
68 / MAY 2015 / WWW.LINUXJOURNAL.COM

FEATURE Embed Linux in Monitoring and Control Systems

EMBED LINUX

IN MONITORING

AND CONTROL

SYSTEMS

How to use a standard Linux distribution platform

to make a user interface embedded into a vehicle

monitoring and control system.

RICK BROWN

WWW.LINUXJOURNAL.COM / MAY 2015 / 69WWW.LINUXJOURNAL.COM / MAY 2015 / 69

T
he target vehicle for this

project is a vintage intercity

transport bus (think Greyhound)

whose instrument panel was sparse

and mostly nonfunctional. The

speedometer cable was twisted

off some place back in 40 feet of

cable, and the fuel sensor had sunk

long ago. What I wanted was an

instrument panel more in line with

modern practice.

To bridge the gap, I used a laptop

computer running the Fedora 20-KDE

distribution of Linux as a host, three

digital signal processor boards as

hardware interface processors (HIPs),

a USB/RS422 converter that connects

to an RS422 loop linking the HIPs

together and some software that

� ���� ��� ������� ���������� ���

Control application.

System Architecture

The HIPs are based on a signal

processor chip, programmed in C

and with no user interface except

a heartbeat LED to show that the

processor is working to some degree.

The HIPs provide signal conditioning

circuitry for analog input scaling and

optical isolation for control signals

plus a few specials like thermocouple

converters and a pressure transducer

chip. There also are two RS422

receiver/transmitter pairs. One pair

connects up-network (toward the

host) and the other down-network

(toward the other HIPs).

The way this application works is

that a message is originated by the

host processor and transmitted down-

loop to the first HIP. There it may be

modified under HIP program control

and relayed on down-loop to the

next HIP. The last HIP in the “loop”

transmits its message up-loop under

physical jumper control. Processors

closer to the Host simply pass on

up what is coming from below in

the “loop”. The Host is the ultimate

receiver of the messages it originates.

A message consists of an SOM byte,

an address byte with acknowledge

bit, a command byte, four data

bytes and two CRC bytes. Going

down loop, the HIPs relay a message

on a character-by-character basis

with a one-character delay per HIP.

The addressee of a message sets

the acknowledge bit and inserts or

extracts data on the fly. So in a short

loop like the one here, the host begins

receiving the response from the

network before it has finished sending

the original message. For this loop,

the communication rate was selected,

arbitrarily, as 57,600 baud, so the

loop message time is (9 + 3)/57600 or

208 microseconds. The left portion of

Figure 1 depicts the loop topology.

70 / MAY 2015 / WWW.LINUXJOURNAL.COM

FEATURE Embed Linux in Monitoring and Control Systems

��� ������� ���������� ��� �������

����� ����������� ���� ���������

messages like “HIP1 set or get register

whatever”. First, I show how to set up

a development environment on a Linux

box, and then I talk about how to use

the tools made available there to weave

together a Linux real-time application

���� �������� ��� ��� ������������

Set Up the Development Environment

My choice for a development

environment is KDevelop from KDE,

��� ��� � �������� �� �� �� ���� ��� ��

Project. The first step is to get the

development environment and then

build a “Hello World” application. So,

here it is in the Fedora world:

yum install kdevelop

yum install qt

yum install gcc

...and lots of other stuff. Expect

to spend some time if you are not

������� �� ��� ������� ���� ���

Figure 1. System Architecture

WWW.LINUXJOURNAL.COM / MAY 2015 / 71WWW.LINUXJOURNAL.COM / MAY 2015 / 71

When you get KDevelop to load,

click Session�Start New Session�New

�������� ���� ���� �� ���� ���

������������ ���� �� � ���� ����

for example), accept the defaults,

and soon you will be presented the

opportunity to “Build” and then

“Execute”. On “Execute”, a Launch

Configurations dialog box will enable

you to select your project name, “Add

New”, and your project. A click or

two later, and you should see a basic

“Hello World” window appear on your

screen. This you may expand into your

real-time application.

��� ������ ������ ��� ��� �� � ��

������������ �� �� �� ��������� �������

that is robust and well documented—

������ ��� � ��� ������� ��� ���

project build process creates a

directory structure that includes

��������������������� �� ��������

���������������� �� ����� ������� ����

all of your source and header files in

�������������� ����� ��� ���� ���

�� �� ���������� ��� ���������������

build directory is the execute directory

for the purposes of KDevelop. It is

here that run directory files should

reside. As you add source files and

libraries, you must keep ~/projects/

������������������ ��������

Build the Application

Here is how to use tools available

in the Linux environment to create

��� ��� ������������ ����� �� ��

communications. To your application,

the communication loop looks like a

file stream created like this:

int hNet = open("/dev/ttyUSB0", O_RDWR);

or /dev/ttyUSBwhatever, depending upon

what else is going on in your system.

Now you can read() and write()

hNet and the USB�RS422 converter

will connect you to the loop. Writing

is no issue up to loop speed (in this case

57600/9 = 6400 messages/second),

so that is your write (hNet,...) speed

limit. Reading is a different deal as

read(hNet,...) is a blocking operation.

A process that makes that call remains

stuck there until some data arrives. Thus,

you want to make your read(hNet,...)

calls from a process (thread) whose only

task is to catch characters as they come

Qt is an excellent toolkit that is robust and
well documented—except for a few quirks.

72 / MAY 2015 / WWW.LINUXJOURNAL.COM

FEATURE Embed Linux in Monitoring and Control Systems

in and then make them available in a

buffer to other processes as they need

them—most briefly, in abbreviated code:

//A thread to perform the read(hNet,...) function

class COMthread : public Qthread

{

Q_OBJECT //Notice use of the Qt tools

protected:

 //Start point when myThread->start(); is called

void run()

{

while (1)

{

pthread_mutex_t mutex1\

 = PTHREAD_MUTEX_INITIALIZER;

//Lock out other processes while working

pthread_mutex_lock(&mutex1);

 -manipulate shared variables here-

//unlock for other processes during read(hNet,...

pthread_mutex_unlock(&mutex1);

//This is where this thread spends

read(hNet, Buf, BUF_SIZE);/////////

//99.99 (+/-) percent of its time

//Now lock while updating for new data

pthread_mutex_lock(&mutex1);

 -buffer data and update pointers-

pthread_mutex_unlock(&mutex1);

}

}

};

To activate that code, your

���������� �� ��� ��� ����������� ����

COMthread *gCOMgo = new COMthread;

gCOMgo->start();

The complement to that loop data

fetch is a character fetch routine

running under some other process.

That routine, using its own mutexes,

extracts data from the buffer sourced

by the thread above.

Now that you can send and

receive data via the loop, let’s look

at how the application may interact

with the hardware.

Figure 2 shows the Instrument Panel

display as seen on a video display

mounted in the driver’s view.

The Tach and Speed display data are

sourced from timer registers in an HIP

that is timing the period between shaft

rotations. The five indicators below are

sourced by A/D registers in various HIPs.

These seven data items are collected

by sending seven nine-character data

������� �������� �� ��� ���� ���

decoding the returned 63 characters

(7X9). Below that is a representation of a

partially populated map of a 4X4 keypad

that is serviced by one of the HIPs. Each

of the represented keys on that map

������ � ����� ��� ��� ��� ����������� ���

the physical keypad to see if its key was

the last pressed. It gets back yes or no.

When you use KDevelop to create a

WWW.LINUXJOURNAL.COM / MAY 2015 / 73WWW.LINUXJOURNAL.COM / MAY 2015 / 73

��� �������� ���� ����� �� �������� ��

you now were created. Look in directory

��������������� ��� ����� ��� ���� ����

�������� ��� �������� ���� ��������

is fine as is. It simply declares and runs

the application described by the code in

�������� ���� �� ��� ������ ����

�� ������� ������ ��� ����� ������ ��

useful for you, so let’s replace it with the

����������� ��� ��� ��� ������������ ��

I mentioned previously, this application

������ ���� ��� �� �� ��������� ��������

for you is http://qt-project.org/doc/

qt-4.8/classes.html.

���� ��� ����� ���� ������� ����

������������ �� ���� ����������� ����

�� ������� �� ������� �� ����� �����

VMC::VMC() : QMainWindow()

 {

 //declare a central widget to host our screen:

 QWidget* gCentralWidget = new QWidget(this);

 setCentralWidget(gCentralWidget);

//Set fonts, colors, geometry, etc

 - - - -

//Declare an object to hold the screen features:

ScreenC cScreenLayout = new ScreenC();

//Lastly, breathe life into the application

cHeartBeat = new QTimer (this);

connect(cHeartBeat, SIGNAL(timeout()), this,\

 SLOT(slotPaintScreen()));

cHeartBeat->setSingleShot(false);

cHeartBeat->start(50); //milliseconds/20Hz

}

Figure 2. Instrument Panel Display

74 / MAY 2015 / WWW.LINUXJOURNAL.COM

FEATURE Embed Linux in Monitoring and Control Systems

That is an abridged view of the

constructor, but the actual code isn’t

much longer. The connected routine

slotPaintScreen() will be activated

on a 50 millisecond interval by the

timer overflow. It too is brief:

//Fetch loop characters gathered by COMthread

SensorLoopService();

//Update the display

cScreenLayout->Update();

//Redraw the screen

update();

(Again abridged because this is a

story about how to do it rather than

how to code it.)

The central portion of Figure 1

shows the cascade of object creation

���� ���� ������ ��� ��� ������������

Notice the declaration of a ScreenC

������ �� ��� ��� ����������� ��� ���

update of that object at a 20Hz rate.

The ScreenC class constructor

simply declares a ScreenItemC object

for each entity that appears on the

screen. A typical declaration is:

pF[i] = new ScreenItemC(xOff,yOff,xSiz,ySiz,\

 MEAS_TACHOMETER, 0, "Tach");

Here you define the location and

size and name the object type of

each on-screen object. At update

time “update” is simply relayed to its

children like this:

//Update screen features

for (i=0; i<cNumberFeatures; i++)

{

 pF[i]->Update();

}

The ScreenItemC class constructor

is responsible for the look of items

on the screen. In this application,

a ScreenItemC item consists of two

������ ������� ������ ��� ����� ���

other so as to appear to be a single

����������� ��� ���� �� � ������

declaration is:

QLabel cReading = new QLabel(gCentralWidget, Qt::FramelessWindowHint);

The instrument displays of Figure

2 are pretty “plain Jane”. It is here

in the ScreenItemC class code where

you can fancy it up. The ScreenItemC

constructor also declares a MeasureC

object. That object’s update routine

returns the data that the ScreenItemC

It is here in the ScreenItemC class code
where you can fancy it up.

WWW.LINUXJOURNAL.COM / MAY 2015 / 75

object places on the screen:

MeasureC cMeasure = new

MeasureC(MEAS_TACHOMETER);

The MeasureC class is where the

hardware interface is described. HIP

address, register numbers and scale

factors are defined. For example:

case MEAS_TACHOMETER:

{

fScale = 27648000.0; //29.75Hz -> 1788rpm

 // RPM = fScale / binary from loop + fOffset

fOffset = 0;

rule = MEAS_RULE_RECIPROCAL_TACHO;

DeviceId = NODE_E; //Loop device id

DevicePort = P_IC_PERIOD_2; //Sensor on device

//Create a sensor for the measurement

pSens = new SensorC(MEAS_TACHOMETER,\

 DeviceId, DevicePort, fScale, Offset, rule);

break;

}

Notice the declaration above of

a SensorC object. At update time,

that SensorC object will fetch its

most recent raw reading from the

loop buffer, scale that and return

the result to its MeasureC parent,

which will relay that back to its

ScreenItemC parent, which will

display that result on the screen.

The MeasureC items that represent a

keypad key will declare a ContrtolC

object here. The ControlC object

will use its own SensorC object to

������� �� ��� ���� �� ��� ��� �� ���

most recently pressed. ControlC

objects also run device-specific code

(like timing a blinker, for example).

The ControlC object may place

commands on the loop as necessary.

The ControlC update routine will

return 1 or 0 depending on whether

its control target has changed state

or not. That return flows back up

the cascade to its grandparent

ScreenItemC object and then is

reflected on the display.

This cascade of object creation ends

with SensorC objects that return the

������ �� ����� �������� ������� �� ���

���� ��� ����� � ��� ���� �������

at each update time. As ControlC

objects may place commands on the

loop at their whim, the loop will have

a mixture of independent commands

circulating that must be resolved back

to their originator. When a command

is issued to the loop, the issuer of

that command also inserts into a class

visible circular buffer a pointer to itself.

As mentioned above, slotPaintScreen()

will call SensorLoopService() at each

update time. SensorLoopService()

extracts characters that have been

placed into the loop receive buffer by

the gCOMgo thread. Mutexes are used

here to prevent interference by other

76 / MAY 2015 / WWW.LINUXJOURNAL.COM

FEATURE Embed Linux in Monitoring and Control Systems

threads. SensorLoopService() parses

the characters as it fetches data from

the buffer, and when it has detected a

complete valid message, it places the

four data bytes into a location pointed

to by the pointer mentioned above.

This data will be returned up the

cascade at the next update time.

Here it is in fewer words: the

update event cascades down from

the ScreenC object to multiple

SensorC objects that bounce

parameter states back up to

ScreenItemC objects that paint those

states on the screen. The left panel

of Figure 1 depicts this.

Linux Environment Considerations

Some kinks that Linux throws

in include the screen saver that

defaults active, but is bad news in

a monitoring application. To turn it

off, go to System Settings�Power

Management and disable all Screen

Energy Saving options. Another issue

is automatic software updates. It is my

consideration that if something works,

don’t screw around with the operating

Some kinks that Linux throws
in include the screen saver that
defaults active, but is bad news
in a monitoring application.

LINUX JOURNAL
ARCHIVE DVD

NOW AVAILABLE

www.linuxjournal.com/dvd

WWW.LINUXJOURNAL.COM / MAY 2015 / 77

environment, as software updates do.

The safest way to suppress updating is

by staying off the Internet while your

application is active. Another way is

to disable updates by software control.

To do so, go to the Application Launcher

(lower left on the desktop), start the

System Settings from Favorites, go to

Software Management and left-click

the wrench icon at the upper-right

edge. Select Settings from its menu.

In the General Settings page, set the

Check for updates menu to Never, and

“Apply” that. Also, go to /etc/yum/

pluginconf.d/refresh-packagekit.conf

and set enabled to 0 (disable update).

For me it was just too easy to switch

off the Wi-Fi when I wanted a stable

environment, so I can’t give you other

advice here.

To claim credit as being an

“embedded” application, this system

should come up with the power—that

is, without login or any other user

����� �������� �� ���� �� ��� �� ����

the login, go to /etc/kde/kdm/kdmrc

and set AutoLoginAgain=true and

AutoLoginUser=YourUserName. To

bring up your application with system

start up, go to ~/.kde/Autostart and

place an executable script there like this:

#!/bin/bash

cd /home/YourUserName/projects/VMC/build

./VMC

Serendipitously, this will not

bring up multiple instances of the

application if it was active when you

last powered down, and you have

your system set to restore the previous

session at power up.

���� � ��� �� ��� ����� ��� ���

application is not time-critical at all

and may take its share of CPU time

whenever it is offered. There is a

lot of other stuff in a Linux system

that also wants CPU time (look at

ps -A). If your application is time-

critical with predetermined response

times at close tolerances between

events, this scheme will not work

for you. However, if you have a few

milliseconds here and there to spare,

Linux will host your monitoring

and control applications with a

reasonably small level of effort and

good reliability.�

Rick Brown is a US Navy veteran, holds a BSEE granted in

1970 by the University of Florida, developed atmospheric

research instruments for many years as a faculty member

of the University of Nevada System, consulted in the

private sector as a developer of electronic instruments and

manufacturing test systems and now lives happily ever after

on his little spread north of Reno, Nevada.

Send comments or feedback via

http://www.linuxjournal.com/contact

or to ljeditor@linuxjournal.com.

