
5 4 | december 2009 www.l inux journa l .com

Controlling
the Humidity

with an
Embedded

Linux System
Using an inexpensive embedded Linux board and a few
extra devices, you can control things like room humidity.

Jeffrey Ramsey

C
harles Darwin, in his Beagle Diary that led to
the book Voyage of the Beagle, wrote while
in Peru, “On the hills near Lima, at a height
but little greater, the ground is carpeted with

moss, and beds of beautiful yellow lilies, called
Amancaes. This indicates a very much greater degree
of humidity, than at a corresponding height at

Iquique.” Like Darwin, I always have been conscious
of humidity. For years, I’ve struggled with the humidity
in my music room, as my Carlos Pina concert-grade
classical guitar went out of tune frequently with wild
swings in humidity. Pennsylvania winters are cold and
dry, summers hot and humid, and this plays havoc on
my classical guitar.

Commercially available humidifiers and dehumidifiers have
humidity sensors that are far too coarse for certain applica-
tions. One such application is the humidity control for my
music room. Being an embedded developer for my entire
career, with a particular interest in embedded applications for
Linux, I decided to build my own humidity controller for my
music room. After a bit of research, I settled on a hardware
architecture that includes a Cirrus EP9301 ARM9-based
controller, several solid-state relays and a capacitive humidity/
temperature sensor. Linux was my selection as the embedded
OS, and with several Linux device drivers to control the relays
and monitor the humidity and temperature, the basis of a
humidity controller was born.

I decided to use the humidifying and dehumidifying
capability of my retail humidifier and dehumidifier units. The
humidity controller that I built switches power on and off to
the humidifier and dehumidifier, essentially assuming the role
of the humidity sensor. To finish off the humidity controller, I
added a Web interface that allows me to monitor and control
the system through any network-attached browser, such
as Firefox.

Before I began developing the embedded humidity controller,
I had to decide on the system-level requirements. Even though
this was for personal use only, it’s always good practice to do
a bit of systems engineering on the front end of the design
process. I decided on the following requirements:

■ The humidity control system should control humidity with a
minimum range of plus or minus 3.5% rH.

■ Humidifier and dehumidifier control will be through switching
of 120V AC and neutral power lines.

■ Current humidity and temperature will be displayed through
a browser interface.

■ Configuration of the desired humidity setting will be done
through a browser interface.

■ All humidity and temperature settings will be stored
persistently in an SNMP MIB.

■ All software will operate in an embedded Linux
environment.

Figure 1 shows the overall embedded hardware architec-
ture of the humidity controller. The ARM9-based controller I
selected is the TS-7200 from Technologic Systems. In addition
to the controller board, I used a TS-RELAY8 peripheral board
connected to the TS-7200’s PC/104 bus. The daughter board
contains eight SPDT relays. To house the system, I used a
TS-ENC720 enclosure. Figure 2 shows the main board and
peripheral board mounted on the back plate of the enclosure.

The capacitive humidity/temperature sensor is a Sensirion
SHT11, which is controlled through a two-wire data/clock
interface. The SHT11 control interface connects to two of the
TS-7200’s discrete I/O pins. Switching power on and off is
accomplished with the single pole double throw (SPDT) relays
on the peripheral board. I used a pair of relays for the humidi-
fier and another pair for the dehumidifier. I used a pair as it

www. l inux journa l .com december 2009 | 5 5

Figure 1. Hardware Architecture

Figure 2. Hardware

Figure 3. Software Architecture

seemed much safer to switch both the 120V and neutral lines,
rather than just the 120V.

The TS-7200 single-board computer (SBC) runs Linux on an
ARM9-based processor. The system’s software architecture is
shown in Figure 3. Two Linux drivers are required: one to sense
the humidity (and temperature, which came almost free) and
the second to control the position of the relays. A user-mode
application on top of the drivers periodically polls the humidity
and temperature data, and controls the relay position depending
on SNMP MIB configuration settings. The SNMP MIB is
managed by the Linux snmpd dæmon. The SNMP MIB also
serves as the basic bridge to an Apache custom module that
exposes the MIB data to a Web browser for control and
monitoring of the entire humidity control system. Each
component of the humidity control system is described in
more detail later in this article.

Linux Device Drivers
The two required Linux drivers, which I designed as loadable
modules, are rather basic as far as Linux drivers go. They both
are character devices with ioctl interfaces that provide access
to the SHT11 sensor and control of the power relays. The
SHT11 driver requires only two ioctl functions:

■ SHT1X_IOC_READ_HUMIDITY: read the current SHT11
humidity.

■ SHT1X_IOC_READ_TEMPERATURE: read the current SHT11
temperature.

With both the temperature and humidity, I have the
option of calculating the dew point (even though the system
is indoors, and the last thing I expect is dew to form on the
components). The SHT11 driver reads humidity and temper-
ature using a two-wire interface that is well defined in

the Sensirion SHT11 data sheet. The clock has no real mini-
mum frequency, but has a maximum frequency of 10MHz. I
had no reason to run the clock at the maximum rate. In fact,
the messages required to transfer the temperature and/or

5 6 | december 2009 www.l inux journa l .com

FEATURE Controlling Humidity with an Embedded Linux System

Listing 1. Generate SHT11 Start Transmission Sequence

void writeSHT1xTransmissionStartSequence(void)

{

writeSHT1xOne(DATA_SHT);

writeSHT1xZero(SCK_SHT);

udelay(2);

writeSHT1xOne(SCK_SHT);

udelay(2);

writeSHT1xZero(DATA_SHT);

udelay(2);

writeSHT1xZero(SCK_SHT);

udelay(2);

udelay(2);

udelay(2);

writeSHT1xOne(SCK_SHT);

udelay(2);

writeSHT1xOne(DATA_SHT);

udelay(2);

writeSHT1xZero(SCK_SHT);

udelay(2);

}

Listing 2. Transmit Command Sequence

void writeSHT1xCommand(int iMode)

{

unsigned char ucBitToCheck;

unsigned char ucAckBit;

driveDataLine(DATA_SHT);

/* All 3 address bits always zero

* so start with those */

writeSHT1xZero(DATA_SHT);

udelay(2);

writeSHT1xOne(SCK_SHT);

udelay(2);

writeSHT1xZero(SCK_SHT);

writeSHT1xZero(DATA_SHT);

udelay(2);

writeSHT1xOne(SCK_SHT);

udelay(2);

writeSHT1xZero(SCK_SHT);

writeSHT1xZero(DATA_SHT);

udelay(2);

writeSHT1xOne(SCK_SHT);

udelay(2);

writeSHT1xZero(SCK_SHT);

/* Now transmit the 5 command bits,

* in the order of MSb to LSb */

for (ucBitToCheck=0x10; ucBitToCheck != 0;)

{

if (iMode & ucBitToCheck)

writeSHT1xOne(DATA_SHT);

else

writeSHT1xZero(DATA_SHT);

udelay(2);

writeSHT1xOne(SCK_SHT);

udelay(2);

writeSHT1xZero(SCK_SHT);

ucBitToCheck >>= 1;

}

/* Now tri-state the data DIO so the

* device can ACK the transfer */

tristateDataLine(DATA_SHT);

udelay(2);

writeSHT1xOne(SCK_SHT);

udelay(2);

ucAckBit = readSHT1x(DATA_SHT);

writeSHT1xZero(SCK_SHT);

mdelay(250);

}

humidity data are so short, the clock rate could be anything
within reason, so I decided to run the clock at 250KHz.

Accessing the SHT11 is relatively straightforward. A start
and end sequence for each transfer is achieved using a pre-
scribed combination of data and clock discrete I/O transitions.
For example, in order to request the current humidity or
temperature, a start of transmission sequence is issued
that consists of the sequence of data and clock transitions
as shown in Listing 1.

In Listing 1, note the use of udelay kernel calls. The timing
requirements of the SHT11 two-wire access is satisfied using
delays in the microseconds and, in some cases, milliseconds.
This is most easily achieved using the
kernel udelay call, and when millisecond
delays are required, the mdelay call. I
suppose there are some developers who
shudder at the use of busy loops, but
remember, this is a dedicated, embed-
ded system. It does nothing but read
humidity and check whether relays need
to be switched on or off, and it repeats
this forever.

After the start transmission
sequence, the driver is free to write an
8-bit command sequence that identifies
the operation to the humidity sensor,
such as measure the humidity or tem-
perature. A second procedure actually
transmits the 8-bit command sequence
and is shown in Listing 2.

Listing 2 not only demonstrates the
bit-twiddling necessary to drive a two-
wire interface solely with software, but
it also reveals how the sensor acknowl-
edges receipt of a valid command. The
data DIO must be tri-stated (that is, not
driven to either a 0 or a 1 by the ARM)
in order for this two-wire interface to
permit slave devices, such as the SHT11,
to transmit back to the two-wire inter-
face master—in this case, the SHT11
device driver in the ARM. In addition,
note that the last line of code in the
procedure will cause a 250-millisecond
delay. This is because the SHT11 takes a
good deal of time, relatively speaking,
to measure either the temperature or
humidity. The specification requires 210
milliseconds for the most accurate form
of measurement, with a +–15% toler-
ance. This puts the worst-case delay at
241.5 milliseconds, which I increased to
250 milliseconds, just to be safe.

The third and final required piece of
code necessary to read data from the
SHT11 humidity sensor is shown in
Listing 3. The Read Sensor Data proce-
dure will read 16 bits of data from the
sensor after it has measured either the
humidity or the temperature. The SHT11

has the option of sending an 8-bit CRC at the end of the 16
bits of data, but I opted not to check the CRC, as it is unlikely
the data ever will be corrupted due to environmental effects in
my music room.

The procedures shown in Listings 1, 2 and 3 form the core
of the SHT11 two-wire interface device driver code. When
the driver receives an ioctl requesting the humidity, the three
instructions shown in Listing 4 are all that is needed to read
the current humidity from the sensor.

The second device driver controls the relays and switches
the 120V AC and neutral lines to the humidifier and
dehumidifier. The ioctl interface for the relay driver required

www. l inux journa l .com december 2009 | 5 7

the following ioctl functions:

■ RELAY8_IOC_READ_RELAYS: read the current relay settings.

■ RELAY8_IOC_WRITE_RELAYS: set the relays to the
supplied state.

Reading the relay settings is used to ensure that the
relays are in the desired position. The relay hardware
actually includes eight relays, and all eight relay values are
written in one shot. The data register used to control and
report the relay positions consists of one 8-bit register. This
register either is read to report the current relay settings
or written to change the relay settings. Unlike the SHT11
driver, the relay driver can affect a change in a relay state
with one writeb Linux driver C instruction. Listing 5 shows
the relay read and write procedures, along with an excerpt
from the ioctl processing that differentiates between read
and write. It doesn’t get much simpler than this!

5 8 | december 2009 www.l inux journa l .com

FEATURE Controlling Humidity with an Embedded Linux System

Listing 3. Read Sensor Data

unsigned int readSHT1xData(void)

{

int iLoop;

unsigned int uiBitRead;

unsigned int uiMSB=0;

unsigned int uiLSB=0;

unsigned int uiRetValue;

/* Read MSB from SHT1x */

for (iLoop = 0; iLoop < 8; iLoop++)

{

uiMSB <<= 1;

writeSHT1xOne(SCK_SHT);

uiBitRead = readSHT1x(DATA_SHT);

udelay(2);

writeSHT1xZero(SCK_SHT);

udelay(2);

if (uiBitRead)

uiMSB |= 1;

}

/* Acknowledge sequence; must drive data

* line as it is tri-stated at this point */

driveDataLine(DATA_SHT);

writeSHT1xZero(DATA_SHT);

udelay(2);

writeSHT1xOne(SCK_SHT);

udelay(2);

writeSHT1xZero(SCK_SHT);

tristateDataLine(DATA_SHT);

udelay(2);

/* Read LSB from SHT1x */

for (iLoop = 0; iLoop < 8; iLoop++)

{

uiLSB <<= 1;

writeSHT1xOne(SCK_SHT);

uiBitRead = readSHT1x(DATA_SHT);

udelay(2);

writeSHT1xZero(SCK_SHT);

udelay(2);

if (uiBitRead)

uiLSB |= 1;

}

/* Don't acknowledge last byte so the device

* doesn't transmit the 8-bit CRC as it isn't

* really necessary for this application */

uiRetValue = u8tou16(uiMSB, uiLSB);

return(uiRetValue);

}

Listing 4. Read Humidity Sequence

writeSHT1xTransmissionStartSequence();

writeSHT1xCommand(SHT1x_MEASURE_HUMIDITY);

uiHumidity = readSHT1xData();

Listing 5. Read/Write Relays

unsigned char readRelay8(int iRelay8Address)

{

/* Read Relay8 register and return the value */

return(readb(iRelay8Address));

}

void writeRelay8(int iRelay8Address, unsigned char ucValues)

{

/* Write Relay8 register with the values */

writeb(ucValues, iRelay8Address);

}

// Excerpt from ioctl function:

switch(cmd) {

case RELAY8_IOC_READ_RELAYS:

/* Read Relay8 relay values */

ucRelayValues = readRelay8(relay8_base + RELAY8_CONTROL);

if (copy_to_user((typeof(relay8_relayValues)) arg,

&ucRelayValues,

sizeof(relay8_relayValues))) {

ret = -EFAULT;

}

break;

case RELAY8_IOC_WRITE_RELAYS:

/* Write Relay8 relay values */

writeRelay8(relay8_base + RELAY8_CONTROL,

*(typeof(relay8_relayValues)) arg);

break;

default:

ret = -ENOTTY;

}

User-Mode Application
I wrote a user-mode application that periodically polls the
SHT11 device driver for the current humidity and tempera-
ture using the ioctl SHT1X_IOC_READ_HUMIDITY and
SHT1X_IOC_READ_TEMPERATURE, respectively. Depending
on the desired humidity setting, the application determines
whether the current humidity is either too high or too low,
taking into account the tolerance of plus or minus 3.5%
rH. If an actionable event is determined, the specific relays
are turned either on or off using the relay device driver
RELAY8_IOC_WRITE_RELAYS ioctl function. For example,
when the user-mode application reads the humidity and
determines that the humidifier must be turned on, it issues
an ioctl RELAY8_IOC_WRITE_RELAYS function to switch on
both relays that are dedicated to the 120V A/C and neutral
lines of the humidifier. At the same time, the application
also ensures that the two relays associated with the 120V
A/C and neutral lines of the dehumidifier are switched off.
Relay control can be one of three options: 1) the humidifier
is turned on, and the dehumidifier is turned off; 2) the
dehumidifier is turned on, and the humidifier is turned
off; or 3) both the humidifier and dehumidifier are turned
off. The application never turns both the humidifier and
dehumidifier on at the same time. The application is loaded
at Linux boot time and, like most embedded applications,
runs perpetually.

Along with controlling the humidifier and dehumidifier
relays, the application accumulates and saves statistics. In
this control system, the actual data that is acted upon is
required to be persistent—that is, the humidity data must
be saved somewhere for later use. The user-mode applica-
tion is responsible for saving the data for later use by a
browser, and it does so with the use of the SNMP (Simple
Network Management Protocol) support provided by the
net-snmp Linux package.

SNMP is a standard set of protocols and policies for man-
aging networks and devices. The net-snmp implementation
of SNMP consists of an agent, which runs as a Linux dæmon
snmpd, and a database called a Management Information
Base, or MIB. A MIB is structured as a tree, with branches
grouping together similar items. I extended the standard Linux
MIB that is shipped with the net-snmp package and added a
new branch off of the “enterprises” node, which includes all
the humidity controller items that I need (Figure 4). The snmpd
agent acts on the MIB at the request of SNMP clients—that is,
the agent reads/writes data from/to the MIB on behalf of client
get and set requests. In this architecture, there are two clients:
the user-mode application and the Web browser.

In order to adapt SNMP to any application, a MIB must be
defined in a standard MIB ASN.1 format. I defined a MIB for
my humidity controller and called it HUMIDITYCONTROLLER-MIB,
which gets loaded when the snmpd dæmon runs during the
Linux boot process. The MIB contains data items that are
represented by object identifiers, or OIDs. An example of
an OID definition from my MIB for the humidity controller
targetHumidity variable is shown below:

targetHumidity OBJECT-TYPE

SYNTAX Integer32(0..2147483647)

MAX-ACCESS read-write

STATUS current

DESCRIPTION

"Target humidity."

::= { humidityEntry 3 }

The previous ANS.1 MIB definition phrase generates an OID
with the value .1.3.6.1.4.1.2200.2.3. This rather cryptic-looking
sequence of numbers is a scheme used to identify a leaf in
the MIB tree. The branch that I added to the enterprises
node is identified by the integer 2200. Under the 2200 node
is the node identified by a 2, which contains all of the overall
humidity controller items that the system needs. The leaf
node identified by a 3 is the targetHumidity.

The Linux SNMP package contains a very useful tool
called mib2c. mib2c takes a MIB definition, such as
HUMIDITYCONTROLLER-MIB, and generates C code that can
be used to extend the standard Linux snmpd agent. Several
options exist when generating code with mib2c. I used the
more general option for generating C code from a MIB with
the mib2c.scalar.conf configuration, which causes code to
be generated for general-purpose scalar OIDs, as opposed
to table-based OIDs. The generated C code is used by the
snmpd dæmon. Listing 6 is a distilled example of the gener-
ated C code from mib2c for the targetHumidity OID that
shows the code framework needed to support the SNMP get

www. l inux journa l .com december 2009 | 5 9

Listing 6. mib2c-Generated C Code

netsnmp_register_scalar(

netsnmp_create_handler_registration(

"targetHumidity",

handle_targetHumidity,

targetHumidity_oid,

OID_LENGTH(targetHumidity_oid),

HANDLER_CAN_RWRITE));

int

handle_targetHumidity(netsnmp_mib_handler *handler,

netsnmp_handler_registration *reginfo,

netsnmp_agent_request_info *reqinfo,

netsnmp_request_info *requests)

{

switch (reqinfo->mode) {

case MODE_GET:

break;

case MODE_SET_RESERVE1:

break;

case MODE_SET_COMMIT:

break;

}

return SNMP_ERR_NOERROR;

}

(MODE_GET) and SNMP put (MODE_SET_RESERVE1 and
MODE_SET_COMMIT) operations.

The code shown in Listing 6 makes reference to the
generated callback procedure, handle_targetHumidity, which
is supplied in skeletal form only by mib2c. Not much code is
needed in order to support scalar OIDs, which the humidity
controller uses exclusively. Anytime a specific OID, in this case
the targetHumidity OID .1.3.6.1.4.1.2200.2.3, has an operation
performed, the snmpd dæmon will invoke this callback
procedure with an indication of the requested operation
being performed on the OID.

I rebuilt the snmpd dæmon so that the newly created
humidity controller MIB structure and generated frame-
work code could be supported. Before rebuilding the
snmpd dæmon, the new MIB must be configured into
the build environment. This is accomplished easily with
the following command:

$./configure --with-mib-modules="humidityController"

Once configured, the entire net-snmp package was rebuilt
with the make command. Once the snmpd dæmon was
rebuilt, I tested the new MIB structure by using the net-snmp
command-line interface utilities snmpset and snmpget. For
example, in order to set the targetHumidity OID to 50% rH,
the following command can be issued:

$ snmpset -Ovqe -v 1 -c private localhost targetHumidity.0 i 50

Note the use of relative, symbolic OIDs in the snmpset
command. The actual OID .1.3.6.1.4.1.2200.2.3 could be

used as well, because it’s statically defined and should
never change. But, I prefer symbolic references where pos-
sible, as it helps in readability. The -Ovqe switch controls
the output format that results from the snmpset. Although
I built the net-snmp package to support all three major
versions of SNMP (1, 2 and 3), I really needed only basic
version 1 support, which is why the -v 1 switch appears.
The SNMP community string is indicated by the -c private
switch and appears in set operations because only private
communities are permitted to set OID values (this is a
one-time option when the snmpd dæmon is configured).

The humidity controller MIB can be viewed with a tool
included in net-snmp called mbrowse. mbrowse is a GUI that
bolts onto the system MIB structure and permits manipulation
of specific OIDs. Figure 4 shows a screenshot of mbrowse and
the humidity controller MIB tree branch.

Once the snmpd dæmon was complete with support
for the newly added humidity controller OIDs, I was able to
complete the user-mode application code. Listing 7 con-
tains the complete user-mode application, and it is too
long to print here, but it is available on the LJ FTP site (see
Resources). It is very typical of an embedded application,
as it perpetually reads data and then takes actions on the
data. Note the use of snmpget and snmpset. The net-snmp
package does include APIs for both C and Perl, but I
decided it was simpler to leverage the existing snmpget
and snmpset utilities.

To finish off the humidity controller, I added a Web
page interface that includes a recipe that uses a tad of
HTML, a smattering of JavaScript and a pinch of AJAX

6 0 | december 2009 www.l inux journa l .com

FEATURE Controlling Humidity with an Embedded Linux System

Figure 4. mbrowse Screenshot

To finish off the humidity controller, I added a Web page
interface that includes a recipe that uses a tad of HTML,
a smattering of JavaScript and a pinch of AJAX with
server-side scripting to create an end-user browser interface.

Listing 8. Perl Script setTargetHumidity

use CGI;

$query = new CGI;

$targetH = $query->param('targetH');

$SNMP_SET_CMD = "snmpset -v 1 -c private";

$SNMP_TARGET = "localhost";

$SNMP_TARGETHUM_OID = "targetHumidity .0";

$SNMP_TYPE = "i";

chomp($retVal = `${SNMP_SET_CMD} ${SNMP_TARGET}

➥$SNMP_TARGETHUM_OID $SNMP_TYPE $targetH`);

Figure 5. Humidity Controller and Firefox

with server-side scripting to create an end-user browser
interface. The humidity controller in a Firefox browser
looks like what is shown in Figure 5. The targetHumidity
(targetH) cell in the table has a JavaScript function associ-
ated such that editing is possible, and when a new value is
entered, it is POSTed to Apache. Apache will invoke a Perl
script to set the target humidity in the SNMP MIB. Listing 8
is an excerpt from the Perl code that shows the SNMP
actions. The other cells are read-only and are refreshed
periodically with values from the SNMP MIB with the help
of a second Perl script, humidityController.cgi. This second
Perl script pushes out only the data necessary to generate
the table of values shown in Figure 5.

The humidity controller (Figure 6) has been keeping my
music room within a humidity range that makes my Carlos
Pina classical guitar quite happy (Figure 7). The work
involved to build the system was a real pleasure. But the
best part is sitting down to play the opening arpeggios in
Bach’s Prelude and hearing the notes ring true without

retuning my guitar. It not only makes me smile, but I think
it would make Bach smile as well.■

Jeffrey Ramsey has been an embedded developer his entire career, and when not pouring
through Linux kernel and driver source code, he can be found plucking a guitar. Jeffrey can be
contacted at jeffreyramsey@e2atechnology.com.

www.l inux journa l .com december 2009 | 6 1

Resources

Listing 7 (the Complete User-Mode Application):
ftp.linuxjournal.com/pub/lj/listings/issue188/10534.tgz

TS-7200 Main Board (from Technologic Systems):
www.embeddedarm.com/products/
board-detail.php?product=TS-7200

TS-RELAY8 Daughter Card (from Technologic Systems):
www.embeddedarm.com/products/
board-detail.php?product=TS-RELAY8

TS-ENC720 Enclosure (from Technologic Systems):
www.embeddedarm.com/products/
board-detail.php?product=TS-ENC720

Figure 6. Completed Humidity Controller with Humidifier and
Dehumidifier Connected

Figure 7. Carlos Pina Classical Guitar

