FEATURE Temperature Control in a Homebrewing Tun Using a BeagleBone Black

TEMPERATURE
CONTROLIN A
HOMEBREWING
TUN

Using a BeagleBone Black

love beer—good beer, not in several temperature stages. This

industrial beers. The ones results in a more complex beer with a
| brew myself, where | can more malty body. And, we now have
control the ingredients and the better efficiency—that is, more sugars
process, are very good. for the yeast to produce alcohol from,
Beer brewing is a simple process—it meaning less malt will provide the
used to be a duty of housewives on same amount of alcohol in the beer if
the farms here in my country long our efficiency is higher than normal.
ago. The process | and my two brew But, some problems arise when
mates use is a bit more complicated trying to brew using our simple
than the process used in ancient brew tun. The tun is a big pot with a
country houses though. One thing we 29-liter capacity. The pot has a built-in
can do nowadays is mash the malt heating element with a rated power

LJ262-February2016.indd 65 @

Flow
direction
Tube
TR [
il Circulating
pump

Heating

element

Figure 1.
Simplified
Homebrew Tun

Elack

EeagleBone

WWW.LINUXJOURNAL.COM / FEBRUARY 2016 / 65

1/21/16 5:27 PM

FEATURE Temperature Control in a Homebrewing Tun Using a BeagleBone Black

of 1800 W (Figure 1). Helped by a
circulating pump, the mash (fluid)
circulates from the bottom of the tun
to the top overflowing the malt.

Many of our beers have a starting
point between 45°C-55°C. In this
temperature range, we are preparing
the proteins in the malt for the later
process of extracting sugars out of
the malt. The optimal temperature
for the beta and alpha enzymes that
convert starch to sugars is between
63°C-68°C. So after the protein
stop in the 50°C range, we have to
raise the temperature in the mash.
But unfortunately, too much heat will
burn some of the particles floating
in the mash onto the heater in the
bottom of the tun, resulting in a bad
taste and difficulty getting the heat
from the heating element into the
mash. We have determined empirically
that from 59°C-60°C we can apply
full power. To finish the process, the
temperature is raised to 78°C to stop
the enzymes from working.

So, we need a way to control the
amount of power fed into the heating
element. What is more natural than to
use a BeagleBone Black to control the
rate of energy burned in the heater
through a Pulse Width Modulated
(PWM) controller already built in to the
BeagleBone? The PWM will produce
a pulse of varying width, turning a

66 / FEBRUARY 2016 / WWW.LINUXJOURNAL.COM

LJ262-February2016.indd 66

relay on and off in controlled intervals,
thereby controlling the amount of
power fed into the heater. If the relay
is closed for 2 seconds and off for 8
seconds, 2/8 * 1800 W = 450W is fed
into the heater. Well, to be honest, this
problem could be solved using a simple
555 chip and a potentiometer, but
since we are programmers, we tend to
pull out the tools we love, even when
it's overkill.

A side benefit from setting up
a BeagleBone is the ability to log
temperatures during the whole brew
process. This is handy for evaluating
the beer when adjustments to the
recipe, which include the processing,
are discussed. Previously, we noted
temperatures and times on a piece
of paper a few times during the
brew process—when we remembered
to do it. Another benefit is that the
whole thing can be controlled from a
Web page.

System Overview

I"'ve already mentioned the
requirements, and from there, you

can extract that we need a controlling
functionality that will read the
temperature in the mash when it leaves
the bottom of the tun. Based on the
temperature read, it will set the period
time of the output PWM. Also, we
need a database enabling us to log the

1/21/16 5:27 PM

collected data during the brew process. embedded a Websocket server into

Now, a database also could archive the application. This led (after a few
the recipes or at least the part of the iterations) to the software architecture
recipes that is about temperatures diagram shown in Figure 2. Add to
and time. Finally, I also mentioned the architecture diagram a Web client
having a Web page. Data comes from program—for example, Firefox that
the database, but how do we serve loads and executes the JavaScript code
the data to the Web page? Because embedded in the Web page. However,
| also wanted to show the state of the database and Web page are
the controller on the Web page, | beyond the scope of this article; | may
Measures temperature in BI Figure 2. Brew
the circulating worth Controller Software
e I Architecture
by measuring the current

temperature and from that

heater

the database

be set, started and stopped.

and the recipe sets the Reads the recipe fronD1 4 simple timer where time can D1

\

>]BrewController

PowerControIIerl-:::——'Dblf i Eﬂﬂ
_l/ 0

Through the PwWMController

request the power to be applied Applies the power Interfaces to the

according to the current mash step as requested from sqlite database
PowerController

s

|PWMControIIer|

WebSocketSrv <:>——|Iibwebsockets

/

Active object (thread) D]

Handles the connection to
a web client

WWW.LINUXJOURNAL.COM / FEBRUARY 2016 / 67

LJ262-February2016.indd 67 @ 12116 5:27 PM

FEATURE Temperature Control in a Homebrewing Tun Using a BeagleBone Black

cover them in a future article.

| decided to develop in C++, but
| could have used any programming
language. In fact, | did start
developing a prototype in BoneScript,
a dialect of JavaScript that builds
on Node.js, which is programmed in
JavaScript. It worked quite well, but
| was unsure whether | could trust it
to be stable in the long run. | noticed
during my tests that the BoneScript
program had some delays a few
arbitrary times and hiccups | couldn’t
explain. A program, where | know all
details and that is compiled, is by far
the most efficient, and once tested
and debugged, | can trust this one
to run for long time. And, now | also
have several different examples of the
same solution to show my students
and discuss with them.

Preparing for Development
In order to prepare for developing
the software that fulfills the
requirements, a few things needed
to be set up and configured:

Cross compilation.

Remote debugging.

Setting up a temperature sensor.

Setting up the PWM output.

68 / FEBRUARY 2016 / WWW.LINUXJOURNAL.COM

LJ262-February2016.indd 68

A log utility.
Threading.

Cross Compilation: | prefer to
develop using Eclipse when it is a
larger project that runs over some
time. There is no problem when
developing small and quick solutions
directly on the BeagleBone, but when
complexity increases, the help that an
integrated development environment
provides levels out some of the
complexity. Can you install Eclipse
on the BeagleBone? Yes, it should be
possible, but since the storage on the
BeagleBone is Flash-based, | prefer
to run Eclipse on my laptop. A lot of
writing to files can wear out the Flash
memory on the BeagleBone.

The BeagleBone is built using an
ARM CPU architecture, and most
desktops and laptops are Intel CPU
architectures. This means we need
to install a cross compiler on the
laptop. A cross compiler is a compiler
that produces executable code for
another CPU architecture than what it
executes on. In this case, the compiler
executes on an Intel CPU but produces
code for an ARM CPU.

| run Fedora Linux and have been
doing so ever since the Fedora Project
was launched. | couldn’t find a suitable
cross compiler in the repositories

1/21/16 5:27 PM

for Fedora, however. So, after some
searching, eventually | found that
Linaro.org maintains a suitable compiler
suite that | could install. If you're
following along, you should download
a stable release from the repository.
This is the one | downloaded:
http://releases.linaro.org/14.11/
components/toolchain/binaries/
arm-linux-gnueabihf/gcc-linaro-4.9-
2014.11-x86_64_arm-linux-gnueabihf.
tar.xz. There might be fresher copies
by the time you read this. Take a look
at http://releases.linaro.org/14.11/
components/toolchain/binaries,
and be sure to download a gnueabihf
version—the compiler that produces
code for a hard floating-point unit.

| keep my downloaded tools, like
compilers and Eclipses, in the /opt
directory, so | unpacked the tarball in
a directory | named toolchains. In this
directory, you can make a symbolic
link to the very long directory name
you will get out of the tarball. This
makes it easier when configuring
a project in Eclipse. | made a
symbolic link called gnueabihf,
which is far easier to remember than
gcc-linaro-4.9-2014.11-x86_64_arm-
linux-gnueabihf. And if | update
the compiler at a later time, | can
just remove the link and create a
new one pointing to the newer
compiler. I don’'t have to change

LJ262-February2016.indd 69

anything in Eclipse.

In Eclipse, you have to select
the Cross GCC choice in the
toolchain section of the New Project
dialog. In the next dialog, enter
“arm-linux-gnueabihf-" in the Cross
Compiler Prefix entry. If you look
into the directory where you stored
the cross compiler, you will find
that almost all binaries are prefixed
with this. So the gcc is really
arm-linux-gnueabihf-gcc. In the
cross compiler path, enter the
path to where you installed the
cross compiler—for example,
/opt/toolchains/gnueabihf/bin.

Now Eclipse knows how to produce
executables that will run on the BBB.
Remote Debugging: Regardless

of how experienced we are, bugs
tend to creep into our code making
programs not work as expected. So
the ability to debug is mandatory—
well, for me at least, but | also do
have only 30+ years of programming
experience. Luckily, it is possible to
set up Eclipse so you can execute the
freshly compiled program over on the
BeagleBone under debugger control.
Included with the gnueabihf
package is a gdbserver that can
cooperate with Eclipse or, more
precisely, with gdb the debugger.
The gdbserver that comes with
the BeagleBone by default does

WWW.LINUXJOURNAL.COM / FEBRUARY 2016 / 69

1/21/16 5:27 PM

FEATURE Temperature Control in a Homebrewing Tun Using a BeagleBone Black

not cooperate well with Eclipse.
So, you have to copy the gdbserver
to the BeagleBone:

scp /opt/gnueabihf/bin/gdbserver <username>@<your BBB IP>:~/

If you just use the USB-created
network interface, the address is
192.168.7.2. | have set up a Wi-Fi
dongle on my BBB, so my address
is different.

The next task is to configure
Eclipse to perform remote
debugging. Because this is a rather
long procedure, | have collected it on
a page at http://klaus.ede.hih.au.dk/
index.php/BBB_Remote_Debugging. |
made it for my students to follow, so
readers of Linux Journal also should
be able to follow these instructions.

Measuring and Controlling

Now we’re ready to start
programming. My typical practise,
when attacking something | don't
know anything or at least not much
about, is to create small projects
where | isolate the particular

problem | am dealing with. One of
the first things was measuring the
temperature. | had a DS18B20 1-Wire
temperature sensor. The sensor is
embedded in a metal cap, so it is fine
in food production environments.
You easily can find them on eBay or

70 / FEBRUARY 2016 / WWW.LINUXJOURNAL.COM

LJ262-February2016.indd 70

similar sites.

Getting the Temperature: |'ve
never worked with 1-Wire devices
(I just knew they existed), so | had to
do some reading to understand the
device, but it is rather simple. Each
device on the 1-Wire bus has a unique
address. Now for the purpose of this
article and the project, you don’t need
to have a full understanding of the
1-Wire devices, because the Debian
Linux that comes with the BeagleBone
has drivers for 1-Wire devices. So,
there’s no need to develop a device
driver ourselves.

The BeagleBone uses the Flattened
Device Tree (FDT), like many modern
Linux distros for embedded systems
running on an ARM architecture. The
ARM CPU that is on the BeagleBone
has an electronic pin multiplexer (a
kind of switchboard) built in, enabling
you to connect pins from the outside
world to a specific internal device—
for example, GPIO or PWM. The FDT
will help you set this up, and it tells
the kernel which type of interface it
is enabling, so the kernel can use a
suitable driver to service the pin. For
more information on the FDT, see
http://elinux.org/Device_Tree.

Basically, the FDT works by having
a text file with the specification
of the connection you want to
enable. This specification file is

1/21/16 5:27 PM

compiled into binary format. You
may be interested in a generator for
DTS files, because it takes a lot of
research and thought to put together
a DTS. | stumbled upon this site:
http://kilobaser.com/blog/2014-07-28-
beaglebone-black-devicetreeoverlay-
generator#dtogenerator, which
| find helpful in cooperation with
the technical specification of
the BeagleBone (which is at
https://github.com/CircuitCo/
BeagleBone-Black/blob/master/
BBB_SRM.pdf?raw=true).

By looking in the technical
specification in table 13, | could
see that pin 12 on the P9 header
could be connected to a GPIO pin.
After some testing, | managed to
put together a device tree file that
enabled me to connect the DS18B20
to P9 pin 12:

/dts-v1/;

/plugin/;
At
compatible = "ti,beaglebone", "ti,beaglebone-black";

part-number = "DS1820";

version = "QOAQ";
exclusive-use = "P9.12";

fragment@o {

target = <&am33xx_pinmux>;

LJ262-February2016.indd 71

__overlay _ {

ds1820_pins: pinmux_ds1820_pins {

pinctrl-single,pins = <Ox78 0x37>;

fragment@l {
target = <&ocp>;
__overlay _ {

onewire@d {

status = "okay";
compatible = "wl-gpio";
pinctrl-names = "default";
pinctrl-0 = <&ds1820_pins>;

gpios = <&gpio2 28 0>;

iy

Save the specification in a file
called DS18B20-00A0.dts, and
compile it into the binary format
using this command:

root@beaglebone:~# dtc -0 dtb -o /lib/firmware/DS1820-00A0.dtbo

=-h 0 -@ DS1820-00A0.dts

dtc is a Device Tree Compiler. In
the above command, it's instructed to
output in the dtb format (-0) into a
file in the /lib/firmware directory (-o).
The -b sets the boot CPU (here 0) and
the -@ means to use symbols, and

WWW.LINUXJOURNAL.COM / FEBRUARY 2016 / 71

1/21/16 5:27 PM

FEATURE Temperature Control in a Homebrewing Tun Using a BeagleBone Black

finally, the input file is specified.
To enable this part of the device
tree, issue this command:

root@beaglebone:~# echo DS1820 >
= /sys/devices/bone_capemgr.*/slots

If you don’t get any errors, run 1s
-1la in the /sys/bus/w1/devices directory:

root@beaglebone:~# ls -la /sys/bus/wl/devices
total O

drwxr-xr-x 2 root root 0 Jan 1 2000 .
drwxr-xr-x 4 root root @ Jan 1 2000 ..

lrwxrwxrwx 1 root root © Aug 30 17:32 28-000005a7ce64 ->
=../../../devices/wl_bus_master1l/28-000005a7ce64
lrwxrwxrwx 1 root root © Aug 30 17:32 wl _bus_masterl ->

= . /../../devices/wl_bus_masteri

root@beaglebone:/1ib/firmware#

The 28-000005a7ce64 file (a
symbolic link) is the thermometer.
Each 1-Wire device has a unique ID,
so it will be identified by a pattern
like 28-00000nnnnnnn, where
nnnnnnn is the unique address.

A quick test to see if the
DS18B20 is working correctly can
be done by changing the device
address in this Python script to
suit your configuration:

import time
wl="/sys/bus/wl/devices/28-000005a7ce64/wl_slave"

72 / FEBRUARY 2016 / WWW.LINUXJOURNAL.COM

LJ262-February2016.indd 72

while True:

raw = open(wl, "r").read()

print "Temperature is "+str(float(raw.split("t=")
=[-1])/1000)+" degrees"

time.sleep(1)

If you want to have the
DS18B20 enabled at every boot,
prepare a file in /etc/init.d, and
call it enable-DS18B20 or something
similar. Put this into the file:

#! /bin/sh

BEGIN INIT INFO
Provides: enable-DS18B20
Required-Start: $all
Required-Stop: $all
Default-Start: 2 3 4 5
Default-Stop: 0 1 6
Short-Description: Enables the DS18B20 1-wire
=on P9 pin 12
Description: Connecting the 1-wire driver to
=the P9 pin 12
END INIT INFO
case "$1" in
start)
echo "Enabling 1-Wire DS18B20 on P9 Pin 12"

echo DS1820 > /sys/devices/bone_capemgr.9/slots

stop)

#no-op

*)

1/21/16 5:27 PM

#no-op
esac

exit 0

After creating the file, execute:

root@beaglebone:/etc/init.d# chmod 755 enable-DS18B20
root@beaglebone:/etc/init.d# update-rc.d enable-DS18B20

=defaults

Try to reboot your system and check
that the device is enabled as expected.
Setting Up the PWM Controller:
As | mentioned earlier, a way of
controlling the amount of power

m Ed ‘WaveForms (brewController)

Workspace Settings Window Help

Welcome 4+ || B/ Scope 1 £ | Help

File . Control View Window

“ Single b Scan Mode Auto

v | Source Channel 1

45

1

Trigger PC

Figure 3. PWM Signal Output

LJ262-February2016.indd 73

v | Condition

supplied to the heater is to use a
PWM signal to control a relay. If
you turn it on for one-third of the
time and off for two-thirds, the
applied heat is only one-third of the
usual amount of heat when running
switched on all the time. This can
prevent having particles in the brew
burn onto the heater. See Figure 3
for an example PWM signal output.
Here | have set the period time to be
approximately one second and the
“on"” time to be approximately 20%
of the period time.

As for the 1-Wire, you also need
a configuration on the device tree
in order to gain access to the PWM

v o @

Rising v Level 05V v 4

| Time

Position: 0s v

Base: 1 s/div v |
A Channak: =

v Channel 1

Ofiset: -2V v

Range: 0.5 Widiv v

Channel 2

Analog Discovery SM:210244465788 Status: Ok ¥

WWW.LINUXJOURNAL.COM / FEBRUARY 2016 / 73

1/21/16 5:27 PM

FEATURE Temperature Control in a Homebrewing Tun Using a BeagleBone Black

controllers on the board and to /* the pin header uses */
connect it to a suitable pin. If you "p9. 14",
consult the BeagleBone’s technical /* the hardware TP uses */
specification, you will find that "ehrpum1A”;
P9,14 connects to a PWM controller.
So, jump to the on-line device tree fragnent@o {
generator and select P9_14 in the target = <gam33xx_pinmux>;
“Select Pin” box. Then select “Fast __overlay _ {
S|€W” in the "S|eW" bOX, ”PU”Up" bs_pwm_P9_14_0x16: pinmux_bs_pwm_P9_14_0x16 {
in “Pullup/Down”, and finally, in pinctrl-single,pins = <6x048 OX16>;
MuxMode “Mode6: ehrpwm1TA”, and ¥
you will get a device tree file like this: };
}
* Copyright (C) 2013 CircuitCo fragment@1 {
* Copyright (C) 2013 Texas Instruments target = <&ocp>;
* __overlay _ {
* This program is free software; you can redistribute bs_pwm_test_P9_14 {
* it and/or modify it under the terms of the GNU compatible = "pwm_test";
* General Public License version 2 as pwms = <gehrpwml 0 1000000000 1>;
* published by the Free Software Foundation. pwm-names = "PWM_P9_14";
* This is a template-generated file from BoneScript pinctrl-names = "default";
*/ pinctrl-0 = <&bs_pwm_P9_14_0x16>;
/dts-vi/;
/plugin/; enabled = <1>;
duty = <0>;
/{ status = "okay";
compatible = "ti,beaglebone", "ti,beaglebone-black"; };
}
/* identification */ };
part-number = "BS_PWM_P9_14_0x16"; };
/* state the resources this cape uses */ If you want the polarity initially set
exclusive-use = to 0, change the 1 to 0 in the pwms

74 / FEBRUARY 2016 / WWW.LINUXJOURNAL.COM

LJ262-February2016.indd 74 @ 12116 5:27 PM

line so it looks like this:

pwms = <&ehrpwml 0 500000 0>;

Again, you need to compile it from
text format to the binary format
readable by the kernel:

root@beaglebone:~# dtc -0 dtb -o
w/1lib/firmware/bspwm_P9_14_16-00A0.dtho
=»-b 0 -@ bspwm_P9_14_16-00A0.dts

To check that you can create a PWM
device file, execute these commands:

root@beaglebone~# echo "am33xx_pwm" >
= /sys/devices/bone_capemgr.9/slots
root@beaglebone~# echo bspwm_P9_14 16 >
= /sys/devices/bone_capemgr.9/slots

If no errors are shown, take a look
in the device directory:

root@beaglebone:~# 1ls -al

= /sys/devices/ocp.3/bs_pwm_test P9 14.16/
total 0

drwxr-xr-x 3 root root 0 Jan 1 2000 .
drwxr-xr-x 42 root root 0 Jan 1 2000 ..
lrwxrwxrwx 1 root root O Sep 19 11:40 driver ->

= ../../../bus/platform/drivers/pwm_test

-rw-rw-rw- 1 root root 4096 Mar 1 2015 duty
-r--r--r-- 1 root root 4096 Sep 19 11:40 modalias
-rw-rw-rw- 1 root root 4096 Mar 1 2015 period
-rw-rw-rw- 1 root root 4096 Mar 1 2015 polarity

drwxr-xr-x 2 root root 0 Sep 19 11:40 power

LJ262-February2016.indd 75

-rW------- 1 root root 4096 Sep 19 11:40 run
1rwxrwxrwx 1 root root 0 Jan 1 2000 subsystem ->
= . ./../../bus/platform

-rw-r--r-- 1 root root 4096 Jan 1 2000 uevent

The files of interest are “polarity”,
“period” and “duty”. The polarity
controls whether the controller
outputs O or 1 when turned off. The
period, as the name indicates, controls
the period time—that is, for what
length of time is a complete cycle in
the controller. The period time is set in
nanoseconds. Finally, the duty controls
the amount of time that the signal
from the PWM controller is active.

The duty is set in percentages—for
example, for 50%, you would write
0.5 to the duty file.

And as for the temperature sensor,
an automatic start at boot would be
handy, so create this file in /etc/init.d/
enable-pwm with this content:

#! /bin/sh

BEGIN INIT INFO

Provides: enable-pwm

Required-Start: $all

Required-Stop: $all

Default-Start: 2 345

Default-Stop: 0 1 6

Short-Description: Enables the PWM chips and
connects it through the pinmux

Description: Connecting the pwm output through

WWW.LINUXJOURNAL.COM / FEBRUARY 2016 / 75

1/21/16 5:27 PM

FEATURE Temperature Control in a Homebrewing Tun Using a BeagleBone Black

the pinmux and enables the PWM chip on board

END INIT INFO

case "$1" in

start)
echo "Enabling PWM on P9 Pin 14"
grep -q am33xx_pwm /sys/devices/bone_capemgr.9/slots ||
wecho "am33xx_pwm" \
> /sys/devices/bone_capemgr.9/slots

echo bspwm_P9_14_16 > /sys/devices/bone_capemgr.9/slots

stop)

#no-op

*)

#no-op
esac

exit 0

Reboot your BeagleBone and check
that you get the PWM device files
created as shown above.

Now you're ready to develop
a program that will measure the
temperature, and based on a recipe,
calculate the necessary power to apply
to the heater.

A Simple Log Utility: When
developing a program, it's often
necessary to log different values from
the program, especially when you
have several threads running. Nothing
happens at the time you would expect
it to—this is the nature of threading.

76 / FEBRUARY 2016 / WWW.LINUXJOURNAL.COM

LJ262-February2016.indd 76

Therefore, | often print out to the
console or log to a file, which lets me
follow the progress of the program.

In this project, | started printing
to the console but switched to
logging to a logfile. | searched the
Internet and ran across this site:
http://www.infernodevelopment.
com/c-log-file-class-forget-debuggers.

The header looks like this:

#include <fstream>
using namespace std;

class Log

{
public:
Log (const char* filename);
~Log ();
void Write (const char* logline, ...);
private:

ofstream m_stream;

+i
And the implementation is simple:

#include "Log.h"

#include <stdarg.h>

Log::Log (const char* filename)

{

m_stream.open (filename);

1/21/16 5:27 PM

Log::~Log ()

{
m_stream.close ();
}
void Log::Write (const char* logline, ...)
{

va_list argList;

char chuffer[1024];

va_start(argList, logline);

vsnprintf (cbuffer, 1024, logline, argList);
va_end(arglList);

m_stream << cbuffer << endl;

This version allows me to log
using the sprintf conversion
specifiers—for example, %f for
floats. | use it like this:

log->Write("PowerController: INFUSION POWER: \

PWM set to %f\n", maxPwM);

Notice here, that | use %f and pass
a float value, which will be logged
just like (s)printf would convert the
float to a string of digits. This is due
to the varadic declaration of the
Write function.

When you want to see the log
while the program runs, open
another SSH connection to the
BeagleBone and run:

root@beaglebone:~# tail -f <logfilename>

LJ262-February2016.indd 77

where you, of course, need to
change <logfilename> to match
your current log file.

Threading: | know that C++ ISO
standard 2011 (or just C++11) allows
you to create threads in C++ directly,
but prior to that, | needed a way to
make classes (or a function in a class)
into a thread.

| found an example class on
StackOverflow that | have been using
ever since. So why learn something
new, when you know how to do it?
We are all a bit lazy now and then,
aren’t we? Here it is:

#include <pthread.h>

#include <cstdlib>

class Threadable
{
public:
Threadable()
{
_thread = (pthread_t)NULL;
}
virtual ~Threadable()
{/* empty */

}

/** Returns true if the thread was successfully
started, false if there was an error starting
the thread */

bool StartInternalThread()

{

WWW.LINUXJOURNAL.COM / FEBRUARY 2016 / 77

1/21/16 5:27 PM

FEATURE Temperature Control in a Homebrewing Tun Using a BeagleBone Black

return (pthread_create(&_thread, NULL,

=InternalThreadeEntryFunc, this) == 0);

/** Will not return until the internal thread has exited. */
void WaitForInternalThreadToExit()
{

(void) pthread_join(_thread, NULL);

}

pthread_t GetThreadID () { return _thread; }

protected:
/** Implement this method in your subclass with
the code you want your thread to run. */

virtual void InternalThreadEntry() = 0O;

private:
static void * InternalThreadEntryFunc(void * This)
{
((Threadable *) This)->InternalThreadEntry();

return NULL;

pthread_t _thread;

This is a virtual base class that
you can’t create instances of
directly, but you will inherit from
it in @ new sub-class.

So, for instance, my BrewController
class begins like this:

class BrewController: public Threadable

{

78 / FEBRUARY 2016 / WWW.LINUXJOURNAL.COM

LJ262-February2016.indd 78

public:
BrewController ();
virtual ~BrewController ();
void InternalThreadEntry ();

The InternalThreadEntry () is
the thread function for this class. So
you will just have to fill in the code
that composes the thread. The rest of
the methods in the class are helper
functions in one way or another.

Controlling the Heater
In order to control the heater, we
need to measure the temperature in
the mash. Having a representation
of the temperature, it is a matter of
comparing the current temperature
with the desired temperature for the
current step in the recipe. We use a
PID controller to calculate the amount
of power needed, but due to our
experience with particles in the mash
burning onto the heater, it may be
necessary to limit the power. So the
PID controller may call for full power,
but the applied power is limited.
Measuring the Temperature:
The first thing to do in the program
is to locate the thermometer or the
temperature sensor. | want the program
to locate any DS18B20 attached to
the BeagleBone. As mentioned earlier,
the 1-Wire devices all have unique

1/21/16 5:27 PM

addresses. | currently have five or six
DS18B20 thermometers on hand, so
| designed the software so that | can
attach any of my thermometers to
the BeagleBone, and the program will
locate it and start using it.

This code snippet does the trick
(it is from a class | call Thermometer):

int Thermometer::locateThermometer ()

{
string initialDir = "/sys/bus/wl/devices/";
string regExpr = "28-00000";

string dir;

// Open directory
DIR *dp = opendir(initialDir.c_str());
if (!dp)
{
exit (EXIT_FAILURE);

}

struct dirent *dirp;

// Loop through the directory entries
while ((dirp = readdir(dp)) !'= NULL)
{
std::size_t found = \
string(dirp->d_name).find(regExpr);
if (found != std::string::npos)
{
// We found one entry that matches
oneWireDir = initialDir + string(dirp->d_name)\
+ string("/wl_slave");
// Nicely close the directory again

(void) closedir(dp);

LJ262-February2016.indd 79

return 0;

}

exit(EXIT_FAILURE);

oneWireDir is a class variable where
| keep the directory and file from which
| can read the temperature sensor.

The output from a DS18B20 is made
up of different information. Take a
look at the output below:

root@beaglebone:/sys/bus/wl/devices/28-000005a7ce64# cat wl_slave
85 01 4b 46 7f ff Ob 10 5f : crc=5f YES
85 01 4b 46 7f ff Ob 10 5f t=24312

root@beaglebone:/sys/bus/wl/devices/28-000005a7ceb4#

The first line is of no interest to
us. The second line shows that the
temperature tis 24.312°C. From this,
we learn that it is just a matter of
reading the w1_slave file and grabbing
the temperature from the output. | have
designed this function to do the task:

int Thermometer::readTemperature()

{
int fd;

int res;

// Open the OneWire thermometer file

fd = open(oneWireDir.c_str(), O_RDONLY);
if(!fd)

{

WWW.LINUXJOURNAL.COM / FEBRUARY 2016 / 79

1/21/16 5:27 PM

FEATURE Temperature Control in a Homebrewing Tun Using a BeagleBone Black

return -1;
}
char buf[256];
// Read from it
res = read(fd, buf, sizeof(buf));
if (res < 0)
{
close (fd);
return -1,
}
// Retrieve current temperature from device
if (res > 0)
{
std::size_t found = string(buf).rfind('=");
if (found != std::string::npos)
{
curTemp = atof((const char *) \

&buf[found+1]) / 1000;

}
else
{
close(fd);
return -1;
}

}
close (fd);

// Call calc average temperature

return calcAvgTemp();

The file is opened and read, and
because there are two = characters in
the buffer, | perform a reverse search
(from the end of the buffer rather
than from the beginning) in the

80 / FEBRUARY 2016 / WWW.LINUXJOURNAL.COM

LJ262-February2016.indd 80

buffer for =. When the = is located, |
convert the ASCII text to a float using
atof and scale it with 1,000 since
there are no decimal points in the
readout from the sensor.

The next thing to do is to calculate
the average temperature. | keep the
last five samples in an array in order
to calculate an average temperature.
The reason for this is that | occasionally
saw some spurious measurements
where the temperature was a bit off.
The averaging will smooth this out:

int Thermometer::calcAvgTemp()
{
float t = avgTemp - curTemp;
if ((t < -20 || t > 20) && tempSamples.size() > 4)
{
// Skip this measurement - it's way out of range.
log->Write("Skipped this temperature: %f, \
t = %d\n", curTemp, t);
return -1;
}
if (tempSamples.size() > maxSamples)
{
// Get rid of first element
tempSamples.erase(tempSamples.begin());
}
tempSamples.push_back(curTemp);
t =0;
for (int 1 = 0; i < (int)tempSamples.size(); i++)
{

t += tempSamples[i];

1/21/16 5:27 PM

r(t)

Plant /
Process

v(t)_ g

e(t)

»)

u(t)

Ke(t)

Figure 4. PID en updated feedback by TravTigerEE—Own work. Licensed under CC BY-SA 3.0

via Commons.

avgTemp = t / tempSamples.size();

return 0;

maxSamples currently is set to 5. As
you can see, if the vector that holds the
samples is filled, | drop measurements
that are 20°C off the average. If the
vector is not filled, | add the sample to
be included—it is needed when starting
the measurements.

LJ262-February2016.indd 81

From this point, we just need to set
up, somewhere else, a timed job that
calls the readTemperature() function.
| have set it up to read every tenth
second. With a mass of approximately
30kg, it is a relatively slow process.

A PID Controller: What is a PID
controller? It is a proportional-
integral-derivative controller. From
that, you can see that it is a controller

WWW.LINUXJOURNAL.COM / FEBRUARY 2016 / 81

1/21/16 5:27 PM

FEATURE Temperature Control in a Homebrewing Tun Using a BeagleBone Black

that reacts proportionally on the
measured input compared to the

set point (the desired value), and it
accumulates the historic development
of the controlled using an integral
function, and finally, it tries to predict
the future in the derivative part. That
was a big mouthful. Let's take this one
step at a time.

See the diagram of a PID controller
in Figure 4 or expressed as a formula in
Figure 5.

Our “plant” (as shown in Figure 4)
is the brew tun. We measure, like
in this project, a temperature,
and elsewhere, we have a desired
temperature we want to keep for a
while. The difference between the
measured and desired temperature is
called the error—e(t) in the Figure.

The error signal is fed into the
proportional, integral and derivative
part of the controller.

The Proportional Controller: If the
measured temperature is lower than
the desired, we can fire up the heater
to raise the temperature. If it is higher,
we can do nothing in this setup but
wait for it to cool down a little.

The amount of power that we’'ll

de

t
u(t) = Kpe(t) + m[} e(r)dr + Ky

Figure 5. PID Formula

82 / FEBRUARY 2016 / WWW.LINUXJOURNAL.COM

LJ262-February2016.indd 82

apply to the heater is controlled

by the error signal. If the error is
small, a small amount of power is
applied, and if it is large, we apply
more power to the heater. By having
a factor (Kp) to multiply with the
error, we can amplify the error, or if
the factor is below 1, attenuate the
impact of the error. The proportional
part of the PID controller tends to
overreact—that is, the temperature
overshoots the desired temperature
by quite an amount. This is not
desired in a process where we are
seeking to give our enzymes ideal
temperatures to work in. And if
enzymes get too warm, they will
denature—that is, die! The derivative
part will compensate for this to
some degree.

The Integral Controller: The
integral part of the controller sums or
accumulates the error over time. This
part can suppress the proportional
part, but with the cost of being slower
to reach the desired set point.

The Derivative Controller: This
part looks into the future, so to
speak. It compares the previous
measurement with the current one

1/21/16 5:27 PM

in order to predict the future state
of the plant. This results in a quicker
raise to the desired set point, but it
also will back off when nearing the
set point, leaving the fine-tuning to
the P and | parts.

For further details, take a look
at this fine article by Wess Scott:
http://m.eet.com/media/1112634/
f-wescot.pdf, or see this page on
Wikipedia: https://en.wikipedia.org/
wiki/PID_controller.

The PID Code: It's rather easy to

implement a PID controller in software:

// The PID Controller

float processvVal = curTemp;

// The Proportional part
float error = setPoint - processval;

float pTerm = pGain * error;

// The Integral part
iState = iState + error;

float iTerm = iState * iGain;

// The Derivative part
float dTerm = (dState - processval) * dGain;

dState = processval;

// Scaling to fit

float pwr = (pTerm + iTerm + dTerm) / 10;

The factors (Kp, Ki and Kd) that |
currently use are set to:

LJ262-February2016.indd 83

pGain = 5.0; // Kp
iGain = 0.025; // Ki
dGain = 30.0; // Kd

| let the proportional and derivative
parts have quite a large impact, and the
integral part is dampened quite a bit.

So after getting the PID controller
set and working as desired (although
some fine-tuning can be done on the
Kn parameters in order to find the
optimal for my set up), it's time to
turn to the PowerController.

Controlling the Heater: The output
from the Thermometer class is fed
into the PowerController. This class
uses the PID controller to calculate the
amount of power to apply.

As mentioned before, | had to limit
the amount of power applied even
if the PID controller called for more.
The reason is that below 57°C-59°C,
we have determined that if we apply
one-third of the available power, we
will not cause anything to burn onto
the heater. Therefore, | have set some
limits, regardless of how much power
the PID controller calls for.

But hey, what about infusion? Infusion
is the point in time where we add the
malt to the preheated water. It's also
called the strike temperature. The colder
malt mixes with the water and cools it a
little. Therefore, the infusion temperature
can be calculated from the mass of water

WWW.LINUXJOURNAL.COM / FEBRUARY 2016 / 83

1/21/16 5:27 PM

FEATURE Temperature Control in a Homebrewing Tun Using a BeagleBone Black

TMash * (Vwater iE (04 = WMaIt)) _ (04 * WMaIt * TMaIt)

Tstrike —

VWH.I'E’T‘

Tstrike : Strike temperature in Celsius [°C]
Tmash: desired mash temperature in Celsius [°C]

Twmar: The temperature of the malt in Celsius [°C]

Vwater: volume of water in litres [L]
Whale : Weight of malt in kilos [kg]

Figure 6. Strike Temperature Calculation

and malt using the amount of them
both and the temperature of the malt
(Figure 6). So if the desired infusion (or
strike) temperature is 55°C, the amount
of water is 19 liters, and the 7kg of
malt is 14°C, we can calculate that the
water should be preheated to 59.8°C
before adding the malt. After a short
while, it'll find its rest at 55°C.

In order to get ready for brewing as
quickly as possible, we can heat the
water with full power until we add the
malt. So we need to know the different
steps of the mashing process, which
is kept in a database (more about that
later). From that, we get the set point.

| have put the maximum
temperature ranges into a
two-dimensional array of floats:

tempPwrRange[0][0] 57; // Below this temp. use

tempPwrRange[0][1] = 0.333; // this amount of pwr

84 / FEBRUARY 2016 / WWW.LINUXJOURNAL.COM

LJ262-February2016.indd 84

tempPwrRange[1][0] 60; // Below this temp. use

tempPwrRange[1][1] = 0.666; // this amount of pwr

tempPwrRange[2][0] = 102; // Below this temp. use

tempPwrRange[2][1] 1.0; // this amount of pwr

Then, it’'s simple to compare
against the current temperature and
find the maximum amount of power
that may be applied:

// Locate the temperature range to operate within
// Use the current temperature measured to retrieve
// the maxPwr
for (int 1 = 0; 1 < 3; i++)
{

limitTemp = tempPwrRange[i][0];

maxPwr = tempPwrRange[i][1];

if (curTemp > limitTemp)

{

continue;

1/21/16 5:27 PM

After having the PID controller
calculate the desired power, it is left
to the setPwrLvl1 function to find
what can be set according to the
current step in the recipe from where
we have derived the maxPwr:

float PowerController::setPwrLvl (float pwr,

float maxPwr)

// The PwWM operates with a high granularity,

// hence we have to scale the pwr

// Corrects the duty cycle when applied to the PWM
const long long Factor = 999000000;
log->Write("PowerController: maxPwr is set to %f",\

maxPwr) ;

// If the requested pwr is less that ©
// we set it to O
if (pwr < Q)
{
// Set PWM to O
if (pwm.setDutyCycle (0) == 0)
{

log->Write("PowerController: PWM set to O\n");

else

log->Write("PowerController: ERROR: \
PWM not set! (pwr<@)\n");

}

return 0.0;

LJ262-February2016.indd 85

// If we are in the infusion step it is allowed to use max pwr
if (infusion)
{
if (pwm.setDutyCycle (maxPwM) == Q)
{
log->Write("PowerController: INFUSION POWER:\
PWM set to %f\n", maxPwMm);

else

log->Write("PowerController: ERROR: PWM not\
set! value: %f\n", maxPwM);

}

return 1.0;

// If the pwr is less than the maxPwr allowed
// use the requested pwr

if (pwr < maxPwr)

{
// Set PWM to pwr
if (pwm.setDutyCycle (pwr * Factor) == 0)
{
log->Write("PowerController: PWM set to \
%f\n", pwr * Factor);
}
else
{
log->Write("PowerController: ERROR: PWM not \ set!\n");
}
return pwr;
}

// Otherwise use the maximum power, i.e. 100%

else

WWW.LINUXJOURNAL.COM / FEBRUARY 2016 / 85

1/21/16 5:27 PM

FEATURE Temperature Control in a Homebrewing Tun Using a BeagleBone Black

// Set PWM to the maxPwr
if (pwm.setDutyCycle (maxPwr * Factor) == Q)
{

log->Write("PowerController: PWM set to \

%f\b", maxPwr * Factor);
else

log->Write("PowerController: ERROR: PWM not \
set!\n");
}
return maxPwr;

3

return 0.0;

The setDutyCycle function actually
writes to the PWM file that represents
the PWM controller on board:

int PwMController::setDutyCycle(long long duty)
{

string dir;
dir = initialDir + "/duty";

// Open the file representing the PWM controller
int f = open(dir.c_str(), O_WRONLY);
if (f < 0)
{
log->Write("ERROR Opening file %s with this \
error: %s\n",
dir.c_str(),

strerror(errno));

86 / FEBRUARY 2016 / WWW.LINUXJOURNAL.COM

LJ262-February2016.indd 86

return -1;

// Write the requested duty cycle to the file
char str[100];

sprintf(str, "%11ld", duty);

size_t res = write (f, str, strlen(str));

close (f);

// Handle errors
if (res != strlen (str))
{
log->Write("ERROR Opening file %s with this \
error: %s\n",
dir.c_str(),
strerror(errno));
return -1,

}

return 0;

Yes, | know—I am a C hacker (mis-)
using the fine C++ language with file
operations in plain C code. But, so it
is! What comes easiest to the fingers
over the keyboard is what goes in the
code—sometimes | think there may
not be a brain involved at all. But
otherwise, it's straightforward code.

This concludes the measuring of
the temperature and controlling the
power output. In a future article, I'll
look into adding an SQLite database
to the brewController program. In
order to service a Web page, we also

1/21/16 5:27 PM

need a WebSocket server, so | will make it start automatically when the

introduce that as well. BeagleBone is powered.

The database has two purposes: All the code will be open-sourced
storing recipe details for the mash when it has proven to control a few
process and continuous logging of brews this autumn. If you are in a
data produced during a brew. hurry, send me an e-mail and | will

The WebSocket server is the send you the code.
interface to the Web page from
where we can monitor and control Klaus Kolle is currently teaching electronic engineering
the brewing process. So | also will students software development and device driver development
dive into a relatively complex Web in the Linux kernel at Aarhus University. Klaus has been
page with a lot of JavaScript code working and developing on UNIX and Linux since 1988.
to control the graphs and retrieval Klaus loves well brewed beer, especially if it is home-brewed.

of data from the WebSocket server,

which will look up in the database for — IHEIIEEEEAEEEEEEEEEEEEEEEEEEREEEEERREEEEEERENEEERRRLRE R

the correct data to serve. Send comments or feedback via
Finally, I'll write about how to http://www.linuxjournal.com/contact

daemonise the brewController and or to ljeditor@linuxjournal.com.
Resources

You can retrieve a cross compiler for the ARM processor at
http://releases.linaro.org/14.11/components/toolchain/binaries/arm-linux-gnueabihf/
gcc-linaro-4.9-2014.11-x86_64_arm-linux-gnueabihf.tar.xz.

My instructions to set up the remote debugging in Eclipse:
http://klaus.ede.hih.au.dk/index.php/BBB_Remote_Debugging

About the Flattened Device Tree (FDT): http://elinux.org/Device_Tree

A Web page for setting up the Device Tree specification files: http://kilobaser.com/
blog/2014-07-28-beaglebone-black-devicetreeoverlay-generator#dtogenerator

A simple log class: http://www.infernodevelopment.com/c-log-file-class-forget-debuggers

The technical specifications for the BeagleBone Black:

https://github.com/CircuitCo/BeagleBone-Black/blob/master/BBB_SRM.pdf?raw=true

PID without a PhD: http://m.eet.com/media/1112634/f-wescot.pdf

Wikipedia on PID controllers: https://en.wikipedia.org/wiki/PID_controller

LJ262-February2016.indd 87 @

WWW.LINUXJOURNAL.COM / FEBRUARY 2016 / 87

1/21/16 5:27 PM

