
MEXC - The Menu Executor

Petr Novotník

December 19, 2005

Abstract

This document describesmexc the “Menu Executor”. Beside explaining the functionality
of the library and how it interacts with the user, an explanation is given about how to bind
mexc to one’s own programs. A description of the interpreted bytecode is not given here, but
can be found in the documentation of themlx compiler.

Contents

1 License 2

2 Introduction 2

3 Display layout 3

4 Surfing around 5

5 Entering a password 5

6 Editing menu lines 6

7 Programming with mexc 11

8 Simulator 24

9 Known issues 25

1

1 License

The mexc library is Free Software provided under the terms of the GNU Lesser General Public
License (LGPL). The fileCOPYING, that is distributed withmexc, contains a copy of the GNU
LGPL. It can be also retrieved from the web at [http://www.gnu.org/licenses/lgpl.
html].

2 Introduction

The idea for a menu executor was born in the late nineties by Hubert Högl1 during the development
of an embedded system with a small alphanumeric display connected to it. While developing some
programs for his system, he realized that it would be useful to have a libraryfor displaying menus
on small 20x4 or 16x2 character based displays and has begun to implementsuch a library called
“MEX”. mexc is a complete rewrite of Mr. Högl’s work with a lot of changes and improvements.

mexc is there to display menus, navigate through them, and provide a way to let a user edit prede-
fined input elements. Developers of embedded applications don’t need to write such functionality
over and over again. Together with themlx compiler, which generates the byte code whichmexc
will interpret, all the developer has to do, is to describe the menu and providecustom callback han-
dlers. However, the executor is not a self containing program and the developer needs to provide
mexc with a few things about the environment to make it work.

Typically, a user interface for an embedded system consists of a liquid crystal display (LCD) and
a small keyboard connected to it.mexc was written for such a configuration and assumes that the
display has at least 2 lines. Typical LCDs have sizes of 16x2, 16x4, 20x2, and 20x4.mexc can
control such displays, but other sizes with at least two lines and 14 columnsare possible, too.
With respect to the keyboard,mexc expects it to have at least 5 keys. Four of them are interpreted
as direction keys and one as ENTER (TAB).mexc can also interpret ten additional keys with the
meaning of numbers ranging from 0 to 9, and an eleventh POINT key. The design of such a
keyboard has been much in vogue on modern mobile phones for some years. The direction keys,
including ENTER, are often implemented with a small joystick on those devices. Figure 1 shows
a 16x4 display with the expected keyboard and the additional eleven keys.

The executor does not know anything about the hardware. It doesn’t know what display or key-
board controller is attached to the system, and it doesn’t want to.mexc was designed to be general
purpose as much as possible. It is entirely written in C and needs to be linked with a predefined
set of functions to make it display things and react to key presses. But more on this later.

First we will explain howmexc actually displays a menu and how it navigates the user through it.
After defining how to enter passwords and edit input fields, thereby introducing each, we will look
at the library from a programmer’s point of view.

1Have a look at [http://www.hhoegl.com/mel/mel.html].

2

lcd: keyboard:
column 1 ... 16 +-------------+-------+

+----------------+ | ^ | 1 2 3 |
................	row 1			4 5 6
................	.	<- enter ->	7 8 9	
................	.			0 .
................	row 4	v		
+----------------+ +-------------+-------+

Figure 1: A 16x4 LCD and keyboard design

3 Display layout

mexc uses a fixed layout on the screen. The first line is calledheader line and displays various
information about the current state of the user interface. The rest of thelines is used to display the
data of the currently opened menu table.

+----------------+
|TTTTTTTTTTTTNLLK| <- Header line
|C..............S| <- Menu line 1
|C..............S| <- Menu line 2
|C..............S| <- Menu line 3
+----------------+

Figure 2: Display layout

Figure 2 shows how a four line display2 is used. Comparing the display layouts, there have been
no changes from Mr. Högl’s original MEX. As indicated by the letters, the screen is divided into
various fields:

T This field displays the title of the currently opened menu table. It has no specific length, but it
gets as much columns assigned as possible. That is the width of the LCD minus 4 (for the
‘NLLK’ fields). The title is displayed left-aligned and cut if it’s too long to fit into the field
completely.

N This field holds the so-callednavigation character and tells the user whether the current menu
line is editable or not. Either a colon (‘:’), when there is at least one editable component,
or an asterisk (‘*’), in the case of aread-only menu line, is displayed.

L The L-field shows the line number of the current menu line.

K The K-field displays either a blank (‘ ’), or a plus sign (‘+’), or an exclamation mark (‘!’).

2The original sketch and documentation to it can be found at [http://www.hhoegl.com/mel/doc/mex_
2.html].

3

• The blank is displayed when all available menu lines of the currently opened menu
table are visible on the screen. On a four line display this would be the case in amenu
table with only 3 or less lines.

• A plus sign says that there are more menu lines than those currently displayedon the
screen. They can be made visible by scrolling the menu table up or down.

• An exclamation mark indicates that there are more menu lines than those on the screen,
but that the cursor is on the last possible line in the current menu table. To see the other
menu lines the user needs to scroll upwards.

C By default, the first column of each menu line is reserved for the cursor. If it’s not empty, it
indicates that the appropriate menu line is currently active.mexc can be configured to use
this column for menu data and draw the current menu line with inverted colors, thus the
C-field is actually optional.

S The last column of each menu line is also reserved. It displays the submenu indicator. Typically,
if there is a submenu it will show a “greater than” sign (‘>’). However, there can be a ‘P’
instead, which has to be interpreted as “there is a password protected submenu”.

... The rest, marked with dots in figure 2, is used for displaying menu data. Because of the
reservation of the first and last column, the menu data has fewer space available than a
display may offer.

In the example3 shown in figure 3, the title of the currently opened menu table reads ‘Preferences’.
Following the title there is an asterisk which indicates that the current menu line is not editable.
The current line is marked with the tilde character (‘~’) in the first column. It’s the 5th line in
the menu table as noted by the number following the asterisk. On the right of the 5there is an
exclamation mark telling us that no more menu lines follow the current line. This means that the
user will have to scroll upwards to see the other menu lines.

+----------------+
|Preferences * 5!|
| Sensors... >|
| Parameter... >|
|~System... P|
+----------------+

Figure 3: A display example

The ‘>’s and ‘P’s at the end of the menu lines show that for each there is a submenu. The submenu
from the last line is protected by a password. The user will have to enter it beforemexc will grant
access to the submenu.

3The original example which was introduced by Mr. Högl originates from the documentation of MEX, it was
slightly modified here. It can be found at [http://www.hhoegl.com/mel/doc/mex_2.html].

4

4 Surfing around

Using the four direction keys of the keyboard, it is possible to move freely within the menu hi-
erarchy. By pressing UP or DOWN the cursor can be moved to the previous or next menu line
respectively. If the current menu line has a submenu indicator, pressingRIGHT will causemexc
to step into the submenu.mexc will of course ask for the password, if any, and then open the menu
table only if the input was correct. The LEFT key brings the user back outof a submenu to where
he was before.

With a numerical keyboardmexc can provide a very fast way of moving through a menu. Pressing
a NUMBER key, while not editing a component, causesmexc to jump directly to thenth menu line
of the currently opened menu table; in this context zero has a value of 10. If the target menu line
has a submenu,mexc will immediately enter it, optionally a password may be requested. If there
is no submenu but editable components in the target line,mexc will prepare everything to let the
user change the first editable component. Pressing the POINT key, while not editing a component,
will always drop the user to the first line of the top-level menu table. Because of the limitation
of 10 lines to be directly addressed, the menu programmer should put frequently accessed menu
lines at the beginning of the menu table.

It should be noted thatmexc can return to the top level menu table by itself if the user doesn’t press
any key for a specified number of seconds. This number is specified by the programmer of the
menu and can be up to 255 seconds, which is a little bit more than 4 minutes.

5 Entering a password

Whenever the user is required to enter a password,mexc will open an input field in the header line
of an appropriate length. For a five characters long password, ‘Pwd:.....’ will be displayed in
the header line, the rest of it cleared, and the cursor, a blinking black box, placed on the first dot.
On any subsequent key press, a dot (‘.’) is changed into an asterisk (‘*’) and the cursor shifted
by one to the right, thus indicating how many password characters have already been entered. For
passwords being longer than the width of the display the user can still enter the password, but the
cursor will stay at the right edge if it’s already there.

3
1 0 2
4

Figure 4: Numeric
values on direction
keys

While the cursor is in the password input field, the direction keys plus EN-
TER of the attached keyboard get the following meaning. The LEFT key
is mapped to a 1, the RIGHT key to a 2, the UP key to a 3, the DOWN
key to a 4, and the ENTER key to a 0 as shown in figure 4. Additionally,
the NUMBER keys from a numerical keyboard can be interpreted, too. The
POINT key gets not interpreted, and pressing it will insert the ‘invalid char-
acter’ into the password buffer. A programmer of a menu should consider
that passwords should consist only of digits. Otherwisemexc will never
successfully validate it.

When all characters have been correctly entered, then immediately after
pressing the last character the actual action happens. In the other case, when the user entered

5

a bad password, the header line will flash for a second and the attempt to perform an action is
aborted.

6 Editing menu lines

Every menu line is built up of so-calledline components. Some of these components can be edited
and provide input elements to a program. In this section we will look at the navigation within a
single menu line and at each component. We will see how the various components are displayed,
what values they can hold, and how they are edited.

6.1 Navigating within a line

The navigation within a menu line happens via the ENTER key. When the current menu line
doesn’t contain editable components, the N-field in the header line is set to ‘*’, then pressing
the ENTER key has no effect. On the other hand, when there are editable components, pressing
ENTER causes the so-calledhorizontal cursor, a blinking blackbox, to appear and jump to the
first editable field. Pressing ENTER again will move the cursor to the next editable component
and so on, until the horizotal cursor disappears.

While the cursor is visible,mexc is in the so-callededit state. In this case, the other keys beside
ENTER are specially interpreted and cannot be used to navigate through the menu. How these
keys are interpreted depends on the component being edited.

6.2 Number fields

A number field can contain a float, a signed, or an unsigned integer number.This number is
displayed right aligned within a fixed width on a screen. A specification of theavailable number
types currently supported is given in the following list.

|dd-int..........42| This is an unsigned one-byte integer with a value range of 0 .. 99.
There is no sign in front of the number. The component consumes exactly two characters
on the screen even for numbers with only one digit.

|ddd-int........123| This is an unsigned one-byte integer with a value range of 0 .. 255.
There is no sign in front of the number. The component consumes exactly three characters
on the screen even for numbers with only one or two digits.

|hh-int..........E6| This is an unsigned one-byte integer with a value range of 0 ..
255 (0xFF) displayed in hexadecimal format. There is no sign in front of the number. The
component consumes two characters on the screen. For values less than15 a zero is put in
front of it.

6

|sdd-int........-42| This is a signed one-byte integer with a value range of -99 .. +99.
The sign is always displayed, however, this can be configured at compilation time. The
component consumes three characters of a menu line.

|sddd-int......-123| This is a signed one-byte integer with a value range of -128 ..
+127. The sign is always displayed, however, this can be configured atcompilation time.
The component consumes four characters of a menu line.

|DDD-int........567| This is an unsigned two-byte integer with a value range of 0 .. 999.
The component consumes three characters of a menu line. The sign is not shown.

|DDDD-int......5243| This is an unsigned two-byte integer with a value range of 0 ..
9999. The component consumes four characters of a menu line. The signis not displayed.

|DDDDD-int....12345| This is an unsigned two-byte integer with a value range of 0 ..
65535. The component consumes five characters of a menu line. The signis not displayed.

|HHHH-int......FDE9| This is an unsigned two-byte integer with a value range of 0 ..
65535 (0xFFFF). The value is displayed in hexadecimal format and consumes four charac-
ters of a menu line with optional leading zeros. The sign is not shown.

|SDDD-int......-576| This is a signed two-byte integer with a value range of -999 ..
+999. The sign is always displayed, however, this can be configured atcompilation time.
The component consumes four characters of a menu line.

|SDDDD-int....-5243| This is a signed two-byte integer with a value range of -9999 ..
+9999. The sign is always displayed, however, this can be configured at compilation time.
The component consumes five characters of a menu line.

|siif-float...+12.4| This is a IEEE 754 float with a value range of -99.9 .. +99.9. Note
that there is always only one fraction digit displayed. The sign is always displayed, however,
this can be configured at compilation time. The component consumes five characters of a
menu line. The float value to be displayed is rounded to one fraction digit accuracy.

|siiif-float.+123.4| This is a IEEE 754 float with a value range of -999.9 .. +999.9.
Note that there is always only one fraction digit shown. The sign is alwaysvisible, but this
is configurable at compilation time. The component consumes six characters of a menu line.
The float value to be displayed is rounded to one fraction digit accuracy.

Editing one of the above specified numbers can be done with all four direction keys. Initially, the
horizontal cursor is placed at the first character of the number. This can be a digit or the sign.
By pressing LEFT or RIGHT the horizontal cursor is shifted in the appropriate direction to the
previous or next character of the number. Editing a float, the cursor jumpsover the decimal point.
When the cursor is on a sign, pressing UP or DOWN toggles the sign either to ‘+’ or to ‘-’. When
the cursor is on a digit, pressing UP or DOWN will in- or decrease the digit’s value. Thereby,
pressing UP on a ‘9’ will change it to ‘0’, and pressing DOWN on a ‘0’ will change it to ‘9’.

7

Optionally, numbers can be edited using the NUMBER keys. Pressing such akey will input the
appropriate digit at the current cursor position and move the cursor to thenext character. While
editing float values, pressing the POINT key will cause the cursor immediatelyjump behind the
decimal point and set the digits in front of it to zero if the cursor actually wasbefore the decimal
point.

Pressing the ENTER key causes the cursor to leave the component.

6.3 Counter fields

A counter field displays either a float or a signed two-byte integer. The number is rendered right-
aligned within a fixed width on the screen. The value range of a counter is limitedby the menu
programmer who defines the range. What counters makes really different from normal numbers is
the way they are edited.

While editing, the horizontal cursor is placed and kept on the last character of the displayed num-
ber. The value of the counter is increased with the UP key and decreasedwith the DOWN key.
By which value the counter is altered is defined in the provided menu byte code. Incrementing or
decrementing outside the specified range is not possible by the user. Pressing LEFT, RIGHT, the
NUMBER keys or the POINT has no effect.

6.4 Time fields

A time component can occur in two different formats. The short format hasno ‘seconds’. Editing

|long:.....19:42:03|
|short:.......19:42|

time components is done in two steps for the short format and in
three steps for the long format. Each part of a time component
is edited like an integer counter with special ranges. Initially
the ‘hours’ are edited using the UP and DOWN keys. It can be
in- or decreased in the range of 0 .. 23. Pressing ENTER will
move the horizontal cursor to the ‘minutes’ . Pressing there

UP or DOWN will in- or decrease the minutes in the value range of 0 .. 59. For along time
component pressing ENTER again will move the cursor to the ‘seconds’ which are equally edited
as the ‘minutes’. For a short time component pressing enter while editing the ‘minutes’ will stop
editing the component.

As can be seen in the example, time is displayed in ‘24H’ format. Numbers smaller than 10 are
prefixed with a zero, so each part has exactly two digits.mexc puts colon ‘:’ between each part of
the time. Thus, a short time consumes 5 characters, while a long time needs 8 characters.

6.5 Date fields

The date field is very similar to the time component. It consists of three parts: year, month, and day.

8

|long:.....2005-10-17|
|short:......05-10-17|

Each part is an integer counter and each is edited on its
own. Initially, the horizontal cursor is placed on the year
part which can be increased by one with the UP key and de-
creased with the DOWN key. The value range for the year
begins with 0 and ends with 9999 for the long and 99 for the

short date type. After pressing ENTER, the cursor jumps to the month part which can also be in-
and decreased by one. A month counts from 1 up to 12. Pressing ENTER again moves the cursor
to the day part which is edited the same way as the other parts. The value range for a day starts
with 1 and ends with 31. Pressing LEFT, RIGHT, the NUMBER keys or POINT while editing a
date field has no effect.

A date is displayed in the ‘YYYY-MM-DD’ format, optionally with the year part being shortened
to two digits. Thus, this line component takes 10 or 8 characters of a line depending on the format.
mexc uses a dash (‘-’) to separate the parts of a date. It should be noted thatmexc itself does not
check for invalid dates, e.g. 2005-02-31. It is on the programmer that uses this library to do so.

6.6 Switch fields

A switch displays a bit field of lengthn and consumes an equal number of characters in a line. It
representsn bits which can be toggled upon editing. The horizontal cursor is initially placedon the
first bit. Using the UP and DOWN keys, the bit under the cursor can be toggled on or off. Using
the LEFT and RIGHT keys, the cursor can be positioned at the previous and next bit respectively.
Pressing one of the NUMBER keys or the POINT has no effect, except forcing the help string to
be displayed. Here are two examples for switch fields:

|PORT-1: **.*.***|
|Mask: 101011101101|

The characters representing theon or off state can differ from switch to switch. They are not
hardcoded inmexc, but are specified by the programmer of the menu and stored in the byte code
separately for each switch.

There is something special about the switch field. Whenever a key press occurs,mexc will display
a help string, which is associated with the bit under the cursor, in the headerline. This help string
will disappear after a certain number of seconds. This number is defined by the programmer of
the menu.

6.7 Option fields

An option field displays a string from a string list which is defined in the byte code. The string
is rendered right-aligned in a width which is defined by the longest string in thelist. Pressing
the UP or DOWN key will cause the component to browse through the string listand display the
previous or next string. Thereby, the list is treated like a ring. When the first string is displayed,

9

the previous one is the last in the list. And if the last string is currently displayed, the next one
becomes the list’s first. Pressing LEFT, RIGHT, the NUMBER keys or POINT has no effect.

6.8 Strings

Beside displaying constant strings,mexc also provides a way to let the user edit a string. It should
be noted that the length of a string cannot be altered. All the user may change are the characters
within the string.

Having only the small 5 key keyboard, changing a character is done the following way. Pressing
UP or DOWN changes the character at the current cursor position. With LEFT and RIGHT the
cursor can be shifted by one character into the appropriate direction. Pressing ENTER will leave
the component and stop editing the string.

+------+-----+------+
0 -> .,?!’"0-()@/:_ | ‘1’ | ‘2’ | ‘3’ |
1 -> 1 | _1 | ABC | DEF |
2 -> ABC2abc +------+-----+------+
3 -> DEF3def | ‘4’ | ‘5’ | ‘6’ |
4 -> GHI4ghi | GHI | JKL | MNO |
5 -> JKL5jkl +------+-----+------+
6 -> MNO6mno | ‘7’ | ‘8’ | ‘9’ |
7 -> PQRS7pqrs | PQRS | TUV | WXYZ |
8 -> TUV8tuv +------+-----+------+
9 -> WXYZ9wxyz | ‘0’ | | ‘.’ |
. -> .+[]{}<>=*$ | .,? | | .+[|

+------+ +------+

Figure 5: Input string lists and suggested layout for the numeric keyboard

Having the additional numeric keyboard available, editing a string is much more comfortable.
mexc tries to imitate the way strings are entered on mobile phones. Each key on the numeric
keyboard has an associated list of characters which can be browsed through by repeatedly pressing
the same key in a small period of time. At the current cursor position, the stringis assigned the
currently selected character. Waiting for a short while or pressing another key will make the cursor
jump to the next position. This way a skilled user can insert a new text in a fastway with only
one finger. To help the user learning the keyboard layout,mexc will display the current character
list in the header line. While repeatedly pressing a key, and thus choosing the next character, the
displayed help string in the header line will rotate, so the currently selected character is always at
the beginning.

Figure 5 shows what character lists are assigned to each key from the numerical keyboard. The
grid sketch on the right is a suggestion for a layout of the numerical keyboard with possible labels.

10

6.9 Triggers

A trigger is nothing more than a “soft-button” on the screen. To activate the button the user needs
to press any key except ENTER. Pressing ENTER will leave this component and will not activate
the soft-button. Triggers occur in two manners, normal and password protected. When entering
the edit state, the horizontal cursor is placed at the ‘X’ or ‘P’.

|Reset System Values: [X]| <-- normal trigger
|Reboot Whole System: [P]| <-- password protected trigger

As shown in the example, password protected triggers are displayed as a ‘[P]’. Activating them
requires the user to enter a correct password before the action is carried out. How to enter a
password is described in section 5.

7 Programming with mexc

This part of the documentation is directed to programmers who want to usemexc for their own
applications. Firstly, we will take a look at what has to be done to get the library working properly.
Then we will explain the compilation and configuration details. After introducingthe public API,
we will finally have a look at how a simple program that usesmexc can be written.

7.1 What mexc needs

When usingmexc, the first thing to understand is what the library needs to be provided. As it has
been concepted to work with many kinds of hardware, the developer implementing a program for
a specific system has to write a set of hardware dependent routines which mexc will use. Providing
the library with such routines, the programmer has great power at hand to customize the look and
feel of the final application. The functions can be split into four categories: display accessing, key
press fetching, waiting and C string utilities.

mlcd_* mexc requires routines that start with the prefix “mlcd_” and provide access to the con-
nected display. They provide functionality for writing a string at a specifiedposition, clear-
ing parts of the display, controlling visiblity and position of the cursor and tellingmexc, how
many lines and columns of the display it may use.

mfpkey_get This routine providesmexc with an inteface to the attached keyboard. The keyboard
is completely unknown to the library and can be some virtual buttons on a touchscreen, for
example. All the details of the hardware are hidden to the library in the implementation of
this function.

msleep In many situations,mexc needs to wait for a little time. To be sure this is done efficiently
and accurately the library relies on the programmer to implement a sleeping routine possibly
using hardware dependent features.

11

str* There are two string utility functions, namelystrcpy andstrlen, which mexc uses to
deal with C style strings. The implementation of them is trivial and they are not hardware
dependent at all, but there are optimizations that we should consider.

Of course,mexc needs to be fed with the menu byte code it should interpret, but we will look at
this later. Now let’s dive into the details of the required functions.

7.1.1 Display accessing

Having the source code ofmexc at hand, a glance into the file calledmlcd.h will reveal what
display accessing routinesmexc exactly needs. Let’s look at each and define what effects they are
expected to perform.

void mlcd_cu_off (void)
Calling this routine should immediatelly hide the horizontal (LCD) cursor – it is often a
blinking blackbox when visible. Upon entering the main loop,mexc hides the cursor and
shows it only when the user is about to edit a component.

void mlcd_cu_on (void)
This routine should make the horizontal cursor visible again. It is the counterpart to the
previous function.

void mlcd_cu_gotoxy (unsigned char x, unsigned char y)
While the previous functions control the visibility of the cursor, this routine controls the
cursor’s position. Thex andy parameters specify the column and the line the cursor should
be positioned at.

void mlcd_clrchr (unsigned char n)
This routine is expected to clearn columns to the right starting at the current cursor position.
Actually, mexc could implement this by writingn space characters, however, a hardware
dependent implementation of this routine can be much more efficient. This routinemay or
may not change the current cursor position,mexc doesn’t require a specific behaviour.

void mlcd_clrln (unsigned char n)
This routine should clear a whole line on the display. The line is indexed byn – zero is
assumed to be the index of the first line. As with the previous function, also this one may or
may not change the current cursor position.

unsigned char get_mlcd_lines (void)
This routine is called uponmexc’s initialization and supposed to return the number of lines
the library will use. An example given below will explain this in more detail.

unsigned char get_mlcd_cols (void)
This is the counterpart to the previous routine and should return the numberof columns
mexc will use on the display. An example given below will explain this in more detail.

12

void mlcd_wrstrxy (unsigned char x, unsigned char y, char * str)
mexc uses this function to print zero terminated strings on the display.x andy specify where
on the display the string should be printed. The cursor is expected to be leftbehind the writ-
ten string.

void mlcd_wrstrxymax (unsigned char x, unsigned char y,
char *str, unsigned char n)

This function is similar to the previous one, but the passed string doesn’t need to be zero
terminated necessarily. It should print at mostn characters but respect a zero terminator, if
there is one. The function is expected to leave the cursor behind the written string.

void mlcd_wrchrxy (unsigned char x, unsigned char y,
unsigned char c)

This function is used bymexc to put a single character on the display at the specified posi-
tion. It is expected to leave the cursor behind the written character.

void mlcd_invertln (unsigned char n)
The “invert-line” function is actually optional and, when available, used bymexc to highlight
the currently selected menu line. All the routine is expected to do, is to redraw the specified
line with inverted colors. When the same line is inverted twice, it should display normally.
Inverting is meant to be temporarily only. Whenevermexc writes to an inverted line the new
characters are expected to be displayed normally, not inverted.

Being able to use this function,mexc won’t reserve the first column for the current line in-
dicator as described in section 3. Thus, there is one more column for the menudata. As
mentioned, this routine is optional and the programmer must decide whether to implement
it or not. Mainly, this decision depends on the display being used and its capabilities. The
library needs to be compiled with theCONFIG_ENABLE_INVERTLN preprocessor defini-
tion to make it use the function.

40
+----------------------+
| screen |
| |
| |

20 | 20 |
| +----------+
| 5 | mexc |
+-----------+----------+

Figure 6: Display arrangement for an example application

mexc ensures that all printed strings fit within the rectangle defined byget_mlcd_lines and
get_mlcd_cols. This rectangle can be smaller than the actual screen. Due to the fact that the
cursor positioning happens completely via themlcd_* functions, the application programmer has
the possibility to position the display rectangle occupied bymexc anywhere on the screen.

13

Of course the library can occupy the whole screen, but let’s discuss thefollowing more compli-
cated scenario. Let’s say we have a 40x20 display, but we wantmexc to use only a 20x5 area in
the right corner at the bottom as shown in figure 6. To makemexc address the proper screen area
all we need to do, is to provide a suitable implementation of themlcd_* functions.

get_mlcd_lines andget_mlcd_cols will simply return the constants 5 and 20 respec-
tively. The other routines, which position the cursor, need to add a constant offset to the passed
coordinates before moving the cursor. In our scenario they will simply add15 to eachy argument
and 20 to eachx argument.

There is one more thing that should be pointed at. As mentioned, the output routines are assumed
to leave the cursor behind the written character or string. Whenmexc writes a string which ends
exactly on the last column of the screen area assigned to the library, there isthe question “What to
do with the cursor?”. In this situation,mexc doesn’t require any specific behaviour and it is on the
implementation of themlcd_* routines to put the cursor somewhere.

7.1.2 Keyboard interface

To get access to the keyboardmexc uses only one function. This routine is declared in the file
mfpkey.h as follows.

unsigned char mfpkey_get (void);

The advantage of using this routine is thatmexc itself has no idea about the keyboard hardware.
It could be even a small joystick attached to the system. This routine is responsible to fetch a key
press and supplymexc with a constant defined in the same header file as the function’s declaration.
The important thing to note here is, thatmfpkey_get is called by the library whenever it needs
a key press to interpret, but there is no way into the other direction. The code cannot send any
key press event to the library. Fortunately,mexc calls this function quite often. So with a small
keyboard buffer no key press should get lost.

mfpkey_get is expected not to block the library by waiting for a key press. If there is nothing
to servemexc with, it should immediatelly return withMFPKEY_NONE. The library will idle for a
short while and try again.mexc may perform a specific action upon idling for a defined interval,
therefore it is important not to block it.

The header file defines quite a few constants. These are understood bymexc and have to be
returned bymfpkey_get. The first six defintions are required to let the user interact with the
menu. ServingMFPKEY_NUMPAD_* definitions is optional. They allow the user to navigate
through a menu more quickly and edit a component with more comfort, but they are not necessary.
When the user isn’t editing a component and the library gets theMFPKEY_QUIT_MEXC_LOOP
definition, it will jump out of its main loop (mexc_loop) and return to the caller.

14

7.1.3 Sleeping

Beside the already discussed routines one more needs to be linked with the library. This function
will allow mexc to put itself into sleep mode for a specified number of milliseconds.

void msleep (unsigned short msec);

A simple implementation would just loop until the time is over. On systems which already provide
a task sleeping service the code could call such a system function. A clever but more complicated
code could perform some background task whilemexc is idling. It could for example look whether
a key press occured and put it into a keyboard buffer queue.

7.1.4 String utilities

Further on,mexc uses the two routinesstrcpy andstrlenwhich are not included in the library.
These are often included in the development environment libraries or evenincluded as built-ins by
the compiler.

For example,gcc, when not passed the--no-builtin option, replaces calls tostrlen on
constant strings with the actual length of the strings at compilation time. This results in an opti-
mazation of speed and code size. If this function is used only in conjunction with constant strings,
this case is true formexc, then there will be no call tostrlen at runtime and the function’s code
needs not to be linked to the library.

However, if the development environment doesn’t bring the two functionsone needs to implement
and link them to the library.

7.2 Memory requirements

Using thesize program, we can examine the size of themexc library. However, this size is greatly
dependent on the utilized compiler, the optimization options of it and the use of preprocessor
definitions being discussed in section 7.3. Using the GNU C compiler, the size ofmexc for a
32-bit Intel platform should vary between 10KB4 and 20KB5 with asserts disabled.

The other question is, how much stackmexc needs. The required stack size is dependent on the
target architecture, the used compiler, and its optimization options. Further on, the required stack
size also depends on the number of columnsmexc will use on the screen and the depth of the menu
structure itself, too. Using the GNU debugger, tests withmexc on a 32-bit Intel platform with a 20
columns display and a menu structure of depth 3 have shown, that the libraryneeds around 550
bytes of stack.

4The exact compilation command to produce the result was:
gcc -Os -fomit-frame-pointer -DHAVE_STRING_H -DCONFIG_DISABLE_FLOAT -c *.c

5The exact compilation command to produce the result was:
gcc -DHAVE_STRING_H -DCONFIG_NUMPAD_KEYBOARD -c *.c

15

It also needs to be considered, that the binary menu description needs some space, too. To quickly
find out how much memory a concrete menu consumes, the--binary option of themlx compiler
can be used. It will produce the menu as a binary file which size can be easily determined by
system services.

7.3 Compiling the interpreter

mexc is known to compile smoothly with GCC6 and was successfully tested on Intel architectures
as well as on a Motorola DragonBall VZ processor. Using the OpenWatcom C/C++ compiler
tools7, mexc was successfully run on the Intel 8088 processor. There are a couple of things that
can be configured at compilation time and we will look at them in this section.

The providedMakefile can be used to buildmexc. The following listing shows how the library
can be built by hand.

~mexc% ls *.c
cmf.c mexc.c mutils.c pstring.c
~mexc% gcc -c *.c
~mexc% ls *.o
cmf.o mexc.o mutils.o pstring.o
~mexc% ar rcs libmexc.a *.o
~mexc% ls libmexc.a
libmexc.a

Listing 1: Creating the library

Of course, optimization options can be passed togcc or the compiler of choice. For example,
using thegcc options-fomit-frame-pointer and-Os at the same time, it is known to
reduce the needed stack size ofmexc by almost a half on modern desktop computers.

There are various preprocessor definitions that configure the library’s behaviour. They don’t have
any substitution value and can be defined on the command line usinggcc’s -D option. In the
following list we will introduce each and also explain the effects.

HAVE_ASSERT_H The source code formexc is studded with calls toassert to quickly find
bugs during development. The function itself is declared in the system header file assert.h.
However, some development environments don’t provide such a headerfile, thus causing
problems at compilation time. Therefore, whenHAVE_ASSERT_H is not defined at compi-
lation time, the header file is not included by the code and all calls to theassert function
get removed on the fly. Actually, they get substituted with nothing by the preprocessor.

HAVE_STRING_H mexc uses two functions of the standard C library:strcpy andstrlen.
They are declared through the system header filestring.h. On some systems this file may
not be available, and therefore including this file is protected with theHAVE_STRING_H

6The official web page for the GCC project can be found at [http://gcc.gnu.org/].
7The official web presentation of Open Watcom can be found at [http://www.openwatcom.org/].

16

definition. Only if it is defined at compilation time the code will include the system header.
However, not defining it doesn’t prohibitmexc from using the two string functions. In this
case, the programmer needs to provide and link them tomexc.

CONFIG_NUMPAD_KEYBOARD As already mentioned in the introduction,mexc is capable of
interpreting an additional numerical keyboard. If such a keyboard is not available on the
target system, the code responsible for handling those key presses canbe disabled at com-
pilation time. This results in a smaller size of the library.

CONFIG_ENABLE_MLCD_INVERLN See description ofmlcd_invertln in section 7.1.1.

CONFIG_DISABLE_FLOAT Defining this flag at compilation time will disable all code dealing
with thefloat data type. This flag comes from a test on an Intel 8088 processor. If the
target platform doesn’t support floating-point operations this flag should be defined. Of
course it will reduce the size of the library at the cost of not being able to deal withfloat
numbers.

To compilemexc with support for the numerical keyboard but not for floats the following command
line would be used:

~mexc% gcc -c -DHAVE_STRING_H -DCONFIG_NUMPAD_KEYBOARD \
-DCONFIG_DISABLE_FLOAT *.c

Listing 2: Compiling the library with customization options

While the definitions shown above control whether some features will be included or excluded
from the code, the following definitions provide customization of features included in it. These
are defined in the filemconfig.h and must not be removed, but can be changed to reflect the
requirements.

MEXC_MAX_LINE_LEN is used only whenmexc is *not* compiled withgcc. The GNU C
compiler has a very nice feature called “Arrays of Variable Length” whichenables the library
to allocate such arrays on the stack. When this feature is not available, the code must
assume a fixed length for its buffers. It is important thatMEXC_MAX_LINE_LEN is equal
to or greater than the value returned byget_mlcd_cols, otherwise buffer overflows will
make the code run incorrectly, and possibly cause endless loops.

MEXC_MAX_PWD_LEN has the same background as the previous option and is used only when
compiling *not* with gcc. It defines the length of the password buffer and must not be
smaller than the longest password in the menu definition to avoid buffer overflows.

MEXC_MAX_DISP_CONTEXT_DEPTH’s value is important not to be smaller than the maxi-
mum depth of the menu hierarchy. When entering a submenu,mexc stores the current
display context in a table and increases the current context level. When returning from the
submenu, the library restores the last display context and decreases thelevel. The value of

17

MEXC_MAX_DISP_CONTEXT_DEPTH gives the number of possible entries in the context
table. One entry stores three pointers, so on a 32-bit platform an entry willtake up 12 bytes.

If this value is too small,mexc will display the error message “err: menu too deep” and
refuse to enter the submenu when the user reaches the table space limit.

MEXC_LC_PASSWORD_STRING defines the string to be displayed as a password protected trig-
ger line component. The length of the string should be non-even asmexc tries to position
the horizontal cursor upon activating the component into the mid of the displayed label.

MEXC_LC_TRIGGER_STRING has the same meaning as the previous item with the exception
that it is displayed for normal triggers – triggers that are not password protected.

With MEXC_FORCE_SIGN_ON_SIGNED_NUMBERS being defined as non-zero,mexc will al-
ways display a sign on signed numbers. Thus a posivite signed number is preceeded with a
plus (+). This behaviour can be turned off by specifying a zero.

MEXC_FIRST_PRINTABLE_CHAR andMEXC_LAST_PRINTABLE_CHAR define an interval
in the character code table. Characters in this interval, including both ends,can be entered
when editing a string with the UP and DOWN keys.

MEXC_BLINK_INTERVAL defines the number of seconds after which a blinkable component
should be erased on the screen and after the same interval redrawn again, thus, letting the
component visually blink.

MEXC_ASK_PWD_PROMPT is the string thatmexc will display as a prompt in front of the pass-
word input field. See section 5.

MEXC_FLASH_DELAY is the number in milliseconds a flash will last. Sometimes the user
presses a key which is not suitable in the current situation.mexc warns the user about it
with a short flash in the header line.

MEXC_GET_KEY_DELAY; As described in section 7.1.2,mexc callsmfpkey_get to fetch a
key press. However, when there is nothing,MFPKEY_NONE gets returned andmexc will
sleep forMEXC_GET_KEY_DELAY milliseconds before trying to fetch again. The smaller
the value of the definition the quickermexc will response to key presses. The current imple-
mentation ofmexc restricts the value not to be smaller than 4.

MEXC_SHOW_ERRMSG_DELAY is another interval in milliseconds. It defines how long an error
message will be displayed.

MEXC_BLACK_BOX_CHAR should be the character code of a black box character. It is used to
produce the flash in the header line. If no such character is available anyother can be used,
too.

MEXC_CUR_LINE_INDICATOR_CHAR is used only ifCONFIG_ENABLE_MLCD_INVERLN
is *not* defined. It defines the cursor character displayed in the first column of a menu line
as described in section 3.

18

MEXC_SUBMENU_INDICATOR_CHAR defines the character to be displayed at the right border
of a menu line if there is a submenu.

MEXC_SUBMENU_PWD_INDICATOR_CHAR defines the character to be displayed at the right
border of a menu line if there is a password protected submenu.

MEXC_LAST_LINE_INDICATOR_CHAR defines the character to be displayed in the K-field
as described in section 3 when the cursor is on the last line of a menu table.

MEXC_MORE_LINES_INDICATOR_CHAR defines the character to be displayed in the K-field
as described in section 3 when there are more lines in the menu table than visible inthe
screen area.

MEXC_MLINE_EDITABLE_CHAR defines the character to be displayed in the N-field when the
current menu line contains editable components.

MEXC_MLINE_READ_ONLY_CHAR defines the caracter to be displayed in the N-field when the
current menu line has no editable component.

MEXC_TIME_SEPARATOR_CHAR is the character to be put between the hours, minutes, and
the seconds of a time component.

MEXC_DATE_SEPARATOR_CHAR is the character to be put between the year, month, and the
day of a date component.

MEXC_FILLER_CHAR is the character to be put where something is missing. It should be the
blank character to interact smoothly with themlcd_clrchr function.

MEXC_PASSWORD_CHAR defines the character that should be echoed when entering a password.

Creating different applications for different platforms will probably require to configure the library
for each platform and application. Because of this and the fact that thereis quite a lot to be
configured there is no complete building and installation system.

7.4 Writing a program

From a programmer’s point of view, usingmexc is quite simple. However, there are several steps
that need to be done.

• First of all themexc interpreter needs to be compiled and possibly customized. This is
discussed in section 7.3.

• As mexc is expected to be linked with a predefined set of functions, the second stepis to
create these routines.

19

• Next, the binary menu image whichmexc will interpret is needed. For this step themlx
compiler has been written. It takes an XML document and creates the binaryimage, also
referred to as byte code. The output of the compiler are two files,a.c anda.h. In the C file
there is the byte code as an array. The header file contains a declaration of a pointer to the
byte code and definitions which originate from the input document. For more information
read themlx documentation.

• Finally, everything is prepared to write a complete program.

We will now give an overview of themexc API and look at an example a little bit later.

7.4.1 Data types

The API is exported through the header filemexc.h which includes the declaration of four public
functions. The used data types are defined inmtypes.h. Here are the appropriate excerpts:

28 typedef unsigned char uchar;
typedef char schar;

30 typedef unsigned short uint2;
typedef short sint2;

32 typedef unsigned char * addr_t;

Listing 3: mtypes.h / 28–32

37 typedef void (*fcncbp) (uchar, addr_t);

Listing 4: mtypes.h / 37

While all data types are just synonyms for those already existing in the C languages,fcncbp
needs a short explanation. It is a pointer to a function with two parameters and no return value.
The first argument of the function has to be of typeunsigned char and the second a pointer
to anunsigned char.

7.4.2 mexc_init

uchar mexc_init (addr_t mcode, addr_t ram, fcncbp def_cb_handler);

Initialization of the library happens with a call tomexc_init. Beside initializing the library’s
globals, it will verify the passed menu byte code and intialize all menu variablesin RAM. With
an exception to theget_mlcd_* functions, none of the display accessing routines gets called at
this moment.

mexc_init will return zero to indicate that everything went alright. Otherwise, it will return one
of the following constants which are defined incmf.h.

20

CMF_INIT_BAD_ID indicates that the byte code to interpret isn’t in CMF format.

CMF_INIT_UNSUPPORTED_VERSION indicates that the byte code version isn’t supported by
the library.CMF_MAJOR_VERSION andCMF_MINOR_VERSION defined incmf.h show
the supported version.

CMF_INIT_BAD_BYTE_ORDER indicates thatmexc and the byte code don’t match the same
endianness. Often, this error comes from specifying the wrong argument to the--endian
option of themlx compiler or not using the option at all.

The three expected arguments tomexc_init have the following meaning:

mcode must be a pointer to the menu binary image. This parameter must not beNULL.

ram must be the address of a writable memory area. This parameter may beNULL if there are
only constant strings in the whole menu.

default_cb_handler After a line component has been edited by the user,mexc will notify
the application by calling a handler function. By default, it will invoke the function passed
as the third argument tomexc_init. This parameter may beNULL.

7.4.3 mexc_loop

void mexc_loop (void);

A call to this function will start the main loop. It will display the top-level menu table, wait for
key presses, and interpret them. It is necessary thatmexc_init has already been called before.
mexc_loop will not return as long as it hasn’t fetched theMFPKEY_QUIT_MEXC_LOOP key
press.

7.4.4 mexc_set_callback_handler

fcncbp mexc_set_callback_handler (fcncbp * fo, fcncbp fn);

As already mentioned in section 7.4.2, the third parameter tomexc_init is the address of a
function to be called whenever any component has been edited. However, callback handlers for
individual components can be installed by usingmexc_set_callback_handler. Its param-
eters are:

fo; the addresses of the memory block holding the address of the handler to becalled. Usu-
ally one will pass aCALL_* definition for the appropriate component from the header file
outputted by themlx compiler.

fn; the address of the function to call when the appropriate component has been edited.

21

Usually, calls tomexc_set_callback_handler occur after initializingmexc and before run-
ning its main loop. The installed handler is called with two arguments, the first beinga numerical
value representing the type of the edited component, and the second being apointer to the com-
ponent’s current value. Definitions for each type thatmexc understands can be found in the file
cmf.h.

The returned value is the address of the previously installed callback handler orNULL if there was
none before.

7.4.5 mexc_enable_line

void mexc_enable_mline (unsigned char *addr, uchar val);

This routine provides a convenient way of enabling and disabling dynamic menu lines. mexc
simply hides disabled menu lines. Currently, calling this routine will cause the interpreter to return
to the top-level menu table and hide the appropriate line if the user is not editing acomponent.

addr specifies the address of the boolean ‘enable’ value declared bymlx in the generated menu
header file. It is associated with a concrete menu line.

val is the new state of the menu line and will be stored where the first argument points to. Any
other value than zero will enable a menu line.

mexc assumes there is always at least one visible line in a displayed menu table. Forexample,
entering a submenu with all menu lines disabled will crash the interpreter!

7.4.6 mexc_redraw

void mexc_redraw (void);

Having themexc_loop started and the user currently not being editing a component, invoking
this function will simply redraw the screen area occupied by the library.

7.4.7 An example

Figure 5 provides a skeleton for an application usingmexc. At first, mexc.h must be included. It
makes the public API available. Includingmenu.h, the generated menu header file, imports the
declarations ofg_mlx_menu and__MLX_RAM_BASE__ which are used upon initialization of
mexc. If the initialization fails the program simply aborts. Otherwise, it starts the main loop which
will display the top-level menu table and react upon key presses.

22

#include <mexc.h>
#include "menu.h"

int main ()
{

if (mexc_init (g_mlx_menu, __MLX_RAM_BASE__, NULL))
return 1; /* error occured */

/* ... mexc callback installation */

mexc_loop ();

return 0;
}

Listing 5: Skeleton of an application

Following the initialization ofmexc, there is room to install custom functions which are to be
called after components were edited. Let’s assume the following code snippet being inmenu.h.

#define dd_integer ((unsigned char *)(__MLX_RAM_BASE__ + 0x00))
#define CALL_dd_integer ((fcncbp *)(__MLX_RAM_BASE__ + 0x04))

With the following statement betweenmexc_init andmexc_loop a custom function, here
namedon_edited_cb, would be called after the user edited thedd_integer component.

mexc_set_callback_handler (CALL_dd_integer, on_edited_cb);

The custom callback needs to be of typefcncbp as explained in section 7.4.1. In our example,
the first argument can be ignored as we connect exactly one componentto the callback. The second
argument is a pointer to the current value of the component and optionally needs to be casted to
the proper data type pointer. Read themlx documentation to learn more about data types of the
individual components. Here is a demonstration:

void on_edited_cb (unsigned char type, unsigned char * value)
{

assert (value == dd_integer); /* from menu.h */
assert (type == 0); /* or LC_TYPE_UCHAR_DD from cmf.h */
printf ("current value changed to %d\n", *value);

}

Listing 6: Accessing menu variables in callbacks

23

8 Simulator

During the development ofmexc, a simulator was needed to test and debug the code.gsim is a
GTK+-2.08 based program which implements the requiredmcld_*,msleep, andmfpkey_get
routines. The program runs on MS Windows, various GNU/Linux distributions and FreeBSD;
other operating systems have not been tested yet. It has proven that the simulator is very useful
when writing menu definitions. One can immediately see, on the development platform, what the
menu will look like.

8.1 Compiling it

To compile the simulator, the providedMakefile or Makefile.win32 should be used. Of
course, the appropriate makefile should be checked for valid paths and the CFLAGS makefile
variable.

~gsim% make
usage: make [gsim|ggsim|menu|clean]
~gsim% make gsim
[...]
~gsim% ls -F gsim
gsim*

Listing 7: Creating the simulator

There are four targets, two of them –gsim andggsim – are actually simulators.gsim is the
character based LCD simulator, whileggsim is graphics based. The latter one is an experiment
to showmexc with theCONFIG_ENABLE_MLCD_INVERTLN configuration.

Under MS Windows the simulator andmexc are known to compile smoothly with tools available
by the MinGW9 project. The GTK+ library 2.0 or higher is required. When usingMakefile
also thepkg-config program will be needed.

8.2 Using it

To start the simulator, a filename containing the binary menu image must be specified on the
command line. Invokinggsim without this parameter will make it return with an error.

~gsim% ./gsim
Usage: ./gsim [-z zoom | -c columns | -l lines | -i | -k] <menu>

Listing 8: Command line arguments of the simulator

8To learn more about GTK+ visit its home page at [http://www.gtk.org].
9The home page of the MinGW project can be found at [http://www.mingw.org].

24

The binary menu image to be passed togsim needs to be in a binary file. Themlx compiler can
generate such a file when passed the--binary option. Let’s examine the other parameters.

-z awaits a numeric argument, the zoom factor, and causes the simulated LCD to bedisplayed
as many times larger as specified. Default: 1.

-c awaits a numeric argument and sets the number of characters to fit into one line. Default: 20.

-l awaits a numeric argument and sets the number of lines on the LCD. Default: 4.

-i will popup the ‘inspector’ window which disassembles the binary menu image and represents
it in tree view. It allows to change the current value of line components. Editable cells have
a red background.

-k will popup a virtual keyboard.

The simulated LCD itself is a small green window with ‘-c’ columns and ‘-l’ lines. To navi-
gate through the displayed menu the virtual keyboard window or the directions keys can be used.
MFPKEY_RTAB is mapped on ENTER of the real keyboard.

9 Known issues

Currently, there are the following restrictions:

• mexc doesn’t support a password for the top-level menu table. If there is one, the library
will simply ignore it and dislay the menu table as if there was no password protection.

• mexc is written in a manner that assumes there is always at least one menu line to be dis-
played. Having dynamic menu lines can lead to a situation where all lines of a menutable
are disabled. This must be avoided. The simplest way to do so is to put a non-dynamic line
into the menu table.

• When rendering line components there arises the question what to do when acomponent
doesn’t fit completely on the screen.mexc is very strict in this respect and won’t render
such a component at all.

25

