memory is used in 
CAM-RAM architecture caches to store the tags for cache entries. 

Coprocessor A processor that supplements the main CPU. It carries out additional functions that the 
main CPU cannot perform. Usually used for floating-point math calculations, signal 
processing, or memory management.

CPU See Central Processing Unit.

Data Abort An indication from a memory system to a core that it should halt execution of an 
attempted illegal memory access. A data abort is attempting to access invalid data 
memory. See also Abort, External abort and Prefetch abort.

Data cache See DCache.

DCache A block of on-chip fast access memory locations, situated between the processor and 
main memory, used for storing and retreiving copies of often used data. This is done to 
greatly reduce the average speed of memory accesses and so to increase processor 
performance.

Debugger A debugging system that includes a program, used to detect, locate, and correct software 
faults, together with custom hardware that supports software debugging.

Domain A collection of sections, large pages and small pages of memory, which can have their 
access permissions switched rapidly by writing to the Domain Access Control Register 
(CP15 register 3).

Double word A 64-bit data item. The contents are taken as being an unsigned integer unless otherwise 
stated.

EmbeddedICE The additional JTAG-based hardware provided by debuggable ARM processors to aid 
debugging.

Endianness Byte ordering. The scheme that determines the order in which successive bytes of a data 
word are stored in memory. See also Little-endian and Big-endian.

Exception vector One of a number of fixed addresses in low memory, or in high memory if high vectors 
are configured, that contains the first instruction of the corresponding interrupt service 
routine.



Glossary 

Glossary-4 Copyright © 2000, 2001 ARM Limited. All rights reserved. ARM DDI 0151C

External abort An indication from an external memory system to a core that it should halt execution of 
an attempted illegal memory access. An external abort is caused by the external memory 
system as a result of attempting to access invalid memory. See also Abort,  Data abort 
and Prefetch abort

Halfword A 16-bit data item.

ICache A block of on-chip fast access memory locations, situated between the processor and 
main memory, used for storing and retreiving copies of often used instructions. This is 
done to greatly reduce the average speed of memory accesses and so to increase 
processor performance.

Instruction cache See ICache.

Joint Test Action 
Group 

The name of the organization that developed standard IEEE 1149.1. This standard 
defines a boundary-scan architecture used for in-circuit testing of integrated circuit 
devices. It is commonly known by the initials JTAG.

JTAG See Joint Test Action Group.

Little-endian Byte ordering scheme in which bytes of increasing significance in a data word are stored 
at increasing addresses in memory. See also Big-endian and Endianness.

Macrocell A complex logic block with a defined interface and behavior. A typical VLSI system 
will comprise several macrocells (such as an ARM9E-S, an ETM9, and a memory 
block) plus application-specific logic.

Prefetch abort An indication from a memory system to a core that it should halt execution of an 
attempted illegal memory access. A prefetch abort can be caused by the external or 
internal memory system as a result of attempting to access invalid instruction memory. 
See also Data abort, External abort and Abort

Processor A contraction of microprocessor. A processor includes the CPU or core, plus additional 
components such as memory, and interfaces. These are combined as a single macrocell, 
that can be fabricated on an integrated circuit. 

Region A partition of instruction or data memory space.

Register A temporary storage location used to hold binary data until it is ready to be used. 

SBO See Should be one.

SBZ See Should be zero.

SCREG The currently selected scan chain number in an ARM TAP controller.

Should be one Should be written as 1 (or all 1s for bit fields) by software. Writing a 0 will produce 
UNPREDICTABLE results.



Glossary 

ARM DDI 0151C Copyright © 2000, 2001 ARM Limited. All rights reserved. Glossary-5

Should be zero Should be written as 0 (or all 0s for bit fields) by software. Writing a 1 will produce 
UNPREDICTABLE results.

Tag bits The index or key field of a CAM entry.

TAP See Test access port.

Test Access Port The collection of four mandatory and one optional terminals that form the input/output 
and control interface to a JTAG boundary-scan architecture. The mandatory terminals 
are TDI, TDO, TMS, and TCK. The optional terminal is TRST.

Thumb state A processor that is executing Thumb (16-bit) half-word aligned instructions is operating 
in Thumb state

UNDEFINED An instruction that generates an undefined instruction exception.

UNPREDICTABLE For reads, the data returned when reading from this location is unpredictable. It can have 
any value. For writes, writing to this location causes unpredictable behavior, or an 
unpredictable change in device configuration. UNPREDICTABLE instructions must 
not halt or hang the processor, or any part of the system.

Watchpoint A watchpoint is a mechanism provided by debuggers to halt program execution when 
the data contained by a particular memory address is changed. Watchpoints are inserted 
by the programmer to allow inspection of register contents, memory locations, and 
variable values when memory is written to test that the program is operating correctly. 
Watchpoints are removed after the program is successfully tested. See also Breakpoint.

Word A 32-bit data item.



Glossary 

Glossary-6 Copyright © 2000, 2001 ARM Limited. All rights reserved. ARM DDI 0151C



ARM DDI 0151C Copyright © 2000, 2001 ARM Limited. All rights reserved. Index-1

Index

The items in this index are listed in alphabetical order. The references given are to page numbers.

A
ABSENT   7-7
Access permission   3-2

bits   3-24
Address   2-6

translation   3-6
AHB interface   6-21
Alignment faults   3-21
AMBA signals   A-2
AMBA test

burst operations   11-11
cache test mode   11-15
entering and exiting   11-3
functional test mode   11-4
interface   11-2
MMU test mode   11-19
modes   11-3
PA TAG RAM test mode   11-12

ARM7TDMI code compatibility   2-3
ARM9TDMI   1-2

implementation options   2-3

ARM920T   1-2
bus interface   6-2
clocking   5-2
connecting to ASB interface   6-5

ARM940T   1-2
ASB   6-3, 6-5

interface, fully compliant   6-5
slave transfers   6-20

B
Base restored data abort model   2-3
Base updated data abort model   2-3
Bidirectional signals   6-5
Block diagram, functional   1-3
Breakpoint   9-5, 9-51

and exception   9-6
timing   9-5

Buffer   6-5
Buffered STM   6-15
Buffered STR   6-14
Burst transfers   6-7

Bus interface   6-2
Busy-wait

abandoned   7-17
interrupted   7-17

Bypass register   9-19

C
Cache

associativity encoding   2-11
cleaning   4-20
coherence   4-17
lockdown register   2-20
operations register   2-17
size encoding   2-11
test mode, AMBA   11-15
test register   B-8
type register   2-8

Cached
fetch   6-16
LDM   6-16
LDR   6-16



Index

Index-2 Copyright © 2000, 2001 ARM Limited. All rights reserved. ARM DDI 0151C

CDP   7-13
Clock switching   9-43, B-5, B-30
Clocking modes   2-14
Clocks

DCLK   9-42
GCLK   9-42
internally TCK generated clock   

9-42
memory clock   9-42

Coarse page table descriptor   3-11
Code compatibility   2-3
Coherence, cache   4-17
Comms channel   9-66
Control register   2-12
Coprocessor

clocking   7-3
external   7-2
handshake encoding   7-8
instructions   7-3

Coprocessor instructions
privileged modes   7-15

Coprocessor interface   7-2
signals   A-5

CPU aborts   3-21
CP14   2-2, 7-2
CP15   2-2, 7-2

accessing registers   2-6
debug access   9-33
interpreted access   9-34
MRC and MCR bit pattern   2-7
register map   2-5
test registers   B-2

D
Data Abort model   2-3
DCache

enabling and disabling   4-10
operation   4-10
organization   4-4, 4-13
replacement algorithm   4-13

Debug
comms control register   9-64
communications   9-66
communications channel   9-64
control register   9-60
debug scan chain   9-28
entered from ARM state   9-45

Debug (continued)
entered from Thumb state   9-45
hardware extensions   9-2
instruction register   9-13
interface standard   9-2
request   9-10, 9-52
scan chains   9-23
signals   A-10
speed   9-46
state   9-10
status register   9-60
system   9-3

Debug state
actions of ARM920T   9-10
breakpoint and exception   9-6
entry on breakpoint   9-5
entry on debug request   9-10
entry on watchpoint   9-6
exit from   9-48
watchpoint and exception   9-9

Descriptor
coarse page table   3-11
fine page table   3-12
level one   3-8
level two   3-14
section   3-10

Device ID code register   9-19
Dirty data eviction   6-17
Domain   3-2

access control   3-23
access control register   2-15
faults   3-21, 3-26

E
EmbeddedICE   9-54

accessing hardware registers   9-29
control registers   9-56
macrocell   9-1
mask registers   9-56
register map   9-54
single stepping   9-63

EmbeddedICE watchpoint units
debugging   9-11
programming   9-11
testing   9-11

ETM interface   8-2
Extension space   2-4

External
aborts   3-28
coprocessors   7-2
scan chains   9-21

F
FAR   2-17, 3-22
Fast context switch   2-26
FastBus mode   5-3
Fault

address register   2-17, 3-22
checking   3-25
domain   3-26
permission   3-27
status register   2-16, 3-22
translation   3-26

Fine page table descriptor   3-12
FSR   2-16, 3-22
Functional block diagram   1-3
Functional test   11-4

G
GO   7-7

H
Handshake signals   7-7
Harvard architecture   1-2

I
ICache

operation   4-6
replacement algorithm   4-7

ID code register   2-8
Implementation options   2-3
Instruction cycle

counts and bus activity   12-3
data bus instruction times   12-4

Instruction set extension spaces   2-4
Interlocked MCR   7-11



Index

ARM DDI 0151C Copyright © 2000, 2001 ARM Limited. All rights reserved. Index-3

Interlocks   12-6
LDM dependent timing   12-9
LDM timing   12-7
single load timing   12-6
two cycle load timing   12-7

J
JTAG

and TAP controller signals   A-7
interface   9-11
state machine   9-12

L
Large page references, translating   3-17
LAST   7-7
LDC   7-5
Level one

descriptor   3-8
descriptor, accessing   3-8
fetch   3-8

Level two
cache support   6-23

Level two|
descriptor   3-14

LFSR testing   B-17
Line length encoding   2-12

M
MCR   7-9

interlocked   7-11
Memory management unit   3-2
Miscellaneous signals   A-12
MMU   3-2

enabling   2-14
enabling and disabling   3-29
fault checking   3-25
faults   3-21
registers   3-4

MMU test
mode   11-19
registers   B-18

Modified virtual address   2-6
MRC   7-9

MVA   2-6

N
Nonbuffered STM   6-15
Nonbuffered STR   6-14
Noncached fetches   6-12
Noncached LDM   6-13
Noncached LDRs   6-12

O
Options, implementation   2-3

P
PA   2-6
PA TAG RAM   4-22

debug access   9-39
Page tables   3-7
Page walk   6-20
PC

behavior during debug   9-51
return calculation in debug   9-53

Performance analysis   6-23
Permission faults   3-21, 3-27
Physical address   2-6

TAG RAM   4-22
Pipeline interlocks   12-6
Privileged instructions   7-15
Process ID register   2-24
Processor state, determining   9-45

R
Register

bypass   9-19
cache lockdown   2-20
cache operations   2-17
cache test   B-8
cache type   2-8
control   2-12
device ID code   9-19
domain access control   2-15
fault address   2-17, 3-22

Register(continued)
fault status   2-16, 3-22
ID code   2-8
map, CP15   2-5
MMU test   B-18
process ID   2-24
scan chain select   9-20
TAP instruction   9-20
test   B-2
test configuration   2-26
test state   B-3
TLB lockdown   2-22
translation lookaside buffer   2-19
translation table base   2-14, 3-6

Reset, test   9-13

S
Scan chain   9-11, 9-23

controlling external   9-30
external   9-21
multiplexor, external   9-22
number allocation   9-23
select register   9-20

Scan chain 0   9-23
Scan chain 1   9-28
Scan chain 15   9-31, 9-32
Scan chain 2   9-29
Scan chain 3   9-30
Scan chain 4   9-31, 9-39
Scan chain 6   9-31
Section

descriptor   3-10
references, translating   3-13

Serial test and debug   9-12
Signals

AMBA   A-2
coprocessor interface   A-5
debug   A-10
handshake   7-7
JTAG and TAP controller   A-7
miscellaneous   A-12
trace interface port   A-13

Single stepping   9-63
Slave transfers   6-20
Small page references, translating   3-18
STC   7-5
StrongARM   B-30



Index

Index-4 Copyright © 2000, 2001 ARM Limited. All rights reserved. ARM DDI 0151C

Subpages   3-20
Swap   6-18
Swap instructions   4-14
Synchronous mode   5-4
SYSPEED bit   9-47
System speed

access   9-53
instructions   9-47

T
TAP controller   9-12
TAP instruction register   9-20
Test

configuration register   2-26
data registers   9-19
interface, AMBA   11-2
registers   B-2
reset   9-13
state register   B-3

Timing
diagrams   13-2
parameters   13-16

Tiny page references, translating   3-19
TLB lockdown register   2-22
TLB operations register   2-19
Trace interface port signals   A-13
TrackingICE   10-2

outputs   10-4
Transfer types, ASB   6-6
Translating page tables   3-7
Translation faults   3-21, 3-26
Translation lookaside buffer lockdown 

register   2-22
Translation lookaside buffer operations 

register   2-19
Translation table base   3-6

register   2-14
TTB   3-6

register   2-14

U
Unidirectional signals   6-6

V
VA   2-6
Vector catch register   9-61
Vector catching   9-62
Virtual address   2-6

W
WAIT   7-7
Watchpoint   9-9, 9-51

and breakpoint   9-52
and exception   9-52
control register   9-57, 9-59
timing   9-7

Write buffer
enabling and disabling   4-10
operation   4-10

Write-back   6-17


	Contents
	List of Tables
	List of Figures
	Preface
	About this document
	Further reading
	Feedback

	1 Introduction
	1.1 About the ARM920T
	1.2 Processor functional block diagram

	2 Programmer’s Model
	2.1 About the programmer’s model
	2.2 About the ARM9TDMI programmer’s model
	2.2.1 Data Abort model
	2.2.2 Instruction set extension spaces

	2.3 CP15 register map summary
	2.3.1 Addresses in ARM920T
	2.3.2 Accessing CP15 registers
	2.3.3 Register 0, ID code register
	2.3.4 Register 0, cache type register
	2.3.5 Register 1, control register
	2.3.6 Register 2, translation table base (TTB) register
	2.3.7 Register 3, domain access control register
	2.3.8 Register 4, reserved
	2.3.9 Register 5, fault status registers
	2.3.10 Register 6, fault address register
	2.3.11 Register 7, cache operations register
	2.3.12 Register 8, TLB operations register
	2.3.13 Register 9, cache lockdown register
	2.3.14 Register 10, TLB lockdown register
	2.3.15 Registers 11, 12, and 14, reserved
	2.3.16 Register 13, FCSE PID register
	2.3.17 Register 15, test configuration register


	3 Memory Management Unit
	3.1 About the MMU
	3.1.1 Access permissions and domains
	3.1.2 Translated entries

	3.2 MMU program accessible registers
	3.3 Address translation
	3.3.1 Translation table base
	3.3.2 Level one fetch
	3.3.3 Level one descriptor
	3.3.4 Section descriptor
	3.3.5 Coarse page table descriptor
	3.3.6 Fine page table descriptor
	3.3.7 Translating section references
	3.3.8 Level two descriptor
	3.3.9 Translating large page references
	3.3.10 Translating small page references
	3.3.11 Translating tiny page references
	3.3.12 Subpages

	3.4 MMU faults and CPU aborts
	3.5 Fault address and fault status registers
	3.5.1 Fault status

	3.6 Domain access control
	3.7 Fault checking sequence
	3.7.1 Alignment fault
	3.7.2 Translation fault
	3.7.3 Domain fault
	3.7.4 Permission fault

	3.8 External aborts
	3.9 Interaction of the MMU and caches
	3.9.1 Enabling the MMU
	3.9.2 Disabling the MMU


	4 Caches, Write Buffer, and Physical Address TAG (PA TAG) RAM
	4.1 About the caches and write buffer
	4.2 ICache
	4.2.1 ICache organization
	4.2.2 Enabling and disabling the ICache
	4.2.3 ICache operation
	4.2.4 ICache replacement algorithm
	4.2.5 ICache lockdown

	4.3 DCache and write buffer
	4.3.1 Enabling and disabling the DCache and write buffer
	4.3.2 DCache and write buffer operation
	4.3.3 DCache organization
	4.3.4 DCache replacement algorithm
	4.3.5 Swap instructions
	4.3.6 DCache lockdown

	4.4 Cache coherence
	4.5 Cache cleaning when lockdown is in use
	4.6 Implementation notes
	4.7 Physical address TAG RAM
	4.8 Drain write buffer
	4.9 Wait for interrupt

	5 Clock Modes
	5.1 About ARM920T clocking
	5.2 FastBus mode
	5.3 Synchronous mode
	5.4 Asynchronous mode

	6 Bus Interface Unit
	6.1 About the ARM920T bus interface
	6.2 Unidirectional AMBA ASB interface
	6.3 Fully-compliant AMBA ASB interface
	6.3.1 Connecting the ARM920T to an AMBA ASB interface
	6.3.2 Transfer types
	6.3.3 Instruction fetch after reset
	6.3.4 Noncached LDRs and noncached fetches
	6.3.5 Noncached LDM
	6.3.6 Buffered and nonbuffered STR
	6.3.7 Buffered and nonbuffered STM
	6.3.8 Cached LDR, cached LDM, and cached fetch
	6.3.9 Dirty data eviction, write-back of 4 or 8 words
	6.3.10 Swap
	6.3.11 Page walk
	6.3.12 AMBA ASB slave transfers

	6.4 AMBA AHB interface
	6.5 Level 2 cache support and performance analysis

	7 Coprocessor Interface
	7.1 About the ARM920T coprocessor interface
	7.1.1 Internal coprocessors
	7.1.2 External coprocessors
	7.1.3 Enabling and disabling the external coprocessor interface buses

	7.2 LDC/STC
	7.2.1 Coprocessor handshake encoding

	7.3 MCR/MRC
	7.4 Interlocked MCR
	7.5 CDP
	7.6 Privileged instructions
	7.7 Busy-waiting and interrupts

	8 Trace Interface Port
	8.1 About the ETM interface

	9 Debug Support
	9.1 About debug
	9.2 Debug systems
	9.2.1 The debug host
	9.2.2 The protocol converter
	9.2.3 The ARM920T processor

	9.3 Debug interface signals
	9.3.1 Entry into debug state on breakpoint
	9.3.2 Breakpoints and exceptions
	9.3.3 Watchpoints
	9.3.4 Watchpoints and exceptions
	9.3.5 Debug request
	9.3.6 Actions of the ARM920T in debug state

	9.4 Scan chains and JTAG interface
	9.5 The JTAG state machine
	9.5.1 Reset
	9.5.2 Pullup resistors
	9.5.3 Instruction register
	9.5.4 Public instructions

	9.6 Test data registers
	9.6.1 Bypass register
	9.6.2 ARM920T device identification (ID) code register
	9.6.3 Instruction register
	9.6.4 Scan chain select register
	9.6.5 Scan chains 0, 1, 2, and 3
	9.6.6 Scan chain 6
	9.6.7 Scan chains 4 and 15, the ARM920T memory system

	9.7 ARM920T core clocks
	9.8 Clock switching during debug
	9.9 Clock switching during test
	9.10 Determining the core state and system state
	9.10.1 Determining the core state
	9.10.2 Determining system state
	9.10.3 Instructions that can have the SYSSPEED bit set

	9.11 Exit from debug state
	9.12 The behavior of the program counter during debug
	9.12.1 Breakpoint
	9.12.2 Watchpoint
	9.12.3 Watchpoint with another exception
	9.12.4 Watchpoint and breakpoint
	9.12.5 Debug request
	9.12.6 System speed accesses
	9.12.7 Summary of return address calculations

	9.13 EmbeddedICE macrocell
	9.13.1 Register map
	9.13.2 Using the mask registers
	9.13.3 Control registers
	9.13.4 Debug control register
	9.13.5 Debug status register
	9.13.6 Vector catch register

	9.14 Vector catching
	9.15 Single-stepping
	9.16 Debug communications channel
	9.16.1 Debug comms channel register
	9.16.2 Communications using the comms channel


	10 TrackingICE
	10.1 About TrackingICE
	10.2 Timing requirements
	10.3 TrackingICE outputs

	11 AMBA Test Interface
	11.1 About the AMBA test interface
	11.2 Entering and exiting AMBA Test
	11.3 Functional test
	11.3.1 Creating an ARM920T AMBA functional test

	11.4 Burst operations
	11.5 PA TAG RAM test
	11.6 Cache test
	11.6.1 Behavior of the cache index pointer in AMBA cache test
	11.6.2 RAM read or write
	11.6.3 CAM read or write
	11.6.4 CAM match, RAM read

	11.7 MMU test
	11.7.1 Behavior of the TLB Index pointer in AMBA MMU test
	11.7.2 Indexing the RAM2 array


	12 Instruction Cycle Summary and Interlocks
	12.1 About the instruction cycle summary
	12.2 Instruction cycle times
	12.2.1 Multiplier cycle counts

	12.3 Interlocks

	13 AC Characteristics
	13.1 ARM920T timing diagrams
	13.2 ARM920T timing parameters
	13.3 Timing definitions for the ARM920T Trace Interface Port

	Appendix A Signal Descriptions
	A.1 AMBA signals
	A.1.1 AMBA bus specification

	A.2 Coprocessor interface signals
	A.3 JTAG and TAP controller signals
	A.4 Debug signals
	A.5 Miscellaneous signals
	A.6 ARM920T Trace Interface Port signals

	Appendix B CP15 Test Registers
	B.1 About the test registers
	B.2 Test state register
	B.2.1 Bit 12, disable DCache streaming
	B.2.2 Bit 11, disable ICache streaming
	B.2.3 Bit 10, disable DCache linefill
	B.2.4 Bit 9, disable ICache linefill
	B.2.5 Bits [8:6], disable CP15 register 1, iA and nF
	B.2.6 Bit 5, D force noncachable
	B.2.7 Bit 4, I force noncachable
	B.2.8 Bit 3, MMU test
	B.2.9 Bit 2, I miss abort
	B.2.10 Bit 1, D miss abort
	B.2.11 Bit 0, CP15 interpret mode

	B.3 Cache test registers and operations
	B.3.1 Addressing the CAM and RAM
	B.3.2 Testing the LFSR

	B.4 MMU test registers and operations
	B.4.1 Addressing the CAM, RAM1, and RAM2

	B.5 StrongARM backwards compatibility operations
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W


	Glossary

