
Diploma Thesis

University of Applied Sciences Augsburg
Department of Computer Science

A framework for menu structured user interfaces on embedded systems

Submitted by Petr Novotnı́k, winter semester 2005/2006

Examiner: Prof. Dr. Hubert Ḧogl
Examiner: Prof. Dr. Nikolaus Klever

Diploma Thesis

University of Applied Sciences Augsburg
Department of Computer Science

I assure that the diploma thesis is my own work and has never been used before for any auditing
purposes. All used sources, additional used information and citations are quoted as such.

Petr Novotńık

A framework for menu structured user interfaces
on embedded systems

Petr Novotńık

Copyright c©2005 Petr Novotńık.
Permission is granted to copy, distribute and/or modify this document under theterms of the GNU
Free Documentation License, Version 1.2 or any later version published bythe Free Software
Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy
of the license is included in the appendix entitled “GNU Free Documentation License”.

Contents

Contents iii

List of Figures ix

List of Listings x

1 Introduction 1

1.1 Original idea . 1

1.2 How to read this document . 2

2 Anatomy of the project 3

2.1 Why another library? . 3

2.2 Legal Issues . 3

2.3 Splitting up . 3

2.3.1 Application . 4

2.3.2 Menu compiler . 4

2.3.3 Menu description language . 5

2.3.4 CMF . 5

2.3.5 Menu interpreter . 6

2.3.6 Simulators . 6

2.4 Working together . 7

2.5 Menu Definition . 8

3 MEXC Documentation 10

3.1 License . 10

iii

CONTENTS CONTENTS

3.2 Introduction . 10

3.3 Display layout . 11

3.4 Surfing around . 13

3.5 Entering a password . 13

3.6 Editing menu lines . 14

3.6.1 Navigating within a line . 14

3.6.2 Number fields . 14

3.6.3 Counter fields . 16

3.6.4 Time fields . 16

3.6.5 Date fields . 17

3.6.6 Switch fields . 17

3.6.7 Option fields . 18

3.6.8 Strings . 18

3.6.9 Triggers . 19

3.7 Programming withmexc . 19

3.7.1 Whatmexcneeds . 19

3.7.1.1 Display accessing . 20

3.7.1.2 Keyboard interface . 22

3.7.1.3 Sleeping . 23

3.7.1.4 String utilities . 23

3.7.2 Memory requirements . 23

3.7.3 Compiling the interpreter . 24

3.7.4 Writing a program . 27

3.7.4.1 Data types . 28

3.7.4.2 mexcinit . 28

3.7.4.3 mexcloop . 29

3.7.4.4 mexcset callbackhandler 29

3.7.4.5 mexcenableline . 30

3.7.4.6 mexcredraw . 30

3.7.4.7 An example . 30

3.8 Simulator . 31

iv

CONTENTS CONTENTS

3.8.1 Compiling it . 32

3.8.2 Using it . 32

4 MLX Documentation 34

4.1 License . 34

4.2 Background . 34

4.3 Bird’s-eye view . 35

4.4 Requirements . 35

4.5 Introduction tomelx . 35

4.5.1 Description element . 36

4.5.2 Menu element . 37

4.5.3 Line-format element . 38

4.5.4 Line components . 38

4.5.4.1 Common attributes . 38

4.5.4.2 Integer . 39

4.5.4.3 Float . 40

4.5.4.4 String . 40

4.5.4.5 Counter . 41

4.5.4.6 Switch . 42

4.5.4.7 Option . 43

4.5.4.8 Time . 43

4.5.4.9 Date . 44

4.5.4.10 Trigger . 45

4.5.4.11 Horizontal fill . 45

4.6 Command line options . 46

4.7 CMF - Compact Menu Format . 48

4.7.1 Notation . 48

4.7.2 Overall structure . 49

4.7.3 prolog . 50

4.7.4 menu-line . 50

4.7.5 line-comp . 52

v

CONTENTS CONTENTS

4.7.5.1 uchar ‘dd’ . 53

4.7.5.2 uchar ‘ddd’ . 54

4.7.5.3 uchar ‘hh’ . 54

4.7.5.4 char ‘sdd’ . 54

4.7.5.5 char ‘sddd’ . 54

4.7.5.6 uint2 ‘DDD’ . 54

4.7.5.7 uint2 ‘DDDD’ . 55

4.7.5.8 uint2 ‘DDDDD’ . 55

4.7.5.9 uint2 ‘HHHH’ . 55

4.7.5.10 int2 ‘SDDD’ . 55

4.7.5.11 int2 ‘SDDDD’ . 56

4.7.5.12 float ‘SII.F’ . 56

4.7.5.13 float ‘SIII.F’ . 56

4.7.5.14 counter . 56

4.7.5.15 fcounter . 57

4.7.5.16 time-long . 57

4.7.5.17 time-short . 58

4.7.5.18 date-long . 58

4.7.5.19 date-short . 58

4.7.5.20 switch . 59

4.7.5.21 option . 59

4.7.5.22 string . 60

4.7.5.23 password . 60

4.7.5.24 trigger . 61

4.8 m2melx.py . 61

4.9 Writing extensions . 61

4.9.1 Extending the language . 62

4.9.2 Writing a byte code generator . 63

4.9.3 Extending the parser . 64

4.9.4 Summary . 65

4.10 melx.dtd . 65

vi

CONTENTS CONTENTS

5 Implementation 69

5.1 The Menu Interpreter . 69

5.1.1 Thecmf Sub-Library . 70

5.1.2 Handling Pascal-style Strings . 72

5.1.3 Utility Functions . 73

5.1.4 The Engine . 74

5.1.4.1 Global Data . 74

5.1.4.2 Initialization . 77

5.1.4.3 Opening Menu Tables . 78

5.1.4.4 Thin Layer overcmf . 79

5.1.4.5 Getting Key Presses . 79

5.1.4.6 Displaying Matters . 80

5.1.4.7 Editing Line Components . 82

5.1.4.8 The Main Loop . 83

5.2 The Menu Compiler . 84

5.2.1 Byte Code Generating Layer . 84

5.2.2 Input Processing Layer . 87

5.2.3 The Controller . 91

6 Conclusion 92

6.1 Summary of Achievements . 92

6.2 Further Development . 92

A Utilized Software 94

A.1 Development environment . 94

A.2 Typesetting and Drawings . 95

B Source code 96

C GNU Free Documentation License 97

1. APPLICABILITY AND DEFINITIONS .. 97

2. VERBATIM COPYING . 99

3. COPYING IN QUANTITY . 99

vii

CONTENTS CONTENTS

4. MODIFICATIONS . 100

5. COMBINING DOCUMENTS . 101

6. COLLECTIONS OF DOCUMENTS . 102

7. AGGREGATION WITH INDEPENDENT WORKS 102

8. TRANSLATION . 102

9. TERMINATION . 103

10. FUTURE REVISIONS OF THIS LICENSE .. 103

ADDENDUM: How to use this License for your documents 103

References 105

Index 107

viii

List of Figures

2.1 Components of amlx/mexcapplication . 7

2.2 Access to values provided by a menu description 8

2.3 Structure of a menu table . 9

3.1 A 16x4 LCD and keyboard design .11

3.2 Display layout [8] . 11

3.3 A display example . 13

3.4 Numeric values on direction keys . 14

3.5 Input string lists and suggested layout for the numeric keyboard 18

3.6 Display arrangement for an example application 22

4.1 Command line parameters ofmlx . 47

4.2 Overall structure of CMF . 49

4.3 Definition ofline-opts in CMF . 51

5.1 Source code dependency ofmexc. 69

5.2 Bitmask of aswitchline component . 74

5.3 Inheritance ofValMelxHandler andNonValMelxHandler 88

ix

List of Listings

3.1 Creating the library . 24

3.2 Compiling the library with customization options 25

3.3 mtypes.h / 28–32 . 28

3.4 mtypes.h / 37 . 28

3.5 Skeleton of an application . 31

3.6 Accessing menu variables in callbacks .31

3.7 Creating the simulator . 32

3.8 Command line arguments of the simulator . 32

4.1 Checking the byte–order mark . 50

4.2 Definition of cmftime t . 57

4.3 Definition of cmfdatet . 58

4.4 Accessing each bit of a switch component .. 59

4.5 Command line options of m2melx . 61

4.6 Definition of a checkbox element . 62

4.7 Extended line–format with checkbox .62

4.8 Extended identid map with checkbox . 63

4.9 Implementation of class LcCheckbox . 63

4.10 Implementation of dostart checkbox method 64

4.11 The Melx Data Type Definition . 65

5.1 Example for accessing a line component .71

5.2 mexc.c / 53–57 (the display context) . 75

5.3 mexc.c / 102–109 (cursor visibility macros) .76

5.4 Example for using cursor visiblity macros . 76

x

LIST OF LISTINGS LIST OF LISTINGS

5.5 mexc.c / 179–181 (initializing cmf sub–library) 77

5.6 mexc.c 188–189 (initializing RAM variables) 77

5.7 mexc.c / 1099–1104 (Opening a new display context) 78

5.8 mexc.c / 1120–1125 (Restoring an old display context) 79

5.9 Possible implementation of getkey loop . 79

5.10 mexc.c 620–638 (Implementation of getkey loop) 80

5.11 mexc.c / 688–702 (determining whether to blink)81

5.12 mexc.c / 709–713 (setting gdo blink) . 82

5.13 mexc.c / 976–977 (setting gupdatedelay) . 82

5.14 mexc.c / 223–227 (Determining timeout value) 83

5.15 Using ByteListEmitter class . 84

5.16 Memory optimization algorithm . 85

5.17 cmf.py / 303 –304 (Generation of variable addresses) 86

5.18 handler.py / 260–264 (Using Python’s introspection tools) 88

5.19 handler.py / 274–280 .90

xi

Chapter 1

Introduction

Embedded systems – systems with a limited amount of resources and special hardware – are be-
coming more and more integrated in our lives. Examples are modern microwave ovens or heating
systems, but also more complicated devices like mobile phones or PDAs. Theseare examples for
devices where software, running on a spartan configuration of hardware, interacts with the user
and takes control over the state of the system.

When we compare such devices, as a user we will notice, that a lot of them talk to us over a
small display, and accept input from devices like a special keyboard ora touchscreen. We may
even have the impression that the way, in which such systems represent data on the screen, is
similar among them. For a programmer, such a similarity in function and design of an application
suggests to write libraries. Libraries can be reused in several programswithout having to struggle
with the implementation details of the provided functionality. This, of course, is a great help for
an application developer.

In the present work, we will introduce a library targeted at providing a framework for developing
user interface applications for embedded systems. This framework, calledmlx/mexc, concentrates
on presenting data to the user in a menu structured way, which is well known from systems run-
ning on mobile phones, for example. Creating programs with this library differs from program-
ming with libraries available for desktop computers, because of the target platform, an embedded
system.

1.1 Original idea

The idea of themlx/mexcframework was born in the late nineties by Hubert Högl. Indeed, there
is already a realization of the framework. It can be found at [http://www.hhoegl.com/mel/mel.
html] and is called “MEL/MEX”. Of course, it is no accident that both projects have similar
names. In fact, the framework introduced in this paper, is just a complete rewrite of Mr. Högl’s
work. Many things have been rethought, changed, and a few added, on the other hand, many
things have been kept the same.

1

1.2. HOW TO READ THIS DOCUMENT CHAPTER 1. INTRODUCTION

It could be interesting to compare both projects with each other and point outin what exactly they
differ, however, asmlx/mexchas been written from scratch and is considered to be the successor
of MEL/MEX, such an analysis is not given here.

1.2 How to read this document

Unlike others, the chapters in this document are not built on top of each other. However, being
new to the subject, it is best to read them in sequence. The following list gives an overview of
chapters considered to be essential for a complete understanding ofmlx/mexc.

• Chapter 2 will be of interest to anybody new to the project. It serves as angeneral introduc-
tion tomlx/mexc.

• Chapter 3 is the official documentation ofmexc, the menu library. It introduces the library’s
related programming details and shows how to usemexc. For programmers who want to
create an application using the library, this chapter will definitely be of interest.

• Chapter 4 covers themlxbyte code compiler, which is used to create the menu specification
for use withmexc. Beside explaining the usage of the program, this chapter also describes
the produced byte code in full length.

• Chapter 5 gives a walk through the source code ofmexcandmlx. Many passages of the
chapter require an advanced knowledge of the C and Python programminglanguage. This
chapter is provided in the hope of giving some information about the implementation to
invite developers to contribute to the project.

The last chapter – chapter 6 – gives a short overview of what has been achieved with this work,
and provides some thoughts about how this project can be extended.

The following typographic conventions are used throughout this paper:

italic Used for the names of parts of the project and to emphasize terms.
typewriter Used for LCD examples, commands and source code.
sans serif Used for external links which are additionally enclosed with brackets.

2

Chapter 2

Anatomy of the project

In this chapter we will define what parts make up themlx/mexcproject and how they cooperate with
each other. Being new tomlx/mexcor MEL/MEX, reading this chapter is strongly recommended.

2.1 Why another library?

Currently, there are many graphical libraries for use on embedded systems. Articles like [1] and
[2] give a good overview of available closed source and Open Sourcesolutions. However, none of
them is intended for use with character based liquid crystal displays (LCD), and many of them are
too large to be used for tiny systems.

mlx/mexcwas designed to be small to fit into memory modules with only a few kilobytes and to
function with both character and graphical based LCDs. As the intent is only to display menus
and interact with the user, it would be wasting to use a full featured graphical library for such a
purpose.

2.2 Legal Issues

The whole project, including this document, is released under different licenses. Intentionally, free
licenses have been used to grant distribution of this project in the sense ofFree Software1.

2.3 Splitting up

As the name itself denotes, this project consists out of two parts. Actually, there are more than
two. Let’s introduce each shortly and finally have a look at how these partswork together.

1For more information on the philosophy of Free Software refer to [http://www.gnu.org/philosophy/].

3

2.3. SPLITTING UP CHAPTER 2. ANATOMY OF THE PROJECT

2.3.1 Application

The term “application” is frequently used in this document. Depending on the context it refers to
different things. Whenever we talk about an application in the sense of code that is to be linked
with mexc, we refer to the code that a programmer has to write, themain routine for example, in
order to create a program withmexc.

2.3.2 Menu compiler

mlx aims to provide a way of describing and creating a menu hierarchy. Thereby, the following
requirements have to be met:

• The description of a menu has to be human readable, so defining the menu hierarchy can be
made with a usual text editor.

• It must be independent of a programming language to allow also non-programmers to spec-
ify a menu.

• It has to be independent of the platform the description is stored at to avoidproblems with
endianness (see [3]).

• It must provide an efficient way of being parsed by a computer program.

• It has to be very compact, especially because it is targeted at systems with only a few kilo-
bytes of memory.

To meet all the requirements at the same time isn’t possible, as some of them are opposite to each
other. Therefore, it has been decided to split the creation of a menu into twosteps. A programmer,
using a text editor, defines the structure of the menu, and then transforms itto a more computer
program friendly format using a special compiler likemlx.

Strictly speaking,mlx isn’t a compiler as those introduced in [4]. However, it behaves and is used
as such, and therefore, we will continue to refer tomlx as a “compiler” throughout this document.

mlx, explained in chapter 4 in full detail, was written entirely in Python [http://www.python.
org], an interpreted, object oriented, and well-documented language available for many operating
systems. The decision for the language had the following backgrounds:

• Python code is interpreted, and thusmlx has to be distributed in source code form. This al-
lows everyone an insight into the program, and contributes to understandingand improving
the final application.

• “Python comes with batteries included!”2 This means that the language ships with a large
quantity of library functions which can be immediately used by Python programmers. Fur-
ther, as the standard library is distributed with the Python interpreter itself, it isensured

2This is a popular slogan for Python and is often accompanied by a funny picture like at [http://www.python.org/
doc/].

4

CHAPTER 2. ANATOMY OF THE PROJECT 2.3. SPLITTING UP

that a program using functions from this library will run also on any other machine having
Python installed.

• Python supports programming of object oriented code in a very clear way.Although object
orientation is available in many languages, Python brings a uniquely clear and elegant no-
tation for OO code. This simplicity has a great impact on the understanding andwriting of
Python code.

2.3.3 Menu description language

The input language to themlx compiler is calledmelx throughout this document and is a subset
of the Extensible Markup Language (XML). The exact structure of amelxdocument is described
in section 4.5 in full detail. It is no accident that XML was chosen as a base.The following
considerations led to the choice of this technology:

• XML has become very popular and is a well known technology. Today, wecan find exam-
ples for use of XML nearly everywhere in the world of computers. Due to the popularity
of XML, programmers already familiar with XML don’t have to learn a completelynew
language to describe a menu hierarchy.

• XML is an easy to understand subject, and is easy to be parsed by computerprograms. There
are only a few rules that define a well-formed XML document. Due to its popularity, there
is a considerable amount of parsers written in various programming languages allowing
programs to move through XML documents without having to implement a lot of code.

• XML is platform independent, and thus it greatly contributes to the portability ofa pro-
gram’s data.

• XML is extensible. With the usage of namespaces it is possible to freely extenda document
without breaking the compatibility to the old format.

More information on XML can be found at the World Wide Web Consortium ([http://www.w3.
org/]) or in XML related literature like [5].

2.3.4 CMF

Surprisingly, the core component of this project is not a program or a module, but the definition
of a data structure. CMF, the “Compact Menu Format”, is a description of a menu hierarchy as a
variable sized data structure for use withmexc. Special attention to the design of this structure has
been paid, as changes to the format have an impact on bothmlx andmexc.

The main factor of influence on the design of CMF, the output of themlx compiler, have been the
last three requirements given in section 2.3.2. Understanding CMF is a big step towards under-
standing themexclibrary, therefore a detailed analysis of CMF is given in section 4.7.

5

2.3. SPLITTING UP CHAPTER 2. ANATOMY OF THE PROJECT

2.3.5 Menu interpreter

The goal of the second part ofmlx/mexc, is to implement a library to ease the creation of interac-
tive applications for embedded systems. The library,mexc, is meant to take the menu description,
display the menu, and handle all the details of interacting with the user. Thus, allowing the de-
veloper to concentrate on the actual algorithm of the program. Thereby,mexcwas designed and
written to meet the following requirements, which mainly have their origin in the fact,that the
target platform is limited in the amount of available memory.

• The library needs to be small.

• It needs to use the stack sparingly.

• It must not rely on system services, such as dynamic memory allocation.

• It must not write to the menu description as that could be stored in a read-only memory area.

• The library must not be dependent on the hardware of the output and input devices.

The core of the library is about the menu, thus the data structure that describes the menu is of
great importance to the implementation ofmexc. Therefore, requirements to the library must also
be considered by the menu data structure and the program which creates it.

To understand the implementation ofmexc, it is important to understand CMF, the structure of the
menu description in binary format, as outputted bymlx. What CMF makes so special, is that beside
describing a menu hierarchy, it also defines memory locations wheremexcor a program will access
and store values associated with the menu. This information releasesmexcfrom requiring dynamic
memory allocation services, and enables an application designer to store the menu description on
a read-only memory module.

Another keystone ofmexcis to be independent on the hardware of the output and input devices
over which the library communicates with the user. Therefore, it has been decided to leave the im-
plementation of hardware dependent routines on the programmer of a concrete embedded system.

2.3.6 Simulators

There are programs, called “simulators”, which link againstmexcand provide a way to test and
debug the library. The reason for the name is that they simulate a character based LCD, thus
no real display module has to be attached to the development system. Currently, there are four
different simulators.

gsim is a GTK+ based program, and is the most elaborate simulator. It can load a menu descrip-
tion from a file and runs on GNU/Linux, MS Windows, and FreeBSD systems.Beside a
virtual keyboard it provides also a so-called “inspector” which allows thedeveloper to view
and edit the current state of a menu on the fly. This application has proven tobe useful for
menu developers to see and test a menu before it actually gets uploaded to thetarget system.

6

CHAPTER 2. ANATOMY OF THE PROJECT 2.4. WORKING TOGETHER

csim is a curses based simulator that can be run within a terminal and does not need a graphical
workstation. It has been tested on GNU/Linux systems only. This simulator is based on the
code of a simulator provided by Hubert Högl for his MEL/MEX project.

dsim is a DOS based simulator, and was written to run and testmexcon an Intel 8088 processor
under the MS DOS operating system. It has been successfully compiled with the OpenWat-
com C/C++ products. More information on these products is given in Appendix A. This is
actually just a proof of concept program.

psim is another simulator which was written to testmexcon an embedded system running the
Palm OS on a Motorola DragonBall VZ processor. This is also just a proofof concept
program.

2.4 Working together

Now that we know what parts make up themlx/mexcproject, let’s look at how these work together.
Figure 2.1 shows the chain of dependency between the individual components when creating a
program using themexclibrary. As the diagram shows,mlx takes amelxdocument as its input and

m exc

s im u la tor / ha rdwa re

a pp lica t ion code

m elx

m lx

CMF

run t im e

de ve lopm e n t

Figure 2.1: Components of amlx/mexcapplication

outputs the binary menu description in CMF format, which in turn is used as the input to themexc
library. mexcis dependent on some application code which provides access to the actualhardware
connected to the system. The application itself is dependent on the library of course. The big
advantage is that the application code is not dependent on the menu description.

The two big bubbles indicate when the individual parts are used. Whilemlx is used purely as a
development tool, the other parts in the “runtime” bubble are located on the target system.

There is a further detail about the way the components are working together. While having stated

7

2.5. MENU DEFINITION CHAPTER 2. ANATOMY OF THE PROJECT

that the application isn’t dependent on a menu description, actually there is adependency on the
values that the menu provides. As figure 2.2 shows, an application wants to access these values
and does so. Alsomexcitself accesses these values. However, both use a different way to get
hold of them. The latter uses the menu description, while the application code is directly provided
with the addresses of the variables. More information on this is provided with an example in
section 3.7.4.7. Even another principle is shown in the diagram. The menu description can be

m exc

a pp lica t ion code

CMF

ROM

va lue s

RAM

Figure 2.2: Access to values provided by a menu description

stored in a read-only memory region (ROM) as it is accessed only in readingmode. The values,
on the other hand, must be located in writable memory (RAM). The base of this memory region
is determined by the application code. The binary menu description only holds offsets within the
provided memory region.

2.5 Menu Definition

Throughout this document we use the terms “menu”, “menu table”, “menu line”, and “line com-
ponent”. Let’s define what these terms address.

Wikipedia, the free encyclopedia, states, “amenuis a list of commands presented to the operator
by a computer or communication system” [6]. A menu, as it is referred to in this document, is
a structure holding lists of commands with relationships between each other. Amenu tablewill
always refer to a single list of commands. With amenu linewe are referencing a single line
displayed in a menu table. A menu line is a container for line components. Aline componentis
the actual entity that is displayed in a menu line. There can be more components ina single menu
line, and optionally they can be edited.

Figure 2.3 shows the structure of a menu table. Such a table, shortened withmt in the diagram,
references menu lines (ml), which reference line components (lc). Thus, a menu table itself is a
tree with a depth of 3. However, menu lines can also reference menu tables,in which case these
are referred to assubmenus. From a general point of view, looking at the menu table level only,
the references between them – references to submenus – span also a tree. This tree is the whole
menu.

8

CHAPTER 2. ANATOMY OF THE PROJECT 2.5. MENU DEFINITION

m l m l

m t

m l

lc lc lc

...

lc

m t

m l ...

lc ...

Figure 2.3: Structure of a menu table

9

Chapter 3

MEXC Documentation

This chapter is a slightly modified version of the official documentation formexc. First it will
explain how the library displays a menu and how the user can interact with it. Then it will give
a detailed description of how line components are rendered and how the user can edit them. The
rest of the chapter concentrates on programming related issues.

3.1 License

The mexclibrary is Free Software provided under the terms of the GNU Lesser General Public
License (LGPL) [7]. The fileCOPYING, that is distributed withmexc, contains a copy of the GNU
LGPL.

3.2 Introduction

mexcis there to display menus, navigate through them, and provide a way to let a user edit prede-
fined input elements. Developers of embedded applications don’t need to write such functionality
over and over again. Together with themlx compiler, which generates the byte code whichmexc
will interpret, all the developer has to do, is to describe the menu and providecustom callback han-
dlers. However, the executor is not a self containing program and the developer needs to provide
mexcwith a few things about the environment to make it work.

Typically, a user interface for an embedded system consists of a LCD anda small keyboard con-
nected to it.mexcwas written for such a configuration and assumes that the display has at least 2
lines. Typical LCDs have sizes of 16x2, 16x4, 20x2, and 20x4.mexccan control such displays,
but other sizes with at least two lines and 14 columns are possible, too. With respect to the key-
board,mexcexpects it to have at least 5 keys. Four of them are interpreted as direction keys and
one as ENTER (TAB).mexccan also interpret ten additional keys with the meaning of numbers
ranging from 0 to 9, and an eleventh POINT key. The design of such a keyboard has been much

10

CHAPTER 3. MEXC DOCUMENTATION 3.3. DISPLAY LAYOUT

in vogue on modern mobile phones for some years. The direction keys, including ENTER, are
often implemented with a small joystick on those devices. Figure 3.1 shows a 16x4display with
the expected keyboard and the additional eleven keys.

lcd: keyboard:
column 1 ... 16 +-------------+-------+

+----------------+ | ˆ | 1 2 3 |
................	row 1			4 5 6
................	.	<- enter ->	7 8 9	
................	.			0 .
................	row 4	v		
+----------------+ +-------------+-------+

Figure 3.1: A 16x4 LCD and keyboard design

The executor does not know anything about the hardware. It doesn’t know what display or key-
board controller is attached to the system, and it doesn’t want to.mexcwas designed to be general
purpose as much as possible. It is entirely written in C and needs to be linked with a predefined
set of functions to make it display things and react to key presses. But more on this later.

First we will explain howmexcactually displays a menu and how it navigates the user through it.
After defining how to enter passwords and edit input fields, thereby introducing each, we will look
at the library from a programmer’s point of view.

3.3 Display layout

mexcuses a fixed layout on the screen. The first line is calledheader lineand displays various
information about the current state of the user interface. The rest of thelines is used to display the
data of the currently opened menu table.

+----------------+
|TTTTTTTTTTTTNLLK| <- Header line
|C..............S| <- Menu line 1
|C..............S| <- Menu line 2
|C..............S| <- Menu line 3
+----------------+

Figure 3.2: Display layout [8]

Figure 3.2 shows how a four line display is used. Comparing the display layouts, there have been
no changes from Mr. Ḧogl’s original MEX. As indicated by the letters, the screen is divided into
various fields:

T This field displays the title of the currently opened menu table. It has no specific length, but it
gets as much columns assigned as possible. That is the width of the LCD minus 4 (for the

11

3.3. DISPLAY LAYOUT CHAPTER 3. MEXC DOCUMENTATION

‘NLLK’ fields). The title is displayed left-aligned and cut if it’s too long to fit into the field
completely.

N This field holds the so-callednavigation characterand tells the user whether the current menu
line is editable or not. Either a colon (‘: ’), when there is at least one editable component,
or an asterisk (‘* ’), in the case of aread-onlymenu line, is displayed.

L The L-field shows the line number of the current menu line.

K The K-field displays either a blank (‘ ’), or a plus sign (‘+’), or an exclamation mark (‘! ’).

• The blank is displayed when all available menu lines of the currently opened menu
table are visible on the screen. On a four line display this would be the case in amenu
table with only 3 or less lines.

• A plus sign says that there are more menu lines than those currently displayedon the
screen. They can be made visible by scrolling the menu table up or down.

• An exclamation mark indicates that there are more menu lines than those on the screen,
but that the cursor is on the last possible line in the current menu table. To see the other
menu lines the user needs to scroll upwards.

C By default, the first column of each menu line is reserved for the cursor. If it’s not empty, it
indicates that the appropriate menu line is currently active.mexccan be configured to use
this column for menu data and draw the current menu line with inverted colors, thus the
C-field is actually optional.

S The last column of each menu line is also reserved. It displays the submenu indicator. Typically,
if there is a submenu it will show a “greater than” sign (‘>’). However, there can be a ‘P’
instead, which has to be interpreted as “there is a password protected submenu”.

... The rest, marked with dots in figure 3.2, is used for displaying menu data. Because of the
reservation of the first and last column, the menu data has fewer space available than a
display may offer.

In the example1 shown in figure 3.3, the title of the currently opened menu table reads ‘Prefer-
ences’. Following the title there is an asterisk which indicates that the currentmenu line is not
editable. The current line is marked with the tilde character (‘˜ ’) in the first column. It’s the 5th
line in the menu table as noted by the number following the asterisk. On the right ofthe 5 there is
an exclamation mark telling us that no more menu lines follow the current line. This means that
the user will have to scroll upwards to see the other menu lines.

The ‘>’s and ‘P’s at the end of the menu lines show that for each there is a submenu. The submenu
from the last line is protected by a password. The user will have to enter it beforemexcwill grant
access to the submenu.

1The original example which was introduced by Mr. Högl originates from the documentation of MEX[8], it was
slightly modified here.

12

CHAPTER 3. MEXC DOCUMENTATION 3.4. SURFING AROUND

+----------------+
|Preferences * 5!|
| Sensors... >|
| Parameter... >|
|˜System... P|
+----------------+

Figure 3.3: A display example

3.4 Surfing around

Using the four direction keys of the keyboard, it is possible to move freely within the menu hi-
erarchy. By pressing UP or DOWN the cursor can be moved to the previous or next menu line
respectively. If the current menu line has a submenu indicator, pressingRIGHT will causemexc
to step into the submenu.mexcwill of course ask for the password, if any, and then open the menu
table only if the input was correct. The LEFT key brings the user back outof a submenu to where
he was before.

With a numerical keyboardmexccan provide a very fast way of moving through a menu. Pressing
a NUMBER key, while not editing a component, causesmexcto jump directly to thenthmenu line
of the currently opened menu table; in this context zero has a value of 10. If the target menu line
has a submenu,mexcwill immediately enter it, optionally a password may be requested. If there
is no submenu but editable components in the target line,mexcwill prepare everything to let the
user change the first editable component. Pressing the POINT key, while not editing a component,
will always drop the user to the first line of the top-level menu table. Because of the limitation
of 10 lines to be directly addressed, the menu programmer should put frequently accessed menu
lines at the beginning of the menu table.

It should be noted thatmexccan return to the top level menu table by itself if the user doesn’t press
any key for a specified number of seconds. This number is specified by the programmer of the
menu and can be up to 255 seconds, which is a little bit more than 4 minutes.

3.5 Entering a password

Whenever the user is required to enter a password,mexcwill open an input field in the header line
of an appropriate length. For a five characters long password, ‘Pwd:..... ’ will be displayed in
the header line, the rest of it cleared, and the cursor, a blinking black box, placed on the first dot.
On any subsequent key press, a dot (‘. ’) is changed into an asterisk (‘*’) and the cursor shifted
by one to the right, thus indicating how many password characters have already been entered. For
passwords being longer than the width of the display the user can still enter the password, but the
cursor will stay at the right edge if it’s already there.

13

3.6. EDITING MENU LINES CHAPTER 3. MEXC DOCUMENTATION

3
1 0 2

4

Figure 3.4: Nu-
meric values on di-
rection keys

While the cursor is in the password input field, the direction keys plus EN-
TER of the attached keyboard get the following meaning. The LEFT key
is mapped to a 1, the RIGHT key to a 2, the UP key to a 3, the DOWN
key to a 4, and the ENTER key to a 0 as shown in figure 3.4. Additionally,
the NUMBER keys from a numerical keyboard can be interpreted, too. The
POINT key gets not interpreted, and pressing it will insert the ‘invalid char-
acter’ into the password buffer. A programmer of a menu should consider
that passwords should consist only of digits. Otherwisemexcwill never
successfully validate it.

When all characters have been correctly entered, then immediately after pressing the last character
the actual action happens. In the other case, when the user entered a bad password, the header line
will flash for a second and the attempt to perform an action is aborted.

3.6 Editing menu lines

Every menu line is built up of so-calledline components. Some of these components can be edited
and provide input elements to a program. In this section we will look at the navigation within a
single menu line and at each component. We will see how the various componentsare displayed,
what values they can hold, and how they are edited.

3.6.1 Navigating within a line

The navigation within a menu line happens via the ENTER key. When the current menu line
doesn’t contain editable components, the N-field in the header line is set to ‘* ’, then pressing
the ENTER key has no effect. On the other hand, when there are editable components, pressing
ENTER causes the so-calledhorizontal cursor, a blinking blackbox, to appear and jump to the
first editable field. Pressing ENTER again will move the cursor to the next editable component
and so on, until the horizotal cursor disappears.

While the cursor is visible,mexcis in the so-callededit state. In this case, the other keys beside
ENTER are specially interpreted and cannot be used to navigate through the menu. How these
keys are interpreted depends on the component being edited.

3.6.2 Number fields

A number field can contain a float, a signed, or an unsigned integer number. This number is
displayed right aligned within a fixed width on a screen. A specification of theavailable number
types currently supported is given in the following list.

|dd-int..........42| This is an unsigned one-byte integer with a value range of 0 .. 99.
There is no sign in front of the number. The component consumes exactly two characters
on the screen even for numbers with only one digit.

14

CHAPTER 3. MEXC DOCUMENTATION 3.6. EDITING MENU LINES

|ddd-int........123| This is an unsigned one-byte integer with a value range of 0 .. 255.
There is no sign in front of the number. The component consumes exactly three characters
on the screen even for numbers with only one or two digits.

|hh-int..........E6| This is an unsigned one-byte integer with a value range of 0 ..
255 (0xFF) displayed in hexadecimal format. There is no sign in front of the number. The
component consumes two characters on the screen. For values less than15 a zero is put in
front of it.

|sdd-int........-42| This is a signed one-byte integer with a value range of -99 .. +99.
The sign is always displayed, however, this can be configured at compilation time. The
component consumes three characters of a menu line.

|sddd-int......-123| This is a signed one-byte integer with a value range of -128 ..
+127. The sign is always displayed, however, this can be configured atcompilation time.
The component consumes four characters of a menu line.

|DDD-int........567| This is an unsigned two-byte integer with a value range of 0 .. 999.
The component consumes three characters of a menu line. The sign is not shown.

|DDDD-int......5243| This is an unsigned two-byte integer with a value range of 0 ..
9999. The component consumes four characters of a menu line. The signis not displayed.

|DDDDD-int....12345| This is an unsigned two-byte integer with a value range of 0 ..
65535. The component consumes five characters of a menu line. The signis not displayed.

|HHHH-int......FDE9| This is an unsigned two-byte integer with a value range of 0 ..
65535 (0xFFFF). The value is displayed in hexadecimal format and consumes four charac-
ters of a menu line with optional leading zeros. The sign is not shown.

|SDDD-int......-576| This is a signed two-byte integer with a value range of -999 ..
+999. The sign is always displayed, however, this can be configured atcompilation time.
The component consumes four characters of a menu line.

|SDDDD-int....-5243| This is a signed two-byte integer with a value range of -9999 ..
+9999. The sign is always displayed, however, this can be configured at compilation time.
The component consumes five characters of a menu line.

|siif-float...+12.4| This is a IEEE 754 float with a value range of -99.9 .. +99.9. Note
that there is always only one fraction digit displayed. The sign is always displayed, however,
this can be configured at compilation time. The component consumes five characters of a
menu line. The float value to be displayed is rounded to one fraction digit accuracy.

|siiif-float.+123.4| This is a IEEE 754 float with a value range of -999.9 .. +999.9.
Note that there is always only one fraction digit shown. The sign is alwaysvisible, but this
is configurable at compilation time. The component consumes six characters of a menu line.
The float value to be displayed is rounded to one fraction digit accuracy.

15

3.6. EDITING MENU LINES CHAPTER 3. MEXC DOCUMENTATION

Editing one of the above specified numbers can be done with all four direction keys. Initially, the
horizontal cursor is placed at the first character of the number. This can be a digit or the sign.
By pressing LEFT or RIGHT the horizontal cursor is shifted in the appropriate direction to the
previous or next character of the number. Editing a float, the cursor jumpsover the decimal point.
When the cursor is on a sign, pressing UP or DOWN toggles the sign either to ‘+’ or to ‘-’. When
the cursor is on a digit, pressing UP or DOWN will in- or decrease the digit’s value. Thereby,
pressing UP on a ‘9’ will change it to ‘0’, and pressing DOWN on a ‘0’ will change it to ‘9’.

Optionally, numbers can be edited using the NUMBER keys. Pressing such akey will input the
appropriate digit at the current cursor position and move the cursor to thenext character. While
editing float values, pressing the POINT key will cause the cursor immediatelyjump behind the
decimal point and set the digits in front of it to zero if the cursor actually wasbefore the decimal
point.

Pressing the ENTER key causes the cursor to leave the component.

3.6.3 Counter fields

A counter field displays either a float or a signed two-byte integer. The number is rendered right-
aligned within a fixed width on the screen. The value range of a counter is limitedby the menu
programmer who defines the range. What counters makes really different from normal numbers is
the way they are edited.

While editing, the horizontal cursor is placed and kept on the last character of the displayed num-
ber. The value of the counter is increased with the UP key and decreasedwith the DOWN key.
By which value the counter is altered is defined in the provided menu byte code.Incrementing or
decrementing outside the specified range is not possible by the user. Pressing LEFT, RIGHT, the
NUMBER keys or the POINT has no effect.

3.6.4 Time fields

A time component can occur in two different formats. The short format hasno ‘seconds’. Editing

|long:.....19:42:03|
|short:.......19:42|

time components is done in two steps for the short format and in
three steps for the long format. Each part of a time component
is edited like an integer counter with special ranges. Initially
the ‘hours’ are edited using the UP and DOWN keys. It can be
in- or decreased in the range of 0 .. 23. Pressing ENTER will
move the horizontal cursor to the ‘minutes’ . Pressing there

UP or DOWN will in- or decrease the minutes in the value range of 0 .. 59. For along time
component pressing ENTER again will move the cursor to the ‘seconds’ which are equally edited
as the ‘minutes’. For a short time component pressing enter while editing the ‘minutes’ will stop
editing the component.

As can be seen in the example, time is displayed in ‘24H’ format. Numbers smaller than 10 are
prefixed with a zero, so each part has exactly two digits.mexcputs colon ‘: ’ between each part of

16

CHAPTER 3. MEXC DOCUMENTATION 3.6. EDITING MENU LINES

the time. Thus, a short time consumes 5 characters, while a long time needs 8 characters.

3.6.5 Date fields

The date field is very similar to the time component. It consists of three parts: year, month, and day.

|long:.....2005-10-17|
|short:......05-10-17|

Each part is an integer counter and each is edited on its
own. Initially, the horizontal cursor is placed on the year
part which can be increased by one with the UP key and de-
creased with the DOWN key. The value range for the year
begins with 0 and ends with 9999 for the long and 99 for the
short date type. After pressing ENTER, the cursor jumps to

the month part which can also be in- and decreased by one. A month counts from 1 up to 12.
Pressing ENTER again moves the cursor to the day part which is edited the same way as the other
parts. The value range for a day starts with 1 and ends with 31. Pressing LEFT, RIGHT, the
NUMBER keys or POINT while editing a date field has no effect.

A date is displayed in the ‘YYYY-MM-DD’ format, optionally with the year part being shortened
to two digits. Thus, this line component takes 10 or 8 characters of a line depending on the format.
mexcuses a dash (‘- ’) to separate the parts of a date. It should be noted thatmexcitself does not
check for invalid dates, e.g. 2005-02-31. It is on the programmer that uses this library to do so.

3.6.6 Switch fields

A switch displays a bit field of lengthn and consumes an equal number of characters in a line. It
representsn bits which can be toggled upon editing. The horizontal cursor is initially placedon the
first bit. Using the UP and DOWN keys, the bit under the cursor can be toggled on or off. Using
the LEFT and RIGHT keys, the cursor can be positioned at the previous and next bit respectively.
Pressing one of the NUMBER keys or the POINT has no effect, except forcing the help string to
be displayed. Here are two examples for switch fields:

|PORT-1: **.*.***|
|Mask: 101011101101|

The characters representing theon or off state can differ from switch to switch. They are not
hardcoded inmexc, but are specified by the programmer of the menu and stored in the byte code
separately for each switch.

There is something special about the switch field. Whenever a key press occurs,mexcwill display
a help string, which is associated with the bit under the cursor, in the headerline. This help string
will disappear after a certain number of seconds. This number is defined by the programmer of
the menu.

17

3.6. EDITING MENU LINES CHAPTER 3. MEXC DOCUMENTATION

3.6.7 Option fields

An option field displays a string from a string list which is defined in the byte code. The string
is rendered right-aligned in a width which is defined by the longest string in thelist. Pressing
the UP or DOWN key will cause the component to browse through the string listand display the
previous or next string. Thereby, the list is treated like a ring. When the first string is displayed,
the previous one is the last in the list. And if the last string is currently displayed, the next one
becomes the list’s first. Pressing LEFT, RIGHT, the NUMBER keys or POINT has no effect.

3.6.8 Strings

Beside displaying constant strings,mexcalso provides a way to let the user edit a string. It should
be noted that the length of a string cannot be altered. All the user may changeare the characters
within the string.

Having only the small 5 key keyboard, changing a character is done the following way. Pressing
UP or DOWN changes the character at the current cursor position. With LEFT and RIGHT the
cursor can be shifted by one character into the appropriate direction. Pressing ENTER will leave
the component and stop editing the string.

+------+-----+------+
0 -> .,?!’"0-()@/:_ | ‘1’ | ‘2’ | ‘3’ |
1 -> 1 | _1 | ABC | DEF |
2 -> ABC2abc +------+-----+------+
3 -> DEF3def | ‘4’ | ‘5’ | ‘6’ |
4 -> GHI4ghi | GHI | JKL | MNO |
5 -> JKL5jkl +------+-----+------+
6 -> MNO6mno | ‘7’ | ‘8’ | ‘9’ |
7 -> PQRS7pqrs | PQRS | TUV | WXYZ |
8 -> TUV8tuv +------+-----+------+
9 -> WXYZ9wxyz | ‘0’ | | ‘.’ |
. -> .+[]{}<>=*$ | .,? | | .+[|

+------+ +------+

Figure 3.5: Input string lists and suggested layout for the numeric keyboard

Having the additional numeric keyboard available, editing a string is much more comfortable.
mexctries to imitate the way strings are entered on mobile phones. Each key on the numeric
keyboard has an associated list of characters which can be browsed through by repeatedly pressing
the same key in a small period of time. At the current cursor position, the stringis assigned the
currently selected character. Waiting for a short while or pressing another key will make the cursor
jump to the next position. This way a skilled user can insert a new text in a fastway with only
one finger. To help the user learning the keyboard layout,mexcwill display the current character
list in the header line. While repeatedly pressing a key, and thus choosing the next character, the
displayed help string in the header line will rotate, so the currently selected character is always at

18

CHAPTER 3. MEXC DOCUMENTATION 3.7. PROGRAMMING WITHMEXC

the beginning.

Figure 3.5 shows what character lists are assigned to each key from the numerical keyboard. The
grid sketch on the right is a suggestion for a layout of the numerical keyboard with possible labels.

3.6.9 Triggers

A trigger is nothing more than a “soft-button” on the screen. To activate the button the user needs
to press any key except ENTER. Pressing ENTER will leave this component and will not activate
the soft-button. Triggers occur in two manners, normal and password protected. When entering
the edit state, the horizontal cursor is placed at the ‘X’ or ‘ P’.

|Reset System Values: [X]| <-- normal trigger
|Reboot Whole System: [P]| <-- password protected trigger

As shown in the example, password protected triggers are displayed as a ‘[P] ’. Activating them
requires the user to enter a correct password before the action is carried out. How to enter a
password is described in section 3.5.

3.7 Programming with mexc

This part of the documentation is directed to programmers who want to usemexcfor their own
applications. Firstly, we will take a look at what has to be done to get the library working properly.
Then we will explain the compilation and configuration details. After introducingthe public API,
we will finally have a look at how a simple program that usesmexccan be written.

3.7.1 Whatmexc needs

When usingmexc, the first thing to understand is what the library needs to be provided. As ithas
been concepted to work with many kinds of hardware, the developer implementing a program for
a specific system has to write a set of hardware dependent routines which mexcwill use. Providing
the library with such routines, the programmer has great power at hand to customize the look and
feel of the final application. The functions can be split into four categories: display accessing, key
press fetching, waiting and C string utilities.

mlcd * mexcrequires routines that start with the prefix “mlcd ” and provide access to the con-
nected display. They provide functionality for writing a string at a specifiedposition, clear-
ing parts of the display, controlling visiblity and position of the cursor and tellingmexc, how
many lines and columns of the display it may use.

mfpkey get This routine providesmexcwith an inteface to the attached keyboard. The keyboard
is completely unknown to the library and can be some virtual buttons on a touchscreen, for

19

3.7. PROGRAMMING WITHMEXC CHAPTER 3. MEXC DOCUMENTATION

example. All the details of the hardware are hidden to the library in the implementation of
this function.

msleep In many situations,mexcneeds to wait for a little time. To be sure this is done efficiently
and accurately the library relies on the programmer to implement a sleeping routinepossibly
using hardware dependent features.

str* There are two string utility functions, namelystrcpy andstrlen , which mexcuses to
deal with C style strings. The implementation of them is trivial and they are not hardware
dependent at all, but there are optimizations that we should consider.

Of course,mexcneeds to be fed with the menu byte code it should interpret, but we will look at
this later. Now let’s dive into the details of the required functions.

3.7.1.1 Display accessing

Having the source code ofmexcat hand, a glance into the file calledmlcd.h will reveal what
display accessing routinesmexcexactly needs. Let’s look at each and define what effects they are
expected to perform.

void mlcd_cu_off (void)
Calling this routine should immediatelly hide the horizontal (LCD) cursor – it is often a
blinking blackbox when visible. Upon entering the main loop,mexchides the cursor and
shows it only when the user is about to edit a component.

void mlcd_cu_on (void)
This routine should make the horizontal cursor visible again. It is the counterpart to the
previous function.

void mlcd_cu_gotoxy (unsigned char x, unsigned char y)
While the previous functions control the visibility of the cursor, this routine controls the
cursor’s position. Thex andy parameters specify the column and the line the cursor should
be positioned at.

void mlcd_clrchr (unsigned char n)
This routine is expected to clearn columns to the right starting at the current cursor position.
Actually, mexccould implement this by writingn space characters, however, a hardware
dependent implementation of this routine can be much more efficient. This routinemay or
may not change the current cursor position,mexcdoesn’t require a specific behaviour.

void mlcd_clrln (unsigned char n)
This routine should clear a whole line on the display. The line is indexed byn – zero is
assumed to be the index of the first line. As with the previous function, also thisone may or
may not change the current cursor position.

20

CHAPTER 3. MEXC DOCUMENTATION 3.7. PROGRAMMING WITHMEXC

unsigned char get_mlcd_lines (void)
This routine is called uponmexc’s initialization and supposed to return the number of lines
the library will use. An example given below will explain this in more detail.

unsigned char get_mlcd_cols (void)
This is the counterpart to the previous routine and should return the numberof columns
mexcwill use on the display. An example given below will explain this in more detail.

void mlcd_wrstrxy (unsigned char x, unsigned char y, char * s tr)
mexcuses this function to print zero terminated strings on the display.x andy specify where
on the display the string should be printed. The cursor is expected to be leftbehind the writ-
ten string.

void mlcd_wrstrxymax (unsigned char x, unsigned char y,
char *str, unsigned char n)

This function is similar to the previous one, but the passed string doesn’t need to be zero
terminated necessarily. It should print at mostn characters but respect a zero terminator, if
there is one. The function is expected to leave the cursor behind the written string.

void mlcd_wrchrxy (unsigned char x, unsigned char y,
unsigned char c)

This function is used bymexcto put a single character on the display at the specified posi-
tion. It is expected to leave the cursor behind the written character.

void mlcd_invertln (unsigned char n)
The “invert-line” function is actually optional and, when available, used bymexcto highlight
the currently selected menu line. All the routine is expected to do, is to redraw the specified
line with inverted colors. When the same line is inverted twice, it should display normally.
Inverting is meant to be temporarily only. Whenevermexcwrites to an inverted line the new
characters are expected to be displayed normally, not inverted.

Being able to use this function,mexcwon’t reserve the first column for the current line in-
dicator as described in section 3.3. Thus, there is one more column for the menu data. As
mentioned, this routine is optional and the programmer must decide whether to implement
it or not. Mainly, this decision depends on the display being used and its capabilities. The li-
brary needs to be compiled with theCONFIGENABLEINVERTLNpreprocessor definition
to make it use the function.

mexcensures that all printed strings fit within the rectangle defined byget mlcd lines and
get mlcd cols . This rectangle can be smaller than the actual screen. Due to the fact that the
cursor positioning happens completely via themlcd_* functions, the application programmer has
the possibility to position the display rectangle occupied bymexcanywhere on the screen.

Of course the library can occupy the whole screen, but let’s discuss thefollowing more compli-
cated scenario. Let’s say we have a 40x20 display, but we wantmexcto use only a 20x5 area in
the right corner at the bottom as shown in figure 3.6. To makemexcaddress the proper screen area
all we need to do, is to provide a suitable implementation of themlcd_* functions.

21

3.7. PROGRAMMING WITHMEXC CHAPTER 3. MEXC DOCUMENTATION

get mlcd lines andget mlcd cols will simply return the constants 5 and 20 respectively.
The other routines, which position the cursor, need to add a constant offset to the passed coordi-
nates before moving the cursor. In our scenario they will simply add 15 to each y argument and
20 to eachx argument.

There is one more thing that should be pointed at. As mentioned, the output routines are assumed
to leave the cursor behind the written character or string. Whenmexcwrites a string which ends
exactly on the last column of the screen area assigned to the library, there isthe question “What to
do with the cursor?”. In this situation,mexcdoesn’t require any specific behaviour and it is on the
implementation of themlcd_* routines to put the cursor somewhere.

3.7.1.2 Keyboard interface

To get access to the keyboardmexcuses only one function. This routine is declared in the file
mfpkey.h as follows.

unsigned char mfpkey_get (void);

The advantage of using this routine is thatmexcitself has no idea about the keyboard hardware.
It could be even a small joystick attached to the system. This routine is responsible to fetch a key
press and supplymexcwith a constant defined in the same header file as the function’s declaration.
The important thing to note here is, thatmfpkey get is called by the library whenever it needs
a key press to interpret, but there is no way into the other direction. The codecannot send any
key press event to the library. Fortunately,mexccalls this function quite often. So with a small
keyboard buffer no key press should get lost.

mfpkey get is expected not to block the library by waiting for a key press. If there is nothing
to servemexcwith, it should immediatelly return withMFPKEYNONE. The library will idle for a
short while and try again.mexcmay perform a specific action upon idling for a defined interval,
therefore it is important not to block it.

The header file defines quite a few constants. These are understood bymexcand have to be re-
turned bymfpkey get . The first six defintions are required to let the user interact with the menu.

40
+----------------------+
| screen |
| |
| |

20 | 20 |
| +----------+
| 5 | mexc |
+-----------+----------+

Figure 3.6: Display arrangement for an example application

22

CHAPTER 3. MEXC DOCUMENTATION 3.7. PROGRAMMING WITHMEXC

ServingMFPKEYNUMPAD* definitions is optional. They allow the user to navigate through a
menu more quickly and edit a component with more comfort, but they are not necessary. When the
user isn’t editing a component and the library gets theMFPKEYQUIT MEXCLOOPdefinition, it
will jump out of its main loop (mexc loop) and return to the caller.

3.7.1.3 Sleeping

Beside the already discussed routines one more needs to be linked with the library. This function
will allow mexcto put itself into sleep mode for a specified number of milliseconds.

void msleep (unsigned short msec);

A simple implementation would just loop until the time is over. On systems which already provide
a task sleeping service the code could call such a system function. A clever but more complicated
code could perform some background task whilemexcis idling. It could for example look whether
a key press occured and put it into a keyboard buffer queue.

3.7.1.4 String utilities

Further on,mexcuses the two routinesstrcpy andstrlen which are not included in the library.
These are often included in the development environment libraries or evenincluded as built-ins by
the compiler.

For example,gcc , when not passed the--no-builtin option, replaces calls tostrlen on
constant strings with the actual length of the strings at compilation time. This results in an opti-
mazation of speed and code size. If this function is used only in conjunction with constant strings,
this case is true formexc, then there will be no call tostrlen at runtime and the function’s code
needs not to be linked to the library.

However, if the development environment doesn’t bring the two functionsone needs to implement
and link them to the library.

3.7.2 Memory requirements

Using thesize program, we can examine the size of themexclibrary. However, this size is greatly
dependent on the utilized compiler, the optimization options of it and the use of preprocessor
definitions being discussed in section 3.7.3. Using the GNU C compiler, the size of mexcfor a
32-bit Intel platform should vary between 10KB2 and 20KB3 with assert s disabled.

2The exact compilation command to produce the result was:
gcc -Os -fomit-frame-pointer -DHAVE STRING H -DCONFIGDISABLE FLOAT -c *.c

3The exact compilation command to produce the result was:
gcc -DHAVE STRING H -DCONFIGNUMPADKEYBOARD -c *.c

23

3.7. PROGRAMMING WITHMEXC CHAPTER 3. MEXC DOCUMENTATION

The other question is, how much stackmexcneeds. The required stack size is dependent on the
target architecture, the used compiler, and its optimization options. Further on, the required stack
size also depends on the number of columnsmexcwill use on the screen and the depth of the menu
structure itself, too. Using the GNU debugger, tests withmexcon a 32-bit Intel platform with a 20
columns display and a menu structure of depth 3 have shown, that the libraryneeds around 550
bytes of stack.

It also needs to be considered, that the binary menu description needs some space, too. To quickly
find out how much memory a concrete menu consumes, the--binary option of themlxcompiler
can be used. It will produce the menu as a binary file which size can be easily determined by
system services.

3.7.3 Compiling the interpreter

mexcis known to compile smoothly with GCC4 and was successfully tested on Intel architectures
as well as on a Motorola DragonBall VZ processor. Using the OpenWatcomC/C++ compiler
tools5, mexcwas successfully run on the Intel 8088 processor. There are a couple of things that
can be configured at compilation time and we will look at them in this section.

The providedMakefile can be used to buildmexc. The following listing shows how the library
can be built by hand.

˜mexc% ls *.c
cmf.c mexc.c mutils.c pstring.c
˜mexc% gcc -c *.c
˜mexc% ls *.o
cmf.o mexc.o mutils.o pstring.o
˜mexc% ar rcs libmexc.a *.o
˜mexc% ls libmexc.a
libmexc.a

Listing 3.1: Creating the library

Of course, optimization options can be passed togcc or the compiler of choice. For example,
using thegcc options-fomit-frame-pointer and -Os at the same time, it is known to
reduce the needed stack size ofmexcby almost a half on modern desktop computers.

There are various preprocessor definitions that configure the library’s behaviour. They don’t have
any substitution value and can be defined on the command line usinggcc ’s -D option. In the
following list we will introduce each and also explain the effects.

HAVE_ASSERT_HThe source code formexcis studded with calls toassert to quickly find
bugs during development. The function itself is declared in the system header file assert.h .
However, some development environments don’t provide such a headerfile, thus causing

4The official web page for the GCC project can be found at [http://gcc.gnu.org/].
5The official web presentation of Open Watcom can be found at [http://www.openwatcom.org/].

24

CHAPTER 3. MEXC DOCUMENTATION 3.7. PROGRAMMING WITHMEXC

problems at compilation time. Therefore, whenHAVE_ASSERT_His not defined at compi-
lation time, the header file is not included by the code and all calls to theassert function
get removed on the fly. Actually, they get substituted with nothing by the preprocessor.

HAVE_STRING_Hmexcuses two functions of the standard C library:strcpy andstrlen .
They are declared through the system header filestring.h . On some systems this file may
not be available, and therefore including this file is protected with theHAVE_STRING_H
definition. Only if it is defined at compilation time the code will include the system header.
However, not defining it doesn’t prohibitmexcfrom using the two string functions. In this
case, the programmer needs to provide and link them tomexc.

CONFIG_NUMPAD_KEYBOARDAs already mentioned in the introduction,mexcis capable of
interpreting an additional numerical keyboard. If such a keyboard is not available on the
target system, the code responsible for handling those key presses canbe disabled at com-
pilation time. This results in a smaller size of the library.

CONFIG_ENABLE_MLCD_INVERLNSee description ofmlcd invertln in section 3.7.1.1.

CONFIG_DISABLE_FLOATDefining this flag at compilation time will disable all code dealing
with the float data type. This flag comes from a test on an Intel 8088 processor. If the
target platform doesn’t support floating-point operations this flag should be defined. Of
course it will reduce the size of the library at the cost of not being able to deal with float
numbers.

To compilemexcwith support for the numerical keyboard but not for floats the following command
line would be used:

˜mexc% gcc -c -DHAVE_STRING_H -DCONFIG_NUMPAD_KEYBOARD \
-DCONFIG_DISABLE_FLOAT *.c

Listing 3.2: Compiling the library with customization options

While the definitions shown above control whether some features will be included or excluded
from the code, the following definitions provide customization of features included in it. These
are defined in the filemconfig.h and must not be removed, but can be changed to reflect the
requirements.

MEXC_MAX_LINE_LENis used only whenmexcis *not* compiled withgcc . The GNU C
compiler has a very nice feature called “Arrays of Variable Length” whichenables the library
to allocate such arrays on the stack. When this feature is not available, the code must assume
a fixed length for its buffers. It is important thatMEXC_MAX_LINE_LENis equal to or
greater than the value returned byget mlcd cols , otherwise buffer overflows will make
the code run incorrectly, and possibly cause endless loops.

MEXC_MAX_PWD_LENhas the same background as the previous option and is used only when
compiling *not* with gcc . It defines the length of the password buffer and must not be
smaller than the longest password in the menu definition to avoid buffer overflows.

25

3.7. PROGRAMMING WITHMEXC CHAPTER 3. MEXC DOCUMENTATION

MEXC_MAX_DISP_CONTEXT_DEPTH’s value is important not to be smaller than the maxi-
mum depth of the menu hierarchy. When entering a submenu,mexcstores the current
display context in a table and increases the current context level. When returning from the
submenu, the library restores the last display context and decreases thelevel. The value of
MEXC_MAX_DISP_CONTEXT_DEPTHgives the number of possible entries in the context
table. One entry stores three pointers, so on a 32-bit platform an entry willtake up 12 bytes.

If this value is too small,mexcwill display the error message “err: menu too deep” and
refuse to enter the submenu when the user reaches the table space limit.

MEXC_LC_PASSWORD_STRINGdefines the string to be displayed as a password protected trig-
ger line component. The length of the string should be non-even asmexctries to position
the horizontal cursor upon activating the component into the mid of the displayed label.

MEXC_LC_TRIGGER_STRINGhas the same meaning as the previous item with the exception
that it is displayed for normal triggers – triggers that are not password protected.

With MEXC_FORCE_SIGN_ON_SIGNED_NUMBERSbeing defined as non-zero,mexcwill al-
ways display a sign on signed numbers. Thus a posivite signed number is preceeded with a
plus (+). This behaviour can be turned off by specifying a zero.

MEXC_FIRST_PRINTABLE_CHARandMEXC_LAST_PRINTABLE_CHARdefine an interval
in the character code table. Characters in this interval, including both ends,can be entered
when editing a string with the UP and DOWN keys.

MEXC_BLINK_INTERVALdefines the number of seconds after which a blinkable component
should be erased on the screen and after the same interval redrawn again, thus, letting the
component visually blink.

MEXC_ASK_PWD_PROMPTis the string thatmexcwill display as a prompt in front of the pass-
word input field. See section 3.5.

MEXC_FLASH_DELAYis the number in milliseconds a flash will last. Sometimes the user
presses a key which is not suitable in the current situation.mexcwarns the user about it
with a short flash in the header line.

MEXC_GET_KEY_DELAY; As described in section 3.7.1.2,mexccalls mfpkey get to fetch
a key press. However, when there is nothing,MFPKEYNONEgets returned andmexcwill
sleep forMEXCGETKEY DELAYmilliseconds before trying to fetch again. The smaller
the value of the definition the quickermexcwill response to key presses. The current imple-
mentation ofmexcrestricts the value not to be smaller than 4.

MEXC_SHOW_ERRMSG_DELAYis another interval in milliseconds. It defines how long an error
message will be displayed.

MEXC_BLACK_BOX_CHARshould be the character code of a black box character. It is used to
produce the flash in the header line. If no such character is available anyother can be used,
too.

26

CHAPTER 3. MEXC DOCUMENTATION 3.7. PROGRAMMING WITHMEXC

MEXC_CUR_LINE_INDICATOR_CHARis used only ifCONFIG_ENABLE_MLCD_INVERLN
is *not* defined. It defines the cursor character displayed in the first column of a menu line
as described in section 3.3.

MEXC_SUBMENU_INDICATOR_CHARdefines the character to be displayed at the right border
of a menu line if there is a submenu.

MEXC_SUBMENU_PWD_INDICATOR_CHARdefines the character to be displayed at the right
border of a menu line if there is a password protected submenu.

MEXC_LAST_LINE_INDICATOR_CHARdefines the character to be displayed in the K-field
as described in section 3.3 when the cursor is on the last line of a menu table.

MEXC_MORE_LINES_INDICATOR_CHARdefines the character to be displayed in the K-field
as described in section 3.3 when there are more lines in the menu table than visiblein the
screen area.

MEXC_MLINE_EDITABLE_CHARdefines the character to be displayed in the N-field when the
current menu line contains editable components.

MEXC_MLINE_READ_ONLY_CHARdefines the caracter to be displayed in the N-field when the
current menu line has no editable component.

MEXC_TIME_SEPARATOR_CHARis the character to be put between the hours, minutes, and
the seconds of a time component.

MEXC_DATE_SEPARATOR_CHARis the character to be put between the year, month, and the
day of a date component.

MEXC_FILLER_CHARis the character to be put where something is missing. It should be the
blank character to interact smoothly with themlcd clrchr function.

MEXC_PASSWORD_CHARdefines the character that should be echoed when entering a password.

Creating different applications for different platforms will probably require to configure the library
for each platform and application. Because of this and the fact that thereis quite a lot to be
configured there is no complete building and installation system.

3.7.4 Writing a program

From a programmer’s point of view, usingmexcis quite simple. However, there are several steps
that need to be done.

• First of all themexcinterpreter needs to be compiled and possibly customized. This is
discussed in section 3.7.3.

27

3.7. PROGRAMMING WITHMEXC CHAPTER 3. MEXC DOCUMENTATION

• As mexcis expected to be linked with a predefined set of functions, the second stepis to
create these routines.

• Next, the binary menu image whichmexcwill interpret is needed. For this step themlx
compiler has been written.

• Finally, everything is prepared to write a complete program.

We will now give an overview of themexcAPI and look at an example a little bit later.

3.7.4.1 Data types

The API is exported through the header filemexc.h which includes the declaration of four public
functions. The used data types are defined inmtypes.h . Here are the appropriate excerpts:

28 typedef unsigned char uchar;
typedef char schar;

30 typedef unsigned short uint2;
typedef short sint2;

32 typedef unsigned char * addr_t;

Listing 3.3: mtypes.h / 28–32

37 typedef void (*fcncbp) (uchar, addr_t);

Listing 3.4: mtypes.h / 37

While all data types are just synonyms for those already existing in the C languages,fcncbp
needs a short explanation. It is a pointer to a function with two parameters and no return value.
The first argument of the function has to be of typeunsigned char and the second a pointer
to anunsigned char .

3.7.4.2 mexcinit

uchar mexc_init (addr_t mcode, addr_t ram, fcncbp def_cb_h andler);

Initialization of the library happens with a call tomexc init . Beside initializing the library’s
globals, it will verify the passed menu byte code and intialize all menu variablesin RAM. With an
exception to theget mlcd * functions, none of the display accessing routines gets called at this
moment.

mexc init will return zero to indicate that everything went alright. Otherwise, it will return one
of the following constants which are defined incmf.h .

CMFINIT BADID indicates that the byte code to interpret isn’t in CMF format.

28

CHAPTER 3. MEXC DOCUMENTATION 3.7. PROGRAMMING WITHMEXC

CMFINIT UNSUPPORTEDVERSIONindicates that the byte code version isn’t supported by
the library. CMFMAJORVERSIONandCMFMINORVERSIONdefined incmf.h show
the supported version.

CMFINIT BADBYTE ORDERindicates thatmexcand the byte code don’t match the same en-
dianness. Often, this error comes from specifying the wrong argument tothe --endian
option of themlx compiler or not using the option at all.

The three expected arguments tomexc init have the following meaning:

mcode must be a pointer to the menu binary image. This parameter must not beNULL.

ram must be the address of a writable memory area. This parameter may beNULL if there are
only constant strings in the whole menu.

default cb handler After a line component has been edited by the user,mexcwill notify
the application by calling a handler function. By default, it will invoke the function passed
as the third argument tomexc init . This parameter may beNULL.

3.7.4.3 mexcloop

void mexc_loop (void);

A call to this function will start the main loop. It will display the top-level menu table, wait for
key presses, and interpret them. It is necessary thatmexc init has already been called before.
mexc loop will not return as long as it hasn’t fetched theMFPKEYQUIT MEXCLOOPkey
press.

3.7.4.4 mexcset callback handler

fcncbp mexc_set_callback_handler (fcncbp * fo, fcncbp fn) ;

As already mentioned in section 3.7.4.2, the third parameter tomexc init is the address of a
function to be called whenever any component has been edited. However, callback handlers for in-
dividual components can be installed by usingmexc set callback handler . Its parameters
are:

fo ; the addresses of the memory block holding the address of the handler to becalled. Usu-
ally one will pass aCALL_* definition for the appropriate component from the header file
outputted by themlx compiler.

fn ; the address of the function to call when the appropriate component has been edited.

29

3.7. PROGRAMMING WITHMEXC CHAPTER 3. MEXC DOCUMENTATION

Usually, calls tomexc set callback handler occur after initializingmexcand before run-
ning its main loop. The installed handler is called with two arguments, the first beinga numerical
value representing the type of the edited component, and the second being apointer to the com-
ponent’s current value. Definitions for each type thatmexcunderstands can be found in the file
cmf.h .

The returned value is the address of the previously installed callback handler orNULL if there was
none before.

3.7.4.5 mexcenable line

void mexc_enable_mline (unsigned char *addr, uchar val);

This routine provides a convenient way of enabling and disabling dynamic menu lines. mexc
simply hides disabled menu lines. Currently, calling this routine will cause the interpreter to return
to the top-level menu table and hide the appropriate line if the user is not editing acomponent.

addr specifies the address of the boolean ‘enable’ value declared bymlx in the generated menu
header file. It is associated with a concrete menu line.

val is the new state of the menu line and will be stored where the first argument points to. Any
other value than zero will enable a menu line.

mexcassumes there is always at least one visible line in a displayed menu table. Forexample,
entering a submenu with all menu lines disabled will crash the interpreter!

3.7.4.6 mexcredraw

void mexc_redraw (void);

Having themexc loop started and the user currently not being editing a component, invoking
this function will simply redraw the screen area occupied by the library.

3.7.4.7 An example

Figure 3.5 provides a skeleton for an application usingmexc. At first, mexc.h must be included.
It makes the public API available. Includingmenu.h , the generated menu header file, imports
the declarations ofg_mlx_menu and__MLX_RAM_BASE__which are used upon initialization
of mexc. If the initialization fails the program simply aborts. Otherwise, it starts the main loop
which will display the top-level menu table and react upon key presses.

30

CHAPTER 3. MEXC DOCUMENTATION 3.8. SIMULATOR

#include <mexc.h>
#include "menu.h"

int main ()
{

if (mexc_init (g_mlx_menu, __MLX_RAM_BASE__, NULL))
return 1; /* error occured */

/* ... mexc callback installation */

mexc_loop ();

return 0;
}

Listing 3.5: Skeleton of an application

Following the initialization ofmexc, there is room to install custom functions which are to be
called after components were edited. Let’s assume the following code snippet being inmenu.h .

#define dd_integer ((unsigned char *)(__MLX_RAM_BASE__ + 0x00))
#define CALL_dd_integer ((fcncbp *)(__MLX_RAM_BASE__ + 0 x04))

With the following statement betweenmexc init and mexc loop a custom function, here
namedon edited cb , would be called after the user edited thedd_integer component.

mexc_set_callback_handler (CALL_dd_integer, on_edited _cb);

The custom callback needs to be of typefcncbp as explained in section 3.7.4.1. In our example,
the first argument can be ignored as we connect exactly one componentto the callback. The second
argument is a pointer to the current value of the component and optionally needs to be casted to
the proper data type pointer. Here is a demonstration:

void on_edited_cb (unsigned char type, unsigned char * valu e)
{

assert (value == dd_integer); /* from menu.h */
assert (type == 0); /* or LC_TYPE_UCHAR_DD from cmf.h */
printf ("current value changed to %d\n", *value);

}

Listing 3.6: Accessing menu variables in callbacks

3.8 Simulator

During the development ofmexc, a simulator was needed to test and debug the code.gsim is a
GTK+-2.0 based program which implements the requiredmcld_* , msleep , andmfpkey_get

31

3.8. SIMULATOR CHAPTER 3. MEXC DOCUMENTATION

routines. The program runs on MS Windows, various GNU/Linux distributions and FreeBSD;
other operating systems have not been tested yet. It has proven that the simulator is very useful
when writing menu definitions. One can immediately see, on the development platform, what the
menu will look like.

3.8.1 Compiling it

To compile the simulator, the providedMakefile or Makefile.win32 should be used. Of
course, the appropriate makefile should be checked for valid paths and the CFLAGSmakefile
variable.

˜gsim% make
usage: make [gsim|ggsim|menu|clean]
˜gsim% make gsim
[...]
˜gsim% ls -F gsim
gsim*

Listing 3.7: Creating the simulator

There are four targets, two of them –gsim andggsim – are actually simulators.gsim is the
character based LCD simulator, whileggsim is graphics based. The latter one is an experiment
to showmexcwith theCONFIG_ENABLE_MLCD_INVERTLNconfiguration.

Under MS Windows the simulator andmexcare known to compile smoothly with tools available
by the MinGW project. The GTK+ library 2.0 or higher is required. When using Makefile also
thepkg-config program will be needed.

3.8.2 Using it

To start the simulator, a filename containing the binary menu image must be specified on the
command line. Invokinggsim without this parameter will make it return with an error.

˜gsim% ./gsim
Usage: ./gsim [-z zoom | -c columns | -l lines | -i | -k] <menu>

Listing 3.8: Command line arguments of the simulator

The binary menu image to be passed togsim needs to be in a binary file. Themlx compiler can
generate such a file when passed the--binary option. Let’s examine the other parameters.

-z awaits a numeric argument, the zoom factor, and causes the simulated LCD to bedisplayed
as many times larger as specified. Default: 1.

-c awaits a numeric argument and sets the number of characters to fit into one line. Default: 20.

32

CHAPTER 3. MEXC DOCUMENTATION 3.8. SIMULATOR

-l awaits a numeric argument and sets the number of lines on the LCD. Default: 4.

-i will popup the ‘inspector’ window which disassembles the binary menu image and represents
it in tree view. It allows to change the current value of line components. Editable cells have
a red background.

-k will popup a virtual keyboard.

The simulated LCD itself is a small green window with ‘-c ’ columns and ‘-l ’ lines. To navi-
gate through the displayed menu the virtual keyboard window or the directions keys can be used.
MFPKEY_RTABis mapped on ENTER of the real keyboard.

33

Chapter 4

MLX Documentation

4.1 License

mlx is Free Software provided under the terms of the GNU General Public License (GPL) [9]. The
file COPYING, that is distributed withmlx, contains a copy the GNU GPL.

4.2 Background

The idea ofmlx has began with the M-Language by Hubert Högl. In his introduction to the M-
Language he writes:

“The M-Language is a notation for describing menu-directed user interfaces which are
to be displayed on small LCD-panels (16x4 or 20x4). ML independently describes a)
menu hierarchy and b) the contents of each menu line. The menu line contents can be
constructed by using many different building blocks, e.g. strings, integeri/o-fields,
switches, options, soft functions keys flexible horizontal whitespace and many more.
ML ML was designed to fit the needs for embedded system design. A compilerfor
ML written in Python generates a block of tagged binary data which is self-containing
and can easily be included into ones own embedded application.”[10]

With melxthe M-Language’s intention doesn’t change in any way. In fact,melxand its compiler,
mlx, is just a rewrite with some improvements of Mr. Högl’s work. The main change is the format
of the language. While the M-Language looks a little bit like a Lisp program, amelxfile is an
XML document which must validate against themelx.dtd – this DTD is listed later in section
4.10. Looking closely at both languages, we will notice that there is little difference between them
in structure.

34

CHAPTER 4. MLX DOCUMENTATION 4.3. BIRD’S-EYE VIEW

4.3 Bird’s-eye view

Let’s look at what steps it takes to usemlx.

1. Firstly, we will create a description of a menu interface which is intended to be displayed on
some small LCD-panels connected to an embedded system. To define the menu hierarchy
we can use our favorite editor.

2. Having the menu description, we will usemlx to compile it into a compact binary format.
By defaultmlx produces two filesa.h anda.c .

3. Now the generated C file can be compiled and linked to an interpreter and/ora menu dis-
playing program.

4.4 Requirements

mlx requires a standard Python distribution of version 2.3 or higher. If we’dlike mlx to validate the
source files, thexmlproc modules, which are part of thepython-xml 1 package, are needed.

4.5 Introduction to melx

melxis the language which themlxcompiler understands, it describes a menu in its full hierarchy.
Simply spoken, the language is a predefined set of elements and attributes organized in XML
format. The exact structure of a validmexcfile is defined by the Data Type Definition (DTD)
listed in section 4.10.

Let’s step through a minimal menu definition to show what the basic elements are and what amelx
file looks like.

1 <?xml version=’1.0’ encoding=’US-ASCII’?>
2 <!DOCTYPE melx SYSTEM ’melx.dtd’>

As in each XML document, the first line must always be given.encoding can of course have an-
other value. But bothmlx andmexccurrently do not support multibyte characters. Thedoctype
declaration in the second line is optional, but important for the validation which isstrongly rec-
ommended to help finding errors. The system identifier, that comes after the keywordSYSTEM,
must be the path of a file holding the DTD definition. If this path is relative it is dissolved of
the directory themelxdocument is located at. Thus, in this example,melx.dtd and themelx
document must be in the same directory.

As stated by thedoctype declaration, the top level element has to bemelx . The DTD says that
a melx element must have one child element calleddescription , at least one child element
with the namemenu, and zero or more children calledline-format in this order.

1The home page of this project is at [http://pyxml.sourceforge.net/].

35

4.5. INTRODUCTION TOMELX CHAPTER 4. MLX DOCUMENTATION

3 <melx>
4 <description>
5 <delay-to-top value=’120’/>
6 <delay-password value=’10’/>
7 <delay-help value=’2’/>
8 <top-menu ref=’m-top’/>
9 </description>

10 <menu id=’m-top’ title=’First Menu’>
11 <line ref=’l-line-01’/>
12 </menu>
13 <line-format id=’l-line-01’>
14 <string value=’This is a string.’/>
15 </line-format>
16 </melx>

The above shown code satisfies the requirements. First there comes thedescription , then all
themenus, and finally all theline-format s. Let’s look at each component in more detail and
explain their meanings.

Note: If not otherwise mentioned the following restrictions apply.

• Most elements are empty. This means that they don’t contain character data or other ele-
ments, and thus, can be shortly written as<element ... /> instead of<element ...></element>.

• Strings and passwords cannot be longer than 255 characters. Multibytecharacters are cur-
rently not supported.

• Values ofid attributes must be unique within the document. No otherid attribute can have
an already used identifier.

• All values which are expected to be numbers must be in decimal or in hexadecimal notation.
Numbers in hex format must begin with “0x ”.

• The characters ‘&’, ‘<’ and ‘>’ cannot be entered directly, but must be coded with their
predefined entities which are ‘&’, ‘<’, and ‘>’. Further,mlxdoes not parse strings
for ‘\x ’ sequences like the C compiler. Nevertheless, a similar construct already exists in
XML and is called “notation for character reference” (e.g. ‘ÿ’).

4.5.1 Description element

Thedescription element consists of four child elements which must be defined in the order
shown in the example above. The following list explains their meanings.

delay-to-top . . . must be empty. It must have exactly one attribute with the namevalue that
holds numbers within the range of 0 to 255. Any other content for this attributeis considered
as an error. The intention of this information is to give the number of secondsafter which

36

CHAPTER 4. MLX DOCUMENTATION 4.5. INTRODUCTION TOMELX

the menu displaying program should return to the top-level menu table if the system idles.
A zero defines the infinity, in other words, the program should never return to the top-level
menu table automatically.

delay-password . . . must be empty and have exactly one attribute namedvalue . That attribute’s
content must be a number in the range of 0 to 255. It declares the number ofseconds to
wait, while the system idles, before aborting a password request. In otherwords, when the
user is about to enter a password, but waits for more thanx seconds, the interpreter should
abort the input.

delay-help . . . has the same format as both previous elements. Its meaning is to define a number
of seconds after which a displayed help string has to disappear.

top-menu . . . is also an empty element with one required attribute namedref which references
a menu table to be displayed at the top level. The value ofref must be the same as anid
value of amenu element.

4.5.2 Menu element

menuelements define collections of lines which are to be displayed as a menu table. Here is a list
of valid attributes of amenu element.

id must be defined for each menu element and is a unique identifier so a menu tablecan be
referenced.

title is an optional attribute and defaults to the empty string. It is the title of the menu table which
the interpreter may display somewhere on the screen.

password can be given to protect the menu table. A user should be allowed to view this menu
table only if he knows the correct password.

Eachmenu element must have at least one child. There are two elements which can be arbitrary
mixed.

line This element simply references the definition of an advanced menu line. Theref attribute
must therefore be identical with theid of a line-format element. The optionalsubmenu
attribute can reference a menu table to be entered when the user tells the interpreter to do
so.

Dynamic menu lines can be implemented through the optional attributeenable-vname .
It takes a valid C identifier which will be available in the generated header file and is a
synonym for the address of an allocated byte in RAM. This byte denotes whether the menu
line is currently enabled or not. Enabled menu lines behave normal, while disabled menu
lines should be grayed out and should not respond to user events.mexc, for example, doesn’t
display disabled menu lines at all.

37

4.5. INTRODUCTION TOMELX CHAPTER 4. MLX DOCUMENTATION

const-string-line This element was introduced to be a handy shortcut for:

...
<line ref=’some-id’/>
...

</menu> <!-- end of a menu -->
...
<line-format id=’some-id’>

<string value=’some-string’/>
</line>

Thus, aconst-string-line does not have aref attribute, butvalue instead. The
string defined throughvalue will be the only thing to be displayed in the menu line, and
it will be constant. Read about the string line component to learn more about constant
strings. Aconst-string-line element has the same optional attributessubmenu
andenable-vname with the same meanings as aline element. Additionally, ablink
attribute is understood and causes the displayed string to blink.

4.5.3 Line-format element

The elementline-format is the description of the structure of a single menu line. A menu
line consists of at least one line component – the components are discussedin a moment. The
order of the components in which they appear in a line is defined by the orderthey are defined in
a line-format element. There is nothing exciting about the element. All it must have is anid
attribute with a unique identifier so the line descriptor can be referenced.

4.5.4 Line components

Finally, let’s turn to the small entities called ‘line components’. There can be as much line com-
ponents in each menu line as we want, however, we have to consider that they need to fit into a
single line on the LCD. Each line component needs some space on the display.How much space it
actually consumes, is finally determined by the interpreter or the program which does the drawing
on the device. Nevertheless, we will give a length for each line componentthat the interpreter is
encouraged to reserve. Fortunately, themexcinterpreter does respect our proposals.

4.5.4.1 Common attributes

There are optional attributes which are supported by almost all currently implemented line com-
ponent elements, so let’s discuss them first. If not otherwise stated , eachline component element
has the following attributes with an appropriate meaning and default value.

blink This attribute must be either 1 or 0. Any other value is considered to be an error. If it is set
to 1, then the line component is assumed to blink with a fixed interval on the display. The
interval is defined by the interpreter and cannot be set by themlx compiler. Default: 0.

38

CHAPTER 4. MLX DOCUMENTATION 4.5. INTRODUCTION TOMELX

edit Also this attribute can hold either 1 or 0. If set to 1, the interpreter should provide a way of
allowing the user to change the value of the line component. Themexclibrary, for example,
provides editing of all components with a 5-button keyboard. Additionally, theinterpreter
library is assumed to call a custom callback handler to notify the application of achange
when the user finished editing the component. For some line components it doesn’t make
sense to declare them non-editable. Default: 0.

update If a user changes the value of a component, then the library will update the display. But
what happens if a program code (e.g. a callback or a parallel thread) changes the value?
The program code doesn’t have to know about a display at all, but the change needs to be
reflected on it. Therefore, we can tell the library whether it should updatea component
periodically and how often it should do so. This attribute holds a number whichdefines the
seconds to wait before the current value of the component should be redrawn. The number
must be between 0 and 255, both values including. A zero cancels this feature, and in simple
words, it means ‘don’t periodically update’. Default: 0.

Note: It doesn’t make sense to define anupdate value other than zero without specifying
the vname attribute. Withoutvname, an application won’t know where a component’s
current value in RAM is and, thus, won’t be able to access and change the current value.
Themlx compiler checks for that and prints a warning.

vname The current value of a line component is always stored somewhere in RAM. The location
of the memory block is computed during compilation of themelxsource. To make these
memory blocks accessible to an application which maybe linked to an interpreter library
and which does not know about the byte code (the addresses are stored there),mlx writes
the addresses to a generated header file as ‘#definename address’ wherenameis substituted
with the value of thevname attribute andaddresswith the computed address. In addition,
mlx allocates a memory block where the address of a callback handler is stored.The in-
terpreter library is assumed to call this handler after the user has edited a component. The
address of the memory block where the routine’s address is stored gets defined in the header
file under the name’CALL ’ + vname, so an application is able to register custom callbacks.
As vnameis used in a C header file, its value must be a proper C identifier.mlx checks for
that. Default: the empty string.

4.5.4.2 Integer

An integer element defines a component that displays several types of integer numbers. De-
pending on thetype attribute, the data type, the value range, and the displaying width differ.

<integer type=’dd’ value=’42’ edit=’1’/>

type The requiredtype attribute of this element determines some further details about the com-
ponent. Thebytescolumn in the following table shows the number of bytes the integer
is stored in (this is the memory block available undervname). The charscolumn gives

39

4.5. INTRODUCTION TOMELX CHAPTER 4. MLX DOCUMENTATION

the number of characters needed to display the component. The other columns should be
self-explanatory.

type bytes interpretation value-range chars comment
dd 1 unsigned 0 .. 99 2

ddd 1 unsigned 0 .. 255 3
hh 1 unsigned 0 .. 0xFF 2 hex

sdd 1 signed -99 .. +99 3 sign
sddd 1 signed -128 .. +127 4 sign

DDD 2 unsigned 0 .. 999 3
DDDD 2 unsigned 0 .. 9999 4

DDDDD 2 unsigned 0 .. 65535 5
HHHH 2 unsigned 0 .. 0xFFFF 4 hex
SDDD 2 signed -999 .. +999 4 sign

SDDDD 2 signed -9999 .. +9999 5 sign

value This is the default value of the integer component. It must be in the correct range which
depends on the value oftype . This attribute is required.

blink, edit, update, vname See 4.5.4.1.

4.5.4.3 Float

The line component introduced with thefloat element is meant to present a number as a float.
Currently there are two types which differ only in the format they are meant tobe displayed.

<float type=’siif’ value=’12.4’/>
<float type=’siiif’ value=’-123.4’/>

type This is an optional attribute which defaults tosiif , beside this it can also be set tosiiif .
The type says nothing about the value itself, but about how to display it: ‘s’is meant to
be the sign, ‘i’ digits and ‘f’ the fraction digit. An interpreter should display the float as
specified with a dot or a comma between the last digit and the first fraction digit.

value This specifies the component’s initial value and is required. It has to be a float.

blink, edit, update, vname See 4.5.4.1.

Depending on thetype attribute this component should take up 5 or 6 characters on the display.

4.5.4.4 String

The string component is probably the most frequently used component at all. Very often it is used
to display static information that will never change during the execution of a program. Therefore,
this component is somewhat special.

40

CHAPTER 4. MLX DOCUMENTATION 4.5. INTRODUCTION TOMELX

If the component is not declared to be editable, the attributesupdate andvname have no effect.
In this case, the current value of the string will never be copied to RAM. Thus, a program which
links to an interpreter library will not be able to access the string. Only the library will extract the
string out of the byte code and display it.

Strings are always stored the Pascal way. This means they are not zeroterminated, but their length
is stored in the first byte. The string itself begins in the second byte. The fact that the length is
saved in a one-byte cell is limiting a string’s length to 255 characters.

<string value=’a constant string’/>
<string value=’an editable string’ edit=’1’ blink=’1’/>

value This is the string to be displayed. If the string is editable, this is the string’s default value.
This attribute is required.

blink, edit, update, vname See 4.5.4.1.

The length of the string determines how much space is needed on the display.

4.5.4.5 Counter

The counter component is a number on the display which, when edited, can be increased or de-
creased by a defined value. Depending on the type, the counter handlessigned two-byte integers
or floats.

<counter type=’integer’ edit=’1’
value=’42’ min=’-100’ max=’100’ step=’2’/>

<counter type=’float’ edit=’1’
value=’12.4’ min=’10.0’ max=’15.0’ step=’0.5’/>

type This attribute is required and determines the data type to use. It can beintegeror float.

value This attribute is required and sets the initial value of the counter. It must be betweenmin
andmax, including both values.

min This attribute is required and sets the lower boundary of the counter. It must be smaller than
max.

max This attribute is required and sets the upper boundary of the counter. It must be greater than
min .

step This attribute is required and is the value by which to increase or decrease the counter.

blink, edit, update, vname See 4.5.4.1.

41

4.5. INTRODUCTION TOMELX CHAPTER 4. MLX DOCUMENTATION

How much space is needed on the LCD to display the component is determined bythe attributes
min andmax. The longest of those two sets the width of the component. For example, the first
counter in the code shown above would need 4 characters as the countercan take up a value of
-100.

4.5.4.6 Switch

A switch component is a binary field whose bits can be seton or off. By defining ‘*’ for the
on-state and ‘.’ for theoff-state, a switch would typically be drawn as*..**.** on an LCD.

To define such a component, we will use theswitch element withswitch-item s as children.
The number of the children is limited to 32 but must be at least 1. Theswitch is one of few
elements that is not empty. The example given below defines the above discussed field.

<switch on-char=’*’ off-char=’.’ edit=’1’>
<switch-item info=’Budweiser’ value=’1’/>
<switch-item info=’Dobrovar’ value=’0’/>
<switch-item info=’Steiger’ value=’0’/>
<switch-item info=’Eger’ value=’1’/>
<switch-item info=’Plzen’ value=’1’/>
<switch-item info=’Martiner’ value=’0’/>
<switch-item info=’Gambrinus’ value=’1’/>
<switch-item info=’Smaedny Mnich’ value=’1’/>

</switch>

Attributes of aswitch are . . .

on-char This attribute is optional and defines the character to use for theon-state. Default: ‘* ’

off-char This attribute is optional and defines the character to use for theoff-state. Default: ‘. ’

blink, edit, update, vname See 4.5.4.1.

Attributes of aswitch-item are . . .

info This attribute is required and defines an help string to be displayed when user edits the ap-
propriate bit.

value This attribute is required and defines the initial state of a bit. It can either be 1 (on) or 0
(off).

How much space on the LCD this component needs depends on the number ofspecified bits. For
each bit it should take up one character.

42

CHAPTER 4. MLX DOCUMENTATION 4.5. INTRODUCTION TOMELX

4.5.4.7 Option

An option is a component to let the user choose one item out of a fixed list of alternatives. The
code shown below, for example, defines an option to let the user choose aname of a month.

<option edit=’1’ default=’o-03’/>
<option-item value=’Jan’ id=’o-01’/>
<option-item value=’Feb’ id=’o-02’/>
<option-item value=’Mar’ id=’o-03’/>
<option-item value=’Apr’ id=’o-04’/>
...

</option>

As shown, theoption element is not empty and must contain at least oneoption-item ele-
ment, but no more than 255.option elements have the following attributes:

default This attribute is required and is a reference to an item which should be displayed by
default. The value must be the same as the value of anid attribute of oneoption-item
within the appropriateoption .

blink, edit, update, vname See 4.5.4.1.

Theoption-item has two required attributes:

value This string is to be displayed when the item is selected.

id A unique identifier.

The length of anoption on the display is determined by the longestoption-item ’s value.

4.5.4.8 Time

The time component is there to display a time with or without seconds and may look like12:42
in the ‘short’ format or like12:42:37 in the ‘long’ format. The delimiter character printed
between the single time parts is not set bymlx but provided by the interpreter.

<time type=’long’ hours=’12’ minutes=’42’ seconds=’37’
vname=’CURRENT_TIME_ADDR’ update=’1’/>

<time type=’short’ hours=’12’ minutes=’42’ seconds=’0’
edit=’1’ vname=’ALARM_ADDR’/>

Beside the time specific attributes, this example also shows the usage of the two attributesupdate
andvname. With the first time component, a program can periodically update the variable at the
address CURRENTTIME ADDR and the interpreter will update/redraw the component every

43

4.5. INTRODUCTION TOMELX CHAPTER 4. MLX DOCUMENTATION

second, when it is on the screen. The second time component, for instance, can serve as an input
field to let the user define an alarm.

The data type for the time value is a three or two bytes structure respectively.The first byte holding
the hours, the second byte holding the minutes and for the long time format the third byte holding
the seconds.

The following attributes are defined for the time element:

hours This attribute is required and is the ‘hours’ component of the time. It must be anumber
between 0 and 23, including both.

minutes This attribute is required and is the ‘minutes’ component of the time. It must be a number
in the range of 0 to 59.

secondsThis attribute is required and is the ‘seconds’ component of the time. It must be a number
in the range of 0 to 59.

type This attribute is optional and defaults to ‘short’. It can also be set to ‘long’and indicates
whether the time component will have seconds or not.

blink, edit, update, vname See 4.5.4.1.

The length in characters of a short time should be 5, of a long time it should be 8.

4.5.4.9 Date

A date is similar to the time component. It could be displayed as2005-10-24 in the long format
or 05-10-24 in the short one. In the end, it depends on the interpreter. The main difference is
that a ‘short’ date cannot hold values greater than 255 for a year, whilein the long format, it can
be up to 9999. As with the time component, also for dates,mlx has no influence on the delimiter
character between the year, month, and day parts.

<date type=’short’ year=’2005’ month=’10’ day=’24’/>
<date type=’long’ day=’1’ month=’1’ year=’2004’/>

The following attributes of adate element are defined:

day This attribute is required and must be a number between 1 and 31, including both values.

month This attribute is required and must be a number in the range of 1 to 12.

year This attribute is required and must be a number in the range of 0 to 9999. Specifying 1999
for a short date is possible, however the compiler assumes 99 is meant.

type This attribute is optional and defaults to ‘short’. Beside its default value, it can be set to
‘long’. This attribute denotes the size of the year.

44

CHAPTER 4. MLX DOCUMENTATION 4.5. INTRODUCTION TOMELX

blink, edit, update, vname See 4.5.4.1.

The length of the displayed date component should be 10 characters for along type and 8 for a
short type.

4.5.4.10 Trigger

A trigger differs from all the components mentioned above. It actually doesn’t display any infor-
mation at all, but is meant to be a “soft-button” which, when activated, calls a routine to perform
some action.

<string value=’Reset: ’/>
<trigger vname=’reset_system’/>

The shown code snippet would probably be displayed as ‘Reset: [X] ’ in a line. The interpreter
is responsible for providing a way to activate the trigger, when the user wants to do so. The
following attributes of atrigger element are defined:

vname This required attribute has the same meaning as described in 4.5.4.1 with the exception
that only theCALL definition will result in the generated header file.

password With this optional attribute set, an interpreter should request for this password before
calling the installed handler routine.

blink This attribute is optional and has the same meaning as described in 4.5.4.1

It depends on the interpreter how many characters a trigger takes up. The mexcinterpreter li-
brary displays a trigger as ‘[X] ’, password protected triggers as ‘[P] ’. Thus, it takes up three
characters.

4.5.4.11 Horizontal fill

An hfill element is actually a fictional component and resolves into a constant string.Its pur-
pose is to provide a way to put fixed or variable sized gaps between the other components. For
example, if we want to have a line with right-aligned components, we would use an hfill .

<line-format id=’foo’>
<string value=’temp:’/>
<hfill char=’.’/>
<integer type=’dd’ value=’20’ update=’10’

vname=’cur_temperature’/>
</line-format>

45

4.6. COMMAND LINE OPTIONS CHAPTER 4. MLX DOCUMENTATION

In the example above,mlx would compute how many characters to put between the given string
and the integer, so that the integer is aligned at the right edge of the display.An interpreter would
draw the line as ‘temp:........20 ’ on a 16 characters wide LCD.

We can even specify more than onehfill element in aline-format . In this configuration,
mlx tries to distribute the free (character) space to the specified gaps equally.

<line-format id=’bar’>
<string value=’X’/>
<hfill char=’-’/>
<string value=’Y’/>
<hfill char=’.’/>
<string value=’Z’/>

</line-format>

On a 16 character wide LCD the given example would produce a ‘X------Y.......Z ’ printed
line. If we carefully count the characters, we will notice that the dashes count one more than the
dots. This is because the 13 remaining characters, which are to be equally distributed, cannot be
divided without a remainder.mlx prefers the last gap and assigns the rest of the free characters to
it.

Thehfill element understands two optional attributes.

char This attribute defines the character to fill the gaps with. Default: a blank (‘ ’)

count With thecount attribute the number of characters to be put into a gap can be defined. The
default value, zero, causes the gap to grow as much as possible.

The width of this element is variable or fixed (viacount attribute), but it can also be zero if there
is no space to distribute, so it is not guaranteed that there will be a gap between two components.

4.6 Command line options

Before we can use themlx compiler, we need to understand its command line options. The com-
mandpython mlx.py --help at the shell prompt will print a list of options recognized by
the program. We should get a listing as show in figure 4.1.

Only long format options are supported, and two arguments are required tothe compiler. Let’s
step through the command line parameters to define their meanings.

--help This option prints a listing as shown in figure 4.1.

--version This option prints the version number of the compiler and exits the program.

--dont-validate This option causes the compiler not to validate the source file. Given this option,
the compiler will not use thexmlprocmodules from the “python-xml ” package, but mod-
ules from the standard library that are installed with the default Python distribution. This

46

CHAPTER 4. MLX DOCUMENTATION 4.6. COMMAND LINE OPTIONS

˜mlx% python mlx.py --help
usage: mlx.py: [options] mem-origin <filename>
options are:

--align do align addresses
--endian={little|big} use specified byte-order (def: big)
--awidth=n address bus width in bytes (def: 2)
--mem-optimization do optimize memory layout

--no-header do not produce the header a.h file
--binary produce a.bin file instead of a.c
--output base ‘base’ as name for output filenames

--max-line-width=n num characters in one line (def: 18)
--max-title-width=n num characters for title (def: 16)

--dont-validate do not validate the source file
xmlproc required for validating

--help print this text, then exit
--version print the version, then exit

Figure 4.1: Command line parameters ofmlx

enables the use of the compiler on machines without the “python-xml ” package installed.
However, if the source file isn’t properly structured the compiler’s result is undefined.

--max-line-width This option takes a numerical argument and tells the compiler to print warnings
about menu lines which are longer than the given number. As we learned about thehfill
element, the compiler can right-align components or stretch them from each other. This
requires a line width to be given. By default it is 182.

--max-title-width As with the previous option, also this one takes a numerical argument and tells
the compiler to print warnings about menu titles which are longer than the givenvalue. By
default it is 163.

--output This option requires an argument. By default, themlx compiler will output two files
named ‘a.h ’ and ‘a.c ’. With the --output option the ‘a’ of the filenames can be
changed to a custom name.

--binary By default, the compiler will output the generated byte code as an array in a Cfile. Using
this option, the compiler will generate a binary file instead of the C file. The binary file will
be appended the ‘.bin’ suffix and contains the raw bytes of the binary menu image. It is
useful for applications that want to the load byte code dynamically. Thegsim simulator,

2mexcuses 18 characters of a 20 character wide display for menu data. The remaining two columns are reserved,
one for the current line indicator and the other for the submenu indicator.

3mexcuses 16 characters for the title on a 20 column display. The remaining 4 columns are reserved to display some
other information.

47

4.7. CMF - COMPACT MENU FORMAT CHAPTER 4. MLX DOCUMENTATION

which was written as a part of this project, can run different byte codes without the need of
being recompiled.

--no-header This option suppresses the generation of the header file.

--align For each line component, with the exception of constant strings, the compiler allocates
a memory block of an appropriate size somewhere abovemem-origin . We can tell the
compiler to align memory blocks with a size of two bytes on even addresses and memory
blocks with a size of 3 or more bytes on addresses divisible by 4. Some hardware may
require this.

--mem-optimization This option has only an effect if it’s used together with the--align op-
tion. When optimizing, the gaps, that originates from aligning memory blocks, getfilled
by other memory blocks. This option can cause a considerable reduction ofmemory con-
sumption at the cost of the fact that a single line’s components don’t have tohave increasing
addresses for their current values. In most cases this should be no problem.

--awidth This option is important to be properly set and defines the width of an address. It is the
size of a pointer and can be determined with the Csizeof operator, which depends on the
compiler and the target platform the produced byte code will be used at.

--endian This option causes the compiler to output values, which are stored in more thanone
byte (e.g. short or floats), either in little- or big-endian. It is important to knowon which
platform the byte code will be interpreted.

mem-origin This is a required command line parameter and has to be a numerical value (must
begin with ‘0x ’ for hexadecimal format) and tells the compiler to allocate memory blocks
above this address. This will often be the address of the beginning of RAMon the target
system.

filename This is the path to themelxsource file.

4.7 CMF - Compact Menu Format

The “Compact Menu Format” is a definition of the byte code thatmlxproduces. Its current version
is 0.4. It is a compact binary representation of a menu hierarchy specifiedby anmelxsource. The
binary format is very similar to Mr. Ḧogl’s PMF (Portable Menu Format) [11], however, CMF
differs to make the code more compact and efficient.

The following sections reflect many things already discussed in section 4.5 and will be interesting
to programmers who want to implement a CMF parsing program.

4.7.1 Notation

In the following description we will use the convention to enclose terminal symbols in braces
< .. > . Within these braces a terminal symbol is separated by a colon followed by a number

48

CHAPTER 4. MLX DOCUMENTATION 4.7. CMF - COMPACT MENU FORMAT

which denotes the size in bytes of the symbol. With<foo:2> , for example, we have a terminal
symbol which takes up two bytes. Sometimes we will have brackets with an interval or a single
number behind a terminal definition. A<foo:2>[3,0] , for instance, denotes that we refer to
the bits 3, 2, 1 and 0 of the terminal symbol ‘foo’ which has a size of two bytes. All other symbols,
namely those not enclosed in< .. > braces, are non-terminal symbols. To indicate zero or more
repetitions of a symbol, it is enclosed in curly braces{ .. } .

Some terminal elements (e.g. strings or passwords) are noted as<element:n+1> . The ‘+1’
indicates that the element is a string, and strings are stored the Pascal way inCMF. They are not
zero terminated, but their first byte, referred to as the ‘length byte’, which holds the valuen as an
one-byte unsigned integer, is followed byn bytes holding the string’s characters. Thus a string
actually takes upn+1 bytes in CMF.

4.7.2 Overall structure

byte-code ::=
prolog menu-table { menu-table }

prolog ::=
<pmf-id:3>
<major-version:1>
<minor-version:1>
<delay-to-top:1>
<delay-clr-help:1>
<delay-password:1>
<byte-order-mark:2>

menu-table ::=
<menu-title-string:n+1> (*) menu-line { (*) menu-line }

menu-line ::=
<ldtag:1> line-opts (*) line-comp { (*) line-comp }

line-comp ::=
<lctag:1> line-comp-opts

Figure 4.2: Overall structure of CMF

The definition in figure 4.2 shows the structure of a CMF formated menu description. A ‘(*) ’
in the definition is an indicator for an optional padding zero byte. Sometimes such bytes are
necessary to make the following structures specially aligned. Currently, there are two alignment
rules that apply to the byte code.

• A menu-line is always aligned on a non-even offset within the byte code. Padding zero
bytes are put in front of it to make the offset of a<ldtag:1> not divisible by 2.

49

4.7. CMF - COMPACT MENU FORMAT CHAPTER 4. MLX DOCUMENTATION

• A line-comp is always aligned on an even offset within the byte code. A padding zero
byte may precede the structure to make the offset of a<lctag:1> divisible by 2.

There is no indication which menu table is actually the first to be displayed. By convention,
the first menu table – the top-level menu table – to be displayed is themenu-table following
immediately theprolog .

4.7.3 prolog

pmf-id . . . is an array of 3 characters. This array is filled with ‘C’, ‘M’, and ‘F’ (or in numbers
0x43, 0x4D, and 0x46) in this order. A parsing program must check for this to ensure it has
the right binary data.

major-version . . . denotes the major version number of the byte code.

minor-version . . . denotes the minor version number of the byte code.

delay-to-top . . . is an unsigned-byte integer and gives the number of seconds an interpreter should
wait before it is supposed to return to the top-level menu table. A value of zero indicates the
interpreter should never return to the top-level menu table automatically.

delay-clr-help . . . is an unsigned-byte integer and gives the number of seconds for how long a
help string should be displayed. A value of zero indicates a help string should not be cleared
automatically.

delay-password . . . is an unsigned-byte integer and gives the number of seconds after which a
password query should be aborted when the user makes no input. A valueof zero indicates
an interpreter should infinitely wait for the password.

byte-order-mark . . . is an unsigned two-byte integer with the fixed value of 0xFEFF. However,
accessing it via an array of bytes it can have two values: 0xFFFE in casethe number was
stored in big-endian, or 0xFEFF in case it was stored in little-endian. A parsing program
can easily determine whether it supports the proper byte-order with the following code:

unsigned short * p = (unsigned short *)&byte_code[8];
if (*p != 0xFEFF)

; /* wrong byte order determined */

Listing 4.1: Checking the byte–order mark

4.7.4 menu-line

A menu line begins with an unsigned one-byte integer (<ldtag:1>) which decides what fields
are available from the line options. Following theline-opts there is always at least one line
component. Let’s look at the bits of anldtag .

50

CHAPTER 4. MLX DOCUMENTATION 4.7. CMF - COMPACT MENU FORMAT

if <ldtag:1>[1,0] == 00 # not first and not last line
line-opts ::= <next-line-ofs:2> <prev-line-ofs:2>

if <ldtag:1>[1,0] == 01 # first line but not last
line-opts ::= <next-line-ofs:2>

if <ldtag:1>[1,0] == 10 # last line but not first
line-opts ::= <prev-line-ofs:2>

if <ldtag:1>[1,0] == 11 # is last and is first line
nothing for line-opts in this case (maybe submenu)
line-opts ::=

if <ldtag:1>[2] == 1 # dyn-enable feature
line-opts ::= ... <var-addr:2>
var-addr is appended to the previous options

if <ldtag:1>[3] == 1 # has submenu
line-opts ::= ... <smenu-abs-ofs:2>
submenu-abs-ofs is appended to previous options

if <ldtag:1>[3,4] == 11 # submenu password
line-opts ::= ... <password-str:n+1>
password is appended to the previous options

Figure 4.3: Definition ofline-opts in CMF

bitmask meaning if the appropriate bit is set in<ldtag:1>
0x01 is first menu line (no preceding menu lines)
0x02 is last menu line (no following menu lines)
0x04 menu line can be dynamically enable/disabled
0x08 menu line points to a submenu
0x10 submenu is password protected

Depending on these bits the structure of aline-opts must be dynamically assembled. Access-
ing values following this structure can be a little bit problematic because it has not a fixed size.
However, this can be efficiently implemented with a lookup table holding the sizes for each case.
The exact definition of the dynamic structure depending on the shown flagsis shown in figure 4.3.

The ‘. . .-ofs ’ fields, namelynext-line-ofs andprev-line-ofs , are offsets to the pre-
vious or the next menu line respectively. They count from including theldtag and contain the
optional padding zero byte. This means, in the case of a next menu line, we need to add the
next-line-ofs to the address of the currentldtag to obtain the address of the next.

The optionalvar-addr field is an offset into RAM and points to an unsigned one-byte integer
that should be used as a boolean value. This byte is often referred to as the ‘enable byte’ and
its value as the ‘enable value’. The interpreter has to initialize this byte and interpret its value
accordingly.

smenu-abs-ofs holds an absolute offset to the submenu. An absolute offset is counted from
including the first byte of the first menu table. This is the first menu table locateddirectly behind
theprolog . Thus, to access a submenu we need to add tosmenu-abs-ofs the address of the
prolog and its size.

51

4.7. CMF - COMPACT MENU FORMAT CHAPTER 4. MLX DOCUMENTATION

To access the first line of amenu-table we need to look at the absolute offset of the byte
immediately following the menu title. Because all menu lines are aligned on non-evenoffsets, we
must increase the offset of the byte following the menu title by one if it is even, and thus, jump
over a padding zero byte. When accessing menu lines on the base of ‘. . .-ofs ’ fields, there is no
need to worry about the padding zero byte.

4.7.5 line-comp

A line component is the actual entity that is displayed in a menu line. Currently there are 23
different types of line-components which are to be implemented by an interpreter and there is still
place for another eight components. The type of a component is defined by the first five bits of
the lctag and determines the actual byte code structure. The following table gives anoverview
of the available components which are explained in more detail later, each on itsown. Themask
column suggests how to display the components.

<lctag:1>[4,0] type mask comment
0x00 uchar dd unsigned one-byte integer
0x01 uchar ddd -
0x02 uchar hh hex
0x03 char sdd signed one-byte integer
0x04 char sddd -
0x05 uint2 DDD unsigned two-byte integer
0x06 uint2 DDDD -
0x07 uint2 DDDDD -
0x08 uint2 HHHH hex
0x09 int2 SDDD signed two-byte integer
0x0a int2 SDDDD -
0x0b float SII.F ieee-754 float
0x0c float SIII.F -
0x0d counter DD..D signed two-byte int counter
0x0e fcounter SII.F ieee-754 float counter
0x0f time-long HH:MM:SS -
0x10 time-short HH:MM -
0x11 date-long YYYY-MM-DD -
0x12 date-short YY-MM-DD -
0x13 switch “.*..**.” max. 32 items
0x14 option “...” opt1, opt2, ...
0x15 string “...” pascal strings
0x16 password “[P]” -
0x17 trigger “[X]” -

0x18 - 0x1f - - -

There are three further flags in<lctag:1> . The following table explains their meanings.

52

CHAPTER 4. MLX DOCUMENTATION 4.7. CMF - COMPACT MENU FORMAT

<lctag:1>[5] description
0 (read-only) component should not be editable by the user
1 (read-write) component should be editable by the user

<lctag:1>[6] description
0 (dont-blink) component should not blink on the display
1 (do-blink) component should blink on the display

<lctag:1>[7] description
0 (not-last) after this component there is another one
1 (last) this component is the last in the menu line

In the following sections each line component’s byte code structure is givenwith some hints.
Nearly all structures begin with the following fields:

<update:1> A one-byte unsigned integer to define an interval in seconds in which an inter-
preter should redisplay the current value of the component. Of course,an interpreter can
update it only if it is currently displayed. An interval of zero disables the automatic updates.

<call-addr:2> A relative pointer (an unsigned two-byte integer) to a memory block where
a handler’s address is installed. This handler should be called after the user edited a compo-
nent. The pointer being relative is explained in a moment.

<var-addr:2> A relative pointer (an unsigned two-byte integer) to a memory block where
the current value of the component is stored. How large the memory block is and how it has
to be interpreted is determined by a component’s type.

A relative pointeris just like a relative path. An interpreter will be given a base address andit is
supposed to add this address to all relative pointers to actually access memory at the right location.

As mentioned, aline-comp structure is always stored on an even offset within the byte code.
When accessing aline-comp we must jump over optional padding zero bytes. We’ll just fetch
a component’s offset as usual but increment it by one, in case it is not even.

4.7.5.1 uchar ‘dd’

if <lctag:1>[4,0] == 0x00
<update:1>
<call-addr:2>
<var-addr:2>
<default:1>

default and the corresponding memory block, which is accessible by thevar-addr relative
pointer, are unsigned one-byte integers.default is the component’s initial value. An interpreter
is supposed to display this component as a two-digit decimal number without a sign (‘+’). The
size of the code for this component including thelctag is 7 bytes.

53

4.7. CMF - COMPACT MENU FORMAT CHAPTER 4. MLX DOCUMENTATION

4.7.5.2 uchar ‘ddd’

if <lctag:1>[4,0] == 0x01
<update:1>
<call-addr:2>
<var-addr:2>
<default:1>

This component is the same as “uchar dd” with the exception that it is supposed to be displayed
as a three-digit decimal number.

4.7.5.3 uchar ‘hh’

if <lctag:1>[4,0] == 0x02
<update:1>
<call-addr:2>
<var-addr:2>
<default:1>

This component is the same as “uchar dd” with the exception that it is supposed to be displayed
as a two-digit hexadecimal number.

4.7.5.4 char ‘sdd’

if <lctag:1>[4,0] == 0x03
<update:1>
<call-addr:2>
<var-addr:2>
<default:1>

default and the corresponding memory block are signed one-byte integers.default is the
components initial value. An interpreter is supposed to display the componentas a two-digit
decimal number with a sign in front of it (‘+/-’). The size of the code for thiscomponent including
the lctag is 7 bytes.

4.7.5.5 char ‘sddd’

if <lctag:1>[4,0] == 0x04
<update:1>
<call-addr:2>
<var-addr:2>
<default:1>

This component is the same as “char sdd” with the exception that it is supposed to be displayed as
a three digit number with a sign.

4.7.5.6 uint2 ‘DDD’

if <lctag:1>[4,0] == 0x05
<update:1>

54

CHAPTER 4. MLX DOCUMENTATION 4.7. CMF - COMPACT MENU FORMAT

<call-addr:2>
<var-addr:2>
<default:2>

default , which is the component’s initial value, and the corresponding memory block are un-
signed two-byte integers. An interpreter is supposed to display the component as a three-digit dec-
imal number without a sign (‘+’). The size of the code for this component including thelctag
is 8 bytes.

4.7.5.7 uint2 ‘DDDD’

if <lctag:1>[4,0] == 0x06
<update:1>
<call-addr:2>
<var-addr:2>
<default:2>

This component is the same as “uint2 DDD” with the exception that it is supposedto be displayed
as a four-digit decimal number.

4.7.5.8 uint2 ‘DDDDD’

if <lctag:1>[4,0] == 0x07
<update:1>
<call-addr:2>
<var-addr:2>
<default:2>

This component is the same as “uint2 DDD” with the exception that it is supposedto be displayed
as a five-digit decimal number.

4.7.5.9 uint2 ‘HHHH’

if <lctag:1>[4,0] == 0x08
<update:1>
<call-addr:2>
<var-addr:2>
<default:2>

This component is the same as “uint2 DDD” with the exception that it is supposedto be displayed
as a four-digit hexadecimal number.

4.7.5.10 int2 ‘SDDD’

if <lctag:1>[4,0] == 0x09
<update:1>
<call-addr:2>
<var-addr:2>
<default:2>

55

4.7. CMF - COMPACT MENU FORMAT CHAPTER 4. MLX DOCUMENTATION

default , which is the component’s initial value, and the corresponding memory block are signed
two-byte integers that should be displayed as three-digit decimal numbers with a sign in front of
it. The size of the code for this component including thelctag is 8 bytes.

4.7.5.11 int2 ‘SDDDD’

if <lctag:1>[4,0] == 0x0a
<update:1>
<call-addr:2>
<var-addr:2>
<default:2>

This is the same as the “int2 SDDD” component with the exception that it should bedisplayed as
a four-digit number with a sign.

4.7.5.12 float ‘SII.F’

if <lctag:1>[4,0] == 0x0b
<update:1>
<call-addr:2>
<var-addr:2>
<default:4>

default , the initial value, and the corresponding memory block are IEEE-754 singleprecision
(32-bit) floating point numbers. They should be displayed with a sign followed by two digits
before the decimal point and one digit after the decimal point. The size of thecode for this
component including thelctag is 10 bytes.

4.7.5.13 float ‘SIII.F’

if <lctag:1>[4,0] == 0x0c
<update:1>
<call-addr:2>
<var-addr:2>
<default:4>

This component is the same as ‘float SII.F’ with the exception that it should bedisplayed with one
more digit before the decimal point.

4.7.5.14 counter

if <lctag:1>[4,0] == 0x0d
<update:1>
<call-addr:2>
<var-addr:2>
<min:2>
<max:2>
<step:2>
<default:2>
<field-width:1>

56

CHAPTER 4. MLX DOCUMENTATION 4.7. CMF - COMPACT MENU FORMAT

default , the counter’s initial value, the corresponding memory block,min , max, andstep are
signed two-byte integers. A counter should be in-/decremented bystep within the range [min ;
max]. field-width is an unsigned one-byte integer and gives the width in characters needed
to display the counter within the specified value range. The size of the code for this component
including thelctag is 15 bytes.

4.7.5.15 fcounter

if <lctag:1>[4,0] == 0x0e
<update:1>
<call-addr:2>
<var-addr:2>
<min:4>
<max:4>
<step:4>
<default:4>
<field-width:1>

This is essentially the same as a ‘counter’ with the exception thatdefault , the correspond-
ing memory block,min , max, andstep are IEEE-754 single precision (32-bits) floating point
numbers to be displayed as a ‘float SII.F’ component. The size of the codefor this component
including thelctag is 23 bytes.

4.7.5.16 time-long

if <lctag:1>[4,0] == 0x0f
<update:1>
<call-addr:2>
<var-addr:2>
<hours:1>
<minutes:1>
<seconds:1>

hours , minutes and seconds are unsigned one-byte integers. The memory block, which
holds the current value, is a data type of three bytes with the first byte beingthe hours, the second
byte being the minutes and the third byte being the seconds of the time. In C we would describe
the data type with a structcmf_time_t as shown in listing 4.2.

struct cmf_time_t {
unsigned char hours;
unsigned char minutes;
unsigned char seconds;

};

Listing 4.2: Definition of cmftime t

The size of the code for this component including thelctag is 9 bytes.

57

4.7. CMF - COMPACT MENU FORMAT CHAPTER 4. MLX DOCUMENTATION

4.7.5.17 time-short

if <lctag:1>[4,0] == 0x10
<update:1>
<call-addr:2>
<var-addr:2>
<hours:1>
<minutes:1>

This component is the same as “time-long” but without seconds. The size of the code for this
component including thelctag is 8 bytes.

4.7.5.18 date-long

if <lctag:1>[4,0] == 0x11
<update:1>
<call-addr:2>
<var-addr:2>
<day:1>
<month:1>
<year:2>

day andmonth are unsigned one-byte integers, whileyear is an unsigned two-byte integer.
The corresponding memory block, which holds the current value, has a size of 4 bytes and the C
structure definition as shown in listing 4.3.

struct cmf_date_t {
unsigned char day;
unsigned char month;
unsigned short year;

};

Listing 4.3: Definition of cmfdatet

The size of the code for this component including thelctag is 10 bytes.

4.7.5.19 date-short

if <lctag:1>[4,0] == 0x12
<update:1>
<call-addr:2>
<var-addr:2>
<day:1>
<month:1>
<year:1>

This is the same as a “date-long” with the exception that the year is an unsignedone-byte integer.
The size of the code for this component including thelctag is 9 bytes.

58

CHAPTER 4. MLX DOCUMENTATION 4.7. CMF - COMPACT MENU FORMAT

4.7.5.20 switch

if <lctag:1>[4,0] == 0x13
<update:1>
<call-addr:2>
<var-addr:2>
<length:1>
<nswitch:1>
<on-char:1>
<off-char:1>
<default:4>
<string:n+1>
...
<string:n+1>

length is an unsigned one-byte integer that gives the size in number of bytes of thiscomponent
including thelctag . nswitch is also an unsigned one-byte integer and defines the number of
valid switches/bits and help strings. The maximum can be 32.on-char andoff-char are both
characters to be displayed for a bit in the appropriate state. The string array at the end of the struct
defines a help string (Pascal style) for each bit.default , which is the switch’s initial value, and
the corresponding memory block are 4-byte arrays with the first 8 switches/bits in the first byte,
the next 8 switches/bits in the second byte and so on. Due to the fact that someplatforms don’t
support 32-bit data types, this component has not been implemented as an unsigned four-byte
integer. Nevertheless, we can easily access each bit with the C code given in listing 4.4.

unsigned char * mask = &mem_block_of_switch[0];
for (i = 0; i < 32; i++)
{

byte_index = i / 8
bit_index = i % 8
if (mask[byte_index] & (1<<bit_index))

; /* bit is set */
else

; /* bit is not set */
}

Listing 4.4: Accessing each bit of a switch component

The size of the code for this component including thelctag is variable and defined in the
length field.

4.7.5.21 option

if <lctag:1>[4,0] == 0x14
<update:1>
<call-addr:2>
<var-addr:2>
<length:1>

59

4.7. CMF - COMPACT MENU FORMAT CHAPTER 4. MLX DOCUMENTATION

<nopts:1>
<field-width:1>
<default:1>
<string:n+1>
...
<string:n+1>

length and the string array at the end of the component’s code have the same meaning as within
a “switch”. nopts is an unsigned one-byte integer giving the number of options.default , the
initial value, and the corresponding memory block are unsigned one-byte integers being indexes
into the string array.field-width , an unsigned one-byte integer, gives the width in characters
of the longest string. The size of the code for this component including thelctag is variable and
defined in thelength field.

4.7.5.22 string

if <lctag:1>[4,0] == 0x15
if <lctag:1>[5] == 0 # line-comp is read-only

constant string
<string:n+1>

else # line-comp is read-write
<update:1>
<call-addr:2>
<var-addr:2>
<string:n+1>

The string component is somewhat special. If the component is not editable,then the value, a
Pascal string, is following immediately thelctag , and the size of the component’s code is the
length of the string plus two (length byte of the string +lctag). In this case, there is no relative
pointer and no corresponding memory block.

If the string is editable, the corresponding memory block has the length of the string plus one (the
length byte). The size of this component in this case is also variable and computed as ‘length-of-
the-string + 7’.

4.7.5.23 password

if <lctag:1>[4,0] == 0x16
<unused:1>
<call-addr:2>
<string:n+1>

This component is a password protected trigger. The ‘is-editable’ flag in<lcdtag:1> is always
set. But instead of changing the appearance of the component, an interpreter should ask for a
password, verify it, and if it was correct, call the installed callback handler which address is stored
at the location the relative pointercall-addr points to.

It is assumed that this component will be displayed as a ‘[P] ’. Its code size in bytes including the
lctag is the length of the password plus 5.

60

CHAPTER 4. MLX DOCUMENTATION 4.8. M2MELX.PY

4.7.5.24 trigger

if <lctag:1>[4,0] == 0x17
<unused:1>
<call-addr:2>

This component is essentially the same as a “password” with the exception that there is no pass-
word to be requested. It is assumed to be displayed as a ‘[X] ’. This component’s code size in
bytes including thelctag is 4.

4.8 m2melx.py

For programmers, who are already familiar with the M-Language and who want to switch tomelx,
this section may be of interest. Asmelxwas introduced to replace the M-Language, a script has
been written to convert M-Language documents tomelxdocuments, and thus, allow developers a
quick movement towards themlx compiler.

The converter script namedm2melx.py takes an M-file and creates an semantically equal menu
definition in themelxlanguage. Them2melx script can be started with or without parameters. In
the later configuration, the converter expects its input from stdin and printsthe result to stdout. If
started with the ‘-h ’ option, the message shown in listing 4.5 will be printed. As listed there, it is
possible to specify an input file and a filename where to write the result.

˜mlx% python m2melx.py -h
usage: python m2melx.py [-h] [-o <output-filename>] [<inp ut-filename>]

Listing 4.5: Command line options of m2melx

Note: The converter does no error checking, and assumes that the menu description given in the
M-Language is correct. If it isn’t, the result of the converter is undefined.

4.9 Writing extensions

In this section we will look at howmlx can be extended with custom line components. The
compiler was written in a manner that makes it not too hard to integrate a programmer’s own
components. However, some experience with DTDs, SAX, and Python programming is required.
An understanding of CMF, which is described in section 4.7, is essential.

Due to the compactness of the output format, there is place for only eight newline components.
However, this should be enough. Before starting to make changes tomlx, we should investigate
whether it’s worth the trouble at all. We should try to realize our idea with an already implemented
component, because we need to consider that, besidemlx, also the byte code interpreter needs to
be extended, too.

Throughout this section we will introduce an example component called “checkbox” that actually
could be realized with anoption . However, ourcheckbox will produce fewer bytes. It will

61

4.9. WRITING EXTENSIONS CHAPTER 4. MLX DOCUMENTATION

have the four attributesblink, edit, update, andvnameas described in section 4.5.4.1. Of course it
will have a defaultvalue. We will assume that an interpreter will display the component as ‘(x) ’
(checked) or ‘(o) ’ (unchecked), and thus use only three characters for it on the screen. When
used a lot in a menu definition, the new component will save a considerable amount of memory in
comparison with anoption . The byte code for acheckbox will be the same as for “uchar dd”
which is described in section 4.7.5.1.

4.9.1 Extending the language

At first we need to extend themelxlanguage which is defined throughmelx.dtd . A copy of this
DTD is given in section 4.10. The XML parser, precisely spoken the event handler, used bymlx is
written in a manner that makes it simple to handle empty elements, however, nesting them is also
possible. To introduce a new component inmelxwe need to add an element definition to the DTD.
Listing 4.6 shows what we would append tomelx.dtd .

<!ELEMENT checkbox EMPTY>
<!ATTLIST checkbox %common-lcomp-attrs; value CDATA (1|0) "0" >

Listing 4.6: Definition of a checkbox element

The trick with the shown definition is that it uses the%common-lcomp-attrs; attribute entity
already defined inmelx.dtd . By using this entity, the new element gets attributes that are
common to almost all components. Additionaly, avalueattribute that can hold either ‘1’ or ‘ 0’
was introduced to thecheckbox . It has a default value, and thus the menu programmer will not
need to explicitly specify this attribute.

To use the new element, it must be made available as a child ofline-format . The element’s
name must be put into the list of valid children of the container. In our example,the definition of
line-format , after insertingcheckbox , would look like in listing 4.7.

<!ELEMENT line-format
(hfill|integer|string|counter|option|switch|

time|float|date|trigger|checkbox)+ >
<!ATTLIST line-format id ID #REQUIRED >

Listing 4.7: Extended line–format with checkbox

Now we are allowed to writemelxdocuments withcheckbox es. The compiler will not complain
about the new element when validating, however, it will still do nothing with it, but quietly ignore
it. The next step is to write a byte code generator forcheckbox es and then couple it with the
parser.

62

CHAPTER 4. MLX DOCUMENTATION 4.9. WRITING EXTENSIONS

4.9.2 Writing a byte code generator

The source code ofmlx has a file calledcmf.py which implements the byte code generators for
all components. In this file we can find the classLc which is the parent of all generators and which
we will use to inherit our new class from.

Before we begin to implement the inherited class, we should make the following change toLc .
It holds a dictionary calledident_id_map which represents a mapping between logical names
and IDs. These IDs are thelctag ’s first five bits as described in section 4.7.5. In our example,
we will add a ‘checkbox’ to the dictionary with the next free ID as shown in listing 4.8.

ident_id_map = {’uchar-dd’ : 0x00,
...

’trigger’ : 0x17,
’checkbox’ : 0x18 } # new

Listing 4.8: Extended identid map with checkbox

Now we need to subclassLc . We will call the new classLcCheckbox , its implementation is
show in listing 4.9, but let’s first take a look at the meaning of the methods to be implemented:

init In the constructor of the subclass the first thing to do is to call the constructor of the
base class with appropriate parameters.

alloc addrs As the documentation ofLc says, this method gets called before the byte code
generation and provides a chance to the component to letmlxknow that it needs some mem-
ory space in RAM. When this method is called, a component only registers an allocation
request. After all components have registered their requests,mlx begins to compute the ad-
dresses, and then they can be retrieved. In ourcheckbox example, the component will
register a one-byte data type for the current value and a function-address data type for the
address of a handler which is to be called after the component has been edited.

bc When this method gets called, the byte code generation process is active. This method is
assumed to return a list of bytes that represents the byte code for a component. The imple-
mentation should always use the passedemitter object to output the byte list. Addresses
of memory blocks, which were registered in thealloc addrs method, can now be re-
trieved via the passedallocator object.

str len This method is intended to answer the following question: “How many characters
does this component consume in one line at most?”. Having this information,mlxcan warn
the user if a line contains to many components which will not completely fit into it. In the
checkbox example, this method will simply return the constant3.

class LcCheckbox (Lc):
def __init__ (self, value, blink, writable, update, vname) :

63

4.9. WRITING EXTENSIONS CHAPTER 4. MLX DOCUMENTATION

‘value’: the default value of the component
‘writable’: should the user edit the component?
Lc.__init__ (self, blink, writable, update, vname)
self.default = value

def alloc_addrs (self, allocator):
self.reg_vname = \

self.vname or allocator.generate_new_name ()
put_into_header = self.vname and True or False
register a one byte block for the current value
allocator.reg_var (self.reg_vname, ’unsigned char’, \

1, None, put_into_header)
allocator.reg_cb (self.reg_vname, None, put_into_heade r)

def bc (self, emitter, allocator):
return emitter.uchar (self.lctag (’checkbox’)) + \

emitter.uchar (self.update) + \
emitter.uint2 (allocator.cbaddr (self.reg_vname)) + \
emitter.uint2 (allocator.varaddr (self.reg_vname)) + \
emitter.uchar (self.default)

def str_len (self):
return 3

Listing 4.9: Implementation of class LcCheckbox

There are some things which appear to be magic but simply happen in the base class. The call
of the base class constructor makes certain member variables available, namely self.vname ,
self.writable , self.update , andself.blink . They are set to its equivalent construc-
tor parameters. There is one special member variable calledself.last which is set toFalse
by default and indicates whether a component is the last one in a menu line. Generally, we don’t
need to access this variable. The call to theself.lctag method returns thelctag with the
proper component ID and flags. This works because we have insertedthe string ’checkbox’ to-
gether with the ID into theident id map dictionary and the flag variables are available to the
base class.

4.9.3 Extending the parser

Finally, the parser needs to be extended and everything is done. In the filehandler.py we will
find the classMelxHandler that handles SAX events upon parsing the XML input file. For our
example, we need to handle the beginningcheckbox tag. WhenMelxHandler is called to
handle this start tag, it passes the request to thedo start checkbox method if it can be found.
Looking at the already implementeddo start integer method, we can use it as a template
for the new component and end up with something like shown in listing 4.10.

def do_start_checkbox (self, rname, attrs):

64

CHAPTER 4. MLX DOCUMENTATION 4.10. MELX.DTD

lc = cmf.LcCheckbox (atoi (attrs[’value’]), \
*self.def_lc_attrs (attrs))

self.__cur_lf.append (lc)

Listing 4.10: Implementation of dostart checkbox method

That’s all! We only need to create an instance of the new line component classand append it to
the component list of the current menu line which is represented through theself. cur lf
variable.

4.9.4 Summary

Now, that we havemlx working with our own extension, let’s summarize the steps.

1. Extend the language by inserting an element definition intomelx.dtd and extending the
line-format element.

2. Write a component class incmf.py which subclassesLc and generates the byte code for
the new component.

3. Extend theMelxHandler class inhandler.py with a do start element-name
method which creates an instance of the new component and inserts the object into the
component list of the current menu line (line-format).

So far so good. Now we will probably want to extend the interpreter libraryor implement a
program that can handle the new component beside the others.

4.10 melx.dtd

Here is the content ofmelx.dtd which defines the input language tomlx.

<!ENTITY % blink-attr "blink (1|0) ’0’">
4 <!ENTITY % edit-attr "edit (1|0) ’0’">

<!ENTITY % update-attr "update CDATA ’0’">
<!ENTITY % vname-attr "vname CDATA #IMPLIED">
<!ENTITY % common-lcomp-attrs

8 "%blink-attr; %edit-attr; %update-attr; %vname-attr;">
<!ENTITY % enable-vname-attr "enable-vname CDATA #IMPLIE D">

<!ELEMENT melx
12 (description, menu+, line-format*) >

<!ELEMENT description
(delay-to-top, delay-password, delay-help, top-menu) >

16

65

4.10. MELX.DTD CHAPTER 4. MLX DOCUMENTATION

<!ELEMENT delay-help EMPTY >
<!ATTLIST delay-help value CDATA #REQUIRED>

20 <!ELEMENT delay-password EMPTY >
<!ATTLIST delay-password value CDATA #REQUIRED >

<!ELEMENT delay-to-top EMPTY >
24 <!ATTLIST delay-to-top value CDATA #REQUIRED >

<!ELEMENT top-menu EMPTY >
<!ATTLIST top-menu ref IDREF #REQUIRED >

28

<!ELEMENT menu (const-string-line | line)+ >
<!ATTLIST menu id ID #REQUIRED

title CDATA #IMPLIED
32 password CDATA #IMPLIED >

<!ELEMENT line EMPTY >
<!ATTLIST line ref IDREF #REQUIRED

36 submenu IDREF #IMPLIED
%enable-vname-attr; >

<!ELEMENT const-string-line EMPTY >
40 <!ATTLIST const-string-line value CDATA #REQUIRED

submenu IDREF #IMPLIED
%blink-attr;
%enable-vname-attr; >

44

<!ELEMENT line-format
(hfill|integer|string|counter|option|switch|

time|float|date|trigger)+ >
48 <!ATTLIST line-format id ID #REQUIRED >

<!ELEMENT integer EMPTY >
<!ATTLIST integer

52 %common-lcomp-attrs;
type (dd|ddd|hh|sdd|sddd|

DDD|DDDD|DDDDD|HHHH|SDDD|SDDDD) #REQUIRED
value CDATA #REQUIRED >

56

<!ELEMENT string EMPTY >
<!ATTLIST string

%common-lcomp-attrs;
60 value CDATA #REQUIRED>

<!ELEMENT counter EMPTY >
<!ATTLIST counter

64 %common-lcomp-attrs;
type (integer|float) #REQUIRED

66

CHAPTER 4. MLX DOCUMENTATION 4.10. MELX.DTD

value CDATA #REQUIRED
min CDATA #REQUIRED

68 max CDATA #REQUIRED
step CDATA #REQUIRED >

<!ELEMENT switch (switch-item+) >
72 <!ATTLIST switch

%common-lcomp-attrs;
on-char CDATA "*"
off-char CDATA "." >

76

<!ELEMENT switch-item EMPTY >
<!ATTLIST switch-item

info CDATA #REQUIRED
80 value (1|0) #REQUIRED >

<!ELEMENT option (option-item+) >
<!ATTLIST option

84 %common-lcomp-attrs;
default IDREF #REQUIRED >

<!ELEMENT option-item EMPTY >
88 <!ATTLIST option-item value CDATA #REQUIRED

id ID #REQUIRED >

<!ELEMENT time EMPTY >
92 <!ATTLIST time

%common-lcomp-attrs;
hours CDATA #REQUIRED
minutes CDATA #REQUIRED

96 seconds CDATA #REQUIRED
type (short|long) "short" >

<!ELEMENT float EMPTY >
100 <!ATTLIST float

%common-lcomp-attrs;
value CDATA #REQUIRED
type (siif|siiif) "siif" >

104

<!ELEMENT date EMPTY >
<!ATTLIST date

%common-lcomp-attrs;
108 day CDATA #REQUIRED

month CDATA #REQUIRED
year CDATA #REQUIRED
type (short|long) "short" >

112

<!ELEMENT trigger EMPTY >
<!ATTLIST trigger vname CDATA #REQUIRED

67

4.10. MELX.DTD CHAPTER 4. MLX DOCUMENTATION

password CDATA #IMPLIED
116 %blink-attr; >

<!ELEMENT hfill EMPTY >
<!ATTLIST hfill char CDATA " "

120 count CDATA "0" >

Listing 4.11: The Melx Data Type Definition

68

Chapter 5

Implementation

This chapter discusses the implementation ofmexcandmlx, and will require an understanding of
the binary menu description in CMF format which is described in section 4.7. The analysis given
here is not meant to be a description of each line of the source code, but merely provide enough
information to get new programmers picking up the code and making changes toit, and possibly
contributing to further development of the project. We will concentrate on thebasic concepts, look
at the structure of the sources and discuss some tricky lines of code.

5.1 The Menu Interpreter

From the beginning on it has been tried to build a layered design of the code tomake it clear
and easy to maintain, although there have been made compromises, as the codeshould run under
restricted circumstances. Figure 5.1 outlines the dependencies between thesource files ofmexc.

m e xc.ccm f.c

m u t ils .cps t ring .c

CMF spe cifica t ion

Figure 5.1: Source code dependency ofmexc

Each source file implements a set of functionality that is used by the others. The CMF specification
is the description of the structure of a binary menu image. As shown,cmf.c relievesmexc.c of
having to know the details of the menu description.

Now, let’s step through the source files and show what functionality they provide. All file names
in this section are relative to the source code directory formexc. See Appendix B.

69

5.1. THE MENU INTERPRETER CHAPTER 5. IMPLEMENTATION

5.1.1 Thecmf Sub-Library

To abstract from the fact that a CMF formated binary menu image is actually anarray of bytes, and
to provide a more comfortable way for using a concrete CMF structure, general purpose code has
been implemented incmf.c andcmf.h . It has the advantage that changes in the structure needs
to be reflected only to this sub-library and don’t necessarily affect code using thecmf module.

Talking aboutcmf.c andcmf.h as a library isn’t correct, as the code isn’t released as such.
However, it could. The present text will refer to thecmf code as a sub-library to indicate that it
actually is a library, but as part of another library, namelymexc.

The header filecmf.h defines the public API of this sub-library. It consists out of numerous
constants, C macros, and function declarations as well as of data structures that reflect parts of the
menu byte code. Code that uses thecmf module should never access the byte code directly but
use thecmf API.

All public functions of thecmf API begin with the prefix ‘cmf_ ’. As the sub-library accesses
the binary menu image in read-only mode, the word ‘get ’ would be redundant and therefore has
been omitted in function names. The exported function can be categorized asfollows.

• Both functions,cmf init and cmf init ram, are special in the form that they are
used for initialization of the library and RAM variables defined through CMF.They op-
erate on the whole CMF structure. Another function that operates on the whole structure is
cmf first mtable which returns a pointer to the top-level menu table.

• Functions that begin with thecmf_mtable_ prefix are related to a given menu table only
and expect such an argument. They need to be passed a pointer to a menu table in the byte
code.

• Further, functions starting withcmf_lcomp_ concentrate on a line component and there-
fore expect as an argument a pointer such a structure in the byte code.

• There are a few more functions with start with the prefixcmf_ comp-nameand are meant to
be used with the appropriate line components.

These functions are accompanied by the following set of C macros:

• Macros starting with the prefixLDTAG* are meant to retrieve information from the line
descriptor tag associated with each menu line. They need to be passed the value of the tag.

• Macros starting with the prefixLCTAG* are meant to retrieve information from the line
component tag associated with each line component. They need to be passedthe value of
the tag.

Further the following byte code related definitions are provided bycmf.h :

• LC TYPE * definitions provide names for the numerical IDs of the currently understood
line components.

70

CHAPTER 5. IMPLEMENTATION 5.1. THE MENU INTERPRETER

• CMFMAJORVERSIONandCMFMINORVERSIONare dedicated to reflect the supported
CMF byte code version.

cmf.h also defines a structure for each supported line component. Such astruct is introduced
with a namelc_ comp-name_t . These structures reflect the byte code structures as they have
been defined in section 4.7. The advantage of them is that they can be “laid over” the menu byte
code and provide a very clear way to access it. As the type of a line component is determined
at runtime, the use of theunion calledlc t , which includes all line component structures, has
proven to be comfortable and simplifies the code at the same time. An example follows.

addr_t mtable;
addr_t mline;
lc_t * lc;

/* menu_code is the array holding the menu byte code */
if (cmf_init (menu_code))

return; /* initialization failed */

/* get the top-level menu */
mtable = cmf_first_mtable ();
/* there must be at least on menu table */
assert (mtable != NULL);

/* get the menu’s first line */
mline = cmf_mtable_mline (mtable);
/* each menu must have at least one menu line */
assert (mline != NULL);

/* get the line’s first component */
lc = (lc_t *)cmf_mline_lcomp (mline);
/* a menu line must have at least one line comp */
assert (lc != NULL);

if (LCTAG_TYPE (lc->common.lctag) == LC_TYPE_TIME_SHORT)
printf ("%02d:%02d\n", lc->lc_time.hours, lc->lc_time. minutes);

else if (LCTAG_TYPE (lc->common.lctag) == LC_TYPE_UCHAR_ DD)
printf ("Default value: %d\n", lc->lc_uchar.def);

Listing 5.1: Example for accessing a line component

The advantage of using thelc t union is that we don’t need to declare pointers for all possible
line components, but leave the dirty work to the compiler. It should be noted, that the returned
pointers of thecmf routines are pointers into the binary menu image. If that image is stored in a
read-only memory region, we must reference the pointers for reading only, not writing.

The implementation of the sub-library is fairly straight forward and well documented in the source
code itself, but let’s look at some points which may not be obvious immediately.

71

5.1. THE MENU INTERPRETER CHAPTER 5. IMPLEMENTATION

• As the individual line components in the byte code are not separated by a delimiter byte,
but merely following each other, it is necessary to know the size of the byte code for each
component to be able to jump from one to the next. However, some components consists of
a variable number of bytes and their exact sizes must be determined at runtime.

The functioncmf lcomp length , which returns the size of the byte code for a given line
component, uses a lookup table with the appropriate sizes. Whenever a fieldin this table
has the value of zero, the component is disassembled and its size computed.

• As explained in section 4.7.4, following theldtag , which is associated with each menu
line, there is a variable number of fields. These fields’ existence is determined by flags set in
the ldtag . To efficiently access these fields, or those that follow, theml submenu ofs
lookup table has been defined. It holds the offsets from theldtag , not including it, up to
the optional submenu field. Considering the first three flags of theldtag as a number, they
can be used to index the lookup table.

This method relies on the order of the flags and their association with the fields following
ldtag . However, CMF has been designed to provide this possibility of determining the
offsets and will not change this in future versions. Thus, this method, isn’t a hack1 as it may
look like at the first glance.

• cmf init ram initializes all memory regions specified by the menu byte code. There-
fore, it must traverse the menu table tree and iterate over all line components.This is
accomplished by traversing the tree structure recursively in depth-firstorder. When only a
limited amount of memory is available, recursion is critical. However, the implementation
of cmf init ram pays attention to not allocating too much space on the stack, and, in
general, the depth of a menu usually isn’t to deep to cause serious problems.

5.1.2 Handling Pascal-style Strings

The CMF specification introduces strings that are not zero-terminated, asused in the C language,
but preceded with a length byte.pstring.c implements a small set of functions for handling
Pascal-style strings. They all start with the prefixpstr_ .

PSTRLENandPSTRSTR, both being C macros, simply return the length and the pointer to the
first character of strings respectively. Although their definition is trivialand doesn’t save a
lot of work, there are two reasons why to use them:

a) Firstly, they introduce names for the operations. Further, they also indicate on which
object they operate. This leads to more readable code.

b) Should there be changes to the data type of the length value, for example increasing
its size to a two-byte integer, only changes to the macros would be necessary.

Both macros must be passed a pointer to a Pascal-style string.

1We refer to the word “hack” by its original meaning as stated in The JargonFile [12].

72

CHAPTER 5. IMPLEMENTATION 5.1. THE MENU INTERPRETER

pstr copy is equivalent tostrcpy , but operates on Pascal-style strings. It simply copies
its first argument to the place where the second argument points to. Having alength byte,
which can be directly accessed, usage of thememcpy or memmovefunctions2 would be
ideal and result in fast operation. However, as the code is targeted at embedded systems
where such system functions probably won’t be available, this routine copies the string one
byte after another.

pstr to r cstr (“Pascal to right-aligned C string”) is a service routine to copy the characters
of a Pascal-style string to a buffer and zero-terminate them. Furthermore, the resulting string
will be right-aligned within a width that the caller must specify along with the character to
use for padding. As with the previous function, it was decided against theuse of system
services likememcpyor memmove.

5.1.3 Utility Functions

General purpose utility functions has been put into the filemutils.c . Mainly, it implements
“number to string” conversion functions.

uchar *utorstr (uchar *buffer, schar w, uchar hex, uchar fil l, uint2 n);

utorstr converts the unsigned two-byte integern into a right-aligned C string representation.
buffer , a pointer to the memory region that will receive the string, must be at leastwbytes long.
w defines the width in which the resulting string will be right-aligned. Padding is done using the
fill character. Withhex being non-zero, the number is outputted in hexadecimal format. The
returned pointer isbuffer .

The implementation of this functions uses a trick on the hexadecimal output. For example, if we
should convert a 12 to its hexadecimal representation, we could do the following consideration:as
12 is greater than 9, subtract 10 from 12, and add the result to the character code of A to finally
receive the character C.On the other hand we could also think like this:as 12 is grater than 9,
add the ASCII code of the digit 7 to it, to receive the character C.The second method is obviously
faster, but it relies on the fact that the ASCII code of the digit 7 is smaller by10 than the ASCII
code of the uppercase letter A.

uchar *storstr (uchar *buffer, schar w, uchar fs, uchar fill , sint2 n);

storstr provides essentially the same service for signed numbers likeutorstr for unsigned
numbers. There is one exception.storstr cannot format its output in hexadecimal notation.
Instead it can be told, to force putting a sign in front of the number. Whenfs is non-zero, also
positive numbers will be accompanied by the sign.

uchar *ftorstr (uchar *buffer, schar w, uchar fill, float f) ;

2Seeman memcpyandman memmove.

73

5.1. THE MENU INTERPRETER CHAPTER 5. IMPLEMENTATION

ftorstr converts a float number to a C string. The output format uses asii.f template, with
s being the sign,i the digits before the decimal point, andf a digit behind the decimal point.
Depending on thewparameter to this function, thei in the template can grow. Thefs parameter
controls whether a sign will be outputted for positive floats.

The implementation uses some arithmetic and type conversion. It rounds the number to one digit
after the decimal point to display numbers like 42.29999999 as 42.3.

uchar get_switch_bit (uchar *mask, uchar bit);
uchar flip_switch_bit (uchar *mask, uchar bit);

get switch bit and flip switch bit provides access to bits of an array as introduced
by a switch line component. They expect a byte array and an index which addresses one bit
within the byte array. Figure 5.2 shows a switch bitmask along with the indexes ofthe bits. The

m a sk

0 -7 8 -15 16 -23 24 -31b its :

Figure 5.2: Bitmask of aswitchline component

implementation of both functions uses bit arithmetic operators. In case offlip switch bit , it
toggles a bit within the mask before it returns the bit’s new value.get switch bit just returns
the current value of a bit without altering the bitmask.

5.1.4 The Engine

The file mexc.c implements the core of the library and can be considered as its engine, most
functions of it are documented by using doxygen style comments. The module is dependent on
functionality provided with the already discussed files and the functions to beimplemented by an
application programmer as discussed in section 3.7.1.

5.1.4.1 Global Data

At the beginning of the source file there are global data definitions which wewill discuss next.
However, why is there global data at all, when good software design teaches us to avoid it. Of
course, it would be possible to avoid globals by allocating it on the stack and pass it as function
parameters to the code that operates on it. However, this would lead to the following disadvan-
tages.

• The code would get worse readable, as a lot of parameters would get passed around only to
be outreached to other functions further down the execution path.

74

CHAPTER 5. IMPLEMENTATION 5.1. THE MENU INTERPRETER

• The size of needed stack space would considerably grow as arguments tofunctions are put
on the stack. As the code is targeted at low memory systems, this is an essential considera-
tion.

Usage of globals in this project has *not* been established to serve as an optimization, although it
is more efficient to access data directly than referencing it with a pointer. Arguing with the advan-
tage of efficiency would definitely be a “premature optimization”3. All global variable names start
with the prefixg_ to indicate their globality and are declaredstatic to restrict their visibility to
mexc.c . The following paragraphs discuss some important global variables.

Display Context
As CMF doesn’t define references to parent menus and becausemexcrestores the state of the
display, termeddisplay context, when the user jumps back from a submenu, the context must
be stored before the user dives into a submenu. This is done in theg dc array accompanied
by g cur dc idx . The display context array is used as a stack.g cur dc idx indexes
the currently active entry. Therefore,g_dc[g_cur_dc_idx] was a frequently used
statement in the code, which has been replaced by theg cur dc pointer to reduce code size.
Each timeg cur dc idx is altered, the code makes sure thatg cur dc points to the cur-
rent table entry. Therefore we can assume that ‘g_cur_dc == &g_dc[g_cur_dc_idx] ’
is always true.

A display context itself, an entry in theg dc array, is a structure of typedisp context t .
Having the three pointers from a display context, which is shown below in listing5.2, the
display can be restored to the state before a submenu was entered.

53 typedef struct {
54 addr_t mtable; /* current menu table */
55 addr_t cur_mline; /* current menu line */
56 addr_t top_mline; /* menu line at the top the screen */
57 } disp_context_t;

Listing 5.2: mexc.c / 53–57 (the display context)

It is important to consider, that the implementation cannot rely on dynamic memory alloca-
tion, and therefore, a fixed amount of entries for theg dc array is allocated in the program’s
data section. The size of the array is finally determined by number substituted by the pre-
processor definitionMEXCMAXDISP CONTEXTDEPTH.

Blinking Components
Each time after the code went through all the menu lines to be displayed – this is in
disp draw mlines – theg do blink global variable gets set to one of the following
values with the appropriate meaning.

3The statement “Premature optimization is the root of all evil.” originates from Tony Hoare and has become famous
by Donald Knuth. It is a frequently used idiom in software development to darkly hint at problems which results from
optimizing at a too early stage. See also [13].

75

5.1. THE MENU INTERPRETER CHAPTER 5. IMPLEMENTATION

• A zero denotes that currently there is no component on the screen that should be blink-
ing.

• DOBLINK DRAWindicates that there is at least one component on the screen which
should blink, and that the next time the component will be drawn it should be visible.

• DOBLINK ERASEindicates that there is at least one component on the screen which
should blink, and that the next time the component will be drawn it should not be
visible.

Editing Components
Whenever the “edit state” is entered – this is when the user edits a componentand the
horizontal cursor is visible on the screen – the global variableg editing is set to non-
zero, otherwise it is zero.

Visibility of the Cursor
When the LCD cursor, a blinking black box, is currently set to be visible, then the global
variableg cursor visible is set to non-zero, otherwise to zero. Setting the cursor’s vis-
ibility should be done by using the two macrosPUT CURSORONandPUT CURSOROFF
to ensure not forgetting to set also the global variable.

102 #define PUT_CURSOR_OFF() do { \
103 g_cursor_visible = 0; \
104 mlcd_cu_off (); \
105 } while (0)
106 #define PUT_CURSOR_ON() do { \
107 g_cursor_visible = 1; \
108 mlcd_cu_on (); \
109 } while (0)

Listing 5.3: mexc.c / 102–109 (cursor visibility macros)

Both macros expand into ado .. while loop whose body will be executed exactly once.
This ensures that the two instructions inside the loop always stay together, even in a situation
like shown in listing 5.4.

if (foo)
PUT_CURSOR_OFF ();

else
PUT_CURSOR_ON ();

Listing 5.4: Example for using cursor visiblity macros

Already at compilation time it is clear, through the usage of the constant 0, thatthe loop
will never repeat, modern compilers will not produce code that reflects a loop, and thus no
overhead will be caused.

76

CHAPTER 5. IMPLEMENTATION 5.1. THE MENU INTERPRETER

Automatic Update
As specified in CMF, individual line components can request to be periodically updated,
and even specify the number of seconds after which their current valueshould be redrawn.
Currently,mexcredraws all menu lines on the screen, when theg update delay global
variable is set to non-zero. Strictly speaking, it redraws the lines after that many seconds
as specified byg update delay . This variable gets set to the minimal requested update
period while the code parses all menu lines to be displayed. When there are no components
on the screen that should be periodically updated,g update delay is set to zero. Thus,
it is ensured thatmexcwill not redraw the menu lines more often than necessary.

5.1.4.2 Initialization

Initialization of themexclibrary is done with a call tomexc init , its public interface is discussed
in section 3.7.4.2. As first, the routine initializes thecmf sub-library with a call tocmf init .
This makes the sub-system available upon successful return. In the other case – when the sub-
system initialization fails –mexc init simply returns with the error code from the sub-library
as shown in listing 5.6.

179 rv = cmf_init (mcode);
180 if (rv)
181 return rv;

Listing 5.5: mexc.c / 179–181 (initializing cmf sub–library)

After a few global variables have been set, the dynamic variables located inRAM, which are
associated with and defined in the given menu description, are initialized bycmf init ram.
From this point on, the application and the library can access those variable.

188 /* initialize the ram-variables */
189 cmf_init_ram (cmf_first_mtable (), ram, default_cb_hand ler);

Listing 5.6: mexc.c 188–189 (initializing RAM variables)

Thereafter, the number of lines and columns to be used bymexcon the screen is fetched by
calling theget mlcd lines andget mlcd cols functions and stored ing lcd lines and
g lcd cols respectively. It is important not to call any other display related routines at this
point, as the application programmer should not be restricted to having to initializethe display
before callingmexc init .

Finally, global variables that represent the display context are properly initialized and the display
context itself is set to be invalid as there is still no menu table open.

77

5.1. THE MENU INTERPRETER CHAPTER 5. IMPLEMENTATION

5.1.4.3 Opening Menu Tables

Having introduced the display context arrayg dc earlier, now we will see where this array is used.
There are three functions accompanied by a helper function calleddc open mtable to operate
ong dc .

Thedc open mtable function initializes the current display context entry ing dc with a given
menu table. As already mentioned, this entry can be referenced with theg cur dc pointer.
After having initialized the context’s variables, the whole screen is redrawnby using the
public functionmexc redraw .

Thegoto top menu function is responsible for jumping out of any submenus, thereby deleting
all saved display contexts, and open the top-level menu table by callingdc open mtable
with the appropriate menu table as its argument. However, when the currently open menu
table is already the top-level table and the table’s first menu line is at the top of the screen,
no redrawing of the screen has to be done, as this is the initial state. To force redrawing, a
non-zero value needs to be passed togoto top menu. As a side-effect this routine puts
the cursor off, if it is visible.

Thegoto submenu function expects a menu line as its argument, not a menu table, as the op-
tional submenu password is stored as part of a menu line. After assuring that the given menu
line is associated with a menu table and optionally verifying the password, the submenu is
entered. Thereby a new display context from theg dc array is activated and initialized by
callingdc open mtable as shown in listing 5.7.

1099 if (g_cur_dc_idx < (MEXC_MAX_DISP_CONTEXT_DEPTH-1))
1100 {
1101 g_cur_dc_idx++;
1102 g_cur_dc++;
1103 dc_open_mtable(cmf_mline_submenu (mline));
1104 }

Listing 5.7: mexc.c / 1099–1104 (Opening a new display context)

It is important that the code assures not to increaseg cur dc idx to a value equal to
or greater thanMEXCMAXDISP CONTEXTDEPTHto avoid corruption of global data by
writing beyond the end of theg dc array.

The go dc back function is the counterpart to the previously discussed one. It throws away
the current display context by decrementingg cur dc idx andg cur dc . Thereby, the
lastly used context becomes active again and is finally put on the screen. Listing 5.8 shows
how easy it is to restore an old display context due to used data type, a stack4.

4g dc is an ordinary array of a fixed size, but it’s the way the array is used thatmakes it being regarded as a stack.

78

CHAPTER 5. IMPLEMENTATION 5.1. THE MENU INTERPRETER

1020 if (g_cur_dc_idx > 0)
1021 {
1022 g_cur_dc_idx--;
1023 g_cur_dc--;
1024 mexc_redraw ();
1025 }

Listing 5.8: mexc.c / 1120–1125 (Restoring an old display context)

5.1.4.4 Thin Layer overcmf

mexc.c implements three functions on top of thecmf sub-library to provide the same function-
ality but respect the “enable value”of a menu line in a special manner. This value and its purpose
is described in section 4.7.4.

Becausemexcis targeted at small displays, it simply ignores disabled menu lines by not drawing
them on the screen. Whenever the next or previous menu line is fetched viamexc mline next
or mexc mline prev respectively, the returned menu line, if any, is guaranteed to be enabled at
the time of the function call. The third function,mexc mtable mline , fetches the first enabled
menu line of a menu table.

With these three routines the rest of code inmexc.c doesn’t have to know about dynamic menu
lines. In fact, when dynamic lines were introduced, the implementation of the three routines were
added and all calls tocmf mline next , cmf mline prev , andcmf mtable mline were
replaced with calls to theirmexc equivalents. No more work has been necessary to extend the
library.

5.1.4.5 Getting Key Presses

Key presses are fetched with themfpkey get routine which is described in section 3.7.1.2.
When there are no key presses that function immediately returnsMFPKEYNONE. However, it
would be desirable to have a function that waits for a key press and then returns it to the caller.
This is achieved with theget key function. When its argument is not zero, this function returns
MFPKEYNONEaftern seconds of no keyboard activity.

The implementation ofget key gives a perfect example of programming for embedded systems.
Listing 5.9 shows an easy to understand implementation, however, it requireshowlong to be a
32-bit integer to make the code work. But this requirement cannot be accepted, as the code is
targeted at platforms which do not have to support such a data type.

do {
key = mfpkey_get ();

if (MFPKEY_NONE != key)
break;

79

5.1. THE MENU INTERPRETER CHAPTER 5. IMPLEMENTATION

else
{

msleep (MEXC_GET_KEY_DELAY);

howlong += MEXC_GET_KEY_DELAY;
if (timeout && howlong >= timeout*1000)

break;
}

} while (1);

Listing 5.9: Possible implementation of getkey loop

The implementation inmexc.c is somewhat trickier, but needs only two one-byte integers to
achieve the same result. Figure 5.10 shows how it is done. As we stated,howoften is a one-
byte integer and this can cause a problem whenMEXCGETKEY DELAYis smaller than 4, as the
division would result in a value greater than 255 (modern compilers will compute the division at
compilation time as both operands are constants). This problem can be simply solved by making
howoften a two-byte integer. However, it is very unlikely that a smaller value than 4 will be
specified for the definition. Further on, modern compilers likegcc will warn us when there is a
problem with the comparison.

620 do {
621 key = mfpkey_get ();
622

623 if (MFPKEY_NONE != key)
624 break;
625 else
626 {
627 msleep (MEXC_GET_KEY_DELAY);
628

629 if (timeout && ++howoften == 1000/MEXC_GET_KEY_DELAY)
630 {
631 howoften = 0;
632 howlong++;
633 }
634

635 if (timeout && howlong == timeout)
636 break; /* key is MFPKEY_NONE */
637 }
638 } while (1);

Listing 5.10: mexc.c 620–638 (Implementation of getkey loop)

5.1.4.6 Displaying Matters

When the whole screen needs to be (re-)drawn, callingmexc redraw is appropriate. This com-
mand divides into two parts, drawing the header line withdisp draw hdr and drawing the menu

80

CHAPTER 5. IMPLEMENTATION 5.1. THE MENU INTERPRETER

lines withdisp draw mlines . Both functions operate on the current display context available
throughg cur dc .

disp draw hdr ’s implementation consists of drawing the title of the currently opened menu
table and drawing some information on the screen as described in section 3.3.The latter is realized
with thedisp draw hdr info function which is called also from other routines. The core point
of the separation is to reflect the need for redrawing the information fields,but not the title. The
implementation ofdisp draw hdr info consists mainly of assembling a string which reflects
the state of the current menu line, and finally drawing it into the upper right corner of the screen.

disp draw mlines is responsible for drawing as many menu lines on the screen as possible.
As a secondary target, this function updates some global variables; we willlook at this in a mo-
ment. Although the primary target is drawing, no calls to drawing routines can be found inside
the function’s body. To draw a menu line, it is necessary to disassemble it and draw the individ-
ual parts. This complicated task is accomplished by thedisp draw mline function which is
examined in a short while. Thus,disp draw mlines concentrates on its secondary target, and
directs the drawing requests to the menu line parsing routine. While the functioniterates over the
menu lines to be drawn on the screen, it collects some information and sets threeglobal variables
to reflect the requests defined in the menu. Listings 5.11 and 5.12 show the realization.

• Even before the iteration over the lines,g update delay is set to zero, because we ini-
tially assume there are no line components on the screen to be automatically updated. When
the individual menu lines are disassembled indisp draw mline the global gets appro-
priately set from the values of the individual line components.

• Further, while iterating,disp draw mline ’s return value is evaluated, which tells whether
the passed menu line contains blinkable line components. If the return value is non-zero a
local variabledo blink is set toDOBLINK DRAW. This local variable is evaluated after
the loop ends.

• g cur lcd line gets set to the index of the line on the display in which the current menu
line is displayed. This global is later used to determine whether scrolling the menutable is
necessary when navigating through it.

688 g_update_delay = 0; /* assume we do not need to update */
689

690 mline = g_cur_dc->top_mline;
691 for (lineno = FIRST_MENU_LINE_IDX; lineno < g_lcd_lines; l ineno++)
692 {
693 /* update g_cur_lcd_line */
694 if (mline == g_cur_dc->cur_mline)
695 g_cur_lcd_line = lineno;
696

697 if (disp_draw_mline (mline, lineno))
698 do_blink = DO_BLINK_DRAW;
699

700 if (mline)

81

5.1. THE MENU INTERPRETER CHAPTER 5. IMPLEMENTATION

701 mline = mexc_mline_next (mline);
702 }

Listing 5.11: mexc.c / 688–702 (determining whether to blink)

The evaluation of thedo blink local variable is given in listing 5.12. It simply setsg do blink
to zero if there are no components on the screen that should blink. If thereare such components,
the value gets toggled fromDOBLINK DRAWto DOBLINK ERASEand vice versa.

709 if (!(g_do_blink && do_blink))
710 g_do_blink = do_blink;
711

712 if (g_do_blink)
713 g_do_blink = ˜g_do_blink;

Listing 5.12: mexc.c / 709–713 (setting gdo blink)

The already mentioneddisp draw mline function is quite long because it implements the
rendering for each line component to the screen. Though, there is little to say about it. To be
efficient, this routine allocates a buffer of lengthg lcd cols and renders all components of the
given menu line into it, mainly using routines discussed in sections 5.1.3 and 5.1.2.Finally, af-
ter all components are rendered in the buffer, it is written all in once onto thescreen by calling
mlcd wrstrxy . If the passed menu line pointer is NULL, thenmlcd clrln is used to wipe
out everything that was before in the display line index by the passedlineno argument. As
a side effect this function sets theg update delay global variable. Listing 5.13 shows the
code.update val is the minimal update interval beside zero, that was extracted from the vis-
ited line components. When all components of the given menu line have an update value of zero,
set update is zero, otherwise non-zero. The globalg update delay gets set to a new up-
date value only when the new value isn’t zero and is smaller thang update delay . Because
disp draw mlines sets the global to zero, the variable will be zero if there are no compo-
nents on the screen which should be periodically updated. On the other hand, when there are
such components, the variable will define the minimal update interval among components to be
updated.

976 if (set_update && (!g_update_delay || (g_update_delay > up date_val)))
977 g_update_delay = update_val;

Listing 5.13: mexc.c / 976–977 (setting gupdatedelay)

5.1.4.7 Editing Line Components

Almost over a half of the code inmexc.c deals with editing line components, however, no great
complexity hides behind it.

The functionedit cur mline , which is called when the user requests to do so, is the first
point to look at. After entering the function, the global variableg editing is set to non-zero to

82

CHAPTER 5. IMPLEMENTATION 5.1. THE MENU INTERPRETER

indicate the current state of the library. Beforeedit cur mline returns to the caller, this global
is set to zero again. A loop over the line components of the current menu line isstarted. Whenever
an editable line component is found, a specific function which can handle thecomponent’s type
is called and takes control over editing the specified component. We will continue to refer to
these special routines as “edit functions”. After an edit function returns, the callback handler
associated with the component gets called, if there is one, and the loop continues until it reaches
the last component. However, there is one exception to the described flow of execution! When
an edit function returns a non-zero value, looping over the rest of the components is aborted, and
the goto top menu functions is called beforeedit cur mline returns. To understand the
reason of this behavior we need to know what it means when an edit function returns a non-zero
value. It simply signalizes that a timeout occurred and that the library shouldreturn to the top-level
menu table.

There are a couple of edit routines which produce no side effects on global data except of putting
the cursoron andoff usingPUT CURSORONandPUT CURSOROFF. Their implementation is
straight forward and should not be hard to understand.

5.1.4.8 The Main Loop

mexc loop is the library’s main loop. Once started, the routine returns only when it fetches the
MFPKEYQUIT MEXCLOOPkey press. The functionmexc init must have already been called
whenmexc loop starts execution. At this point also the display must have been initialized.

The first steps of the function are to usePUT CURSOROFF to hide the cursor, and to initialize
the current display context with the top-level menu table using the discusseddc open mtable
routine. Then the loop itself is started. Inside it, a key press is fetched, andthe appropriated action
is carried out. Fetching a key press is done usingget key which takes a number of seconds to
wait as long as no key press occurs. The interesting part of the main loop isdetermining the value
that is to be passed toget key , and handling the timeout. As listing 5.14 shows,delay is set to
the minimum of three values. Zero is handled in a special way, all three value have to be zero to
getdelay set to 0.

223 delay = g_prolog->delay_to_top;
224 if (g_update_delay)
225 delay = delay ? MIN(delay, g_update_delay) : g_update_dela y;
226 if (g_do_blink)
227 delay = delay ? MIN(delay, MEXC_BLINK_INTERVAL) :

MEXC_BLINK_INTERVAL;

Listing 5.14: mexc.c / 223–227 (Determining timeout value)

Whenget key returns withMFPKEYNONE, a timeout occurred. The function waited fordelay
many seconds but got no key press to report. Handling the timeout event issimple due to the
preparations. When it’s time to go to the top-level menu table, the code callsgoto top menu.
Otherwise, when there are components to blink or to be updated, the the menu lines are redrawn
usingdisp draw mlines .

83

5.2. THE MENU COMPILER CHAPTER 5. IMPLEMENTATION

5.2 The Menu Compiler

mlx, the menu compiler, is written in two layers. The first processes the compiler’sinput, an XML
document, and creates a data structure, a tree, which is need when the second layer computes the
output, a binary data described by CMF. These two layers are controlled by a small application
which provides a command line interface.

Due to the nature of object orientation, in which mannermlx is written, the data structure created
by the first layer is actually represented as the second layer. However,this doesn’t change the
design. In the following discussion we will look at the two layers and also the small application
controlling the steps necessary to produce the program’s output. We won’t step into each detail,
but provide enough information to get an idea of how to read themlx source code.

All files names in this section are relative to the source code directory ofmlx. See Appendix B.

5.2.1 Byte Code Generating Layer

As it will help to understand the first layer, let’s discuss the second one first. This layer is com-
pletely implemented in the filecmf.py and consists of 16 classes. While three classes are purely
used to implement helper objects, the rest of them reflects all parts of a menu hierarchy. Let’s
introduce the helper classes first.

CmfError serves to report errors. It subclassesException as suggested in [14]. Whenever
an error within thecmf module occurs, an exception of this type is raised. Catching this
exception is up to the caller of the appropriatecmf code.

ByteListEmitter implements a byte code generator for low level data types, namely inte-
gers, floats, and strings. It is this class, that is responsible for producing Pascal-style strings.
An object of this class is initialized with one boolean value and tells whether the produced
byte code for the data types is to be in big- or little-endian. Listing 5.15 shows how this
class can be used and what it produces.

˜mlx% python
>>> import cmf
>>> be = cmf.ByteListEmitter(True) # big-endian
>>> le = cmf.ByteListEmitter(False) # little-endian
>>> be.int2(-1234)
[251, 46]
>>> le.int2(-1234)
[46, 251]
>>> be.uint2(0xFEFF)
[254, 255]
>>> le.uint2(0xFEFF)
[255, 254]
>>> be.string("hello, world")
[12, 104, 101, 108, 108, 111, 44, 32, 119, 111, 114, 108, 100]

84

CHAPTER 5. IMPLEMENTATION 5.2. THE MENU COMPILER

>>> le.string("hello, world")
[12, 104, 101, 108, 108, 111, 44, 32, 119, 111, 114, 108, 100]
>>> be.float4(12.4)
[65, 70, 102, 102]
>>> le.float4(12.4)
[102, 102, 70, 65]

Listing 5.15: Using ByteListEmitter class

MemAllocator isn’t complex as it may seem at the first glance. An object of this class ab-
stractly represents a continuous memory region in which variables have to bestored. The
user of an object of this class firstly feeds the allocator with variables to be put into the
memory region, this is also called registering variables, and finally lets the object compute
the variables’ offsets within the region. Due to this approach, optimization to thelayout
of the memory addresses can be applied. Both algorithms, non-optimizing and optimizing,
for computing the final offsets are implemented in thealloc method. The optimization
algorithm is quite easy, although its realization is somewhat tricky. Listing 5.16 outlines the
basic idea.

repeat as long as there are variables to process:
* get next variable to process
* is there a memory gap into which the variable fits?

-> yes:
* put the variable into the gap
* remove this gap from the ’gaps list’

-> no:
* allocate space for the variable at an aligned

offset at the current end of the memory
* is there now a new gap due to the alignment?

-> yes:
* put the gap into the ’gaps list’

Listing 5.16: Memory optimization algorithm

The rest of the classes is used to create the hierarchy of the menu and produce the proper byte
code. Such asByteListEmitter can produce byte code for basic data types, the classes to
be introduced can produce the byte code for more elaborate data like a line component or a menu
line. Thereby, the individual parts of the menu hierarchy are covered by individual classes.

Cmf represents the whole menu. It is the class that outputs a menu description as specified in
section 4.7. The complexity is divided and partly shifted down towards other classes. Thus,
the implementation is pretty easy. It only knows how to produce the byte code ofan CMF
prolog as described in 4.7.2 and 4.7.3, and directs the rest of the work to theonly menu table
it references, aMenu object which represents the top-level menu table.

When theCmf.bc method is called, the caller requests the byte code for the menu and the
machinery to produce it is started. It is done in two cycles.

85

5.2. THE MENU COMPILER CHAPTER 5. IMPLEMENTATION

Firstly, aMemAllocator object is created, and the top-level menu table’salloc addrs
method is called. This will cause a complete population of the allocator object with variable
requests. Then the addresses are computed by the object’salloc method.

303 self.menu.alloc_addrs (alloc)
304 alloc.alloc ()

Listing 5.17: cmf.py / 303 –304 (Generation of variable addresses)

The second step consists of producing the byte code itself. This is simply done by collecting
the CMF prolog’s parts into a list using anByteListEmitter object and afterwards call-
ing the top-level menu table’sbc method. The returned result is appended to the produced
prolog.

Finally Cmf.bc returns with the byte code along with the allocator object, as beside the
addresses, this object holds also other valuable information thatmlx will write into one of
the generated files.

Menu is a more complicated class and presents a single menu table. It holds a list of menu lines,
a title, and an optional password for the menu table it represents. As a menu table itself has
no variables to allocate, itsalloc addrs method simply passes the request further down
to each menu line of the table.

The complexity of theMenu.bc method originates from the fact that references – refer-
ences are offsets within the byte code – are needed at a level at which even the length of
the individual parts isn’t known. Thus, the first thing to do in this method is to compute the
length of all menu tables by callingbc len on each. Then the byte code itself is generated
according to the CMF specification. As far as a menu table is concerned, thismainly con-
sists of producing the menu table’s title, its menu lines, and optionally outputting padding
zero bytes to align the menu lines on non-even offsets. The byte code of themenu lines is
simply requested from theMenuLine class objects. Then, when theMenu object is the
top-level menu table, thebc method of the other menu tables is called, and the returned
byte code is appended to the already generated list of bytes.

The methodbc len simply accumulates the size of all parts of a menu table. This includes
the table’s title, the optional padding zero bytes, and the length of all menu linesinside a
menu table.

MenuLine , a class for representing the container for line components, holds a list of those and
a reference to an optional menu table, also referred to as submenu in this context. If a menu
line should be dynamically disabled/enabled, itsenable vname member variable has a
name for the variable to be allocated using aMemAllocator .

Thealloc addrs method registers the optional “enable” variable, if there is one. Then it
passes the request to all line components of the menu line and also to the optional submenu.

The next method in the process of the byte code generation is the invocation of thebc len
method. It gets called byMenu.bc len . The length of the byte code for a menu line

86

CHAPTER 5. IMPLEMENTATION 5.2. THE MENU COMPILER

is simply computed by accumulating the length of all components of a line, this includes
the fields shown in figure 4.3 on page 51 and the line components itself. The length of the
line components is retrieved as the length of the list of bytes which each component object
produces. Thus, at this point, the byte code for each line component is generated. To avoid
generating the byte code again, later in thebc method, it is stored in thebc len cache
variable. This works, because line components don’t need any references which are avail-
able only at the time of a call to thebc method.

Due to the work already done by thebc len method,MenuLine.bc ’s implementation is
really simple. All it does is generating the bytes for fields shown in figure 4.3 and appending
it to the already generated byte code stored in thebc len cache member variable. This
is the byte code for the line components of the line.

Lc is the base class for those implementing the individual types of line components.This class is
not meant to be instantiated. However, as the Python language does support neither abstract
classes like C++ nor interfaces like Java,Lc is a proper class providing just empty versions
of the methods to be overwritten by subclasses. In fact, these method versions raise an
exception whenever they are called, thus indicating the abstractness. Subclasses ofLc must
overwrite three methods, namelyalloc addrs , bc , andstr len . Their meanings are
explained in the documentation string of theLc class and in section 4.9.2.

The advantage ofLc is to bundle common functionality of all line components to one class.
Thelctag method, has all necessary information to produce thelctag byte as introduced
in section 4.7.5. Theident id mapdictionary brings a little bit of clarity into the jungle
of the IDs for line components and enables callers of thelctag method to pass a name
instead of a numerical value. Thus, the numbers are concentrated at oneplace in the code
and are not bound to a concrete implementation of a line component. This allows reason-
able management to the logical order of line components and allows to optimizeswitch
constructs in the C source code of themexclibrary.

What we haven’t mentioned yet, is the way aCmf object with a menu hierarchy is created. This is
the job ofmlx’s first layer which is explained next.

5.2.2 Input Processing Layer

Processing the input of themlxcompiler is encapsulated in the filehandler.py which provides
the classMelxHandler . However, the filesnonvalhandler.py and valhandler.py
construct a thin layer over the implementation ofMelxHandler , each on its own. Both files
provide classes which are subclassed fromMelxHandler and another class. Figure 5.3 shows
an inheritance diagram. Depending on the--dont-validate option tomlx, only one of the
subclassed handler classes is used and determines the functionality of the XML parser. As its
name suggestsValMelxHandler validates the input document against a referenced DTD, while
NonValMelxHandler doesn’t. It may be surprising that both classes have been implemented
in separate files and not put together into one. This has been done to avoidloading of modules

87

5.2. THE MENU COMPILER CHAPTER 5. IMPLEMENTATION

Me lxHa nd le r

Va lMe lxHa nd le r NonVa lMe lxHa nd le r

xm l.pa rse rs .xm lp roc.App lica t ion xm l.sa x.ha nd le r.Con te n tHa nd le r

Figure 5.3: Inheritance ofValMelxHandler andNonValMelxHandler

which are not needed at runtime, and thus reduce the overhead of the loading, which can even on
modern machines take a considerable amount of time.

Both classes,ValMelxHandler andMelxHandler , implement a subset of the SAX API, a
method and specification for how to parse XML documents. It has been decided against DOM,
another API specification for parsing XML documents, to reduce the memoryfootprint ofmlx. As
the data to be read is stored in a custom data structure, it is not necessary tostore it also in a DOM
tree.

However, as both classes have to provide the same core of functionality, all common code has been
put into theMelxHandler class. Actually, the other handlers don’t implement any functionality
at all, they simple map calls from the appropriate parser to theMelxHandler class.

To understand the structure ofMelxHandler we need to be aware of the fact that a SAX parser
calls certain methods. As far asMelxHandler is concerned, there are three methods of interest.

• handle start tag gets called for each starting XML tag. Along with the name of the
element, the method gets also the element’s attributes.

• handle end tag is called for each ending XML tag. As there is no other information,
only the name of the element is passed to the method.

• set locator gets called with an object that is to be stored for later use. This object, a
locator, can be asked to give the end position of a SAX event, e.g. in the start or end method.
The handler uses it mainly for providing line numbers when reporting errors and warnings
about the processed document.

When we closely look at the implementation of the first two methods, we will detect that they
try to find an appropriate method and call it, if it is available. This is done using the powerful
introspection tools5 of Python. Listing 5.18 shows thehandle end tag method. Thus these
methods function only as a redirector of the work to be done.

260 def handle_end_tag (self, name):
261 # try to call a specific method
262 fn = ’do_end_’ + name.replace(’-’, ’_’)

5A very good introduction to thehasattr andgetattr functions is given in [15].

88

CHAPTER 5. IMPLEMENTATION 5.2. THE MENU COMPILER

263 if hasattr(self, fn):
264 getattr (self, fn)(name)

Listing 5.18: handler.py / 260–264 (Using Python’s introspection tools)

As we can learn from listing 5.18, in the case of an end tag, the method to be called must be
nameddo end element-name. In the case of a start tag, it isdo start element-name.
Thereby, all dashes in the element’s name are converted to underscores. Thus the real work of
processing the compiler’s input is handled by individual methods, if they are defined. This is an
very elegant way which allows incremental development6.

Although it would be possible,MelxHandler does not check the structure of the input stream,
which is defined by the DTDmelx.dtd . It simply relies on correct syntax of the parsed docu-
ment. Using validating parsers, likexmlproc , checking the syntax is done by the parser, and the
handler can concentrate on the actual work, creating a tree structure for use in thecmf module.
The following paragraphs will explain the basic steps. Nevertheless, the study of the source code
will be necessary to understand the handler.

When the “mexc” element starts, this is the root element of a menu description in themelx lan-
guage, the handler’sdo start melx method gets called, which creates aCmf object and stores
it in the member variablecmf . This object needs to be filled with menu tables and those in turn
with menu lines and so on. When the end tag of the element is fetched,do end melx is called,
which assumes the object stored in thecmf member variable to be properly filled with the menu
hierarchy as described by the input document. After doing some “post processing” of the created
structure there is nothing more to do by the handler. We will look later at what “post processing”
exactly does.

The next interesting element to be handled is “top-menu ”. Its arrival at the parser causes
do start top menu to be called. In this method, thetop menu member variable gets as-
signed a tuple of two values, a string that uniquely references something – inthis case a menu
table – and the current location in the input stream. Actually, we would like to store aMenuobject
in the member variable, but we haven’t got the menu table’s definition yet. Whenever, we cannot
reference an object, because its description still hasn’t been read, wedo store a tuple instead of the
object. This tuple is called apending referenceand has to be replaced by the real object later.

The methodsdo start menu and do start line go hand in hand with each other. The
first creates aMenu object and stores it in the member variablecur menu. Additionally, the
created object is also stored in the dictionarymenus along with the location of its definition in
the source document.do start line creates aMenuLine object with two pending references
and appends it to the currentMenu object’smlines list – the currentMenu object is referenced
with the cur menu member variable. When a “menu” element ends,do end menu removes
the reference to the currentMenu object.

do start line format is similar to the “menu” handling method. Under cur lf a new
list is created and appended to thelfs dictionary. Child elements of a “line-format ” ele-

6By speaking of incremental development we want to say that the software can be developed and tested in small
iterative cycles on real data. The full meaning of the term “incremental development” is explained in [16].

89

5.2. THE MENU COMPILER CHAPTER 5. IMPLEMENTATION

ment create instances of subclasses ofLc and append them tocur lf . do end line format
simply destroys the reference to the current line format list hold incur lf .

Another interesting method isdo start hfill . In the case of a non-zero specified “count ”
attribute, it simply creates an appropriateLcString object and appends it to the current line
format list (cur lf). In the other case, no object but the pure character is appended to theformat
list, and additionally a reference to this line format list is appended to thelfs with hfills
list.

Having reached the end tag of the “melx ” element, there is the following data gathered, which
still needs to be processed in some way.

• top menu; a pending reference to aMenu object regarded as the top-level menu table.

• cmf ; aCmf object. Itsmenu member variable is stillNone.

• menus; a dictionary ofMenu objects with the location of their definitions in the source
file. Further, eachMenu object’s mlines member variable holds a list ofMenuLine
objects. If these objects’lcs member variable is a tuple, it is a pending reference to a list
of line components. Also, if these objects’submenu member variable is a tuple, it is a
pending reference to aMenu object regarded as a submenu.

• lfs ; a dictionary of lists of line components. Each list is accompanied by the locationof
its definition in the source file (“line-format ” element).

• lfs with hfills ; a list of references to lists stored in thelfs dictionary. These
referenced lists contain an “hfill” which needs to be expanded.

do end melx , shown in listing 5.19, calls several methods which perform post processing tasks
on the above listed data. The names of the calls speak for themselves. Actually, only the calls
to expand hfills and fix pending refs are necessary. The others can be regarded as
optimization or error checking processing. Afterdo end melx returns, thecmf member variable
references a properly initialized data structure, which now can be passed to thecmf module to
generate the byte code.

274 def do_end_melx (self, rname):
275 self.expand_hfills ()
276 self.concatenate_const_strings ()
277 self.check_line_widths ()
278 self.fix_pending_refs ()
279 if not self.has_errors():
280 self.check_for_endless_loops ()

Listing 5.19: handler.py / 274–280

90

CHAPTER 5. IMPLEMENTATION 5.2. THE MENU COMPILER

5.2.3 The Controller

To combine the two layers into one application, the filemlx.py implements a command line
interface for the user and performs all necessary work to produce thedesired result using thecmf
and handler modules.

Parsing command line parameters is solely done with thegetopt module from the standard
Python library. This module’sgetopt function supports the “same conventions as the UNIX
getopt() function” [17]. It provides a standard behavior for reacting againstbadly specified
parameters and allows the application to keep the code for evaluating the parameters small.

After calling parse file , which results into a call to the first layer, the returnedCmf object, if
notNone, is directed to generate the byte code, this is the invocation to the second layer. If every-
thing goes alright, the byte code generation routine returns a list of bytes along with an appropriate
MemAllocator object. The object contains computed addresses of variables allocated for the
menu description, theirs synonyms, and some other information about each.Depending on what
the user specified at the command line, the byte code list and theMemAllocator object are used
to produce the compiler’s output.write c header , write h header , andwrite binary
are responsible for this. Their implementation is pretty easy.

The most interesting part ofmlx.py is the implementation ofparse file . Python allows to
dynamically load modules, and this in turn allows the routine to be written for use withdifferent
modules without the requirement of having all the modules installed. Only those,that are going
to be used at runtime, are needed. If the routine is told to validate the input document, it tries to
import 7 thexmlval module from thexmlproc 8 distribution. Then a parser object is created
along with an object of the classValMelxHandler . This object is registered to the parser,
and finally parsing is started. In the other case, when a non-validating parser class from the
standard Python library is used, the steps are the same with the exception of instantiating the
NonValMelxHandler class and importing the appropriate modules instead ofxmlval .

7import is Python’s term for loading a module into one’s own application.
8More information aboutxmlproc can be found at [http://www.garshol.priv.no/download/software/xmlproc/].

91

Chapter 6

Conclusion

The goal of this work, to create a programming framework for writing user interface applica-
tions targeted at embedded systems, and its realization have revealed a great insight into different
domains of development. Design of binary data formats, understanding the XML technology, de-
sign of compiler like programs, and the design of libraries as well as writing source code for low
memory systems are only a few subjects addressed by this work.

6.1 Summary of Achievements

With mlx/mexc, a complete rewrite and stable version of the original idea was created. It serves as
a base for further development and improvements, and replaces its predecessor MEL/MEX.

Extensive documentation to each part of the project was a secondary target, and was successfully
fulfilled to help new developers understand these parts, quickly adopt them to their own projects,
and possibly contribute tomlx/mexcitself.

Giving the outcomes of this work to the world as Free Software is an important milestone of the
mlx/mexcproject. Although there may be good reasons for keeping a software closed source, the
advantages of Open Source and Free Software formlx/mexcare too significant to be ignored. On
the one hand, it helps attracting attention by the fact that programmers are free to look at and
change the source code to their own needs. On the other hand, it assures that improvements by
individual programmers will be available to others.

6.2 Further Development

Although much efforts have flown in to the realized project, there is still enough room for extend-
ing it or contributing to it. Here are some thoughts about what would be desirable to have for the
mlx/mexcproject. They are ordered by their level of importance.

92

CHAPTER 6. CONCLUSION 6.2. FURTHER DEVELOPMENT

• Availability. Currently, the project is not hosted on any server which allowsdownload of
the sources. It would be essential to the success of the project to find a good place where
it can be made available to the public. Platforms like [http://www.berlios.de/] or [http:
//sourceforge.net/], just to mention a few, would be preferable, as they are well known and
provide great support for developing Open Source and Free Software.

• Reducing library’s size. By surrounding all code dealing with an individual line component
with preprocessor definitions like ‘CONFIGDISABLE COMPONENT NAME’, it would be
possible to exclude this code from the library at compilation time. Thus the application
programmer might be able to reduce the size of his application by excluding functionality
that is not needed.

• Configuration system. It would be nice to have a configuration system at compilation time
to let the application developer quickly choose what features to include in orexclude from
the library. GNU Autoconf/Automake would be a standard choice for example, however, it
would require a UNIX-like environment.

• Optimization. As with each project there is still enough room for overall optimization of the
whole project.

• Touchscreen interface. Themexclibrary currently uses only a keyboard interface as an input
device. In conjunction with a touchscreen it would be desirable to allow the user to tap on
a menu line and letmexcactivate it. Realizing this would concern only few changes to the
file mexc.c of mexc’s sources.

• Namespaces. Currentlymlx doesn’t support namespaces. The elements and its attributes
in the melx language are not defined under a specific namespace. Introducing one would
concern changes to some parts of themlx compiler and slight changes tomelx.dtd . The
benefit of namespaces would be the possibility to enrich menu descriptions withinformation
from other applications without interfering withmlx.

• Installation. Currently, there is no installation script for themlxcompiler. It would be nice to
have a distribution script, possibly using the “distutils” (see [http://docs.python.org/dist/
dist.html]) to do a system wide or user local installation of the program and its modules.

• Graphics. mlx/mexcwas designed to work mainly with non-graphics displays. However,
as graphical LCD become cheaper and are increasingly used, it would be desirable to have
the concept ofmlx/mexcalso with graphical features, like bitmaps and variable wide fonts.
Such extensions would probably be best not implemented as extensions tomlx/mexcitself,
but as another branch of the project.

• GUI melxeditor. Having an editor with a graphical user interface tailored to creatingmelx
sources could ease the creation of menu descriptions and would take awaythe burden of
learningmelx. Platform portable toolkits like GTK+, QT, Tk, or wxWidgets are preferable.

93

Appendix A

Utilized Software

With only a few exceptions, themlx/mexcproject and this documentation has been developed using
Open Source and Free Software exclusively. The following sections willshow which programs
and libraries have contributed to the development of this project.

A.1 Development environment

The main development took place under the Debian 3.1 (Sarge) GNU/Linux system with OSI1

certified Open Source software. Development of the DOS based simulator has been done under
the Microsoft Windows XP operating system.

As far as development tools are concerned, free programs in the meaningof “free speech, not free
beer”2 have been preferred.

• The GNU C compiler, released under the GNU GPL [9], was used to compile themexc
library, the curses and GTK+ based simulators. GCC is available for many platforms. Its
official home page is [http://gcc.gnu.org/].

• For debugging purposes GNU GDB, a powerful debugger, has beenused. It is released
under GNU GPL [9] and available from [http://www.gnu.org/software/gdb/gdb.html].

• To build native binaries for MS Windows with GCC, tools from the MinGW project have
been used. This project is located at [http://www.mingw.org/] and partially released into
public domain, under the GNU GPL [9], and under the GNU LGPL [7].

• Development of the Palm OS based simulator was done under use ofpilrc and the
prc-tools available for GNU/Linux and MS Windows systems. Both projects are re-
leased under the GNU GPL [9]. Also needed was the Palm OS SDK Version 4.0, which is

1“Open Source Initiative (OSI) is a non-profit corporation dedicated to managing and promoting the Open Source
Definition for the good of the community, ...” as stated at [http://www.opensource.org/].

2The exact phrase is “Don’t think free as in free beer; think free as in free speech.” and is given in [18].

94

APPENDIX A. UTILIZED SOFTWARE A.2. TYPESETTING AND DRAWINGS

not released under a license approved by OSI, but provided under the “Palm OS software de-
velopment kit software license agreement” available at [http://www.palmos.com/cgi-bin/
sdk40.cgi]. The presented license must be accepted to download the SDK.

• For development of the DOS based simulator the OpenWatcom C/C++ compiler products
have been used. These are released under the terms of the Sybase Open Watcom Public
License which is approved by the OSI. The web presentation of Open Watcom can be found
at [http://www.openwatcom.org/].

• Python, a modern and very popular programming language, was used to implement themlx
menu compiler. The Python interpreter is released under a GPL-compatible license and
presented on the web at [http://www.python.org/].

• Subversion, a revision control system, has been used to keep track of changes during the
development of all parts of the project. It is released under an Apache/BSD-style license,
which is given at the projects home page, which is located at [http://subversion.tigris.org/].

The following third party libraries – libraries that are not shipped with the mentioned development
tools – where involved in the development of some simulators andmlx.

• mlx optionally usesxmlproc , Python modules for parsing XML documents. It is re-
leased under a formal BSD-ish license and available from [http://www.garshol.priv.no/
download/software/xmlproc/]. It is also distributed as part of the “XML package for
Python” located at [http://pyxml.sourceforge.net/].

• GTK+, the GIMP toolkit, a library for creating graphical user interfaces,is used bygsim .
This library has been ported to many platforms and is released under the GNULGPL [7].
Its home page is located at [http://www.gtk.org].

• csim is implemented using thencurses library. curses , the predecessor ofncurses ,
has a long history and actually is part of each UNIX-compatible system. For more informa-
tion onncurses see [http://dickey.his.com/ncurses/ncurses.html] or [19].

A.2 Typesetting and Drawings

This document as well as the stand-alone versions of themexcandmlx documentation were cre-
ated using teTeX ([http://www.tug.org/teTeX/]), a TEX distribution for UNIX compatible sys-
tems which consists only of Free Software. However, the index of this document, as produced
by the tools of the teTeX distribution, was customized by a small self-written Python program
(fixidx.py) which is distributed with this document’s sources.

All graphical drawings of this document has been created with InkScape, an Open Source scal-
able vector graphics (SVG) editor which can export SVG to PostScript format for use with LATEX
documents. InkScape is released under the terms of the GNU GPL [9] and isavailable from
[http://www.inkscape.org/].

95

Appendix B

Source code

The printed edition of this document is supplemented by a CD-ROM with the source code for the
mlx/mexcproject. Beside the sources ofmexc, mlx, and the simulators, there are also included the
LATEX sources of this documentation and its compiled version in various formats.

The directory hierarchy on the CD-ROM is structured as follows.dist denotes the mount point
of the medium, thus there is no such directory on the CD-ROM.

dist/ root of the CD-ROM
bin/ pre-compiled versions of some simulators

gsim.exe a version of the GTK+ based simulator for use on Win32 platforms
dsim.exe a simulator for use on MS DOS platforms
psim.prc a simulator for use on Palm OS platforms

doc/ documentation directory
thesis.* compiled version of this document in PDF and PS formats
mexc.* compiled stand-alone documentation ofmexcin PDF and PS formats
mlx.* compiled stand-alone documentation ofmlx in PDF and PS formats

packed/ contains tar-gzipped source packages
src/ source code directory

csim/ sources for a curses bases simulator
dsim/ sources for a DOS based simulator
gsim/ sources for a GTK+ based simulator
psim/ sources for a Palm OS based simulator
mexc/ sources for themexclibrary
mlx/ sources for themlx menu compiler
data/ test input files formlx compiler
docs/ LATEX sources for this document

96

Appendix C

GNU Free Documentation License

Version 1.2, November 2002

Copyright c©2000,2001,2002 Free Software Foundation, Inc.

59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

Everyone is permitted to copy and distribute verbatim copies of this license document, but
changing it is not allowed.

Preamble

The purpose of this License is to make a manual, textbook, or other functional and useful document
”free” in the sense of freedom: to assure everyone the effective freedom to copy and redistribute it,
with or without modifying it, either commercially or noncommercially. Secondarily, this License
preserves for the author and publisher a way to get credit for their work, while not being considered
responsible for modifications made by others.

This License is a kind of “copyleft”, which means that derivative works of the document must
themselves be free in the same sense. It complements the GNU General Public License, which is
a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because free soft-
ware needs free documentation: a free program should come with manuals providing the same
freedoms that the software does. But this License is not limited to software manuals; it can be
used for any textual work, regardless of subject matter or whether it is published as a printed book.
We recommend this License principally for works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that containsa notice placed
by the copyright holder saying it can be distributed under the terms of this License. Such a notice

97

APPENDIX C. GNU FREE DOCUMENTATION LICENSE

grants a world-wide, royalty-free license, unlimited in duration, to use that work under the condi-
tions stated herein. The“Document” , below, refers to any such manual or work. Any member of
the public is a licensee, and is addressed as“you” . You accept the license if you copy, modify or
distribute the work in a way requiring permission under copyright law.

A “Modified Version” of the Document means any work containing the Document or a portion
of it, either copied verbatim, or with modifications and/or translated into another language.

A “Secondary Section”is a named appendix or a front-matter section of the Document that deals
exclusively with the relationship of the publishers or authors of the Document to the Document’s
overall subject (or to related matters) and contains nothing that could fall directly within that
overall subject. (Thus, if the Document is in part a textbook of mathematics, aSecondary Section
may not explain any mathematics.) The relationship could be a matter of historical connection
with the subject or with related matters, or of legal, commercial, philosophical, ethical or political
position regarding them.

The “Invariant Sections” are certain Secondary Sections whose titles are designated, as being
those of Invariant Sections, in the notice that says that the Document is released under this License.
If a section does not fit the above definition of Secondary then it is not allowed to be designated as
Invariant. The Document may contain zero Invariant Sections. If the Document does not identify
any Invariant Sections then there are none.

The “Cover Texts” are certain short passages of text that are listed, as Front-Cover Texts or
Back-Cover Texts, in the notice that says that the Document is released under this License. A
Front-Cover Text may be at most 5 words, and a Back-Cover Text may be at most 25 words.

A “Transparent” copy of the Document means a machine-readable copy, represented in a format
whose specification is available to the general public, that is suitable for revising the document
straightforwardly with generic text editors or (for images composed of pixels) generic paint pro-
grams or (for drawings) some widely available drawing editor, and that is suitable for input to text
formatters or for automatic translation to a variety of formats suitable for input to text formatters.
A copy made in an otherwise Transparent file format whose markup, or absence of markup, has
been arranged to thwart or discourage subsequent modification by readers is not Transparent. An
image format is not Transparent if used for any substantial amount of text. A copy that is not
“Transparent” is called“Opaque” .

Examples of suitable formats for Transparent copies include plain ASCII without markup, Texinfo
input format, LaTeX input format, SGML or XML using a publicly available DTD, and standard-
conforming simple HTML, PostScript or PDF designed for human modification.Examples of
transparent image formats include PNG, XCF and JPG. Opaque formats include proprietary for-
mats that can be read and edited only by proprietary word processors, SGML or XML for which
the DTD and/or processing tools are not generally available, and the machine-generated HTML,
PostScript or PDF produced by some word processors for output purposes only.

The“Title Page” means, for a printed book, the title page itself, plus such following pages as are
needed to hold, legibly, the material this License requires to appear in the title page. For works
in formats which do not have any title page as such, “Title Page” means the textnear the most
prominent appearance of the work’s title, preceding the beginning of the body of the text.

98

APPENDIX C. GNU FREE DOCUMENTATION LICENSE

A section“Entitled XYZ” means a named subunit of the Document whose title either is precisely
XYZ or contains XYZ in parentheses following text that translates XYZ in another language.
(Here XYZ stands for a specific section name mentioned below, such as“Acknowledgements”,
“Dedications” , “Endorsements”, or “History” .) To “Preserve the Title” of such a section
when you modify the Document means that it remains a section “Entitled XYZ” according to this
definition.

The Document may include Warranty Disclaimers next to the notice which states that this License
applies to the Document. These Warranty Disclaimers are considered to be included by refer-
ence in this License, but only as regards disclaiming warranties: any otherimplication that these
Warranty Disclaimers may have is void and has no effect on the meaning of thisLicense.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or noncommer-
cially, provided that this License, the copyright notices, and the license notice saying this License
applies to the Document are reproduced in all copies, and that you add noother conditions whatso-
ever to those of this License. You may not use technical measures to obstruct or control the reading
or further copying of the copies you make or distribute. However, you mayaccept compensation
in exchange for copies. If you distribute a large enough number of copies you must also follow
the conditions in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly display
copies.

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers) of the Doc-
ument, numbering more than 100, and the Document’s license notice requires Cover Texts, you
must enclose the copies in covers that carry, clearly and legibly, all theseCover Texts: Front-Cover
Texts on the front cover, and Back-Cover Texts on the back cover. Both covers must also clearly
and legibly identify you as the publisher of these copies. The front covermust present the full title
with all words of the title equally prominent and visible. You may add other materialon the covers
in addition. Copying with changes limited to the covers, as long as they preserve the title of the
Document and satisfy these conditions, can be treated as verbatim copyingin other respects.

If the required texts for either cover are too voluminous to fit legibly, you should put the first ones
listed (as many as fit reasonably) on the actual cover, and continue the rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100, you must
either include a machine-readable Transparent copy along with each Opaque copy, or state in or
with each Opaque copy a computer-network location from which the general network-using pub-
lic has access to download using public-standard network protocols a complete Transparent copy
of the Document, free of added material. If you use the latter option, you musttake reasonably
prudent steps, when you begin distribution of Opaque copies in quantity, toensure that this Trans-
parent copy will remain thus accessible at the stated location until at least one year after the last

99

APPENDIX C. GNU FREE DOCUMENTATION LICENSE

time you distribute an Opaque copy (directly or through your agents or retailers) of that edition to
the public.

It is requested, but not required, that you contact the authors of the Document well before redis-
tributing any large number of copies, to give them a chance to provide you with an updated version
of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions of sections
2 and 3 above, provided that you release the Modified Version under precisely this License, with
the Modified Version filling the role of the Document, thus licensing distribution and modification
of the Modified Version to whoever possesses a copy of it. In addition, you must do these things
in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the Document,
and from those of previous versions (which should, if there were any,be listed in the History
section of the Document). You may use the same title as a previous version if the original
publisher of that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities responsible for authorship
of the modifications in the Modified Version, together with at least five of the principal
authors of the Document (all of its principal authors, if it has fewer than five), unless they
release you from this requirement.

C. State on the Title page the name of the publisher of the Modified Version, as the publisher.

D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications adjacent tothe other copyright
notices.

F. Include, immediately after the copyright notices, a license notice giving thepublic permis-
sion to use the Modified Version under the terms of this License, in the form shown in the
Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and required Cover Texts
given in the Document’s license notice.

H. Include an unaltered copy of this License.

I. Preserve the section Entitled “History”, Preserve its Title, and add to it anitem stating at
least the title, year, new authors, and publisher of the Modified Version asgiven on the Title
Page. If there is no section Entitled “History” in the Document, create one stating the title,
year, authors, and publisher of the Document as given on its Title Page, then add an item
describing the Modified Version as stated in the previous sentence.

100

APPENDIX C. GNU FREE DOCUMENTATION LICENSE

J. Preserve the network location, if any, given in the Document for publicaccess to a Trans-
parent copy of the Document, and likewise the network locations given in the Document
for previous versions it was based on. These may be placed in the “History” section. You
may omit a network location for a work that was published at least four years before the
Document itself, or if the original publisher of the version it refers to gives permission.

K. For any section Entitled “Acknowledgements” or “Dedications”, Preserve the Title of the
section, and preserve in the section all the substance and tone of each ofthe contributor
acknowledgements and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text and in their titles.
Section numbers or the equivalent are not considered part of the section titles.

M. Delete any section Entitled “Endorsements”. Such a section may not be included in the
Modified Version.

N. Do not retitle any existing section to be Entitled “Endorsements” or to conflictin title with
any Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify as Secondary
Sections and contain no material copied from the Document, you may at your option designate
some or all of these sections as invariant. To do this, add their titles to the list of Invariant Sections
in the Modified Version’s license notice. These titles must be distinct from anyother section titles.

You may add a section Entitled “Endorsements”, provided it contains nothing but endorsements of
your Modified Version by various parties–for example, statements of peerreview or that the text
has been approved by an organization as the authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up to 25 words
as a Back-Cover Text, to the end of the list of Cover Texts in the Modified Version. Only one pas-
sage of Front-Cover Text and one of Back-Cover Text may be addedby (or through arrangements
made by) any one entity. If the Document already includes a cover text forthe same cover, previ-
ously added by you or by arrangement made by the same entity you are actingon behalf of, you
may not add another; but you may replace the old one, on explicit permissionfrom the previous
publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission to use their
names for publicity for or to assert or imply endorsement of any Modified Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License, under the
terms defined in section 4 above for modified versions, provided that you include in the combi-
nation all of the Invariant Sections of all of the original documents, unmodified, and list them all

101

APPENDIX C. GNU FREE DOCUMENTATION LICENSE

as Invariant Sections of your combined work in its license notice, and that you preserve all their
Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical Invariant
Sections may be replaced with a single copy. If there are multiple Invariant Sections with the
same name but different contents, make the title of each such section unique by adding at the end
of it, in parentheses, the name of the original author or publisher of that section if known, or else
a unique number. Make the same adjustment to the section titles in the list of Invariant Sections in
the license notice of the combined work.

In the combination, you must combine any sections Entitled “History” in the various original
documents, forming one section Entitled “History”; likewise combine any sections Entitled “Ac-
knowledgements”, and any sections Entitled “Dedications”. You must delete all sections Entitled
“Endorsements”.

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released under this
License, and replace the individual copies of this License in the various documents with a single
copy that is included in the collection, provided that you follow the rules of thisLicense for
verbatim copying of each of the documents in all other respects.

You may extract a single document from such a collection, and distribute it individually under this
License, provided you insert a copy of this License into the extracted document, and follow this
License in all other respects regarding verbatim copying of that document.

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent documents
or works, in or on a volume of a storage or distribution medium, is called an “aggregate” if the
copyright resulting from the compilation is not used to limit the legal rights of the compilation’s
users beyond what the individual works permit. When the Document is included in an aggregate,
this License does not apply to the other works in the aggregate which are not themselves derivative
works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document, then if
the Document is less than one half of the entire aggregate, the Document’s Cover Texts may be
placed on covers that bracket the Document within the aggregate, or the electronic equivalent of
covers if the Document is in electronic form. Otherwise they must appear on printed covers that
bracket the whole aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute translations of the Docu-
ment under the terms of section 4. Replacing Invariant Sections with translations requires special

102

APPENDIX C. GNU FREE DOCUMENTATION LICENSE

permission from their copyright holders, but you may include translations of some or all Invariant
Sections in addition to the original versions of these Invariant Sections. You may include a trans-
lation of this License, and all the license notices in the Document, and any Warranty Disclaimers,
provided that you also include the original English version of this License and the original ver-
sions of those notices and disclaimers. In case of a disagreement betweenthe translation and the
original version of this License or a notice or disclaimer, the original version will prevail.

If a section in the Document is Entitled “Acknowledgements”, “Dedications”, or “History”, the
requirement (section 4) to Preserve its Title (section 1) will typically require changing the actual
title.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly provided
for under this License. Any other attempt to copy, modify, sublicense or distribute the Document
is void, and will automatically terminate your rights under this License. However, parties who
have received copies, or rights, from you under this License will not have their licenses terminated
so long as such parties remain in full compliance.

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free Documentation
License from time to time. Such new versions will be similar in spirit to the present version, but
may differ in detail to address new problems or concerns. See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document specifies
that a particular numbered version of this License “or any later version” applies to it, you have the
option of following the terms and conditions either of that specified version orof any later version
that has been published (not as a draft) by the Free Software Foundation. If the Document does
not specify a version number of this License, you may choose any version ever published (not as
a draft) by the Free Software Foundation.

ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of the License in the document
and put the following copyright and license notices just after the title page:

Copyright c©YEAR YOUR NAME. Permission is granted to copy, distribute and/or
modify this document under the terms of the GNU Free Documentation License, Ver-
sion 1.2 or any later version published by the Free Software Foundation; with no
Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the
license is included in the section entitled “GNU Free Documentation License”.

103

APPENDIX C. GNU FREE DOCUMENTATION LICENSE

If you have Invariant Sections, Front-Cover Texts and Back-CoverTexts, replace the “with...Texts.”
line with this:

with the Invariant Sections being LIST THEIR TITLES, with the Front-Cover Texts
being LIST, and with the Back-Cover Texts being LIST.

If you have Invariant Sections without Cover Texts, or some other combination of the three, merge
those two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we recommend releasing these
examples in parallel under your choice of free software license, such as the GNU General Public
License, to permit their use in free software.

104

References

[1] Niall Murphy. Graphics Libraries for Embedded Systems. (Available fromhttp://www.
embedded.com/97/feat9708.htm).

[2] LinuxDevices.com. Embedded Linux Graphics Quick Reference Guide. December 2005.
(Available fromhttp://www.linuxdevices.com/articles/AT9202043619.html).

[3] Wikipedia. Endianness. December 2005. (Available fromhttp://en.wikipedia.org/wiki/
Endianness).

[4] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman.Compilerbau Teil 1. Oldenbourg Wis-
senschaftsverlag GmbH, Rosenheimer Strasse 145, D-81671 München, 1999.

[5] Elliotte Rusty Harold and W. Scott Means.XML in a Nutshell. O’Reilly & Associates, Inc.,
2nd edition, 2002.

[6] Wikipedia. Menu (computing). December 2005. (Available fromhttp://en.wikipedia.org/
wiki/Menu %28computing%29).

[7] Free Software Foundation.GNU Lesser General Public License. February 1999. (Available
from http://www.gnu.org/copyleft/lesser.html).

[8] Hubert Högl. MEX - The Menu Executor. April 2001. (Available fromhttp://www.
fh-augsburg.de/∼hhoegl/da/da-22/mex.html).

[9] Free Software Foundation.GNU General Public License. June 1991. (Available from
http://www.gnu.org/copyleft/gpl.html).

[10] Hubert Ḧogl. A ‘Menu Language’ introduction. May 2004. (Available fromhttp://www.
fh-augsburg.de/∼hhoegl/da/da-22/mel.html).

[11] Huber Ḧogl. The Portable-Menu-Format. May 2004. (Available fromhttp://www.
fh-augsburg.de/∼hhoegl/da/da-22/mel.html#SEC23).

[12] Eric Raymond.Jargon File 4.4.7. December 2003. (Available fromhttp://catb.org/∼esr/
jargon/).

[13] Wikipedia. Optimization (computer science). December 2005. (Available fromhttp://en.
wikipedia.org/wiki/Optimization %28computer science%29).

105

REFERENCES REFERENCES

[14] Guido van Rossum.Python Tutorial. 2005. (Available fromhttp://docs.python.org/tut/tut.
html).

[15] Mark Pilgrim. Dive into Python. Apress, July 2004. (Also available fromhttp://
diveintopython.org/).

[16] Wikipedia. Iterative and incremental development. December 2005. (Available fromhttp:
//en.wikipedia.org/wiki/Iterative development).

[17] Guido van Rossum.getopt – Parser for command line options. September 2005. (Avail-
able fromhttp://docs.python.org/lib/module-getopt.html).

[18] Sam Williams.Free as in Freedom. O’Reilly, Mai 2002. (Also available fromhttp://www.
oreilly.com/openbook/freedom/).

[19] Pradeep Padala.NCURSES Programming HOWTO. 2005. (Available fromhttp://www.tldp.
org/HOWTO/NCURSES-Programming-HOWTO/).

106

Index

A
a.c file .47
a.h file .47
additional keys10, 13, 14, 16–18, 25
alignmentseepadding zero byte
application, definition of4
ASCII .73
assert function 23,24, 25
assert.h file. .24
automatic top-level return.13,36, 50
automatic updateseeupdating

B
big-endian . 48, 50,84
byte orderseeendianness
ByteListEmitter class84, 85, 86

C
C .11
character reference. .36
checkbox .61ff.
classes

ByteListEmitter 84, 85, 86
Cmf85, 87, 90, 91
CmfError .84
Exception .84
Lc . 63, 65,87, 90
LcCheckbox .63
MelxHandler 64, 65,87, 88, 89
MemAllocator85, 86, 91
Menu 85,86, 89, 90
MenuLine86, 89, 90
NonValMelxHandler87, 91
ValMelxHandler87, 88, 91

CMF 5–7, 28,48ff., 61, 69–87
Cmf class.85, 87, 90, 91
cmf.c file . 69,70

cmf.h file 28–30,70, 71
cmf.py file 63, 65,84
cmf first mtable function70, 71
cmf init function.70, 71, 77
CMFINIT BADBYTE ORDERdefine. . .29
CMFINIT BADID define28
cmf init ram function70, 72, 77
CMFINIT UNSUPPORTEDVERSIONdefine

29
cmf lcomp length function72
CMFMAJORVERSIONdefine 29,71
CMFMINORVERSIONdefine 29,71
cmf mline lcomp function71
cmf mline next function79
cmf mline prev function79
cmf mtable mline function71, 79
CmfError class .84
Compact Menu FormatseeCMF
compiler4, 23, 24, 36, 71, 80, 92
configuringmexc. .24
COPYINGfile .10, 34
csim simulator .7

D
dc open mtable function78, 83
debuggerseeGNU debugger
defines

CMFINIT BADBYTE ORDER.29
CMFINIT BADID28
CMFINIT UNSUPPORTEDVERSION

29
CMFMAJORVERSION. 29,71
CMFMINORVERSION. 29,71
DOBLINK DRAW.76, 81, 82
DOBLINK ERASE.76, 82
LC TYPE * .70

107

INDEX INDEX

LCTAG* .70
LDTAG* .70
MFPKEYNONE.22, 26, 79, 83
MFPKEYNUMPAD*23
MFPKEYQUIT MEXCLOOP23, 29, 83

definitions
application .4
edit state .14
enable value .51
header line .11
horizontal cursor14
line component .8
menu .8
menu line .8
menu table .8
pending reference89
relative pointer .53
submenu .8

direction keys10, 13, 14, 16–18, 33
disp context t structure75
disp draw hdr function 80,81
disp draw hdr info function81
disp draw mline function 81,82
disp draw mlines function . .75,81, 82,

83
display accessing routines20, 28
display context 26,75, 77, 78, 81, 83
display layout .11
DOBLINK DRAWdefine76, 81, 82
DOBLINK ERASEdefine76, 82
Document Type DefinitionseeDTD
DOM. .88
dsim simulator .7
DTD 34,35, 61, 62, 87, 89
dynamic memory allocation.6
dynamic menu lines 30,37, 79, 86

E
edit function .83
edit state, definition of14
edit cur mline function82, 83
embedded system . .1, 3, 6, 7, 10, 35, 73, 79,

92
examples .1

enable valueseedynamic menu lines
enable value, definition of51
endianness4, 29, 48, 50

big-endian 48, 50,84
little-endian 48, 50,84

Exception class .84
Extensible Markup LanguageseeXML

F
files

a.c .47
a.h .47
assert.h .24
cmf.c .69,70
cmf.h 28–30,70, 71
cmf.py 63, 65,84
COPYING. .10, 34
handler.py 64, 65,87
Makefile24, 32
Makefile.win3232
mconfig.h .25
melx.dtd 34, 35, 62,65, 89, 93
mexc.c 69,74, 75, 79, 80, 82, 93
mexc.h .28, 30
mfpkey.h .22
mlcd.h .20
mlx.py .91
mtypes.h .28
mutils.c .73
nonvalhandler.py87
pstring.c .72
string.h .25
valhandler.py87

flash . 14,26
flip switch bit function74
Free Software.3, 34,92, 93–95
Free Software Foundation97ff.
FreeBSD .6, 32
ftorstr function .74
functions

assert 23,24, 25
cmf first mtable70, 71
cmf init70, 71, 77
cmf init ram70, 72, 77

108

INDEX INDEX

cmf lcomp length72
cmf mline lcomp71
cmf mline next79
cmf mline prev79
cmf mtable mline71, 79
dc open mtable78, 83
disp draw hdr 80,81
disp draw hdr info81
disp draw mline 81,82
disp draw mlines . . . 75,81, 82, 83
edit cur mline82, 83
flip switch bit74
ftorstr .74
get key .79, 83
get mlcd cols21, 22, 25, 77
get mlcd lines21, 22, 77
get switch bit74
go dc back .78
goto submenu78
goto top menu.78, 83
memcpy. .73
memmove. .73
mexc enable mline30
mexc init28, 29, 31, 77, 83
mexc loop 23,29, 30, 31, 83
mexc mline next79
mexc mline prev79
mexc mtable mline79
mexc redraw30, 78,80
mexc set callback handler . 29
mfpkey get22, 26, 79
mlcd clrchr20, 27
mlcd clrln20, 82
mlcd cu gotoxy20
mlcd cu off20, 76
mlcd cu on20, 76
mlcd invertln21, 25
mlcd wrchrxy21
mlcd wrstrxy21, 82
mlcd wrstrxymax21
msleep .23
pstr copy .73
pstr to r cstr73
storstr .73

strcpy23, 25, 73
strlen .23, 25
utorstr .73

G
g cur dc variable75, 78, 79, 81
g cur dc idx variable.75, 78, 79
g cur lcd line variable81
g cursor visible variable76
g dc variable .75, 78
g do blink variable75, 82
g editing variable76, 82
g lcd cols variable77, 82
g lcd lines variable77
g update delay variable77, 81, 82
GCCseeGNU C compiler
get key function79, 83
get mlcd cols function . . .21, 22, 25, 77
get mlcd lines function21, 22, 77
get switch bit function74
ggsim simulator .32
GNU C compiler 23–25, 80,94
GNU debugger .24,94
GNU Free Documentation License97ff.
GNU Lesser General Public License10
GNU/Linux6, 7, 32, 94
go dc back function78
goto submenu function78
goto top menu function78, 83
graphical library .3
gsim simulator 6,31, 32, 47
GTK+ . 6, 31, 32,95

H
handler.py file 64, 65,87
header line, definition of11
horizontal cursor, definition of14

I
inspector . 6,33
Intel 32-bit platform23
Intel 8088 processor7, 24, 25
Intel architecture .24

K

109

INDEX INDEX

keyboard . 10,11
accessseemfpkey get function
additional keys . . .10, 13, 14, 16–18, 25
direction keys10, 13, 14, 16–18, 33

L
Lc class . 63, 65,87, 90
lc t structure .71
LC TYPE * defines .70
LcCheckbox class63
LCD. .3, 6, 10, 11, 20, 32–35, 38, 42, 46, 76

sizes .10
LCTAG* defines .70
LDTAG* defines .70
LGPL .10
license .3, 10, 97
line component, definition of8
liquid crystal displayseeLCD
Lisp .34
little-endian . 48, 50,84

M
M-Language .34, 61
macros

PSTRLEN .72
PSTRSTR .72
PUT CURSOROFF.76, 83
PUT CURSORON.76, 83

main loopseemexc loop
Makefile file .24, 32
Makefile.win32 file32
mconfig.h file .25
MEL .1, 2, 3, 7, 92
melx.dtd file 34, 35, 62,65, 89, 93
MelxHandler class 64, 65,87, 88, 89
MemAllocator class85, 86, 91
memcpyfunction. .73
memmovefunction .73
memory requirements23
Menu class 85,86, 89, 90
menu line, definition of8
menu table, definition of8
menu, definition of .8
MenuLine class86, 89, 90

MEX .1, 2, 3, 7, 92
mexc. 6,10ff.
mexc.c file 69,74, 75, 79, 80, 82, 93
mexc.h file .28, 30
mexc enable mline function30
mexc init function28, 29, 31, 77, 83
mexc loop function 23,29, 30, 31, 83
mexc mline next function79
mexc mline prev function79
mexc mtable mline function79
mexc redraw function30, 78,80
mexc set callback handler 29
mfpkey.h file. .22
mfpkey get function22, 26, 79
MFPKEYNONEdefine22, 26, 79, 83
MFPKEYNUMPAD* defines.23
MFPKEYQUIT MEXCLOOPdefine .23, 29,

83
MinGW . 32,94
ml submenu ofs variable72
mlcd.h file .20
mlcd clrchr function20, 27
mlcd clrln function20, 82
mlcd cu gotoxy function20
mlcd cu off function20, 76
mlcd cu on function20, 76
mlcd invertln function21, 25
mlcd wrchrxy function21
mlcd wrstrxy function.21, 82
mlcd wrstrxymax function21
mlx.py file .91
Motorola DragonBall VZ7, 24
MS DOS. .7
MS Windows .6, 32, 94
msleep function. .23
mtypes.h file. .28
mutils.c file. .73

N
namespaces . 5,93
navigation

through a menu13, 14
through a menu line14

navigation character12

110

INDEX INDEX

nonvalhandler.py file87
NonValMelxHandler class87, 91

O
object orientation .5, 84
Open Source . 3,92, 94
OpenWatcom C/C++ compiler24,95
operating systems

FreeBSD .6, 32
GNU/Linux6, 7, 32, 94
MS DOS .7
MS Windows.6, 32, 94
Palm OS .7, 94

P
padding zero byte49, 50–53, 86
Palm OS. .7, 94
password input field13, 14, 26
pending reference, definition of89
periodical updateseeupdating
pkg-config program32
psim simulator .7
pstr copy function73
PSTRLENmacro .72
PSTRSTRmacro .72
pstr to r cstr function73
pstring.c file .72
PUT CURSOROFFmacro76, 83
PUT CURSORONmacro.76, 83
Python .2,4, 5, 61

R
RAM . . . 8, 28, 37, 39, 41, 48, 51, 63, 70, 77
read-only memory .6, 8
relative pointer, definition of53
ROM .8

S
SAX. .61, 64,88
simulator .6, 7

csim. .7
dsim .7
ggsim .32
gsim . 6,31, 32, 47
psim .7

size program .23
sizeof operator .48
sizes .10
soft-button. .19, 45
storstr function .73
strcpy function23, 25, 73
string.h file. .25
strlen function23, 25
structures

disp context t75
lc t .71

submenu, definition of.8

T
The GIMP toolkitseeGTK+
tree .8, 72, 84, 89

U
updating39, 53, 77, 81, 82
utorstr function .73

V
valhandler.py file87
ValMelxHandler class87, 88, 91
variables

g cur dc75, 78, 79, 81
g cur dc idx75, 78, 79
g cur lcd line81
g cursor visible76
g dc .75, 78
g do blink75, 82
g editing76, 82
g lcd cols77, 82
g lcd lines .77
g update delay77, 81, 82
ml submenu ofs72

W
WindowsseeMS Windows
writable memory .8, 29

X
XML . . . 5, 34–36, 62, 64, 84, 87, 88, 92, 95

Document Type Definition. . . .seeDTD
DOM .88

111

INDEX INDEX

DTD 34,35, 61, 62, 87, 89
namespaces. .5,93
SAX . 61, 64,88

112

